code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a : Any = logging.get_logger(__name__) class lowercase_ ( _a ): '''simple docstring''' __lowerCAmelCase : int = "AutoTokenizer" __lowerCAmelCase : Tuple = ["tokenizer"] __lowerCAmelCase : List[Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , a_ , a_=None ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) UpperCAmelCase = speaker_embeddings @classmethod def snake_case_ ( cls , a_ , a_="speaker_embeddings_path.json" , **a_ ) -> Optional[int]: """simple docstring""" if speaker_embeddings_dict_path is not None: UpperCAmelCase = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_UpperCAmelCase , _UpperCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCAmelCase = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: UpperCAmelCase = json.load(_UpperCAmelCase ) else: UpperCAmelCase = None UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase , speaker_embeddings=_UpperCAmelCase ) def snake_case_ ( self , a_ , a_="speaker_embeddings_path.json" , a_="speaker_embeddings" , a_ = False , **a_ , ) -> int: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase , _UpperCAmelCase , 'v2' ) , exist_ok=_UpperCAmelCase ) UpperCAmelCase = {} UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase = self._load_voice_preset(_UpperCAmelCase ) UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , _UpperCAmelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_UpperCAmelCase , ) UpperCAmelCase = os.path.join(_UpperCAmelCase , F'''{prompt_key}_{key}.npy''' ) UpperCAmelCase = tmp_dict with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def snake_case_ ( self , a_ = None , **a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.speaker_embeddings[voice_preset] UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.''' ) UpperCAmelCase = np.load(_UpperCAmelCase ) return voice_preset_dict def snake_case_ ( self , a_ = None ) -> Optional[Any]: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , a_=None , a_=None , a_="pt" , a_=2_5_6 , a_=False , a_=True , a_=False , **a_ , ) -> str: """simple docstring""" if voice_preset is not None and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not voice_preset.endswith('.npz' ): UpperCAmelCase = voice_preset + """.npz""" UpperCAmelCase = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) UpperCAmelCase = self.tokenizer( _UpperCAmelCase , return_tensors=_UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) if voice_preset is not None: UpperCAmelCase = voice_preset return encoded_text
447
import requests from bsa import BeautifulSoup def _UpperCAmelCase (UpperCamelCase_ : str = "AAPL" ): '''simple docstring''' _lowerCAmelCase : Any = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(UpperCamelCase_ ).text , """html.parser""" ) _lowerCAmelCase : Tuple = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
429
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowercase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowerCamelCase_ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , *__lowercase , **__lowercase) -> List[str]: super().__init__(*lowercase__ , **lowercase__) requires_backends(self , '''vision''') self.check_model_type(lowercase__) def __call__( self , __lowercase , **__lowercase) -> str: return super().__call__(lowercase__ , **lowercase__) def UpperCamelCase__ ( self , **__lowercase) -> int: return {}, {}, {} def UpperCamelCase__ ( self , __lowercase) -> Tuple: __UpperCamelCase :Optional[Any] = load_image(lowercase__) __UpperCamelCase :Dict = image.size __UpperCamelCase :Union[str, Any] = self.image_processor(images=lowercase__ , return_tensors=self.framework) return model_inputs def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.model(**lowercase__) return model_outputs def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :Any = model_outputs.predicted_depth __UpperCamelCase :Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=lowercase__) __UpperCamelCase :Dict = prediction.squeeze().cpu().numpy() __UpperCamelCase :List[Any] = (output * 255 / np.max(lowercase__)).astype('''uint8''') __UpperCamelCase :Dict = Image.fromarray(lowercase__) __UpperCamelCase :List[Any] = {} __UpperCamelCase :List[str] = predicted_depth __UpperCamelCase :Tuple = depth return output_dict
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """unispeech""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=0.5 , **__lowercase , ) -> Optional[int]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :str = hidden_size __UpperCamelCase :List[str] = feat_extract_norm __UpperCamelCase :str = feat_extract_activation __UpperCamelCase :str = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Any = conv_bias __UpperCamelCase :List[Any] = num_conv_pos_embeddings __UpperCamelCase :Tuple = num_conv_pos_embedding_groups __UpperCamelCase :Optional[int] = len(self.conv_dim) __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Tuple = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :Any = hidden_dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :int = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Optional[Any] = layerdrop __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Tuple = num_ctc_classes __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :Dict = use_weighted_layer_sum __UpperCamelCase :str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Optional[int] = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Any = mask_time_min_masks __UpperCamelCase :Any = mask_feature_prob __UpperCamelCase :str = mask_feature_length __UpperCamelCase :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :Dict = num_codevector_groups __UpperCamelCase :Optional[int] = contrastive_logits_temperature __UpperCamelCase :Union[str, Any] = feat_quantizer_dropout __UpperCamelCase :List[str] = num_negatives __UpperCamelCase :Union[str, Any] = codevector_dim __UpperCamelCase :int = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :List[Any] = ctc_loss_reduction __UpperCamelCase :int = ctc_zero_infinity # pretraining loss __UpperCamelCase :Optional[Any] = replace_prob @property def UpperCamelCase__ ( self) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
452
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __snake_case :Tuple =logging.get_logger(__name__) __snake_case :Dict ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case :Optional[Any] ={ """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __snake_case :Dict ={ """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __snake_case :Tuple ={ """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __snake_case :Dict ={ """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __snake_case :int ={ """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __snake_case :Union[str, Any] ={ """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __snake_case :List[Any] ={ """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __snake_case :List[Any] ={ """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __snake_case :Optional[Any] ={ """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCAmelCase__ ( UpperCAmelCase_ ): A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCAmelCase__ ( UpperCAmelCase_ ): A_ : Tuple = VOCAB_FILES_NAMES A_ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A_ : List[str] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Union[str, Any] =collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __snake_case :Union[str, Any] =collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __snake_case :str =r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase__ : def __call__( self : Any , __UpperCamelCase : str , __UpperCamelCase : Any = None , __UpperCamelCase : List[Any] = None , __UpperCamelCase : Optional[int] = False , __UpperCamelCase : Dict = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : List[Any] = None , __UpperCamelCase : Dict = None , **__UpperCamelCase : List[str] , ) -> Optional[Any]: if titles is None and texts is None: return super().__call__( __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) elif titles is None or texts is None: A = titles if texts is None else texts return super().__call__( __A , __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) A = titles if not isinstance(__A , __A ) else [titles] A = texts if not isinstance(__A , __A ) else [texts] A = len(__A ) A = questions if not isinstance(__A , __A ) else [questions] * n_passages if len(__A ) != len(__A ): raise ValueError( f'''There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.''' ) A = super().__call__(__A , __A , padding=__A , truncation=__A )['input_ids'] A = super().__call__(__A , add_special_tokens=__A , padding=__A , truncation=__A )['input_ids'] A = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A , __A ) ] } if return_attention_mask is not False: A = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A = attention_mask return self.pad(__A , padding=__A , max_length=__A , return_tensors=__A ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict = 16 , __UpperCamelCase : Optional[int] = 64 , __UpperCamelCase : Dict = 4 , ) -> List[str]: A = reader_input['input_ids'] A , A , A = reader_output[:3] A = len(__A ) A = sorted(range(__A ) , reverse=__A , key=relevance_logits.__getitem__ ) A = [] for doc_id in sorted_docs: A = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A = sequence_ids.index(self.pad_token_id ) else: A = len(__A ) A = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__A , top_spans=__A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__A , start_index=__A , end_index=__A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , ) -> Dict: A = [] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A = sorted(__A , key=lambda __UpperCamelCase : x[1] , reverse=__A ) A = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) A = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : Tuple = READER_PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = READER_PRETRAINED_INIT_CONFIGURATION A_ : List[Any] = ["""input_ids""", """attention_mask"""]
106
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _A: Union[str, Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def _lowerCAmelCase ( _lowerCAmelCase=None )-> Optional[Any]: if subparsers is not None: __UpperCAmelCase = subparsers.add_parser('tpu-config' , description=_description ) else: __UpperCAmelCase = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments __UpperCAmelCase = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_lowerCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_lowerCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) __UpperCAmelCase = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_lowerCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _lowerCAmelCase ( _lowerCAmelCase )-> int: __UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): __UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: __UpperCAmelCase = defaults.commands if not args.tpu_name: __UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: __UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCAmelCase = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": __UpperCAmelCase = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _lowerCAmelCase ): __UpperCAmelCase = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: __UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCAmelCase ): __UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCAmelCase = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command __UpperCAmelCase = '; '.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCAmelCase = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_lowerCAmelCase )}' ) return subprocess.run(_lowerCAmelCase ) print('Successfully setup pod.' ) def _lowerCAmelCase ( )-> Any: __UpperCAmelCase = tpu_command_parser() __UpperCAmelCase = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
126
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="attention" ): SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): if split_mlp_wi: SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def A__ ( __lowerCamelCase, *, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): SCREAMING_SNAKE_CASE_ = traverse_util.flatten_dict(variables['''target'''] ) SCREAMING_SNAKE_CASE_ = {"/".join(lowerCamelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE_ = "encoder/encoder/mlp/wi_0/kernel" in old print('''Split MLP:''', lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE_ = old["token_embedder/embedding"] # Encoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, '''encoder''', '''pre_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, '''encoder''', '''attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, '''encoder''', '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE_ = tax_mlp_lookup(lowerCamelCase__, lowerCamelCase__, '''encoder''', lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ = wi[0].T SCREAMING_SNAKE_CASE_ = wi[1].T else: SCREAMING_SNAKE_CASE_ = wi.T SCREAMING_SNAKE_CASE_ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( lowerCamelCase__, lowerCamelCase__, '''encoder''' ).T SCREAMING_SNAKE_CASE_ = old["encoder/encoder_norm/scale"] if not scalable_attention: SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( lowerCamelCase__, 0, '''encoder''' ).T SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( lowerCamelCase__, 0, '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', '''pre_self_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', '''self_attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', '''pre_cross_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ = tax_attention_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', '''encoder_decoder_attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE_ = tax_mlp_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''', lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ = wi[0].T SCREAMING_SNAKE_CASE_ = wi[1].T else: SCREAMING_SNAKE_CASE_ = wi.T SCREAMING_SNAKE_CASE_ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup(lowerCamelCase__, lowerCamelCase__, '''decoder''' ).T SCREAMING_SNAKE_CASE_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE_ = old["decoder/logits_dense/kernel"].T return new def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) SCREAMING_SNAKE_CASE_ = state_dict["shared.weight"] return state_dict def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = checkpoints.load_tax_checkpoint(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = convert_tax_to_pytorch( lowerCamelCase__, num_layers=config.num_layers, is_encoder_only=lowerCamelCase__, scalable_attention=lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ = make_state_dict(lowerCamelCase__, lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__, strict=lowerCamelCase__ ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False, __lowerCamelCase = False, ): SCREAMING_SNAKE_CASE_ = MTaConfig.from_json_file(lowerCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE_ = UMTaEncoderModel(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE_ = UMTaForConditionalGeneration(lowerCamelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase__ ) print('''Done''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
715
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["image_processor", "tokenizer"] UpperCAmelCase_ ="AutoImageProcessor" UpperCAmelCase_ ="AutoTokenizer" def __init__( self , _A=None , _A=None , **_A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_A , _A ) SCREAMING_SNAKE_CASE_ = self.image_processor SCREAMING_SNAKE_CASE_ = False def __call__( self , *_A , **_A ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''images''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE_ = args[0] SCREAMING_SNAKE_CASE_ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(_A , *_A , **_A ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , **_A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE_ = encodings['''input_ids'''] return inputs def _UpperCamelCase ( self , *_A , **_A ) -> Tuple: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> str: return self.tokenizer.decode(*_A , **_A ) @contextmanager def _UpperCamelCase ( self ) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.tokenizer yield SCREAMING_SNAKE_CASE_ = self.image_processor SCREAMING_SNAKE_CASE_ = False def _UpperCamelCase ( self , _A , _A=False , _A=None ) -> Optional[Any]: if added_vocab is None: SCREAMING_SNAKE_CASE_ = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE_ = {} while tokens: SCREAMING_SNAKE_CASE_ = re.search(R'''<s_(.*?)>''' , _A , re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE_ = start_token.group(1 ) SCREAMING_SNAKE_CASE_ = re.search(RF'''</s_{key}>''' , _A , re.IGNORECASE ) SCREAMING_SNAKE_CASE_ = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE_ = tokens.replace(_A , '''''' ) else: SCREAMING_SNAKE_CASE_ = end_token.group() SCREAMING_SNAKE_CASE_ = re.escape(_A ) SCREAMING_SNAKE_CASE_ = re.escape(_A ) SCREAMING_SNAKE_CASE_ = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , _A , re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE_ = self.tokenajson(_A , is_inner_value=_A , added_vocab=_A ) if value: if len(_A ) == 1: SCREAMING_SNAKE_CASE_ = value[0] SCREAMING_SNAKE_CASE_ = value else: # leaf nodes SCREAMING_SNAKE_CASE_ = [] for leaf in content.split(R'''<sep/>''' ): SCREAMING_SNAKE_CASE_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE_ = leaf[1:-2] # for categorical special tokens output[key].append(_A ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE_ = output[key][0] SCREAMING_SNAKE_CASE_ = tokens[tokens.find(_A ) + len(_A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_A , added_vocab=_A ) if len(_A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _UpperCamelCase ( self ) -> Tuple: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def _UpperCamelCase ( self ) -> List[str]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
597
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } snake_case = { '''gpt2''': 1_0_2_4, '''gpt2-medium''': 1_0_2_4, '''gpt2-large''': 1_0_2_4, '''gpt2-xl''': 1_0_2_4, '''distilgpt2''': 1_0_2_4, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] A__ : Tuple = GPTaTokenizer def __init__( self : Optional[int] , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]="<|endoftext|>" , __lowerCamelCase : Dict="<|endoftext|>" , __lowerCamelCase : Union[str, Any]="<|endoftext|>" , __lowerCamelCase : List[str]=False , **__lowerCamelCase : Any , ): """simple docstring""" super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = kwargs.pop('''add_bos_token''' , __lowerCamelCase ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCamelCase ) != add_prefix_space: _snake_case = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**__lowerCamelCase ) _snake_case = add_prefix_space def __UpperCAmelCase ( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , *__lowerCamelCase : Any , **__lowerCamelCase : str ): """simple docstring""" _snake_case = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : "Conversation" ): """simple docstring""" _snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] return input_ids
103
"""simple docstring""" from math import sqrt def snake_case ( lowerCAmelCase_ = 1000000 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
103
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
475
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase () -> tuple[list[int], int]: lowercase :Any = [randint(-1000 , 1000) for i in range(10)] lowercase :Any = randint(-5000 , 5000) return (arr, r) UpperCAmelCase = make_dataset() def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, ...]: for triplet in permutations(a_ , 3): if sum(a_) == target: return tuple(sorted(a_)) return (0, 0, 0) def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, int, int]: arr.sort() lowercase :Union[str, Any] = len(a_) for i in range(n - 1): lowercase , lowercase :Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase () -> tuple[float, float]: lowercase :int = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' lowercase :Optional[Any] = ''' triplet_sum1(*dataset) ''' lowercase :Union[str, Any] = ''' triplet_sum2(*dataset) ''' lowercase :Dict = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) lowercase :Optional[int] = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) return (min(a_), min(a_)) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
475
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a: Dict = 16 _a: Optional[Any] = 32 def __lowerCAmelCase ( A , A = 16 ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a: Optional[Any] = mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( A , A ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _SCREAMING_SNAKE_CASE ) == "1": UpperCAmelCase_ = 2 # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["num_epochs"] ) UpperCAmelCase_ = int(config["seed"] ) UpperCAmelCase_ = int(config["batch_size"] ) UpperCAmelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCAmelCase_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
162
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [0] * len(_SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [1] * len(_SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) print(max(_SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowercase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
235
0
import math import random def A (__A : float , __A : bool = False ) -> float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value snake_case_ : List[Any] = 0.02 def A (__A : int , __A : int ) -> float: """simple docstring""" UpperCAmelCase_ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(UpperCAmelCase__ ): # Forward propagation UpperCAmelCase_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase_ = (expected / 100) - layer_a # Error delta UpperCAmelCase_ = layer_1_error * sigmoid_function(UpperCAmelCase__ , UpperCAmelCase__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : int = int(input("Expected value: ")) snake_case_ : Any = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
708
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A (__A : Tuple , __A : List[Any]=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} UpperCAmelCase_ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" UpperCAmelCase_ = requests.get(__A , headers=__A ).json() UpperCAmelCase_ = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCAmelCase_ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__A ): UpperCAmelCase_ = requests.get(url + F"""&page={i + 2}""" , headers=__A ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def A (__A : Union[str, Any] , __A : Optional[Any]=None ) -> Any: """simple docstring""" UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} UpperCAmelCase_ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" UpperCAmelCase_ = requests.get(__A , headers=__A ).json() UpperCAmelCase_ = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) UpperCAmelCase_ = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__A ): UpperCAmelCase_ = requests.get(url + F"""&page={i + 2}""" , headers=__A ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def A (__A : Any , __A : Tuple , __A : Optional[int] , __A : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = None if token is not None: UpperCAmelCase_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} UpperCAmelCase_ = requests.get(__A , headers=__A , allow_redirects=__A ) UpperCAmelCase_ = result.headers['''Location'''] UpperCAmelCase_ = requests.get(__A , allow_redirects=__A ) UpperCAmelCase_ = os.path.join(__A , F"""{artifact_name}.zip""" ) with open(__A , '''wb''' ) as fp: fp.write(response.content ) def A (__A : Union[str, Any] , __A : Optional[int]=None ) -> int: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = None with zipfile.ZipFile(__A ) as z: for filename in z.namelist(): if not os.path.isdir(__A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__A ) as f: for line in f: UpperCAmelCase_ = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase_ = line[: line.index(''': ''' )] UpperCAmelCase_ = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed UpperCAmelCase_ = line[len('''FAILED ''' ) :] failed_tests.append(__A ) elif filename == "job_name.txt": UpperCAmelCase_ = line if len(__A ) != len(__A ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(__A )} for `errors` """ F"""and {len(__A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) UpperCAmelCase_ = None if job_name and job_links: UpperCAmelCase_ = job_links.get(__A , __A ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase_ = [x + [y] + [job_link] for x, y in zip(__A , __A )] return result def A (__A : List[str] , __A : Any=None ) -> int: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [os.path.join(__A , __A ) for p in os.listdir(__A ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(__A , job_links=__A ) ) return errors def A (__A : Tuple , __A : Dict=None ) -> Dict: """simple docstring""" UpperCAmelCase_ = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase_ = counter.most_common() UpperCAmelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase_ = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase_ = dict(sorted(r.items() , key=lambda __A : item[1]["count"] , reverse=__A ) ) return r def A (__A : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): UpperCAmelCase_ = test.split('''/''' )[2] else: UpperCAmelCase_ = None return test def A (__A : str , __A : int=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase_ = [x for x in logs if x[2] is not None] UpperCAmelCase_ = {x[2] for x in logs} UpperCAmelCase_ = {} for test in tests: UpperCAmelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase_ = counter.most_common() UpperCAmelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase_ = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase_ = {'''count''': n_errors, '''errors''': error_counts} UpperCAmelCase_ = dict(sorted(r.items() , key=lambda __A : item[1]["count"] , reverse=__A ) ) return r def A (__A : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = '''| no. | error | status |''' UpperCAmelCase_ = '''|-:|:-|:-|''' UpperCAmelCase_ = [header, sep] for error in reduced_by_error: UpperCAmelCase_ = reduced_by_error[error]['''count'''] UpperCAmelCase_ = F"""| {count} | {error[:100]} | |""" lines.append(__A ) return "\n".join(__A ) def A (__A : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = '''| model | no. of errors | major error | count |''' UpperCAmelCase_ = '''|-:|-:|-:|-:|''' UpperCAmelCase_ = [header, sep] for model in reduced_by_model: UpperCAmelCase_ = reduced_by_model[model]['''count'''] UpperCAmelCase_ , UpperCAmelCase_ = list(reduced_by_model[model]['''errors'''].items() )[0] UpperCAmelCase_ = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__A ) return "\n".join(__A ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") snake_case_ : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) snake_case_ : Dict = get_job_links(args.workflow_run_id, token=args.token) snake_case_ : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: snake_case_ : List[Any] = k.find(" / ") snake_case_ : List[str] = k[index + len(" / ") :] snake_case_ : Optional[int] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) snake_case_ : Optional[int] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) snake_case_ : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error snake_case_ : str = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors snake_case_ : Dict = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) snake_case_ : str = reduce_by_error(errors) snake_case_ : Optional[Any] = reduce_by_model(errors) snake_case_ : int = make_github_table(reduced_by_error) snake_case_ : Optional[int] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
169
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( a ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE__ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _UpperCAmelCase ( A__ ): @staticmethod def _snake_case ( UpperCAmelCase : List[Any]): SCREAMING_SNAKE_CASE_ :str = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_snake_case , required=_snake_case , help="Model\'s type.") train_parser.add_argument( "--tf_checkpoint" , type=_snake_case , required=_snake_case , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=_snake_case , required=_snake_case , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=_snake_case , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=_snake_case , default=_snake_case , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_snake_case) def __init__( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , *UpperCAmelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE_ :List[str] = logging.get_logger("transformers-cli/converting") self._logger.info(F"Loading model {model_type}") SCREAMING_SNAKE_CASE_ :Optional[int] = model_type SCREAMING_SNAKE_CASE_ :str = tf_checkpoint SCREAMING_SNAKE_CASE_ :Tuple = pytorch_dump_output SCREAMING_SNAKE_CASE_ :Any = config SCREAMING_SNAKE_CASE_ :Union[str, Any] = finetuning_task_name def _snake_case ( self : str): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE_ :List[Any] = self._tf_checkpoint SCREAMING_SNAKE_CASE_ :Optional[Any] = "" else: SCREAMING_SNAKE_CASE_ :List[Any] = self._tf_checkpoint SCREAMING_SNAKE_CASE_ :Optional[Any] = "" convert_transfo_xl_checkpoint_to_pytorch( _snake_case , self._config , self._pytorch_dump_output , _snake_case) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
631
from __future__ import annotations __magic_name__ = list[list[int]] # assigning initial values to the grid __magic_name__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __magic_name__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _lowerCAmelCase ( A__: Matrix , A__: int , A__: int , A__: int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' if location := find_empty_location(A__ ): UpperCAmelCase , UpperCAmelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A__ , A__ , A__ , A__ ): UpperCAmelCase = digit if sudoku(A__ ) is not None: return grid UpperCAmelCase = 0 return None def _lowerCAmelCase ( A__: Matrix ): '''simple docstring''' for row in grid: for cell in row: print(A__ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __magic_name__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
254
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "layoutlmv3" def __init__( self , _UpperCAmelCase=5_02_65 , _UpperCAmelCase=7_68 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=30_72 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_12 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=10_24 , _UpperCAmelCase=1_28 , _UpperCAmelCase=1_28 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=1_28 , _UpperCAmelCase=64 , _UpperCAmelCase=2_56 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=2_24 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case_ = max_ad_position_embeddings snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = has_relative_attention_bias snake_case_ = rel_pos_bins snake_case_ = max_rel_pos snake_case_ = has_spatial_attention_bias snake_case_ = rel_ad_pos_bins snake_case_ = max_rel_ad_pos snake_case_ = text_embed snake_case_ = visual_embed snake_case_ = input_size snake_case_ = num_channels snake_case_ = patch_size snake_case_ = classifier_dropout class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = version.parse("1.12" ) @property def UpperCamelCase__ ( self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def UpperCamelCase__ ( self ): return 1E-5 @property def UpperCamelCase__ ( self ): return 12 def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 40 , _UpperCAmelCase = 40 , ): setattr(processor.image_processor , '''apply_ocr''' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) snake_case_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case_ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case_ = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
704
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" for attribute in key.split('''.''' ): snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] snake_case_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = '''weight_g''' elif "weight_v" in name: snake_case_ = '''weight_v''' elif "bias" in name: snake_case_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = '''weight''' else: snake_case_ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = full_name.split('''conv_layers.''' )[-1] snake_case_ = name.split('''.''' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True )-> Dict: """simple docstring""" if config_path is not None: snake_case_ = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: snake_case_ = UniSpeechSatConfig() snake_case_ = '''''' if is_finetuned: snake_case_ = UniSpeechSatForCTC(SCREAMING_SNAKE_CASE ) else: snake_case_ = UniSpeechSatForPreTraining(SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) snake_case_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
531
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowercase ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def __lowercase ( _UpperCAmelCase ) -> Any: '''simple docstring''' for char in word: __lowercase = ord(_UpperCAmelCase ) if not _is_chinese_char(_UpperCAmelCase ): return 0 return 1 def __lowercase ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __lowercase = set() for token in tokens: __lowercase = len(_UpperCAmelCase ) > 1 and is_chinese(_UpperCAmelCase ) if chinese_word: word_set.add(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) return word_list def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens __lowercase = max([len(_UpperCAmelCase ) for w in chinese_word_set] ) __lowercase = bert_tokens __lowercase , __lowercase = 0, len(_UpperCAmelCase ) while start < end: __lowercase = True if is_chinese(bert_word[start] ): __lowercase = min(end - start , _UpperCAmelCase ) for i in range(_UpperCAmelCase , 1 , -1 ): __lowercase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __lowercase = "##" + bert_word[j] __lowercase = start + i __lowercase = False break if single_word: start += 1 return bert_word def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [] for i in range(0 , len(_UpperCAmelCase ) , 100 ): __lowercase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws __lowercase = [get_chinese_word(_UpperCAmelCase ) for r in res] ltp_res.extend(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) __lowercase = [] for i in range(0 , len(_UpperCAmelCase ) , 100 ): __lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) __lowercase = [] for input_ids, chinese_word in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [] for id in input_ids: __lowercase = bert_tokenizer._convert_id_to_token(_UpperCAmelCase ) input_tokens.append(_UpperCAmelCase ) __lowercase = add_sub_symbol(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCAmelCase ): if token[:2] == "##": __lowercase = token[2:] # save chinese tokens' pos if len(_UpperCAmelCase ) == 1 and _is_chinese_char(ord(_UpperCAmelCase ) ): ref_id.append(_UpperCAmelCase ) ref_ids.append(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) return ref_ids def __lowercase ( _UpperCAmelCase ) -> Dict: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: __lowercase = f.readlines() __lowercase = [line.strip() for line in data if len(_UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowercase = LTP(args.ltp ) # faster in GPU device __lowercase = BertTokenizer.from_pretrained(args.bert ) __lowercase = prepare_ref(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __lowercase = [json.dumps(_UpperCAmelCase ) + "\n" for ref in ref_ids] f.writelines(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) lowerCAmelCase__ = parser.parse_args() main(args)
321
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class snake_case ( __snake_case ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None ): __lowercase = {} __lowercase = {} if prompt is not None: __lowercase = prompt if generate_kwargs is not None: __lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) __lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): __lowercase = load_image(lowerCAmelCase_ ) if prompt is not None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) __lowercase = self.model.config.model_type if model_type == "git": __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) __lowercase = self.tokenizer(text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids __lowercase = [self.tokenizer.cls_token_id] + input_ids __lowercase = torch.tensor(lowerCAmelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": __lowercase = self.image_processor(images=lowerCAmelCase_ , header_text=lowerCAmelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) __lowercase = self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowercase = None return model_inputs def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): __lowercase = None if generate_kwargs is None: __lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowercase = model_inputs.pop(self.model.main_input_name ) __lowercase = self.model.generate(lowerCAmelCase_ , **lowerCAmelCase_ , **lowerCAmelCase_ ) return model_outputs def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = [] for output_ids in model_outputs: __lowercase = { "generated_text": self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , ) } records.append(lowerCAmelCase_ ) return records
321
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any=None ): """simple docstring""" __a = argparse.ArgumentParser(add_help=UpperCamelCase__ , allow_abbrev=UpperCamelCase__ ) # The main config parser __a = config_command_parser(UpperCamelCase__ ) # The subparser to add commands to __a = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase__ , parents=[parent_parser] ) update_command_parser(UpperCamelCase__ , parents=[parent_parser] ) return config_parser def lowerCAmelCase__ ( ): """simple docstring""" __a = get_config_parser() __a = config_parser.parse_args() if not hasattr(UpperCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
715
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' def extract(*__lowercase : Tuple , **__lowercase : Dict ): class SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' __a = torch.ones([0] ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str ): '''simple docstring''' self.pixel_values.to(__lowercase ) return self return Out() return extract def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = """A painting of a squirrel eating a burger""" __a = torch.Generator(device=__lowercase ).manual_seed(0 ) __a = sd_pipe([prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __a = output.images __a = torch.Generator(device=__lowercase ).manual_seed(0 ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowercase , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__lowercase ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = """A painting of a squirrel eating a burger""" __a = torch.Generator(device=__lowercase ).manual_seed(0 ) __a = sd_pipe([prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __a = output.images __a = torch.Generator(device=__lowercase ).manual_seed(0 ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowercase , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowercase ) assert isinstance(__lowercase , __lowercase ) assert isinstance(pipe.scheduler , __lowercase ) assert pipe.safety_checker is None __a = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowercase ) __a = StableDiffusionPipeline.from_pretrained(__lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__lowercase ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = """A painting of a squirrel eating a burger""" __a = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowercase ) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __a = 4003660346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowercase ) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = """padme amidala taking a bath artwork, safe for work, no nudity""" __a = 2734971755 __a = 7 __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __a = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) __a = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __a = 1044355234 __a = 12 __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __a = torch.manual_seed(__lowercase ) __a = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=__lowercase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
547
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase : List[str] = logging.get_logger(__name__) class A__ ( A__ ): def __init__( self : Union[str, Any] , *_a : Union[str, Any] , **_a : Optional[Any] ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
405
'''simple docstring''' def _lowerCAmelCase ( ) -> int: """simple docstring""" return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_UpperCamelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
405
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : List[Any] = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } __UpperCAmelCase : Any = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = RealmTokenizer def __init__( self : int , A : Tuple=None , A : List[Any]=None , A : Tuple=True , A : Union[str, Any]="[UNK]" , A : Optional[Any]="[SEP]" , A : str="[PAD]" , A : List[str]="[CLS]" , A : List[Any]="[MASK]" , A : Optional[Any]=True , A : List[Any]=None , **A : Union[str, Any] , ): super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) __snake_case: int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A ) != do_lower_case or normalizer_state.get("""strip_accents""" , A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A ) != tokenize_chinese_chars ): __snake_case: List[Any] = getattr(A , normalizer_state.pop("""type""" ) ) __snake_case: List[str] = do_lower_case __snake_case: Optional[int] = strip_accents __snake_case: Union[str, Any] = tokenize_chinese_chars __snake_case: Optional[int] = normalizer_class(**A ) __snake_case: Any = do_lower_case def UpperCAmelCase__ ( self : Dict , A : List[Any] , **A : Union[str, Any] ): __snake_case: Dict = PaddingStrategy.MAX_LENGTH __snake_case: Tuple = text __snake_case: Optional[int] = kwargs.pop("""text_pair""" , A ) __snake_case: Optional[int] = kwargs.pop("""return_tensors""" , A ) __snake_case: Dict = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(A ): if batch_text_pair is not None: __snake_case: Union[str, Any] = batch_text_pair[idx] else: __snake_case: Optional[Any] = None __snake_case: Union[str, Any] = super().__call__(A , A , return_tensors=A , **A ) __snake_case: str = encoded_candidates.get("""input_ids""" ) __snake_case: Dict = encoded_candidates.get("""attention_mask""" ) __snake_case: Dict = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A ) __snake_case: int = {key: item for key, item in output_data.items() if len(A ) != 0} return BatchEncoding(A , tensor_type=A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[int] , A : Dict=None ): __snake_case: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None ): __snake_case: Optional[Any] = [self.sep_token_id] __snake_case: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : List[Any] , A : str , A : Optional[str] = None ): __snake_case: Union[str, Any] = self._tokenizer.model.save(A , name=A ) return tuple(A )
155
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' @register_to_config def __init__( self : int , A : int , A : int , A : int , A : float , A : int , A : int , A : int , A : int , A : str , A : bool = False , ): super().__init__() __snake_case: List[str] = nn.Embedding(A , A ) __snake_case: Optional[Any] = nn.Embedding(A , A ) __snake_case: Optional[Any] = False __snake_case: Optional[Any] = nn.Dropout(p=A ) __snake_case: Optional[Any] = TaConfig( vocab_size=A , d_model=A , num_heads=A , d_kv=A , d_ff=A , dropout_rate=A , feed_forward_proj=A , is_decoder=A , is_encoder_decoder=A , ) __snake_case: Union[str, Any] = nn.ModuleList() for lyr_num in range(A ): __snake_case: Optional[int] = TaBlock(A ) self.encoders.append(A ) __snake_case: Optional[int] = TaLayerNorm(A ) __snake_case: List[Any] = nn.Dropout(p=A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : int , A : Any ): __snake_case: Tuple = self.token_embedder(A ) __snake_case: Union[str, Any] = encoder_input_tokens.shape[1] __snake_case: Dict = torch.arange(A , device=encoder_input_tokens.device ) x += self.position_encoding(A ) __snake_case: Optional[Any] = self.dropout_pre(A ) # inverted the attention mask __snake_case: Dict = encoder_input_tokens.size() __snake_case: str = self.get_extended_attention_mask(A , A ) for lyr in self.encoders: __snake_case: List[str] = lyr(A , A )[0] __snake_case: Any = self.layer_norm(A ) return self.dropout_post(A ), encoder_inputs_mask
155
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCAmelCase__ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCAmelCase__ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits lowerCAmelCase__ = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE_ , onehot(SCREAMING_SNAKE_CASE_ , logits.shape[-1] ) ).mean() lowerCAmelCase__ = -(labels.shape[-1] * loss.item()) lowerCAmelCase__ = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
668
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Union[str, Any] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ["OwlViTFeatureExtractor"] _snake_case : Optional[int] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
81
0
"""simple docstring""" def A( snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ): raise ValueError("check_bouncy() accepts only integer arguments" ) lowercase__: Union[str, Any] = str(snake_case_ ) lowercase__: Optional[int] = "".join(sorted(snake_case_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def A( snake_case_ = 99 ): """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) lowercase__: str = 0 lowercase__: List[Any] = 1 while True: if check_bouncy(snake_case_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(99)}")
120
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """scipy"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch", "scipy"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"])
120
1
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : str = "cpu" , lowercase_ : str = "openai/clip-vit-large-patch14" ): snake_case_ : List[Any] = device snake_case_ : Dict = CLIPTokenizerFast.from_pretrained(lowercase_ ) snake_case_ : Optional[Any] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] snake_case_ : Tuple = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] snake_case_ : int = torchvision.transforms.Normalize(self.image_mean , self.image_std ) snake_case_ : List[str] = torchvision.transforms.Resize(224 ) snake_case_ : List[Any] = torchvision.transforms.CenterCrop(224 ) def _snake_case ( self : List[Any] , lowercase_ : Any ): snake_case_ : Union[str, Any] = self.resize(lowercase_ ) snake_case_ : Optional[Any] = self.center_crop(lowercase_ ) snake_case_ : Tuple = self.normalize(lowercase_ ) return images def __call__( self : Dict , lowercase_ : List[Any]=None , lowercase_ : Dict=None , **lowercase_ : Any ): snake_case_ : Tuple = self.tokenizer(text=lowercase_ , **lowercase_ ) snake_case_ : str = self.preprocess_img(lowercase_ ) snake_case_ : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module): def __init__( self : List[str] , lowercase_ : Optional[int]=10 , lowercase_ : Tuple=0.01 , lowercase_ : Any=None , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : List[str]=False , lowercase_ : Optional[Any]=True , lowercase_ : int="image" , lowercase_ : Dict=True , lowercase_ : Any=False , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=False , ): super().__init__() snake_case_ : Optional[Any] = None snake_case_ : List[str] = device if device else get_device() if vqgan: snake_case_ : List[str] = vqgan else: snake_case_ : Optional[Any] = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_ ) self.vqgan.eval() if clip: snake_case_ : Tuple = clip else: snake_case_ : List[str] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) snake_case_ : Dict = ProcessorGradientFlow(device=self.device ) snake_case_ : int = iterations snake_case_ : int = lr snake_case_ : Optional[Any] = log snake_case_ : int = make_grid snake_case_ : Optional[Any] = return_val snake_case_ : Optional[int] = quantize snake_case_ : int = self.vqgan.decoder.z_shape def _snake_case ( self : Optional[int] , lowercase_ : Any=None , lowercase_ : str=None , lowercase_ : Any=5 , lowercase_ : Tuple=True ): snake_case_ : Any = [] if output_path is None: snake_case_ : Union[str, Any] = '''./animation.gif''' if input_path is None: snake_case_ : Optional[int] = self.save_path snake_case_ : List[str] = sorted(glob(input_path + '''/*''' ) ) if not len(lowercase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowercase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) snake_case_ : Optional[int] = total_duration / len(lowercase_ ) snake_case_ : Tuple = [frame_duration] * len(lowercase_ ) if extend_frames: snake_case_ : Dict = 1.5 snake_case_ : str = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowercase_ ) ) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_ ) print(f"gif saved to {output_path}" ) def _snake_case ( self : int , lowercase_ : Optional[Any]=None , lowercase_ : str=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError snake_case_ : Any = preprocess(Image.open(lowercase_ ) , target_image_size=256 ).to(self.device ) snake_case_ : Optional[int] = preprocess_vqgan(lowercase_ ) snake_case_, *snake_case_ : Dict = self.vqgan.encode(lowercase_ ) return z def _snake_case ( self : Union[str, Any] , lowercase_ : Tuple ): snake_case_ : str = self.latent.detach().requires_grad_() snake_case_ : Any = base_latent + transform_vector if self.quantize: snake_case_, *snake_case_ : Any = self.vqgan.quantize(lowercase_ ) else: snake_case_ : Dict = trans_latent return self.vqgan.decode(lowercase_ ) def _snake_case ( self : Tuple , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str]=None ): snake_case_ : Optional[Any] = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='''pt''' , padding=lowercase_ ) snake_case_ : Optional[int] = self.clip(**lowercase_ ) snake_case_ : List[str] = clip_outputs.logits_per_image if weights is not None: snake_case_ : Tuple = similarity_logits * weights return similarity_logits.sum() def _snake_case ( self : List[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] ): snake_case_ : Tuple = self._get_clip_similarity(pos_prompts['''prompts'''] , lowercase_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: snake_case_ : Union[str, Any] = self._get_clip_similarity(neg_prompts['''prompts'''] , lowercase_ , weights=neg_prompts['''weights'''] ) else: snake_case_ : Optional[int] = torch.tensor([1] , device=self.device ) snake_case_ : Any = -torch.log(lowercase_ ) + torch.log(lowercase_ ) return loss def _snake_case ( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict ): snake_case_ : int = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device ) snake_case_ : Any = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case_ : str = self._add_vector(lowercase_ ) snake_case_ : Optional[Any] = loop_post_process(lowercase_ ) snake_case_ : str = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_ ) print('''CLIP loss''' , lowercase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowercase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _snake_case ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[Any] ): wandb.init(reinit=lowercase_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: snake_case_ : Tuple = Image.open(lowercase_ ) snake_case_ : Optional[int] = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(lowercase_ ) ) def _snake_case ( self : Tuple , lowercase_ : Dict ): if not prompts: return [] snake_case_ : List[Any] = [] snake_case_ : Union[str, Any] = [] if isinstance(lowercase_ , lowercase_ ): snake_case_ : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowercase_ , (tuple, list) ): snake_case_ : List[str] = prompt[0] snake_case_ : Dict = float(prompt[1] ) elif ":" in prompt: snake_case_, snake_case_ : Any = prompt.split(''':''' ) snake_case_ : Union[str, Any] = float(lowercase_ ) else: snake_case_ : Tuple = prompt snake_case_ : Union[str, Any] = 1.0 processed_prompts.append(lowercase_ ) weights.append(lowercase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device ), } def _snake_case ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=None , lowercase_ : Tuple=None , lowercase_ : Any=True , lowercase_ : List[str]=False , lowercase_ : List[str]=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=None , ): if image_path: snake_case_ : str = self._get_latent(lowercase_ ) else: snake_case_ : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_ ) assert pos_prompts, "You must provide at least one positive prompt." snake_case_ : Union[str, Any] = self.process_prompts(lowercase_ ) snake_case_ : Any = self.process_prompts(lowercase_ ) if save_final and save_path is None: snake_case_ : str = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) else: snake_case_ : Optional[int] = save_path + '''_''' + get_timestamp() os.makedirs(lowercase_ ) snake_case_ : List[str] = save_path snake_case_ : int = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowercase_ ) ) snake_case_ : Union[str, Any] = loop_post_process(lowercase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_ ) ): if show_intermediate: show_pil(lowercase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowercase_ )} ) if show_final: show_pil(lowercase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"iter_{iter:03d}_final.png" ) )
123
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a , _a , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
123
1
'''simple docstring''' def __lowercase (_lowercase = 100 ) -> int: """simple docstring""" __lowerCamelCase : Any = (n * (n + 1) // 2) ** 2 __lowerCamelCase : Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
483
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase__ :List[str] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase__ :Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __lowercase (_lowercase, _lowercase ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(_lowercase ) - np.asarray(_lowercase )) ** 2 ) ) def __lowercase (_lowercase, _lowercase ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(_lowercase, _lowercase ) ) ** (1 / 2) if __name__ == "__main__": def __lowercase () -> None: """simple docstring""" from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""", number=10_000, globals=globals(), ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""", number=10_000, globals=globals(), ) ) benchmark()
483
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) lowercase__ : str = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowercase__ : Optional[Any] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] lowercase__ : Optional[Any] = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
164
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = """naver-clova-ix/donut-base-finetuned-docvqa""" __lowerCamelCase : List[Any] = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __lowerCamelCase : str = """document_qa""" __lowerCamelCase : Union[str, Any] = AutoProcessor __lowerCamelCase : Optional[int] = VisionEncoderDecoderModel __lowerCamelCase : Optional[int] = ["""image""", """text"""] __lowerCamelCase : Any = ["""text"""] def __init__( self , *a , **a): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.') super().__init__(*a , **a) def snake_case_ ( self , a , a): lowercase__ : List[Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' lowercase__ : int = task_prompt.replace('{user_input}' , a) lowercase__ : Dict = self.pre_processor.tokenizer( a , add_special_tokens=a , return_tensors='pt').input_ids lowercase__ : Union[str, Any] = self.pre_processor(a , return_tensors='pt').pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def snake_case_ ( self , a): return self.model.generate( inputs['pixel_values'].to(self.device) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=a , ).sequences def snake_case_ ( self , a): lowercase__ : Optional[Any] = self.pre_processor.batch_decode(a)[0] lowercase__ : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , '') lowercase__ : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , '') lowercase__ : str = re.sub(r'<.*?>' , '' , a , count=1).strip() # remove first task start token lowercase__ : Optional[Any] = self.pre_processor.tokenajson(a) return sequence["answer"]
164
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="attention" ): """simple docstring""" lowercase__ : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) lowercase__ : List[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase__ : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) lowercase__ : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase__ : Optional[int] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) lowercase__ : str = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase__ : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) lowercase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" if split_mlp_wi: lowercase__ : List[Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] lowercase__ : Union[str, Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] lowercase__ : int = (wi_a, wi_a) else: lowercase__ : List[str] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] lowercase__ : Tuple = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __lowerCamelCase ( lowerCamelCase__ , *, lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" lowercase__ : Any = traverse_util.flatten_dict(variables["target"] ) lowercase__ : Optional[int] = {"/".join(lowerCamelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase__ : Tuple = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , lowerCamelCase__ ) lowercase__ : List[Any] = collections.OrderedDict() # Shared embeddings. lowercase__ : Optional[Any] = old["token_embedder/embedding"] # Encoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). lowercase__ : Dict = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "pre_attention_layer_norm" ) lowercase__ : Dict = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "attention" ) lowercase__ : List[Any] = layer_norm lowercase__ : Optional[int] = k.T lowercase__ : Union[str, Any] = o.T lowercase__ : Any = q.T lowercase__ : Dict = v.T # Block i, layer 1 (MLP). lowercase__ : Optional[int] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "pre_mlp_layer_norm" ) lowercase__ : Optional[int] = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , lowerCamelCase__ ) lowercase__ : Any = layer_norm if split_mlp_wi: lowercase__ : Tuple = wi[0].T lowercase__ : Optional[int] = wi[1].T else: lowercase__ : Optional[int] = wi.T lowercase__ : int = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ : Dict = tax_relpos_bias_lookup( lowerCamelCase__ , lowerCamelCase__ , "encoder" ).T lowercase__ : Tuple = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase__ : Tuple = tax_relpos_bias_lookup( lowerCamelCase__ , 0 , "encoder" ).T lowercase__ : Optional[Any] = tax_relpos_bias_lookup( lowerCamelCase__ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). lowercase__ : int = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_self_attention_layer_norm" ) lowercase__ : Optional[Any] = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "self_attention" ) lowercase__ : Dict = layer_norm lowercase__ : List[str] = k.T lowercase__ : Dict = o.T lowercase__ : Optional[int] = q.T lowercase__ : Dict = v.T # Block i, layer 1 (Cross Attention). lowercase__ : Union[str, Any] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_cross_attention_layer_norm" ) lowercase__ : List[Any] = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "encoder_decoder_attention" ) lowercase__ : Tuple = layer_norm lowercase__ : Union[str, Any] = k.T lowercase__ : Optional[Any] = o.T lowercase__ : Optional[Any] = q.T lowercase__ : str = v.T # Block i, layer 2 (MLP). lowercase__ : List[Any] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_mlp_layer_norm" ) lowercase__ : List[Any] = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , lowerCamelCase__ ) lowercase__ : str = layer_norm if split_mlp_wi: lowercase__ : Any = wi[0].T lowercase__ : List[Any] = wi[1].T else: lowercase__ : Optional[Any] = wi.T lowercase__ : int = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ : int = tax_relpos_bias_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" ).T lowercase__ : Any = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase__ : int = old["decoder/logits_dense/kernel"].T return new def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase__ : Tuple = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase__ : List[Any] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase__ : List[str] = state_dict["shared.weight"] return state_dict def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = checkpoints.load_tax_checkpoint(lowerCamelCase__ ) lowercase__ : int = convert_tax_to_pytorch( lowerCamelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase__ , scalable_attention=lowerCamelCase__ ) lowercase__ : Tuple = make_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = False , ): """simple docstring""" lowercase__ : Dict = MTaConfig.from_json_file(lowerCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase__ : Optional[int] = UMTaEncoderModel(lowerCamelCase__ ) else: lowercase__ : Optional[int] = UMTaForConditionalGeneration(lowerCamelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase__ ) print("Done" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
703
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__: """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : List[str]=32 , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Any=4 , SCREAMING_SNAKE_CASE : Optional[Any]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE : int=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : str=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=10 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE : Optional[int]=[2, 3, 4] , SCREAMING_SNAKE_CASE : str=None , ): lowercase__ : Union[str, Any] = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Tuple = num_channels lowercase__ : Tuple = num_stages lowercase__ : List[Any] = hidden_sizes lowercase__ : Any = depths lowercase__ : List[str] = is_training lowercase__ : int = use_labels lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Tuple = num_labels lowercase__ : Optional[Any] = initializer_range lowercase__ : Optional[Any] = out_features lowercase__ : Union[str, Any] = out_indices lowercase__ : Tuple = scope def snake_case ( self : Dict ): lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Dict = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Dict = ConvNextVaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Any = ConvNextVaForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Any = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : str = None lowercase__ : List[Any] = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self : Dict ): lowercase__ : str = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[int] = config_and_inputs lowercase__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict def snake_case ( self : Optional[Any] ): lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Optional[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : List[Any] ): lowercase__ : List[str] = ConvNextVaModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : List[str] ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def snake_case ( self : Dict ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Optional[int] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : List[str] = True if model_class.__name__ in [ *get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE ), ]: continue lowercase__ : List[str] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : Optional[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : Optional[Any] = False lowercase__ : Dict = True if ( model_class.__name__ in [*get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() lowercase__ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : str = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : int ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Dict = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : List[str] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = ConvNextVaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : List[Any] ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Optional[Any] = preprocessor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
81
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Optional[int] = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __lowerCAmelCase : int = { '''gpt-neox-20b''': 2048, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) snake_case_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space: snake_case_ : Any = getattr(_lowercase , pre_tok_state.pop("""type""" ) ) snake_case_ : Tuple = add_prefix_space snake_case_ : str = pre_tok_class(**_lowercase ) snake_case_ : int = add_prefix_space def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Any = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' snake_case_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: snake_case_ : Any = input_ids[-self.model_max_length :] return input_ids
58
'''simple docstring''' from collections import Counter from timeit import timeit def __lowerCamelCase ( UpperCAmelCase_ = "" , ) ->bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def __lowerCamelCase ( UpperCAmelCase_ = "" ) ->bool: if len(UpperCAmelCase_ ) == 0: return True snake_case__ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string snake_case__ = {} for character in lower_case_input_str: snake_case__ = character_freq_dict.get(UpperCAmelCase_ , 0 ) + 1 snake_case__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCamelCase ( UpperCAmelCase_ = "" ) ->None: print('\nFor string = ' , UpperCAmelCase_ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(UpperCAmelCase_ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": a__ : str = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) a__ : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
368
0
def a ( lowerCamelCase_ = 100 ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
671
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowerCamelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = F"""log_{dataset_id}_predictions.txt""" lowercase__ = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase_ , '''w''' ) as p, open(lowerCamelCase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ , lowerCamelCase_ ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowerCamelCase_ , with_indices=lowerCamelCase_ ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(lowerCamelCase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(lowerCamelCase_ ) ) return text def a ( lowerCamelCase_ ): '''simple docstring''' # load dataset lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowerCamelCase_ ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(lowerCamelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) A__ : Union[str, Any] = parser.parse_args() main(args)
671
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Any = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __SCREAMING_SNAKE_CASE: int = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE: str = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __SCREAMING_SNAKE_CASE: Dict = features.copy() __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Any: """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: Optional[Any] = jsonl_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: List[str] = [jsonl_path] __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any]=("train",) ) -> List[str]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __SCREAMING_SNAKE_CASE: Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: str = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" if split: __SCREAMING_SNAKE_CASE: str = {split: jsonl_path} else: __SCREAMING_SNAKE_CASE: Dict = '''train''' __SCREAMING_SNAKE_CASE: Tuple = {'''train''': jsonl_path, '''test''': jsonl_path} __SCREAMING_SNAKE_CASE: Tuple = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: int = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" return json.load(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any ) -> Any: """simple docstring""" return [json.loads(UpperCamelCase__ ) for line in buffer] class a : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: str = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[int] = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Dict = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __SCREAMING_SNAKE_CASE: Any = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , compression=_lowerCAmelCase ).write() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Optional[Any] = f.read() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Any = f.read() assert exported_content == original_content
202
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''data2vec-vision''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=[3, 5, 7, 11] , _lowerCAmelCase=[1, 2, 3, 6] , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=256 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=255 , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = hidden_size __SCREAMING_SNAKE_CASE: Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE: Tuple = num_attention_heads __SCREAMING_SNAKE_CASE: int = intermediate_size __SCREAMING_SNAKE_CASE: Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE: int = hidden_dropout_prob __SCREAMING_SNAKE_CASE: str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Any = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[Any] = image_size __SCREAMING_SNAKE_CASE: List[str] = patch_size __SCREAMING_SNAKE_CASE: Optional[int] = num_channels __SCREAMING_SNAKE_CASE: List[Any] = use_mask_token __SCREAMING_SNAKE_CASE: Tuple = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE: Any = use_relative_position_bias __SCREAMING_SNAKE_CASE: Dict = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE: Any = layer_scale_init_value __SCREAMING_SNAKE_CASE: List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE: int = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Union[str, Any] = out_indices __SCREAMING_SNAKE_CASE: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_channels __SCREAMING_SNAKE_CASE: Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE: Any = auxiliary_concat_input __SCREAMING_SNAKE_CASE: List[str] = semantic_loss_ignore_index class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self ): """simple docstring""" return 1e-4
202
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class lowerCamelCase_ ( _A ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Optional[int] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Optional[Any] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None ) -> List[Any]: A : str = max_length A : Optional[int] = max_position_embeddings @add_start_docstrings(__lowerCamelCase ) def __call__( self : List[str] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Any ) -> bool: A : List[Any] = input_ids.shape[-1] A : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> List[Any]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , __lowerCamelCase , ) A : str = start_length A : Optional[Any] = max_new_tokens A : Dict = start_length + max_new_tokens @add_start_docstrings(__lowerCamelCase ) def __call__( self : int , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool: return input_ids.shape[-1] >= self.max_length class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : float , __lowerCamelCase : Optional[float] = None ) -> List[Any]: A : str = max_time A : Dict = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool: return time.time() - self.initial_timestamp > self.max_time class lowerCamelCase_ ( _A ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Union[str, Any] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : int ) -> bool: return any(criteria(__lowerCamelCase , __lowerCamelCase ) for criteria in self ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: for stopping_criterium in self: if isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length elif isinstance(__lowerCamelCase , __lowerCamelCase ): return stopping_criterium.max_length return None def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Optional[int] = stopping_criteria.max_length A : Any = deepcopy(_lowerCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase ) ) return new_stopping_criteria
17
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_A ) class lowerCamelCase_ ( _A ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a__ = field(default="question-answering-extractive" ,metadata={"include_in_asdict_even_if_is_default": True} ) a__ = Features({"question": Value("string" ), "context": Value("string" )} ) a__ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) a__ = "question" a__ = "context" a__ = "answers" @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
17
1
"""simple docstring""" from __future__ import annotations def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((lowerCAmelCase__) , (lowerCAmelCase__)) :Optional[Any] = extended_euclid(_SCREAMING_SNAKE_CASE , a % b ) lowerCAmelCase__ :int = a // b return (y, x - k * y) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" ((lowerCAmelCase__) , (lowerCAmelCase__)) :List[Any] = extended_euclid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = na * na lowerCAmelCase__ :int = ra * x * na + ra * y * na return (n % m + m) % m def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" ((lowerCAmelCase__) , (lowerCAmelCase__)) :int = extended_euclid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if b < 0: lowerCAmelCase__ :Tuple = (b % n + n) % n return b def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :List[str] = invert_modulo(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), invert_modulo(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = na * na lowerCAmelCase__ :int = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
93
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ = None ): '''simple docstring''' if components is None: UpperCamelCase__ :List[Any] = [] UpperCamelCase__ :Optional[Any] = list(UpperCamelCase_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(UpperCamelCase_ , self.__components ) ) + ")" def __add__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = len(self ) if size == len(UpperCamelCase_ ): UpperCamelCase__ :Dict = [self.__components[i] + other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return Vector(UpperCamelCase_ ) else: raise Exception('''must have the same size''' ) def __sub__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = len(self ) if size == len(UpperCamelCase_ ): UpperCamelCase__ :List[str] = [self.__components[i] - other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return Vector(UpperCamelCase_ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... def __mul__( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , (float, int) ): UpperCamelCase__ :Optional[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(self ) == len(UpperCamelCase_ ): UpperCamelCase__ :Optional[int] = len(self ) UpperCamelCase__ :List[Any] = [self.__components[i] * other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return sum(UpperCamelCase_ ) else: # error case raise Exception('''invalid operand!''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' return Vector(self.__components ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) UpperCamelCase__ :Optional[int] = value def lowerCAmelCase__ ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) UpperCamelCase__ :List[str] = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = False ): '''simple docstring''' UpperCamelCase__ :List[Any] = self * other UpperCamelCase__ :Optional[int] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def a ( __a ) -> Vector: '''simple docstring''' assert isinstance(__a , __a ) return Vector([0] * dimension ) def a ( __a , __a ) -> Vector: '''simple docstring''' assert isinstance(__a , __a ) and (isinstance(__a , __a )) UpperCamelCase__ :str = [0] * dimension UpperCamelCase__ :Tuple = 1 return Vector(__a ) def a ( __a , __a , __a ) -> Vector: '''simple docstring''' assert ( isinstance(__a , __a ) and isinstance(__a , __a ) and (isinstance(__a , (int, float) )) ) return x * scalar + y def a ( __a , __a , __a ) -> Vector: '''simple docstring''' random.seed(__a ) UpperCamelCase__ :Optional[Any] = [random.randint(__a , __a ) for _ in range(__a )] return Vector(__a ) class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = matrix UpperCamelCase__ :Union[str, Any] = w UpperCamelCase__ :Optional[int] = h def __str__( self ): '''simple docstring''' UpperCamelCase__ :Dict = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :int = [] for i in range(self.__height ): UpperCamelCase__ :int = [ self.__matrix[i][j] + other.component(UpperCamelCase_ , UpperCamelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase_ ) return Matrix(UpperCamelCase_ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , UpperCamelCase_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :Optional[Any] = [] for i in range(self.__height ): UpperCamelCase__ :Optional[int] = [ self.__matrix[i][j] - other.component(UpperCamelCase_ , UpperCamelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase_ ) return Matrix(UpperCamelCase_ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... def __mul__( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # matrix-vector if len(UpperCamelCase_ ) == self.__width: UpperCamelCase__ :Any = zero_vector(self.__height ) for i in range(self.__height ): UpperCamelCase__ :Any = [ self.__matrix[i][j] * other.component(UpperCamelCase_ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase_ , sum(UpperCamelCase_ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCamelCase_ , (int, float) ): # matrix-scalar UpperCamelCase__ :Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase_ , self.__width , self.__height ) return None def lowerCAmelCase__ ( self ): '''simple docstring''' return self.__height def lowerCAmelCase__ ( self ): '''simple docstring''' return self.__width def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: UpperCamelCase__ :Tuple = value else: raise Exception('''change_component: indices out of bounds''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) UpperCamelCase__ :str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase_ ) ): UpperCamelCase__ :Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase_ , UpperCamelCase_ ) else: raise Exception('''Indices out of bounds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCamelCase__ :Optional[Any] = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase_ ) for y in range(self.__width ) ] return sum(UpperCamelCase_ ) def a ( __a ) -> Matrix: '''simple docstring''' UpperCamelCase__ :list[list[float]] = [[0] * n for _ in range(__a )] return Matrix(__a , __a , __a ) def a ( __a , __a , __a , __a ) -> Matrix: '''simple docstring''' random.seed(__a ) UpperCamelCase__ :list[list[float]] = [ [random.randint(__a , __a ) for _ in range(__a )] for _ in range(__a ) ] return Matrix(__a , __a , __a )
189
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( _A : int , _A : Tuple )-> str: """simple docstring""" A__ = old_name if "patch_embed" in old_name: A__ , A__ , A__ = old_name.split("." ) if layer == "0": A__ = old_name.replace("0" , "convolution1" ) elif layer == "1": A__ = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": A__ = old_name.replace("3" , "convolution2" ) else: A__ = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , _A ): A__ = R"\b\d{2}\b" if bool(re.search(_A , _A ) ): A__ = re.search(R"\d\.\d\d." , _A ).group() else: A__ = re.search(R"\d\.\d." , _A ).group() if int(match[0] ) < 6: A__ = old_name.replace(_A , "" ) A__ = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) A__ = "intermediate_stages." + trimmed_name else: A__ = old_name.replace(_A , "" ) if int(match[2] ) < num_meta4D_last_stage: A__ = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: A__ = str(int(match[2] ) - num_meta4D_last_stage ) A__ = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: A__ = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: A__ = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: A__ = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: A__ = trimmed_name.replace("fc2" , "linear_out" ) A__ = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , _A ): A__ = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: A__ = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: A__ = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: A__ = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: A__ = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: A__ = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ = new_name.replace("norm" , "layernorm" ) A__ = "efficientformer." + new_name else: A__ = "efficientformer.encoder." + new_name return new_name def UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] )-> Optional[Any]: """simple docstring""" for key in checkpoint.copy().keys(): A__ = checkpoint.pop(_A ) A__ = val return checkpoint def UpperCamelCase ( )-> Optional[Any]: """simple docstring""" A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_A , stream=_A ).raw ) return image def UpperCamelCase ( _A : Path , _A : Path , _A : Path , _A : bool )-> Union[str, Any]: """simple docstring""" A__ = torch.load(_A , map_location="cpu" )["model"] A__ = EfficientFormerConfig.from_json_file(_A ) A__ = EfficientFormerForImageClassificationWithTeacher(_A ) A__ = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) A__ = config.depths[-1] - config.num_metaad_blocks + 1 A__ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image A__ = prepare_img() A__ = 256 A__ = 224 A__ = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) A__ = processor(images=_A , return_tensors="pt" ).pixel_values # original processing pipeline A__ = Compose( [ Resize(_A , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) A__ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) A__ = model(_A ) A__ = outputs.logits A__ = (1, 1000) if "l1" in model_name: A__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_A ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=_A , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=_A , ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) UpperCAmelCase_ : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
232
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase_ : int = pytest.mark.integration @require_faiss class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): A__ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(UpperCAmelCase__ ) for x in np.arange(30 ).tolist()]} ) return dset def __A ( self ): import faiss A__ = self._create_dummy_dataset() A__ = dset.map( lambda UpperCAmelCase__ , UpperCAmelCase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ) A__ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) A__ , A__ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __A ( self ): import faiss A__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) A__ , A__ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __A ( self ): import faiss A__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase__ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) A__ , A__ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __A ( self ): A__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(UpperCAmelCase__ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __A ( self ): from elasticsearch import Elasticsearch A__ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: A__ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) A__ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} A__ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=UpperCAmelCase__ ) A__ , A__ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): import faiss A__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query A__ = np.zeros(5 , dtype=np.floataa ) A__ = 1 A__ , A__ = index.search(UpperCAmelCase__ ) self.assertRaises(UpperCAmelCase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries A__ = np.eye(5 , dtype=np.floataa )[::-1] A__ , A__ = index.search_batch(UpperCAmelCase__ ) self.assertRaises(UpperCAmelCase__ , index.search_batch , queries[0] ) A__ = [scores[0] for scores in total_scores] A__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase__ ) def __A ( self ): import faiss A__ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) A__ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase__ ): A__ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __A ( self ): import faiss A__ = faiss.IndexFlat(5 ) A__ = FaissIndex(custom_index=UpperCAmelCase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __A ( self ): import faiss A__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase__ ) as tmp_file: index.save(tmp_file.name ) A__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) A__ = np.zeros(5 , dtype=np.floataa ) A__ = 1 A__ , A__ = index.search(UpperCAmelCase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCamelCase ( _A : Union[str, Any] )-> List[Any]: """simple docstring""" import faiss A__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) A__ = "index.faiss" A__ = f"""mock://{index_name}""" index.save(_A , storage_options=mockfs.storage_options ) A__ = FaissIndex.load(_A , storage_options=mockfs.storage_options ) A__ = np.zeros(5 , dtype=np.floataa ) A__ = 1 A__ , A__ = index.search(_A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: A__ = Elasticsearch() A__ = {"acknowledged": True} A__ = ElasticSearchIndex(es_client=UpperCAmelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query A__ = "foo" A__ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} A__ , A__ = index.search(UpperCAmelCase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout A__ = "foo" A__ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} A__ , A__ = index.search(UpperCAmelCase__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries A__ = ["foo", "bar", "foobar"] A__ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} A__ , A__ = index.search_batch(UpperCAmelCase__ ) A__ = [scores[0] for scores in total_scores] A__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase__ ) # batched queries with timeout A__ = ["foo", "bar", "foobar"] A__ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} A__ , A__ = index.search_batch(UpperCAmelCase__ , request_timeout=30 ) A__ = [scores[0] for scores in total_scores] A__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase__ )
232
1
def _lowerCamelCase ( __lowerCamelCase = 6008_5147_5143 ) -> int: '''simple docstring''' try: UpperCAmelCase__ : Union[str, Any] = int(__lowerCamelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : Optional[Any] = 2 while i * i <= n: while n % i == 0: UpperCAmelCase__ : List[str] = i n //= i i += 1 if n > 1: UpperCAmelCase__ : int = n return int(__lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
79
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 4, 64, 64) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def __UpperCAmelCase ( self , _lowerCAmelCase=False , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): UpperCAmelCase__ : int = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[Any] = """bf16""" if fpaa else None UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder="""unet""" , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 77, 768) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : List[Any] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Any = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1024) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : Any = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
79
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Any ,lowerCamelCase_ : List[str]): '''simple docstring''' lowerCAmelCase__ : str = 1.5 lowerCAmelCase__ : Union[str, Any] = int(factor * num_class_images) lowerCAmelCase__ : Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' ,indice_name='''laion_400m''' ,num_images=lowerCamelCase_ ,aesthetic_weight=0.1) os.makedirs(f"""{class_data_dir}/images""" ,exist_ok=lowerCamelCase_) if len(list(Path(f"""{class_data_dir}/images""").iterdir())) >= num_class_images: return while True: lowerCAmelCase__ : Any = client.query(text=lowerCamelCase_) if len(lowerCamelCase_) >= factor * num_class_images or num_images > 1E4: break else: lowerCAmelCase__ : List[Any] = int(factor * num_images) lowerCAmelCase__ : Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' ,indice_name='''laion_400m''' ,num_images=lowerCamelCase_ ,aesthetic_weight=0.1 ,) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[str] = tqdm(desc='''downloading real regularization images''' ,total=lowerCamelCase_) with open(f"""{class_data_dir}/caption.txt""" ,'''w''') as fa, open(f"""{class_data_dir}/urls.txt""" ,'''w''') as fa, open( f"""{class_data_dir}/images.txt""" ,'''w''') as fa: while total < num_class_images: lowerCAmelCase__ : List[str] = class_images[count] count += 1 try: lowerCAmelCase__ : List[str] = requests.get(images['''url''']) if img.status_code == 200: lowerCAmelCase__ : List[Any] = Image.open(BytesIO(img.content)) with open(f"""{class_data_dir}/images/{total}.jpg""" ,'''wb''') as f: f.write(img.content) fa.write(images['''caption'''] + '''\n''') fa.write(images['''url'''] + '''\n''') fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '''\n''') total += 1 pbar.update(1) else: continue except Exception: continue return def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser('''''' ,add_help=lowerCamelCase_) parser.add_argument('''--class_prompt''' ,help='''text prompt to retrieve images''' ,required=lowerCamelCase_ ,type=lowerCamelCase_) parser.add_argument('''--class_data_dir''' ,help='''path to save images''' ,required=lowerCamelCase_ ,type=lowerCamelCase_) parser.add_argument('''--num_class_images''' ,help='''number of images to download''' ,default=200 ,type=lowerCamelCase_) return parser.parse_args() if __name__ == "__main__": __snake_case : Union[str, Any] =parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
715
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __snake_case : str ='\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __snake_case : Tuple ='\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __snake_case : int ='\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Dict): '''simple docstring''' return float((preds == labels).mean()) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : int = simple_accuracy(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Any = float(fa_score(y_true=lowerCamelCase_ ,y_pred=lowerCamelCase_)) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = float(pearsonr(lowerCamelCase_ ,lowerCamelCase_)[0]) lowerCAmelCase__ : int = float(spearmanr(lowerCamelCase_ ,lowerCamelCase_)[0]) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase ,__lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__lowerCamelCase ,__lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__lowerCamelCase ,__lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__lowerCamelCase ,__lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
90
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_=0.999 , UpperCAmelCase_="cosine" , ) ->Any: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(UpperCAmelCase_ ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class __snake_case ( __magic_name__ , __magic_name__ ): __lowerCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __lowerCAmelCase = 2 @register_to_config def __init__( self , UpperCamelCase_ = 1000 , UpperCamelCase_ = 0.0_0_0_8_5 , UpperCamelCase_ = 0.0_1_2 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ) -> Any: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case__ = use_karras_sigmas def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase_ ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ) -> int: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase_ ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> List[Any]: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase_ ) snake_case__ = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase_ , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase_ , UpperCamelCase_ ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase_ ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase_ ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase_ , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase_ ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: # get log sigma snake_case__ = np.log(UpperCamelCase_ ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase_ , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase_ ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _snake_case ( self ) -> Any: return self.dt is None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
368
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor a__ : int = logging.get_logger(__name__) class __snake_case ( __magic_name__ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
368
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A_ = logging.get_logger('''transformers.models.speecht5''') A_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } A_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } A_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } A_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } A_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } A_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } A_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } A_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = [] A_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] A_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : Tuple = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : int = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : List[str] = value elif weight_type == "weight_g": _snake_case : Tuple = value elif weight_type == "weight_v": _snake_case : Tuple = value elif weight_type == "bias": _snake_case : Any = value elif weight_type == "running_mean": _snake_case : int = value elif weight_type == "running_var": _snake_case : Tuple = value elif weight_type == "num_batches_tracked": _snake_case : int = value else: _snake_case : Union[str, Any] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _snake_case , _snake_case : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : List[Any] = [] if task == "s2t": _snake_case : List[str] = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : List[Any] = MAPPING_S2T _snake_case : str = IGNORE_KEYS_S2T elif task == "t2s": _snake_case : int = None _snake_case : Optional[Any] = MAPPING_T2S _snake_case : List[Any] = IGNORE_KEYS_T2S elif task == "s2s": _snake_case : str = hf_model.speechta.encoder.prenet.feature_encoder _snake_case : List[Any] = MAPPING_S2S _snake_case : str = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(snake_case__ , snake_case__ ): logger.info(F"{name} was ignored" ) continue _snake_case : str = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _snake_case , _snake_case : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: _snake_case : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _snake_case : Union[str, Any] = True if "*" in mapped_key: _snake_case : Optional[Any] = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : int = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : Dict = """weight_g""" elif "weight_v" in name: _snake_case : str = """weight_v""" elif "bias" in name: _snake_case : Optional[int] = """bias""" elif "weight" in name: _snake_case : Optional[int] = """weight""" elif "running_mean" in name: _snake_case : List[Any] = """running_mean""" elif "running_var" in name: _snake_case : Optional[int] = """running_var""" elif "num_batches_tracked" in name: _snake_case : str = """num_batches_tracked""" else: _snake_case : int = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any ): """simple docstring""" _snake_case : Any = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Optional[Any] = int(items[0] ) _snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Dict=None , snake_case__ : List[str]=None , snake_case__ : Tuple=None , ): """simple docstring""" if config_path is not None: _snake_case : Tuple = SpeechTaConfig.from_pretrained(snake_case__ ) else: _snake_case : str = SpeechTaConfig() if task == "s2t": _snake_case : Union[str, Any] = config.max_text_positions _snake_case : Optional[int] = SpeechTaForSpeechToText(snake_case__ ) elif task == "t2s": _snake_case : Any = 18_76 _snake_case : str = 6_00 _snake_case : List[Any] = config.max_speech_positions _snake_case : Dict = SpeechTaForTextToSpeech(snake_case__ ) elif task == "s2s": _snake_case : Any = 18_76 _snake_case : str = config.max_speech_positions _snake_case : Tuple = SpeechTaForSpeechToSpeech(snake_case__ ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: _snake_case : str = SpeechTaTokenizer(snake_case__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _snake_case : Optional[int] = AddedToken("""<mask>""" , lstrip=snake_case__ , rstrip=snake_case__ ) _snake_case : List[Any] = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) _snake_case : Dict = SpeechTaFeatureExtractor() _snake_case : Any = SpeechTaProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : List[Any] = torch.load(snake_case__ ) recursively_load_weights(fairseq_checkpoint["""model"""] , snake_case__ , snake_case__ ) model.save_pretrained(snake_case__ ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
716
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
0
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: return math.sqrt(UpperCAmelCase_ ) * math.sqrt(UpperCAmelCase_ ) == num def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: __lowerCamelCase : Tuple = 0 __lowerCamelCase : str = n while left <= right: __lowerCamelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __lowerCamelCase : int = mid - 1 else: __lowerCamelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') A =list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : __a : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) __a : Optional[str] = field(default=__a , metadata={"""help""": """A folder containing the training data."""} ) __a : Optional[str] = field(default=__a , metadata={"""help""": """A folder containing the validation data."""} ) __a : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __a : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""} ) __a : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = {} if self.train_dir is not None: UpperCAmelCase = self.train_dir if self.validation_dir is not None: UpperCAmelCase = self.validation_dir UpperCAmelCase = data_files if data_files else None @dataclass class _a : __a : str = field( default=__a , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) __a : Optional[str] = field( default=__a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__a )} , ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) __a : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a : str = field(default=__a , metadata={"""help""": """Name or path of preprocessor config."""} ) __a : bool = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={"""help""": """Stride to use for the encoder."""} , ) class _a : def __init__( self : List[Any] , lowercase : Union[str, Any]=192 , lowercase : Union[str, Any]=32 , lowercase : Optional[int]=4 , lowercase : Union[str, Any]=0.6 ): '''simple docstring''' UpperCAmelCase = input_size UpperCAmelCase = mask_patch_size UpperCAmelCase = model_patch_size UpperCAmelCase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) UpperCAmelCase = self.input_size // self.mask_patch_size UpperCAmelCase = self.mask_patch_size // self.model_patch_size UpperCAmelCase = self.rand_size**2 UpperCAmelCase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Dict ): '''simple docstring''' UpperCAmelCase = np.random.permutation(self.token_count )[: self.mask_count] UpperCAmelCase = np.zeros(self.token_count , dtype=lowercase ) UpperCAmelCase = 1 UpperCAmelCase = mask.reshape((self.rand_size, self.rand_size) ) UpperCAmelCase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def snake_case_ (_a : Any ): UpperCAmelCase = torch.stack([example['''pixel_values'''] for example in examples] ) UpperCAmelCase = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: UpperCAmelCase = ds['''train'''].train_test_split(data_args.train_val_split ) UpperCAmelCase = split['''train'''] UpperCAmelCase = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name_or_path , **_a ) elif model_args.model_name_or_path: UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(_a , '''decoder_type''' ): UpperCAmelCase = '''simmim''' # adapt config UpperCAmelCase = model_args.image_size if model_args.image_size is not None else config.image_size UpperCAmelCase = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCAmelCase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: UpperCAmelCase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCAmelCase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCAmelCase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase = AutoModelForMaskedImageModeling.from_config(_a ) if training_args.do_train: UpperCAmelCase = ds['''train'''].column_names else: UpperCAmelCase = ds['''validation'''].column_names if data_args.image_column_name is not None: UpperCAmelCase = data_args.image_column_name elif "image" in column_names: UpperCAmelCase = '''image''' elif "img" in column_names: UpperCAmelCase = '''img''' else: UpperCAmelCase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCAmelCase = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCAmelCase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_a : int ): UpperCAmelCase = [transforms(_a ) for image in examples[image_column_name]] UpperCAmelCase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCAmelCase = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCAmelCase = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Initialize our trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) if __name__ == "__main__": main()
358
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : str , _a : list[str] | None = None ): UpperCAmelCase = word_bank or [] # create a table UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = [] for _ in range(_a ): table.append([] ) # seed value UpperCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_a ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_a )] == word: UpperCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_a )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_a )]: combination.reverse() return table[len(_a )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
358
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : str = DebertaTokenizer snake_case_ : Union[str, Any] = True snake_case_ : Optional[int] = DebertaTokenizerFast def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] __snake_case = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __snake_case = {"unk_token": "[UNK]"} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : Any , **SCREAMING_SNAKE_CASE : Tuple ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: '''simple docstring''' __snake_case = "lower newer" __snake_case = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]: '''simple docstring''' __snake_case = self.get_tokenizer() __snake_case = "lower newer" __snake_case = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_tokenizer() __snake_case = tokenizer("Hello" , "World" ) __snake_case = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' __snake_case = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) __snake_case = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode( "sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: '''simple docstring''' __snake_case = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __snake_case = tokenizer_class.from_pretrained("microsoft/deberta-base" ) __snake_case = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] __snake_case = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) __snake_case = [tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) for seq in encoding["input_ids"]] # fmt: off __snake_case = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __snake_case = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE ) for expected, decoded in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
371
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase( unittest.TestCase ): snake_case_ : int = MODEL_FOR_MASKED_LM_MAPPING snake_case_ : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-0_5, "token": 3_8_0_1_5, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-0_5, "token": 2_5_5_0_6, "token_str": " accuser"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-0_5, "token": 3_8_0_1_5, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-0_5, "token": 2_5_5_0_6, "token_str": " accuser", }, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-0_5, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-0_5, "token": 2_9_4_1, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS"}, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-0_5, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-0_5, "token": 2_9_4_1, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3_6_0_6, "token_str": " Clara"}, ] , ) __snake_case = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=6 ) , [ [ { "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-0_5, "token": 3_5_6_7_6, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-0_5, "token": 1_6_4_1_6, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() __snake_case = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(SCREAMING_SNAKE_CASE ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: '''simple docstring''' __snake_case = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"sequence": "My name is John", "score": 0.008, "token": 6_1_0, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_5_7_3, "token_str": " Chris"}, ] , ) __snake_case = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_2_0_1, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2_7_9_0, "token_str": " Lyon", }, ] , ) __snake_case = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_4_9_9, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3_6_0_6, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_9_4_1, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) __snake_case = None __snake_case = None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __snake_case = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) __snake_case = None __snake_case = None self.run_pipeline_test(SCREAMING_SNAKE_CASE , [] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> int: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: '''simple docstring''' __snake_case = fill_masker.tokenizer __snake_case = fill_masker.model __snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(SCREAMING_SNAKE_CASE ): fill_masker("This is" ) self.run_test_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.run_test_top_k_targets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_duplicate_targets_and_top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fill_mask_with_multiple_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case = tokenizer.get_vocab() __snake_case = sorted(vocab.keys() )[:2] # Pipeline argument __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , targets=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE ) __snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Call argument __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE ) __snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE ) ) # Score equivalence __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) __snake_case = [top_mask["token_str"] for top_mask in outputs] __snake_case = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ) == set(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE ) __snake_case = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) # Raises with invalid with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , top_k=2 ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ] , ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' __snake_case = tokenizer.get_vocab() __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) # top_k=2, ntargets=3 __snake_case = sorted(vocab.keys() )[:3] __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=SCREAMING_SNAKE_CASE ) # If we use the most probably targets, and filter differently, we should still # have the same results __snake_case = [el["token_str"] for el in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE ).issubset(SCREAMING_SNAKE_CASE ): __snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=SCREAMING_SNAKE_CASE ) # They should yield exactly the same result self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , nested_simplify(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.get_vocab() # String duplicates + id duplicates __snake_case = sorted(vocab.keys() )[:3] __snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] __snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=SCREAMING_SNAKE_CASE , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 3 ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: '''simple docstring''' __snake_case = FillMaskPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) __snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, {"sequence": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE ), "token": ANY(SCREAMING_SNAKE_CASE ), "token_str": ANY(SCREAMING_SNAKE_CASE )}, ], ] , )
371
1
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Any = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Optional[int] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : str = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : List[str] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : str = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : List[str] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Dict = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : List[str] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Dict = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Any = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : List[str] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : str = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=_lowercase ): snake_case : Optional[int] = ['''flax'''] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] ) @classmethod def _lowerCamelCase ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ["""flax"""] )
700
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING snake_case : List[str] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase , num_return_sequences=2 , return_tensors=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = text_generator.model.config.eos_token_id UpperCamelCase__ = """<pad>""" UpperCamelCase__ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCAmelCase , ) self.assertEqual( __lowerCAmelCase , [ [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = TextGenerationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_generator, ["This is a test", "Another test"] def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello I believe in""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = text_generator(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) UpperCamelCase__ = text_generator(__lowerCAmelCase , stop_sequence=""" fe""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = text_generator.model UpperCamelCase__ = text_generator.tokenizer UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = pipeline(task="""text-generation""" , model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , return_full_text=__lowerCAmelCase ) UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_text=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ = text_generator("""""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) UpperCamelCase__ = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__lowerCAmelCase ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch # Classic `model_kwargs` UpperCamelCase__ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__lowerCAmelCase , top_p=0.5 ) def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello world""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCamelCase__ = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCamelCase__ = logging.get_logger("""transformers.generation.utils""" ) UpperCamelCase__ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__lowerCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_new_tokens=1 ) self.assertNotIn(__lowerCAmelCase , cl.out ) with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 ) self.assertNotIn(__lowerCAmelCase , cl.out )
548
0
'''simple docstring''' from collections import defaultdict def UpperCAmelCase ( A : int ): SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Dict = True for v in tree[start]: if v not in visited: ret += dfs(A ) if ret % 2 == 0: cuts.append(A ) return ret def UpperCAmelCase ( ): dfs(1 ) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ : Dict = 10, 9 lowerCAmelCase_ : Dict = defaultdict(list) lowerCAmelCase_ : dict[int, bool] = {} lowerCAmelCase_ : list[int] = [] lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
527
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( A : Optional[Any] , A : Optional[int] , A : int ): # Initialise PyTorch model SCREAMING_SNAKE_CASE : str = TaConfig.from_json_file(A ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tf_weights_in_ta(A , A , A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
527
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Any = False def lowerCAmelCase_ ( lowerCamelCase ): return TrainCommand(lowerCamelCase ) class __A ( UpperCamelCase__ ): @staticmethod def A__ ( __snake_case :ArgumentParser ): '''simple docstring''' __magic_name__ : Tuple =parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=__snake_case , required=__snake_case , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=__snake_case , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=__snake_case , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=__snake_case , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=__snake_case , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=__snake_case , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=__snake_case , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=__snake_case , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=__snake_case , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=__snake_case , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=__snake_case , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=__snake_case , default=3E-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=__snake_case , default=1E-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__snake_case ) def __init__( self :List[str] , __snake_case :Namespace ): '''simple docstring''' __magic_name__ : Dict =logging.get_logger("""transformers-cli/training""" ) __magic_name__ : Any ="""tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__snake_case ) __magic_name__ : Any =args.output __magic_name__ : Optional[Any] =args.column_label __magic_name__ : List[Any] =args.column_text __magic_name__ : Tuple =args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": __magic_name__ : Optional[int] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) __magic_name__ : Dict =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __magic_name__ : int =None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) __magic_name__ : int =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __magic_name__ : List[str] =args.validation_split __magic_name__ : Union[str, Any] =args.train_batch_size __magic_name__ : str =args.valid_batch_size __magic_name__ : Optional[Any] =args.learning_rate __magic_name__ : List[Any] =args.adam_epsilon def A__ ( self :Optional[Any] ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def A__ ( self :Optional[Any] ): '''simple docstring''' raise NotImplementedError def A__ ( self :Optional[int] ): '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
367
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase_ ( *lowerCamelCase , lowerCamelCase = None , lowerCamelCase=True , lowerCamelCase=2 ): from .. import __version__ __magic_name__ : Optional[int] =take_from __magic_name__ : Tuple =() if not isinstance(args[0] , lowerCamelCase ): __magic_name__ : List[Any] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase ).base_version ) >= version.parse(lowerCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) __magic_name__ : List[str] =None if isinstance(lowerCamelCase , lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase ),) __magic_name__ : List[str] =F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(lowerCamelCase , lowerCamelCase ): values += (getattr(lowerCamelCase , lowerCamelCase ),) __magic_name__ : List[str] =F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: __magic_name__ : List[str] =F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: __magic_name__ : List[Any] =warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowerCamelCase , stacklevel=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) > 0: __magic_name__ : List[Any] =inspect.getouterframes(inspect.currentframe() )[1] __magic_name__ : Optional[int] =call_frame.filename __magic_name__ : Tuple =call_frame.lineno __magic_name__ : str =call_frame.function __magic_name__ , __magic_name__ : Optional[int] =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(lowerCamelCase ) == 0: return elif len(lowerCamelCase ) == 1: return values[0] return values
367
1
"""simple docstring""" import argparse from collections import defaultdict import yaml a_ = 'docs/source/en/_toctree.yml' def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[Any] = defaultdict(__UpperCamelCase ) __lowercase : List[Any] = [] __lowercase : int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__UpperCamelCase ) __lowercase : int = new_doc_list __lowercase : Any = [key for key, value in counts.items() if value > 1] __lowercase : int = [] for duplicate_key in duplicates: __lowercase : Optional[Any] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __lowercase : Tuple = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCamelCase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__UpperCamelCase ) # Sort return overview_doc def __UpperCAmelCase ( __UpperCamelCase=False ): with open(__UpperCamelCase , encoding='''utf-8''' ) as f: __lowercase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc __lowercase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowercase : Union[str, Any] = content[api_idx]['''sections'''] # Then to the model doc __lowercase : List[str] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowercase : str = api_doc[scheduler_idx]['''sections'''] __lowercase : Tuple = clean_doc_toc(__UpperCamelCase ) __lowercase : Dict = False if new_scheduler_doc != scheduler_doc: __lowercase : Dict = True if overwrite: __lowercase : Optional[Any] = new_scheduler_doc if diff: if overwrite: __lowercase : Tuple = api_doc with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __UpperCAmelCase ( __UpperCamelCase=False ): with open(__UpperCamelCase , encoding='''utf-8''' ) as f: __lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc __lowercase : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowercase : Dict = content[api_idx]['''sections'''] # Then to the model doc __lowercase : int = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowercase : Optional[int] = False __lowercase : List[Any] = api_doc[pipeline_idx]['''sections'''] __lowercase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowercase : Tuple = pipeline_doc['''section'''] __lowercase : List[Any] = clean_doc_toc(__UpperCamelCase ) if overwrite: __lowercase : Dict = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCamelCase ) # sort overall pipeline doc __lowercase : Union[str, Any] = clean_doc_toc(__UpperCamelCase ) if new_pipeline_docs != pipeline_docs: __lowercase : List[Any] = True if overwrite: __lowercase : Optional[int] = new_pipeline_docs if diff: if overwrite: __lowercase : Union[str, Any] = api_doc with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
76
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowercase : set[int] = set() return any( node not in visited and depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for node in graph ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): visited.add(__UpperCamelCase ) rec_stk.add(__UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
76
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Dict = '''new-model''' if is_tf_available(): class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : str = NewModelConfig @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def A__ (self): '''simple docstring''' __UpperCAmelCase ='''bert-base-cased''' __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModel.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' __UpperCAmelCase ='''bert-base-cased''' __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in ["bert-base-uncased"]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in ["bert-base-uncased"]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) @slow @require_tensorflow_probability def A__ (self): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCAmelCase =AutoConfig.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase) __UpperCAmelCase , __UpperCAmelCase =TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase , output_loading_info=UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase) , 1_4_4_1_0) def A__ (self): '''simple docstring''' __UpperCAmelCase =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase) , 1_4_4_1_0) def A__ (self): '''simple docstring''' __UpperCAmelCase =TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''') self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =copy.deepcopy(model.config) __UpperCAmelCase =['''FunnelBaseModel'''] __UpperCAmelCase =TFAutoModel.from_config(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase) __UpperCAmelCase =TFAutoModel.from_pretrained(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) def A__ (self): '''simple docstring''' try: AutoConfig.register('''new-model''' , UpperCAmelCase) __UpperCAmelCase =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase): auto_class.register(UpperCAmelCase , UpperCAmelCase) auto_class.register(UpperCAmelCase , UpperCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase): auto_class.register(UpperCAmelCase , UpperCAmelCase) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase =BertModelTester(self).get_config() __UpperCAmelCase =NewModelConfig(**tiny_config.to_dict()) __UpperCAmelCase =auto_class.from_config(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase) __UpperCAmelCase =auto_class.from_pretrained(UpperCAmelCase) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A__ (self): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCAmelCase =TFAutoModel.from_pretrained('''bert-base''') def A__ (self): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCAmelCase =TFAutoModel.from_pretrained(UpperCAmelCase , revision='''aaaaaa''') def A__ (self): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __UpperCAmelCase =TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''') def A__ (self): '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase , '''Use `from_pt=True` to load this model'''): __UpperCAmelCase =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''') def A__ (self): '''simple docstring''' __UpperCAmelCase =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''') with RequestCounter() as counter: __UpperCAmelCase =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint __UpperCAmelCase =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''') with RequestCounter() as counter: __UpperCAmelCase =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
142
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCamelCase_ = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(snake_case__ ) , version.parse(snake_case__ ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ = None ) -> None: __UpperCAmelCase =f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , snake_case__ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =requirement, None, None else: __UpperCAmelCase =re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , snake_case__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) __UpperCAmelCase , __UpperCAmelCase =match[0] __UpperCAmelCase =want_full.split(''',''' ) # there could be multiple requirements __UpperCAmelCase ={} for w in want_range: __UpperCAmelCase =re.findall(r'''^([\s!=<>]{1,2})(.+)''' , snake_case__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) __UpperCAmelCase , __UpperCAmelCase =match[0] __UpperCAmelCase =want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __UpperCAmelCase ='''.'''.join([str(snake_case__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return # check if any version is installed try: __UpperCAmelCase =importlib.metadata.version(snake_case__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase ='''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(snake_case__ , snake_case__ )
142
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github A : Tuple = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def _a ( ): snake_case : int =Github(os.environ['''GITHUB_TOKEN'''] ) snake_case : Any =g.get_repo('''huggingface/diffusers''' ) snake_case : int =repo.get_issues(state='''open''' ) for issue in open_issues: snake_case : Tuple =sorted(issue.get_comments() , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) snake_case : Any =comments[0] if len(lowerCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
349
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") A : int = {"""target_lang""": """fi""", """source_lang""": """en"""} A : Tuple = """>>zh<<""" A : Optional[int] = """Helsinki-NLP/""" if is_torch_available(): A : Dict = """pt""" elif is_tf_available(): A : Optional[int] = """tf""" else: A : List[str] = """jax""" @require_sentencepiece class lowerCAmelCase_ ( a_ , unittest.TestCase ): __UpperCAmelCase = MarianTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def __snake_case ( self : List[str] ): '''simple docstring''' super().setUp() snake_case : Dict =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : Optional[Any] =dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case : Dict =Path(self.tmpdirname ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) snake_case : Any =MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str], **_snake_case : Tuple ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def __snake_case ( self : Any, _snake_case : Dict ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Optional[int] ='''</s>''' snake_case : int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ), _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ), _snake_case ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''</s>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''<pad>''' ) self.assertEqual(len(_snake_case ), 9 ) def __snake_case ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 9 ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Tuple =MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) snake_case : List[str] =en_de_tokenizer(['''I am a small frog'''], return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) snake_case : Any =[38, 121, 14, 697, 38_848, 0] self.assertListEqual(_snake_case, batch.input_ids[0] ) snake_case : List[Any] =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) snake_case : List[Any] =[x.name for x in Path(_snake_case ).glob('''*''' )] self.assertIn('''source.spm''', _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Any =self.get_tokenizer() snake_case : int =tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''], padding=_snake_case, truncation=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch.input_ids.shape, (2, 512) ) def __snake_case ( self : int ): '''simple docstring''' snake_case : List[str] =self.get_tokenizer() snake_case : int =tok(['''I am a tiny frog''', '''I am a small frog'''], padding=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch_smaller.input_ids.shape, (2, 10) ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : List[Any] ={'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case, model_name='''Helsinki-NLP/opus-mt-en-de''', revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''', decode_kwargs={'''use_source_tokenizer''': True}, ) def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : Optional[Any] =MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) snake_case : List[str] ='''Tämä on testi''' snake_case : Optional[int] ='''This is a test''' snake_case : Optional[Any] =[76, 7, 2_047, 2] snake_case : int =[69, 12, 11, 940, 2] snake_case : Optional[int] =tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[Any] =tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[int] =tokenizer.decode(_snake_case, skip_special_tokens=_snake_case ) self.assertEqual(_snake_case, _snake_case )
349
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : List[Any]=13 , _snake_case : Any=3 , _snake_case : Any=224 , _snake_case : Union[str, Any]=30 , _snake_case : List[str]=400 , _snake_case : Union[str, Any]=True , _snake_case : Optional[Any]=None , _snake_case : List[Any]=True , _snake_case : List[str]=[0.5, 0.5, 0.5] , _snake_case : Optional[Any]=[0.5, 0.5, 0.5] , ): __lowercase : int = size if size is not None else {'''height''': 18, '''width''': 18} __lowercase : Any = parent __lowercase : Dict = batch_size __lowercase : Any = num_channels __lowercase : Any = image_size __lowercase : Dict = min_resolution __lowercase : Optional[Any] = max_resolution __lowercase : Dict = do_resize __lowercase : Tuple = size __lowercase : List[str] = do_normalize __lowercase : Union[str, Any] = image_mean __lowercase : Optional[Any] = image_std def snake_case_ ( self : Union[str, Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[Any] ): __lowercase : Optional[int] = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self : Tuple ): return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self : List[Any] ): __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(_snake_case , '''image_std''' ) ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''size''' ) ) def snake_case_ ( self : List[str] ): pass def snake_case_ ( self : str ): # Initialize image_processor __lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input __lowercase : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __lowercase : List[Any] = image_processor(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def snake_case_ ( self : Optional[Any] ): # Initialize image_processor __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input __lowercase : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __lowercase : Any = image_processor(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def snake_case_ ( self : List[str] ): # Initialize image_processor __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input __lowercase : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __lowercase : Optional[Any] = image_processor(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
284
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowerCAmelCase : """simple docstring""" def snake_case_ ( self : str ): torch.manual_seed(0 ) __lowercase : Optional[int] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Tuple = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase : List[str] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __lowercase : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase : Optional[int] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __lowercase : Dict = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase : Dict = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , thresholding=_snake_case , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase : Any = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self : Any ): __lowercase : Tuple = self.get_dummy_components() __lowercase : Any = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : List[str] = self.get_dummy_inputs(_snake_case ) __lowercase : List[Any] = inputs['''prompt'''] __lowercase : int = inputs['''generator'''] __lowercase : Dict = inputs['''num_inference_steps'''] __lowercase : Optional[int] = inputs['''output_type'''] if "image" in inputs: __lowercase : Tuple = inputs['''image'''] else: __lowercase : Dict = None if "mask_image" in inputs: __lowercase : Tuple = inputs['''mask_image'''] else: __lowercase : List[Any] = None if "original_image" in inputs: __lowercase : List[Any] = inputs['''original_image'''] else: __lowercase : Optional[int] = None __lowercase , __lowercase : Optional[int] = pipe.encode_prompt(_snake_case ) # inputs with prompt converted to embeddings __lowercase : int = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __lowercase : Tuple = image if mask_image is not None: __lowercase : List[str] = mask_image if original_image is not None: __lowercase : List[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_snake_case , _snake_case , _snake_case ) __lowercase : List[str] = pipe(**_snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_snake_case ) __lowercase : List[Any] = self.pipeline_class.from_pretrained(_snake_case ) pipe_loaded.to(_snake_case ) pipe_loaded.set_progress_bar_config(disable=_snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_snake_case , _snake_case ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) __lowercase : int = self.get_dummy_inputs(_snake_case ) __lowercase : Union[str, Any] = inputs['''generator'''] __lowercase : Any = inputs['''num_inference_steps'''] __lowercase : Tuple = inputs['''output_type'''] # inputs with prompt converted to embeddings __lowercase : List[str] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __lowercase : Dict = image if mask_image is not None: __lowercase : Tuple = mask_image if original_image is not None: __lowercase : Any = original_image __lowercase : List[str] = pipe_loaded(**_snake_case )[0] __lowercase : Optional[int] = np.abs(to_np(_snake_case ) - to_np(_snake_case ) ).max() self.assertLess(_snake_case , 1E-4 ) def snake_case_ ( self : Optional[int] ): __lowercase : Union[str, Any] = self.get_dummy_components() __lowercase : Dict = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Dict = self.get_dummy_inputs(_snake_case ) __lowercase : Any = pipe(**_snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_snake_case ) __lowercase : Dict = self.pipeline_class.from_pretrained(_snake_case ) pipe_loaded.to(_snake_case ) pipe_loaded.set_progress_bar_config(disable=_snake_case ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase : Optional[Any] = self.get_dummy_inputs(_snake_case ) __lowercase : str = pipe_loaded(**_snake_case )[0] __lowercase : int = np.abs(to_np(_snake_case ) - to_np(_snake_case ) ).max() self.assertLess(_snake_case , 1E-4 )
284
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowercase_ = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''ernie_m''' lowerCAmelCase_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , _A : int = 25_0002 , _A : int = 768 , _A : int = 12 , _A : int = 12 , _A : int = 3072 , _A : str = "gelu" , _A : float = 0.1 , _A : float = 0.1 , _A : int = 514 , _A : float = 0.02 , _A : int = 1 , _A : float = 1e-05 , _A : Optional[Any]=None , _A : Optional[Any]=False , _A : int=0.0 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout __SCREAMING_SNAKE_CASE : str = is_decoder __SCREAMING_SNAKE_CASE : Tuple = act_dropout
74
from collections import namedtuple lowercase_: Optional[int] = namedtuple('from_to', 'from_ to') lowercase_: str = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 10_00), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(UpperCAmelCase_)) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(UpperCAmelCase_)) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
648
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __snake_case ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=4 , ) -> Optional[Any]: '''simple docstring''' snake_case__ : str = parent snake_case__ : List[str] = batch_size snake_case__ : List[Any] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Union[str, Any] = use_attention_mask snake_case__ : Dict = use_token_type_ids snake_case__ : str = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Any = num_choices def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_attention_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Any = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __a ( self ) -> Any: '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = True __lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = FlaxRoFormerModelTester(self ) @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case__ : List[str] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=__UpperCamelCase ) snake_case__ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Any = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) snake_case__ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : int = model(__UpperCamelCase )[0] snake_case__ : Optional[Any] = 50000 snake_case__ : int = (1, 6, vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) snake_case__ : List[Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
699
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Tuple = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _A ( _a ): '''simple docstring''' __lowerCamelCase : Any = '''xmod''' def __init__( self ,SCREAMING_SNAKE_CASE_=30522 ,SCREAMING_SNAKE_CASE_=768 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=3072 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_="absolute" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=("en_XX",) ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) snake_case : Dict = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Any = hidden_act snake_case : Optional[Any] = intermediate_size snake_case : str = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Optional[Any] = type_vocab_size snake_case : str = initializer_range snake_case : str = layer_norm_eps snake_case : List[Any] = position_embedding_type snake_case : Union[str, Any] = use_cache snake_case : List[str] = classifier_dropout snake_case : Optional[Any] = pre_norm snake_case : Tuple = adapter_reduction_factor snake_case : Union[str, Any] = adapter_layer_norm snake_case : List[Any] = adapter_reuse_layer_norm snake_case : List[Any] = ln_before_adapter snake_case : List[Any] = list(lowercase__ ) snake_case : List[Any] = default_language class _A ( _a ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
36
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( _a ): '''simple docstring''' a__ = "switch_transformers" a__ = ["past_key_values"] a__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__(self , lowercase__=32_128 , lowercase__=768 , lowercase__=64 , lowercase__=2_048 , lowercase__=64 , lowercase__=12 , lowercase__=3 , lowercase__=12 , lowercase__=3 , lowercase__=12 , lowercase__=8 , lowercase__=False , lowercase__=0.01 , lowercase__="float32" , lowercase__=False , lowercase__=32 , lowercase__=128 , lowercase__=0.1 , lowercase__=1E-6 , lowercase__=0.001 , lowercase__=0.001 , lowercase__=1.0 , lowercase__="relu" , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=0 , lowercase__=1 , **lowercase__ , ) -> Dict: __UpperCAmelCase = vocab_size __UpperCAmelCase = d_model __UpperCAmelCase = d_kv __UpperCAmelCase = d_ff __UpperCAmelCase = num_sparse_encoder_layers __UpperCAmelCase = num_layers __UpperCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __UpperCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: __UpperCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __UpperCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __UpperCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers __UpperCAmelCase = num_heads __UpperCAmelCase = num_experts __UpperCAmelCase = expert_capacity __UpperCAmelCase = router_bias __UpperCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __UpperCAmelCase = router_dtype __UpperCAmelCase = router_ignore_padding_tokens __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = relative_attention_max_distance __UpperCAmelCase = dropout_rate __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_factor __UpperCAmelCase = feed_forward_proj __UpperCAmelCase = use_cache __UpperCAmelCase = add_router_probs __UpperCAmelCase = router_z_loss_coef __UpperCAmelCase = router_aux_loss_coef __UpperCAmelCase = self.feed_forward_proj.split('''-''' ) __UpperCAmelCase = act_info[-1] __UpperCAmelCase = act_info[0] == '''gated''' if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase = '''gelu_new''' super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , **lowercase__ , )
303
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : List[str] = 2_5_6 class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = ['melgan'] def __init__( self:List[Any] , _a:SpectrogramNotesEncoder , _a:SpectrogramContEncoder , _a:TaFilmDecoder , _a:DDPMScheduler , _a:OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN snake_case__ = math.log(1e-5 ) # Matches MelGAN training. snake_case__ = 4.0 # Largest value for most examples snake_case__ = 1_28 self.register_modules( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[str] , _a:Tuple=(-1.0, 1.0) , _a:List[str]=False ): snake_case__ , snake_case__ = output_range if clip: snake_case__ = torch.clip(_a , self.min_value , self.max_value ) # Scale to [0, 1]. snake_case__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Tuple , _a:Optional[Any]=(-1.0, 1.0) , _a:Optional[Any]=False ): snake_case__ , snake_case__ = input_range snake_case__ = torch.clip(_a , _a , _a ) if clip else outputs # Scale to [0, 1]. snake_case__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[Any] , _a:Optional[Any] , _a:List[Any] ): snake_case__ = input_tokens > 0 snake_case__ , snake_case__ = self.notes_encoder( encoder_input_tokens=_a , encoder_inputs_mask=_a ) snake_case__ , snake_case__ = self.continuous_encoder( encoder_inputs=_a , encoder_inputs_mask=_a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[str] , _a:Dict , _a:Optional[Any] ): snake_case__ = noise_time if not torch.is_tensor(_a ): snake_case__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: snake_case__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) snake_case__ = self.decoder( encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a ) return logits @torch.no_grad() def __call__( self:List[Any] , _a:List[List[int]] , _a:Optional[torch.Generator] = None , _a:int = 1_00 , _a:bool = True , _a:str = "numpy" , _a:Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _a:int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_a )}.""" ) snake_case__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) snake_case__ = np.zeros([1, 0, self.n_dims] , np.floataa ) snake_case__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) for i, encoder_input_tokens in enumerate(_a ): if i == 0: snake_case__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ = ones snake_case__ = self.scale_features( _a , output_range=[-1.0, 1.0] , clip=_a ) snake_case__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ = self.decode( encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 snake_case__ = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = self.scale_to_features(_a , input_range=[-1.0, 1.0] ) snake_case__ = mel[:1] snake_case__ = mel.cpu().float().numpy() snake_case__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a ) logger.info('''Generated segment''' , _a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": snake_case__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_a )
208
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = ['pixel_values'] def __init__( self:List[str] , _a:bool = True , _a:Dict[str, int] = None , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:bool = True , _a:Dict[str, int] = None , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = True , **_a:Union[str, Any] , ): super().__init__(**_a ) snake_case__ = size if size is not None else {'''shortest_edge''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case__ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case__ = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self:str , _a:np.ndarray , _a:Dict[str, int] , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:str , ): snake_case__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Any , ): snake_case__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:List[Any] , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:PILImageResampling = None , _a:bool = None , _a:int = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = None , _a:Optional[Union[str, TensorType]] = None , _a:Optional[ChannelDimension] = ChannelDimension.FIRST , **_a:Any , ): snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case__ = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(_a ) for image in images] if do_resize: snake_case__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images] snake_case__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
208
1
a__ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" _a : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} _a : Union[str, Any] = 0 _a : List[Any] = 0 while place < len(__a ): if (place + 1 < len(__a )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" _a : List[str] = [] for arabic, roman in ROMAN: ((_a) , (_a)) : Optional[Any] = divmod(__a ,__a ) result.append(roman * factor ) if number == 0: break return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod()
14
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''''' _lowercase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase : str = None # compression type in fsspec. ex: "gzip" _lowercase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , UpperCamelCase__ : str = "" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , **UpperCamelCase__ : List[Any]): '''simple docstring''' super().__init__(self , **UpperCamelCase__) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ = fsspec.open( UpperCamelCase__ , mode="""rb""" , protocol=UpperCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ = os.path.basename(self.file.path.split("""::""")[0]) snake_case__ = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) snake_case__ = None @classmethod def __magic_name__ ( cls : Union[str, Any] , UpperCamelCase__ : List[Any]): '''simple docstring''' return super()._strip_protocol(UpperCamelCase__).lstrip("""/""") def __magic_name__ ( self : Dict): '''simple docstring''' if self.dir_cache is None: snake_case__ = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} snake_case__ = {f["""name"""]: f} def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str): '''simple docstring''' return self.file.open().read() def __magic_name__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' snake_case__ = self._strip_protocol(UpperCamelCase__) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''bz2''' _lowercase : Dict = '''bz2''' _lowercase : Optional[int] = '''.bz2''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''gzip''' _lowercase : List[str] = '''gzip''' _lowercase : Any = '''.gz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = '''lz4''' _lowercase : List[Any] = '''lz4''' _lowercase : Dict = '''.lz4''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''xz''' _lowercase : Union[str, Any] = '''xz''' _lowercase : Optional[int] = '''.xz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''zstd''' _lowercase : Tuple = '''zstd''' _lowercase : Union[str, Any] = '''.zst''' def __init__( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , UpperCamelCase__ : int = DEFAULT_BLOCK_SIZE , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__( fo=UpperCamelCase__ , mode=UpperCamelCase__ , target_protocol=UpperCamelCase__ , target_options=UpperCamelCase__ , block_size=UpperCamelCase__ , **UpperCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = file_ def __enter__( self : List[str]): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any]): '''simple docstring''' self._file.__exit__(*UpperCamelCase__ , **UpperCamelCase__) def __iter__( self : Any): '''simple docstring''' return iter(self._file) def __magic_name__ ( self : List[str]): '''simple docstring''' return next(self._file) def __getattr__( self : Any , UpperCamelCase__ : int): '''simple docstring''' return getattr(self._file , UpperCamelCase__) def fixed_enter(*UpperCamelCase__ : int , **UpperCamelCase__ : int): return WrappedFile(_enter(*UpperCamelCase__ , **UpperCamelCase__)) snake_case__ = fixed_enter
654
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) class lowercase__ ( __A ): __UpperCamelCase = ["""input_features""", """attention_mask"""] def __init__( self , _lowercase=80 , _lowercase=16_000 , _lowercase=0.0 , _lowercase=10 , _lowercase=25 , _lowercase="hamming_window" , _lowercase=32_768.0 , _lowercase=0.97 , _lowercase=1.0 , _lowercase=True , _lowercase=True , _lowercase=False , **_lowercase , ): super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) lowerCAmelCase_ : Dict = feature_size lowerCAmelCase_ : List[str] = sampling_rate lowerCAmelCase_ : str = padding_value lowerCAmelCase_ : List[str] = hop_length lowerCAmelCase_ : List[Any] = win_length lowerCAmelCase_ : List[Any] = frame_signal_scale lowerCAmelCase_ : Any = preemphasis_coeff lowerCAmelCase_ : List[Any] = mel_floor lowerCAmelCase_ : str = normalize_means lowerCAmelCase_ : Optional[Any] = normalize_vars lowerCAmelCase_ : Dict = win_function lowerCAmelCase_ : Union[str, Any] = return_attention_mask lowerCAmelCase_ : str = win_length * sampling_rate // 1_000 lowerCAmelCase_ : Any = hop_length * sampling_rate // 1_000 lowerCAmelCase_ : int = optimal_fft_length(self.sample_size ) lowerCAmelCase_ : int = (self.n_fft // 2) + 1 def UpperCAmelCase__ ( self , _lowercase ): if self.win_function == "hamming_window": lowerCAmelCase_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: lowerCAmelCase_ : int = window_function(window_length=self.sample_size , name=self.win_function ) lowerCAmelCase_ : str = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowerCAmelCase_ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): # make sure we normalize float32 arrays if self.normalize_means: lowerCAmelCase_ : Tuple = x[:input_length].mean(axis=0 ) lowerCAmelCase_ : Optional[Any] = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: lowerCAmelCase_ : Dict = x[:input_length].std(axis=0 ) lowerCAmelCase_ : Dict = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: lowerCAmelCase_ : str = padding_value # make sure array is in float32 lowerCAmelCase_ : List[str] = x.astype(np.floataa ) return x def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ): lowerCAmelCase_ : int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self , _lowercase , _lowercase = False , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase_ : Any = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Dict = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): lowerCAmelCase_ : Optional[int] = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : str = [raw_speech] # extract fbank features lowerCAmelCase_ : Union[str, Any] = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding lowerCAmelCase_ : List[str] = BatchFeature({"""input_features""": features} ) lowerCAmelCase_ : Union[str, Any] = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format lowerCAmelCase_ : List[str] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): lowerCAmelCase_ : Optional[Any] = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] lowerCAmelCase_ : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCAmelCase_ : Tuple = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowerCAmelCase_ : int = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowerCAmelCase_ : int = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: lowerCAmelCase_ : Union[str, Any] = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
714
UpperCAmelCase_ : str = """Alexander Joslin""" import operator as op from .stack import Stack def _lowerCAmelCase ( _a : str ) -> int: lowerCAmelCase_ : Any = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} lowerCAmelCase_ : Stack[int] = Stack() lowerCAmelCase_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_a ) ) elif i in operators: # RULE 2 operator_stack.push(_a ) elif i == ")": # RULE 4 lowerCAmelCase_ : Optional[int] = operator_stack.peek() operator_stack.pop() lowerCAmelCase_ : Union[str, Any] = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ : List[str] = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ : Dict = operators[opr](_a , _a ) operand_stack.push(_a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase_ : Dict = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
440
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case = (7_2_0, 1_2_8_0) # Height, Width __snake_case = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case = 1 / 1_0_0 __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = 2_5_0 def _A ( ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase ) for index in range(_lowercase ): __UpperCamelCase = random.sample(range(len(_lowercase ) ) , 4 ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , filter_scale=_lowercase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase = random_chars(32 ) __UpperCamelCase = path.split(os.sep )[-1].rsplit('.' , 1 )[0] __UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __UpperCamelCase = [] for anno in new_annos: __UpperCamelCase = anno[3] - anno[1] __UpperCamelCase = anno[4] - anno[2] __UpperCamelCase = anno[1] + width / 2 __UpperCamelCase = anno[2] + height / 2 __UpperCamelCase = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(_lowercase ) with open(f'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _A ( _lowercase , _lowercase ) -> tuple[list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ): __UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowercase ) as in_file: __UpperCamelCase = in_file.readlines() __UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' ) __UpperCamelCase = [] for obj_list in obj_lists: __UpperCamelCase = obj_list.rstrip('\n' ).split(' ' ) __UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2 __UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2 __UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2 __UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" __UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCamelCase = int(scale_x * output_size[1] ) __UpperCamelCase = int(scale_y * output_size[0] ) __UpperCamelCase = [] __UpperCamelCase = [] for i, index in enumerate(_lowercase ): __UpperCamelCase = all_img_list[index] path_list.append(_lowercase ) __UpperCamelCase = all_annos[index] __UpperCamelCase = cva.imread(_lowercase ) if i == 0: # top-left __UpperCamelCase = cva.resize(_lowercase , (divid_point_x, divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = bbox[1] * scale_x __UpperCamelCase = bbox[2] * scale_y __UpperCamelCase = bbox[3] * scale_x __UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCamelCase = cva.resize(_lowercase , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase = bbox[2] * scale_y __UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCamelCase = cva.resize(_lowercase , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = bbox[1] * scale_x __UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase = bbox[3] * scale_x __UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCamelCase = cva.resize( _lowercase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCamelCase = img for bbox in img_annos: __UpperCamelCase = scale_x + bbox[1] * (1 - scale_x) __UpperCamelCase = scale_y + bbox[2] * (1 - scale_y) __UpperCamelCase = scale_x + bbox[3] * (1 - scale_x) __UpperCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( _lowercase ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE_ = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" __a = (images / 2 + 0.5).clamp(0 , 1 ) __a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = numpy_to_pil(UpperCamelCase__ ) return images def __lowercase ( __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if images.ndim == 3: __a = images[None, ...] __a = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __a = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: __a = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
720
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): """simple docstring""" a_ :Optional[int] =ConsistencyModelPipeline a_ :List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ :Optional[int] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ :Optional[Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def __a ( self : Dict ): '''simple docstring''' __a = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def __a ( self : Tuple ): '''simple docstring''' __a = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def __a ( self : str , SCREAMING_SNAKE_CASE__ : int=False ): '''simple docstring''' if class_cond: __a = self.dummy_cond_unet else: __a = self.dummy_uncond_unet # Default to CM multistep sampler __a = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __a = { """unet""": unet, """scheduler""": scheduler, } return components def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): __a = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __a = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __a = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [2_2, 0], """generator""": generator, """output_type""": """np""", } return inputs def __a ( self : str ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __a = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : int ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __a = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __a = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a = 0 __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : str ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __a = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a = 1 __a = None __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : List[Any] ): '''simple docstring''' __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __a = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __a = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a = 1 __a = None __a = 0 __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : int="cpu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=torch.floataa , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(1, 3, 6_4, 6_4) ): '''simple docstring''' __a = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) __a = { """num_inference_steps""": None, """timesteps""": [2_2, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: __a = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) __a = latents return inputs def __a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]="cpu" , SCREAMING_SNAKE_CASE__ : List[str]=torch.floataa , SCREAMING_SNAKE_CASE__ : List[str]=(1, 3, 6_4, 6_4) ): '''simple docstring''' if type(SCREAMING_SNAKE_CASE__ ) == str: __a = torch.device(SCREAMING_SNAKE_CASE__ ) __a = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __a = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) return latents def __a ( self : str ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __a = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_inputs() __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __a ( self : List[Any] ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __a = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_inputs() __a = 1 __a = None __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __a ( self : Tuple ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __a = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ , enable_math=SCREAMING_SNAKE_CASE__ , enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __a ( self : Optional[Any] ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __a = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) __a = 1 __a = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ , enable_math=SCREAMING_SNAKE_CASE__ , enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __a = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
201
0
def __lowerCAmelCase ( ) -> int: return 1 def __lowerCAmelCase ( A_ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCAmelCase ( A_ : int ) -> List[Any]: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a__ ) def __lowerCAmelCase ( A_ : int ) -> Tuple: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a__ ) def __lowerCAmelCase ( A_ : int ) -> str: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a__ ) def __lowerCAmelCase ( A_ : int ) -> List[Any]: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a__ ) def __lowerCAmelCase ( A_ : int ) -> Union[str, Any]: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(a__ ) def __lowerCAmelCase ( A_ : int ) -> Union[str, Any]: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(a__ ) def __lowerCAmelCase ( A_ : int = 2_00 ) -> str: return two_pound(a__ ) if __name__ == "__main__": print(solution(int(input().strip())))
221
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } UpperCamelCase__ = "▁" class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = VOCAB_FILES_NAMES snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : int = BigBirdTokenizer snake_case : List[Any] = ["""input_ids""", """attention_mask"""] snake_case : List[int] = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase="[CLS]" , **__lowerCAmelCase , ): UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else bos_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else eos_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else unk_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else pad_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else cls_token UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
619
0
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = 6 ): """simple docstring""" lowerCAmelCase : List[Any] = None lowerCAmelCase : Tuple = None self.create_linked_list(UpperCamelCase__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = Node() lowerCAmelCase : List[Any] = current_node lowerCAmelCase : int = current_node lowerCAmelCase : List[Any] = current_node for _ in range(1 , UpperCamelCase__ ): lowerCAmelCase : str = Node() lowerCAmelCase : Union[str, Any] = current_node lowerCAmelCase : Tuple = previous_node lowerCAmelCase : Optional[int] = current_node lowerCAmelCase : Union[str, Any] = self.front lowerCAmelCase : Optional[Any] = previous_node def lowercase__ ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase : Optional[int] = self.rear.next if self.rear: lowerCAmelCase : Optional[int] = data def lowercase__ ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase : Optional[Any] = self.front.data lowerCAmelCase : Union[str, Any] = None return data lowerCAmelCase : Any = self.front lowerCAmelCase : Tuple = old_front.next lowerCAmelCase : Tuple = old_front.data lowerCAmelCase : List[str] = None return data def lowercase__ ( self ): """simple docstring""" if self.is_empty(): raise Exception("Empty Queue" ) def lowercase__ ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : int = None lowerCAmelCase : str = None lowerCAmelCase : int = None if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
'''simple docstring''' from __future__ import annotations def __snake_case ( lowerCamelCase_ : list[float] ): '''simple docstring''' if len(__lowerCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) __magic_name__ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
664
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): __UpperCAmelCase : Union[str, Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) DownloadCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) RunCommand.register_subcommand(__lowerCamelCase ) ServeCommand.register_subcommand(__lowerCamelCase ) UserCommands.register_subcommand(__lowerCamelCase ) AddNewModelCommand.register_subcommand(__lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCamelCase ) LfsCommands.register_subcommand(__lowerCamelCase ) PTtoTFCommand.register_subcommand(__lowerCamelCase ) # Let's go __UpperCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Tuple = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
63
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = old_name if "patch_embed" in old_name: __lowercase , __lowercase , __lowercase = old_name.split('''.''' ) if layer == "0": __lowercase = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": __lowercase = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": __lowercase = old_name.replace('''3''' , '''convolution2''' ) else: __lowercase = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , a__ ): __lowercase = r'''\b\d{2}\b''' if bool(re.search(a__ , a__ ) ): __lowercase = re.search(r'''\d\.\d\d.''' , a__ ).group() else: __lowercase = re.search(r'''\d\.\d.''' , a__ ).group() if int(match[0] ) < 6: __lowercase = old_name.replace(a__ , '''''' ) __lowercase = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) __lowercase = '''intermediate_stages.''' + trimmed_name else: __lowercase = old_name.replace(a__ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: __lowercase = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: __lowercase = str(int(match[2] ) - num_meta4D_last_stage ) __lowercase = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: __lowercase = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: __lowercase = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: __lowercase = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: __lowercase = trimmed_name.replace('''fc2''' , '''linear_out''' ) __lowercase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , a__ ): __lowercase = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: __lowercase = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowercase = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowercase = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: __lowercase = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: __lowercase = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: __lowercase = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: __lowercase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowercase = new_name.replace('''norm''' , '''layernorm''' ) __lowercase = '''efficientformer.''' + new_name else: __lowercase = '''efficientformer.encoder.''' + new_name return new_name def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key in checkpoint.copy().keys(): __lowercase = checkpoint.pop(a__ ) __lowercase = val return checkpoint def lowercase_ ( ): '''simple docstring''' __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = torch.load(a__ , map_location='''cpu''' )['''model'''] __lowercase = EfficientFormerConfig.from_json_file(a__ ) __lowercase = EfficientFormerForImageClassificationWithTeacher(a__ ) __lowercase = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) __lowercase = config.depths[-1] - config.num_metaad_blocks + 1 __lowercase = convert_torch_checkpoint(a__ , a__ ) model.load_state_dict(a__ ) model.eval() __lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowercase = prepare_img() __lowercase = 2_56 __lowercase = 2_24 __lowercase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) __lowercase = processor(images=a__ , return_tensors='''pt''' ).pixel_values # original processing pipeline __lowercase = Compose( [ Resize(a__ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(a__ ), ToTensor(), Normalize(a__ , a__ ), ] ) __lowercase = image_transforms(a__ ).unsqueeze(0 ) assert torch.allclose(a__ , a__ ) __lowercase = model(a__ ) __lowercase = outputs.logits __lowercase = (1, 10_00) if "l1" in model_name: __lowercase = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , a__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __lowercase = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , a__ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __lowercase = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(a__ ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='''Add model''' , use_temp_dir=a__ , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='''Add image processor''' , use_temp_dir=a__ , ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) a : Dict = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
716
def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
527
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase__ ( _a : str , _a : str , _a : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path snake_case_ : Tuple = quote(__lowerCamelCase ) return hfh.hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" , revision=__lowerCamelCase )
568
from __future__ import annotations import math def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : list[int] , __lowerCamelCase : float ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__lowerCamelCase ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] __UpperCAmelCase : str = math.log(len(__lowerCamelCase ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
0
class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :Optional[int] = val lowercase_ :int = None lowercase_ :Any = None def UpperCamelCase ( self , UpperCamelCase_ ): if self.val: if val < self.val: if self.left is None: lowercase_ :Tuple = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase_ :int = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase_ :Optional[int] = val def UpperCamelCase ( _a , _a ) -> Dict: '''simple docstring''' if root: inorder(root.left , _a ) res.append(root.val ) inorder(root.right , _a ) def UpperCamelCase ( _a ) -> int: '''simple docstring''' if len(_a ) == 0: return arr lowercase_ :str = Node(arr[0] ) for i in range(1 , len(_a ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase_ :List[str] = [] inorder(_a , _a ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
707
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=[30, 30] , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=None , UpperCamelCase_=8 , UpperCamelCase_=10 , ): lowercase_ :Tuple = parent lowercase_ :Dict = batch_size lowercase_ :Optional[Any] = image_size lowercase_ :Optional[int] = patch_size lowercase_ :List[str] = num_channels lowercase_ :Dict = is_training lowercase_ :int = use_labels lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Any = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :List[str] = hidden_act lowercase_ :int = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :Union[str, Any] = initializer_range lowercase_ :Tuple = num_labels lowercase_ :Dict = scope lowercase_ :int = n_targets lowercase_ :int = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase_ :int = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase_ :int = num_patches + 1 + self.num_detection_tokens def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase_ :Optional[int] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase_ :Any = [] for i in range(self.batch_size ): lowercase_ :Dict = {} lowercase_ :Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase_ ) lowercase_ :str = torch.rand(self.n_targets , 4 , device=UpperCamelCase_ ) labels.append(UpperCamelCase_ ) lowercase_ :str = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = YolosModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase_ :str = model(UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[int] = YolosForObjectDetection(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase_ :Dict = model(pixel_values=UpperCamelCase_ ) lowercase_ :Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase_ :Optional[Any] = model(pixel_values=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple =(YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase : Union[str, Any] =( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) lowercase : Optional[int] =False lowercase : Optional[int] =False lowercase : Dict =False lowercase : List[str] =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): lowercase_ :Optional[Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase_ :Dict = [] for i in range(self.model_tester.batch_size ): lowercase_ :Optional[int] = {} lowercase_ :Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase_ , dtype=torch.long ) lowercase_ :Union[str, Any] = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase_ , dtype=torch.float ) labels.append(UpperCamelCase_ ) lowercase_ :Optional[int] = labels return inputs_dict def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = YolosModelTester(self ) lowercase_ :List[Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): # YOLOS does not use inputs_embeds pass def UpperCamelCase ( self ): lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(UpperCamelCase_ ) lowercase_ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Optional[Any] = [*signature.parameters.keys()] lowercase_ :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Tuple = True # in YOLOS, the seq_len is different lowercase_ :Optional[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase_ :Any = True lowercase_ :List[str] = False lowercase_ :List[str] = True lowercase_ :Any = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :str = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :str = len(UpperCamelCase_ ) # Check attention is always last and order is fine lowercase_ :List[str] = True lowercase_ :Tuple = True lowercase_ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :List[str] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) lowercase_ :List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :str = outputs.hidden_states lowercase_ :str = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # YOLOS has a different seq_length lowercase_ :Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :Dict = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase_ ) @slow def UpperCamelCase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Dict = YolosModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowercase_ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): lowercase_ :Any = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase_ ) lowercase_ :Tuple = self.default_image_processor lowercase_ :str = prepare_img() lowercase_ :List[str] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowercase_ :Optional[int] = model(inputs.pixel_values ) # verify outputs lowercase_ :List[str] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase_ :int = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase_ , ) lowercase_ :Tuple = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify postprocessing lowercase_ :List[str] = image_processor.post_process_object_detection( UpperCamelCase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase_ :str = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCamelCase_ ) lowercase_ :Optional[int] = [75, 75, 17, 63, 17] lowercase_ :List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase_ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase_ , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase_ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase_ ) )
441
0
def __snake_case ( _lowerCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __snake_case ( _lowerCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
454
def __snake_case ( _lowerCAmelCase : int ) -> bool: if num < 0: return False A_ : int = num A_ : int = 0 while num > 0: A_ : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
454
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : """simple docstring""" a = field( default=__UpperCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(__UpperCAmelCase )} ) a = field( default=__UpperCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) a = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) a = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) a = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) a = field( default=__UpperCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a = field( default=__UpperCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) a = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) a = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _snake_case ( __UpperCAmelCase ): """simple docstring""" a = "train" a = "dev" class _snake_case ( __UpperCAmelCase ): """simple docstring""" a = 42 a = 42 a = 42 a = 42 def __init__( self : Any , _A : Dict , _A : str , _A : List[str] = None , _A : List[str] = Split.train , _A : int = False , _A : Any = None , _A : Optional[Any] = "pt" , ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = args _SCREAMING_SNAKE_CASE : Optional[Any] = is_language_sensitive _SCREAMING_SNAKE_CASE : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A): try: _SCREAMING_SNAKE_CASE : List[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""") _SCREAMING_SNAKE_CASE : Union[str, Any] = mode # Load data features from cache or dataset file _SCREAMING_SNAKE_CASE : Union[str, Any] = """v2""" if args.version_2_with_negative else """v1""" _SCREAMING_SNAKE_CASE : int = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _SCREAMING_SNAKE_CASE : List[str] = cached_features_file + """.lock""" with FileLock(_A): if os.path.exists(_A) and not args.overwrite_cache: _SCREAMING_SNAKE_CASE : Optional[Any] = time.time() _SCREAMING_SNAKE_CASE : List[str] = torch.load(_A) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _SCREAMING_SNAKE_CASE : Optional[int] = self.old_features["""features"""] _SCREAMING_SNAKE_CASE : Tuple = self.old_features.get("""dataset""" , _A) _SCREAMING_SNAKE_CASE : Tuple = self.old_features.get("""examples""" , _A) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""") else: if mode == Split.dev: _SCREAMING_SNAKE_CASE : List[Any] = self.processor.get_dev_examples(args.data_dir) else: _SCREAMING_SNAKE_CASE : Tuple = self.processor.get_train_examples(args.data_dir) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) _SCREAMING_SNAKE_CASE : List[str] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : str): """simple docstring""" return len(self.features) def __getitem__( self : int , _A : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.features[i] _SCREAMING_SNAKE_CASE : Any = torch.tensor(feature.input_ids , dtype=torch.long) _SCREAMING_SNAKE_CASE : str = torch.tensor(feature.attention_mask , dtype=torch.long) _SCREAMING_SNAKE_CASE : str = torch.tensor(feature.token_type_ids , dtype=torch.long) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(feature.cls_index , dtype=torch.long) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float) _SCREAMING_SNAKE_CASE : Dict = torch.tensor(feature.is_impossible , dtype=torch.float) _SCREAMING_SNAKE_CASE : List[str] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask}) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible}) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(feature.start_position , dtype=torch.long) _SCREAMING_SNAKE_CASE : Tuple = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions}) return inputs
717
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _snake_case : """simple docstring""" def __init__( self : int , _A : List[Any] , _A : int , _A : int): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""") _SCREAMING_SNAKE_CASE : str = img _SCREAMING_SNAKE_CASE : Optional[Any] = img.shape[1] _SCREAMING_SNAKE_CASE : Tuple = img.shape[0] _SCREAMING_SNAKE_CASE : Any = dst_width _SCREAMING_SNAKE_CASE : Any = dst_height _SCREAMING_SNAKE_CASE : Any = self.src_w / self.dst_w _SCREAMING_SNAKE_CASE : Dict = self.src_h / self.dst_h _SCREAMING_SNAKE_CASE : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta) * 2_5_5 ) def _lowerCAmelCase ( self : Tuple): """simple docstring""" for i in range(self.dst_h): for j in range(self.dst_w): _SCREAMING_SNAKE_CASE : Any = self.img[self.get_y(_A)][self.get_x(_A)] def _lowerCAmelCase ( self : int , _A : int): """simple docstring""" return int(self.ratio_x * x) def _lowerCAmelCase ( self : str , _A : int): """simple docstring""" return int(self.ratio_y * y) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread('''image_data/lena.jpg''', 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
635
0
class __lowerCamelCase : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : list ) -> None: lowerCAmelCase__ = set_counts lowerCAmelCase__ = max(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [1] * num_sets lowerCAmelCase__ = list(range(SCREAMING_SNAKE_CASE__ ) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> bool: lowerCAmelCase__ = self.get_parent(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_parent(SCREAMING_SNAKE_CASE__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = src_parent lowerCAmelCase__ = self.set_counts[src_parent] lowerCAmelCase__ = max(self.max_set , SCREAMING_SNAKE_CASE__ ) return True def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
61
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """retribert""" def __init__( self : int ,_a : Dict=30522 ,_a : List[Any]=768 ,_a : Optional[Any]=8 ,_a : str=12 ,_a : str=3072 ,_a : Tuple="gelu" ,_a : Optional[int]=0.1 ,_a : Dict=0.1 ,_a : List[Any]=512 ,_a : Union[str, Any]=2 ,_a : Tuple=0.02 ,_a : List[str]=1e-12 ,_a : Dict=True ,_a : Tuple=128 ,_a : Optional[int]=0 ,**_a : Tuple ,): '''simple docstring''' super().__init__(pad_token_id=_a ,**_a ) A_ : Dict = vocab_size A_ : int = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : Tuple = hidden_act A_ : int = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : Optional[int] = initializer_range A_ : Dict = layer_norm_eps A_ : str = share_encoders A_ : List[Any] = projection_dim
665
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TaConfig.from_json_file(a ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tf_weights_in_ta(a , a , a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
353
def A_ ( a , a ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
353
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : bool = field(default=__magic_name__ , metadata={'help': 'Whether to use SortishSampler or not.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[Union[str, Path, GenerationConfig]] = field( default=__magic_name__ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase_ = v.to_dict() return d
412
from __future__ import annotations def UpperCAmelCase_ ( UpperCAmelCase__ ): if len(UpperCAmelCase__ ) == 0: return [] lowercase_ , lowercase_ = min(UpperCAmelCase__ ), max(UpperCAmelCase__ ) lowercase_ = int(max_value - min_value ) + 1 lowercase_ = [[] for _ in range(UpperCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(UpperCAmelCase__ ) return [v for bucket in buckets for v in sorted(UpperCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
412
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' from __future__ import annotations from math import gcd def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 3 , ) -> int | None: '''simple docstring''' if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: return (pow(__UpperCAmelCase , 2 ) + step) % modulus for _ in range(__UpperCAmelCase ): # These track the position within the cycle detection logic. __SCREAMING_SNAKE_CASE = seed __SCREAMING_SNAKE_CASE = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __SCREAMING_SNAKE_CASE = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __SCREAMING_SNAKE_CASE = gcd(hare - tortoise , __UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __SCREAMING_SNAKE_CASE = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) a = parser.parse_args() a = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: a = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
109
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowercase ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Tuple ): lowercase_ : Any = OmegaConf.load(__snake_case ) lowercase_ : Dict = torch.load(__snake_case , map_location='''cpu''' )['''model'''] lowercase_ : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowercase_ : List[str] = {} lowercase_ : str = '''first_stage_model.''' for key in keys: if key.startswith(__snake_case ): lowercase_ : Optional[int] = state_dict[key] # extract state_dict for UNetLDM lowercase_ : str = {} lowercase_ : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(__snake_case ): lowercase_ : Any = state_dict[key] lowercase_ : Optional[int] = config.model.params.first_stage_config.params lowercase_ : List[Any] = config.model.params.unet_config.params lowercase_ : Any = VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) lowercase_ : Optional[int] = UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) lowercase_ : str = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) lowercase_ : Dict = LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) __A : int = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
231
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyVaaPipeline UpperCAmelCase = [ "image_embeds", "negative_image_embeds", ] UpperCAmelCase = ["image_embeds", "negative_image_embeds"] UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple=0 ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) _SCREAMING_SNAKE_CASE =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''red cat, 4k photo''' _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =torch.Generator(device='''cuda''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipeline( image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a , _a )
706
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case_ : Any = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): def __init__( self : Tuple , _a : str , _a : List[str]=7 , _a : Union[str, Any]=3 , _a : List[str]=18 , _a : List[Any]=30 , _a : Optional[Any]=400 , _a : Dict=None , _a : Union[str, Any]=True , _a : List[str]=True , _a : Optional[Any]=None , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 20, '''width''': 20} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =do_convert_rgb _SCREAMING_SNAKE_CASE =[512, 1024, 2048, 4096] _SCREAMING_SNAKE_CASE =patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =PixaStructImageProcessingTester(self ) @property def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_dummy_image() _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) _SCREAMING_SNAKE_CASE =2048 _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''pt''' , max_patches=_a ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 _SCREAMING_SNAKE_CASE =True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches _SCREAMING_SNAKE_CASE ='''Hello''' _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processor( _a , return_tensors='''pt''' , max_patches=_a , header_text=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =PixaStructImageProcessingTester(self , num_channels=4 ) _SCREAMING_SNAKE_CASE =3 @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _SCREAMING_SNAKE_CASE =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processor( _a , return_tensors='''pt''' , max_patches=_a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
191
0
class lowerCAmelCase_ : def __init__( self : Tuple ) ->int: """simple docstring""" a__ :Optional[Any] = 0 a__ :str = 0 a__ :Optional[Any] = {} def _snake_case ( self : List[Any] , __A : Union[str, Any] ) ->Any: """simple docstring""" if vertex not in self.adjacency: a__ :Any = {} self.num_vertices += 1 def _snake_case ( self : Union[str, Any] , __A : int , __A : Optional[int] , __A : Optional[Any] ) ->str: """simple docstring""" self.add_vertex(__A ) self.add_vertex(__A ) if head == tail: return a__ :List[str] = weight a__ :List[str] = weight def _snake_case ( self : int ) ->Tuple: """simple docstring""" a__ :Dict = self.get_edges() for edge in edges: a__ , a__ , a__ :Dict = edge edges.remove((tail, head, weight) ) for i in range(len(__A ) ): a__ :str = list(edges[i] ) edges.sort(key=lambda __A : e[2] ) for i in range(len(__A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: a__ :Dict = edges[i][2] + 1 for edge in edges: a__ , a__ , a__ :Dict = edge a__ :List[Any] = weight a__ :Tuple = weight def __str__( self : List[str] ) ->Dict: """simple docstring""" a__ :int = "" for tail in self.adjacency: for head in self.adjacency[tail]: a__ :Union[str, Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def _snake_case ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a__ :int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self : str ) ->Optional[int]: """simple docstring""" return self.adjacency.keys() @staticmethod def _snake_case ( __A : Optional[int]=None , __A : Optional[Any]=None ) ->Optional[Any]: """simple docstring""" a__ :Optional[int] = Graph() if vertices is None: a__ :Optional[Any] = [] if edges is None: a__ :Optional[int] = [] for vertex in vertices: g.add_vertex(__A ) for edge in edges: g.add_edge(*__A ) return g class lowerCAmelCase_ : def __init__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a__ :str = {} a__ :Optional[int] = {} def __len__( self : List[Any] ) ->Optional[int]: """simple docstring""" return len(self.parent ) def _snake_case ( self : Tuple , __A : Optional[int] ) ->Optional[Any]: """simple docstring""" if item in self.parent: return self.find(__A ) a__ :Any = item a__ :Dict = 0 return item def _snake_case ( self : Tuple , __A : List[str] ) ->List[Any]: """simple docstring""" if item not in self.parent: return self.make_set(__A ) if item != self.parent[item]: a__ :List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self : Optional[int] , __A : Optional[int] , __A : Optional[Any] ) ->List[str]: """simple docstring""" a__ :List[Any] = self.find(__A ) a__ :Optional[Any] = self.find(__A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__ :Tuple = roota return roota if self.rank[roota] < self.rank[roota]: a__ :List[str] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__ :Optional[Any] = roota return roota return None @staticmethod def _snake_case ( __A : int ) ->int: """simple docstring""" a__ :Dict = graph.num_vertices a__ :Any = Graph.UnionFind() a__ :List[Any] = [] while num_components > 1: a__ :Optional[int] = {} for vertex in graph.get_vertices(): a__ :Union[str, Any] = -1 a__ :Union[str, Any] = graph.get_edges() for edge in edges: a__ , a__ , a__ :List[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: a__ , a__ , a__ :List[Any] = edge a__ :Dict = union_find.find(__A ) a__ :Dict = union_find.find(__A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ :Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ :Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ , a__ , a__ :Tuple = cheap_edge[vertex] if union_find.find(__A ) != union_find.find(__A ): union_find.union(__A , __A ) mst_edges.append(cheap_edge[vertex] ) a__ :Dict = num_components - 1 a__ :int = Graph.build(edges=__A ) return mst
395
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow snake_case__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Dict , __A : Path , __A : Union[str, None] = None , __A : Union[List[str], None] = None , __A : Union[str, List[str], None] = None , __A : bool = True , ) ->Any: """simple docstring""" a__ :Dict = [file for file in os.listdir(__A ) if os.path.isfile(os.path.join(__A , __A ) )] if identifier is not None: a__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__A , __A ): for n_ in n_identifier: a__ :Union[str, Any] = [file for file in files if n_ not in file] else: a__ :Dict = [file for file in files if n_identifier not in file] a__ :List[str] = ignore_files or [] ignore_files.append("__init__.py" ) a__ :Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __A ) if only_modules: a__ :Tuple = file.split("." )[0] try: a__ :Dict = getattr(__A , __A ) a__ :int = doctest.DocTestSuite(__A ) a__ :Any = unittest.TextTestRunner().run(__A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: a__ :int = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _snake_case ( self : int ) ->List[Any]: """simple docstring""" a__ :Tuple = Path("src/transformers" ) a__ :Union[str, Any] = "modeling" a__ :Any = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__A , identifier=__A , ignore_files=__A ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = Path("src/transformers" ) a__ :Dict = "tokenization" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a__ :List[Any] = Path("src/transformers" ) a__ :List[Any] = "configuration" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = Path("src/transformers" ) a__ :str = ["configuration", "modeling", "tokenization"] self.analyze_directory(__A , n_identifier=__A ) def _snake_case ( self : List[Any] ) ->Optional[int]: """simple docstring""" a__ :List[str] = Path("docs/source" ) a__ :Union[str, Any] = ["favicon.ico"] self.analyze_directory(__A , ignore_files=__A , only_modules=__A )
395
1
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = FunnelConfig.from_json_file(_lowerCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowerCamelCase : Dict = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
386
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ ( unittest.TestCase ): def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any]=13 ,__lowerCAmelCase: List[str]=3 ,__lowerCAmelCase: Optional[Any]=224 ,__lowerCAmelCase: Optional[int]=30 ,__lowerCAmelCase: Union[str, Any]=400 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = size if size is not None else {"height": 18, "width": 18} _lowerCamelCase : Tuple = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[int] = min_resolution _lowerCamelCase : List[str] = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : Dict = size _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : int = image_mean _lowerCamelCase : Tuple = image_std def _lowercase ( self: Optional[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = ViTImageProcessor if is_vision_available() else None def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : str = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : List[Any] = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Dict = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : int = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Tuple = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,)
386
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = tmp_path / '''file.csv''' __UpperCamelCase :Union[str, Any] = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = tmp_path / '''malformed_file.csv''' __UpperCamelCase :int = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = tmp_path / '''csv_with_image.csv''' __UpperCamelCase :List[Any] = textwrap.dedent( f"""\ image {image_file} """ ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = tmp_path / '''csv_with_label.csv''' __UpperCamelCase :Union[str, Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = tmp_path / '''csv_with_int_list.csv''' __UpperCamelCase :str = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = Csv() __UpperCamelCase :int = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __UpperCamelCase :Tuple = f.read().splitlines()[1] __UpperCamelCase :Dict = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) __UpperCamelCase :List[Any] = csv._generate_tables([[csv_file_with_image]] ) __UpperCamelCase :Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() __UpperCamelCase :Union[str, Any] = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __UpperCamelCase :List[str] = f.read().splitlines()[1:] __UpperCamelCase :int = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) __UpperCamelCase :str = csv._generate_tables([[csv_file_with_label]] ) __UpperCamelCase :str = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() __UpperCamelCase :Dict = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(SCREAMING_SNAKE_CASE ) for label in labels] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda SCREAMING_SNAKE_CASE : [int(SCREAMING_SNAKE_CASE ) for i in x.split()]} ) __UpperCamelCase :Union[str, Any] = csv._generate_tables([[csv_file_with_int_list]] ) __UpperCamelCase :Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) __UpperCamelCase :Dict = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
167
from __future__ import annotations import numpy as np def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :Optional[Any] = np.shape(SCREAMING_SNAKE_CASE ) if rows != columns: __UpperCamelCase :Dict = ( '''\'table\' has to be of square shaped array but got a ''' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = np.zeros((rows, columns) ) __UpperCamelCase :Tuple = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Union[str, Any] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __UpperCamelCase :Tuple = (table[i][j] - total) / upper[j][j] __UpperCamelCase :Optional[int] = 1 for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
167
1
"""simple docstring""" from __future__ import annotations _lowerCamelCase = [] def __lowercase ( lowerCamelCase_ : list[list[int]] , lowerCamelCase_ : int , lowerCamelCase_ : int ): for i in range(len(lowerCamelCase_ ) ): if board[row][i] == 1: return False for i in range(len(lowerCamelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCamelCase_ , -1 , -1 ) , range(lowerCamelCase_ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCamelCase_ , -1 , -1 ) , range(lowerCamelCase_ , len(lowerCamelCase_ ) ) ): if board[i][j] == 1: return False return True def __lowercase ( lowerCamelCase_ : list[list[int]] , lowerCamelCase_ : int ): if row >= len(lowerCamelCase_ ): solution.append(lowerCamelCase_ ) printboard(lowerCamelCase_ ) print() return True for i in range(len(lowerCamelCase_ ) ): if is_safe(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = 1 solve(lowerCamelCase_ , row + 1 ) SCREAMING_SNAKE_CASE__ = 0 return False def __lowercase ( lowerCamelCase_ : list[list[int]] ): for i in range(len(lowerCamelCase_ ) ): for j in range(len(lowerCamelCase_ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _lowerCamelCase = 8 _lowerCamelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
112
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
112
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(_lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase_ : Tuple = load_file(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase_ : List[Any] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) UpperCAmelCase_ : Optional[int] = pipeline.text_encoder else: UpperCAmelCase_ : int = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) UpperCAmelCase_ : str = pipeline.unet # find the target layer UpperCAmelCase_ : str = layer_infos.pop(0 ) while len(_lowercase ) > -1: try: UpperCAmelCase_ : Optional[Any] = curr_layer.__getattr__(_lowercase ) if len(_lowercase ) > 0: UpperCAmelCase_ : List[Any] = layer_infos.pop(0 ) elif len(_lowercase ) == 0: break except Exception: if len(_lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase_ : Dict = layer_infos.pop(0 ) UpperCAmelCase_ : Optional[int] = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(_lowercase ) else: pair_keys.append(_lowercase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase_ : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase_ : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase_ : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase_ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase ) # update visited list for item in pair_keys: visited.append(_lowercase ) return pipeline if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __a = parser.parse_args() __a = args.base_model_path __a = args.checkpoint_path __a = args.dump_path __a = args.lora_prefix_unet __a = args.lora_prefix_text_encoder __a = args.alpha __a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __a = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
30
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): """simple docstring""" a = "vision-encoder-decoder" a = True def __init__( self : str , **_A : str): """simple docstring""" super().__init__(**_A) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""") _SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""encoder""") _SCREAMING_SNAKE_CASE : Optional[int] = encoder_config.pop("""model_type""") _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""decoder""") _SCREAMING_SNAKE_CASE : Tuple = decoder_config.pop("""model_type""") _SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.for_model(_A , **_A) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.for_model(_A , **_A) _SCREAMING_SNAKE_CASE : Any = True @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : Optional[int]): """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""") _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : int = copy.deepcopy(self.__dict__) _SCREAMING_SNAKE_CASE : Dict = self.encoder.to_dict() _SCREAMING_SNAKE_CASE : List[Any] = self.decoder.to_dict() _SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output class _snake_case ( __snake_case ): """simple docstring""" a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : List[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _lowerCAmelCase ( self : List[Any]): """simple docstring""" return 1e-4 @property def _lowerCAmelCase ( self : Tuple): """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}}) class _snake_case ( __snake_case ): """simple docstring""" @property def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : int = OrderedDict() _SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _SCREAMING_SNAKE_CASE : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowerCAmelCase ( self : Dict , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ): """simple docstring""" import torch _SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() _SCREAMING_SNAKE_CASE : Any = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = dummy_input["""input_ids"""].shape _SCREAMING_SNAKE_CASE : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _SCREAMING_SNAKE_CASE : Any = dummy_input.pop("""input_ids""") _SCREAMING_SNAKE_CASE : Optional[int] = dummy_input.pop("""attention_mask""") _SCREAMING_SNAKE_CASE : str = torch.zeros(_A) return common_inputs class _snake_case ( __snake_case ): """simple docstring""" @property def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" pass def _lowerCAmelCase ( self : Any , _A : PretrainedConfig): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_A) def _lowerCAmelCase ( self : List[Any] , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default"): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A)
338
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __magic_name__ = '''Create a default config file for Accelerate with only a few flags set.''' def __snake_case ( _UpperCAmelCase="no" , _UpperCAmelCase = default_json_config_file , _UpperCAmelCase = False ): """simple docstring""" lowercase = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) lowercase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowercase = torch.cuda.device_count() lowercase = num_gpus lowercase = False if num_gpus > 1: lowercase = 'MULTI_GPU' else: lowercase = 'NO' elif is_xpu_available() and use_xpu: lowercase = torch.xpu.device_count() lowercase = num_xpus lowercase = False if num_xpus > 1: lowercase = 'MULTI_XPU' else: lowercase = 'NO' elif is_npu_available(): lowercase = torch.npu.device_count() lowercase = num_npus lowercase = False if num_npus > 1: lowercase = 'MULTI_NPU' else: lowercase = 'NO' else: lowercase = 0 lowercase = True lowercase = 1 lowercase = 'NO' lowercase = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = parser.add_parser('default' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_UpperCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
314
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __snake_case ( _UpperCAmelCase ): """simple docstring""" if "model" in orig_key: lowercase = orig_key.replace('model.' , '' ) if "norm1" in orig_key: lowercase = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: lowercase = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: lowercase = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: lowercase = orig_key.split('.' )[0].split('_' )[-1] lowercase = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowercase = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: lowercase = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: lowercase = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: lowercase = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: lowercase = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: lowercase = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: lowercase = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: lowercase = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: lowercase = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: lowercase = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: lowercase = 'yoso.' + orig_key return orig_key def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(_UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowercase = val lowercase = orig_state_dict['cls.predictions.decoder.bias'] lowercase = torch.arange(_UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = torch.load(_UpperCAmelCase , map_location='cpu' )['model_state_dict'] lowercase = YosoConfig.from_json_file(_UpperCAmelCase ) lowercase = YosoForMaskedLM(_UpperCAmelCase ) lowercase = convert_checkpoint_helper(config.max_position_embeddings , _UpperCAmelCase ) print(model.load_state_dict(_UpperCAmelCase ) ) model.eval() model.save_pretrained(_UpperCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
314
1
import csv import tweepy # Twitter API credentials __lowerCamelCase : Dict = '''''' __lowerCamelCase : int = '''''' __lowerCamelCase : Optional[Any] = '''''' __lowerCamelCase : List[str] = '''''' def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE_ : Dict = api.user_timeline(screen_name=lowerCAmelCase , count=2_0_0 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : Dict = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(f'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE_ : str = api.user_timeline( screen_name=lowerCAmelCase , count=2_0_0 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE_ : Any = alltweets[-1].id - 1 print(f'...{len(lowerCAmelCase )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE_ : List[str] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'new_{screen_name}_tweets.csv' , "w" ) as f: SCREAMING_SNAKE_CASE_ : Dict = csv.writer(lowerCAmelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
216
def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE_ : Optional[int] = True for i in range(lowerCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE_ : int = True if a[i].islower(): SCREAMING_SNAKE_CASE_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
216
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "▁" __lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __lowerCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __lowerCAmelCase = { "facebook/xglm-564M": 2_0_4_8, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Tuple="</s>" , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : List[str] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _UpperCAmelCase = 7 _UpperCAmelCase = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _UpperCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a _UpperCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : Any , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
710
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , lowercase): __SCREAMING_SNAKE_CASE : List[Any] = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 50_257 , __UpperCamelCase : int = 1_024 , __UpperCamelCase : int = 768 , __UpperCamelCase : int = 12 , __UpperCamelCase : int = 12 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "gelu_new" , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 1e-5 , __UpperCamelCase : float = 0.02 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , ): super().__init__() _UpperCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) _UpperCAmelCase = prefix_inner_dim _UpperCAmelCase = prefix_hidden_dim _UpperCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase = ( nn.Linear(self.prefix_hidden_dim , __UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase = GPTaConfig( vocab_size=__UpperCamelCase , n_positions=__UpperCamelCase , n_embd=__UpperCamelCase , n_layer=__UpperCamelCase , n_head=__UpperCamelCase , n_inner=__UpperCamelCase , activation_function=__UpperCamelCase , resid_pdrop=__UpperCamelCase , embd_pdrop=__UpperCamelCase , attn_pdrop=__UpperCamelCase , layer_norm_epsilon=__UpperCamelCase , initializer_range=__UpperCamelCase , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , scale_attn_by_inverse_layer_idx=__UpperCamelCase , reorder_and_upcast_attn=__UpperCamelCase , ) _UpperCAmelCase = GPTaLMHeadModel(__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : torch.Tensor , __UpperCamelCase : torch.Tensor , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[torch.Tensor] = None , ): _UpperCAmelCase = self.transformer.transformer.wte(__UpperCamelCase ) _UpperCAmelCase = self.encode_prefix(__UpperCamelCase ) _UpperCAmelCase = self.decode_prefix(__UpperCamelCase ) _UpperCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _UpperCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _UpperCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) _UpperCAmelCase = self.transformer(inputs_embeds=__UpperCamelCase , labels=__UpperCamelCase , attention_mask=__UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : torch.device ): return torch.zeros(__UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=__UpperCamelCase ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Optional[Any] ): return self.encode_prefix(__UpperCamelCase ) @torch.no_grad() def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): _UpperCAmelCase = torch.split(__UpperCamelCase , 1 , dim=0 ) _UpperCAmelCase = [] _UpperCAmelCase = [] for feature in features: _UpperCAmelCase = self.decode_prefix(feature.to(__UpperCamelCase ) ) # back to the clip feature # Only support beam search for now _UpperCAmelCase , _UpperCAmelCase = self.generate_beam( input_embeds=__UpperCamelCase , device=__UpperCamelCase , eos_token_id=__UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _UpperCAmelCase = torch.stack(__UpperCamelCase ) _UpperCAmelCase = torch.stack(__UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , __UpperCamelCase : int = 5 , __UpperCamelCase : int = 67 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : Optional[int] = None , ): _UpperCAmelCase = eos_token_id _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = torch.ones(__UpperCamelCase , device=__UpperCamelCase , dtype=torch.int ) _UpperCAmelCase = torch.zeros(__UpperCamelCase , device=__UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: _UpperCAmelCase = input_embeds else: _UpperCAmelCase = self.transformer.transformer.wte(__UpperCamelCase ) for i in range(__UpperCamelCase ): _UpperCAmelCase = self.transformer(inputs_embeds=__UpperCamelCase ) _UpperCAmelCase = outputs.logits _UpperCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _UpperCAmelCase = logits.softmax(-1 ).log() if scores is None: _UpperCAmelCase , _UpperCAmelCase = logits.topk(__UpperCamelCase , -1 ) _UpperCAmelCase = generated.expand(__UpperCamelCase , *generated.shape[1:] ) _UpperCAmelCase , _UpperCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _UpperCAmelCase = next_tokens else: _UpperCAmelCase = tokens.expand(__UpperCamelCase , *tokens.shape[1:] ) _UpperCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: _UpperCAmelCase = -float(np.inf ) _UpperCAmelCase = 0 _UpperCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _UpperCAmelCase = scores_sum / seq_lengths[:, None] _UpperCAmelCase , _UpperCAmelCase = scores_sum_average.view(-1 ).topk(__UpperCamelCase , -1 ) _UpperCAmelCase = next_tokens // scores_sum.shape[1] _UpperCAmelCase = seq_lengths[next_tokens_source] _UpperCAmelCase = next_tokens % scores_sum.shape[1] _UpperCAmelCase = next_tokens.unsqueeze(1 ) _UpperCAmelCase = tokens[next_tokens_source] _UpperCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) _UpperCAmelCase = generated[next_tokens_source] _UpperCAmelCase = scores_sum_average * seq_lengths _UpperCAmelCase = is_stopped[next_tokens_source] _UpperCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _UpperCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) _UpperCAmelCase = is_stopped + next_tokens.eq(__UpperCamelCase ).squeeze() if is_stopped.all(): break _UpperCAmelCase = scores / seq_lengths _UpperCAmelCase = scores.argsort(descending=__UpperCamelCase ) # tokens tensors are already padded to max_seq_length _UpperCAmelCase = [tokens[i] for i in order] _UpperCAmelCase = torch.stack(__UpperCamelCase , dim=0 ) _UpperCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
129
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) lowerCamelCase__ = ["""names""", """prefix"""] lowerCamelCase__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] lowerCamelCase__ = ["""encoding_errors""", """on_bad_lines"""] lowerCamelCase__ = ["""date_format"""] @dataclass class SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): __lowerCamelCase : str ="," __lowerCamelCase : Optional[str] =None __lowerCamelCase : Optional[Union[int, List[int], str]] ="infer" __lowerCamelCase : Optional[List[str]] =None __lowerCamelCase : Optional[List[str]] =None __lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] =None __lowerCamelCase : Optional[Union[List[int], List[str]]] =None __lowerCamelCase : Optional[str] =None __lowerCamelCase : bool =True __lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] =None __lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] =None __lowerCamelCase : Optional[list] =None __lowerCamelCase : Optional[list] =None __lowerCamelCase : bool =False __lowerCamelCase : Optional[Union[int, List[int]]] =None __lowerCamelCase : Optional[int] =None __lowerCamelCase : Optional[Union[str, List[str]]] =None __lowerCamelCase : bool =True __lowerCamelCase : bool =True __lowerCamelCase : bool =False __lowerCamelCase : bool =True __lowerCamelCase : Optional[str] =None __lowerCamelCase : str ="." __lowerCamelCase : Optional[str] =None __lowerCamelCase : str ='"' __lowerCamelCase : int =0 __lowerCamelCase : Optional[str] =None __lowerCamelCase : Optional[str] =None __lowerCamelCase : Optional[str] =None __lowerCamelCase : Optional[str] =None __lowerCamelCase : bool =True __lowerCamelCase : bool =True __lowerCamelCase : int =0 __lowerCamelCase : bool =True __lowerCamelCase : bool =False __lowerCamelCase : Optional[str] =None __lowerCamelCase : int =10_000 __lowerCamelCase : Optional[datasets.Features] =None __lowerCamelCase : Optional[str] ="strict" __lowerCamelCase : Literal["error", "warn", "skip"] ="error" __lowerCamelCase : Optional[str] =None def UpperCamelCase_ ( self : Any ): '''simple docstring''' if self.delimiter is not None: __a = self.delimiter if self.column_names is not None: __a = self.column_names @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowercase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): __lowerCamelCase : Union[str, Any] =CsvConfig def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self : int , __lowercase : Tuple ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): __a = data_files if isinstance(__lowercase , __lowercase ): __a = [files] __a = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __a = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): __a = [files] __a = [dl_manager.iter_files(__lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={"""files""": files} ) ) return splits def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : pa.Table ): '''simple docstring''' if self.config.features is not None: __a = self.config.features.arrow_schema if all(not require_storage_cast(__lowercase ) for feature in self.config.features.values() ): # cheaper cast __a = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowercase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __a = table_cast(__lowercase , __lowercase ) return pa_table def UpperCamelCase_ ( self : Any , __lowercase : List[Any] ): '''simple docstring''' __a = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __a = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowercase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): __a = pd.read_csv(__lowercase , iterator=__lowercase , dtype=__lowercase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowercase ): __a = pa.Table.from_pandas(__lowercase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowercase ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(__lowercase )}: {e}" ) raise
225
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a__: str = 'sshleifer/bart-tiny-random' a__: str = 'patrickvonplaten/t5-tiny-random' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return AutoConfig.from_pretrained(UpperCamelCase__ ) def UpperCamelCase ( self ): A__ = create_student_by_copying_alternating_layers(UpperCamelCase__,tempfile.mkdtemp(),e=1,d=1 ) self.assertEqual(student.config.num_hidden_layers,1 ) def UpperCamelCase ( self ): A__ = create_student_by_copying_alternating_layers(UpperCamelCase__,tempfile.mkdtemp(),e=1,d=UpperCamelCase__ ) def UpperCamelCase ( self ): A__ = create_student_by_copying_alternating_layers(UpperCamelCase__,tempfile.mkdtemp(),e=1,d=UpperCamelCase__ ) self.assertEqual(student.config.encoder_layers,1 ) self.assertEqual(student.config.decoder_layers,self.teacher_config.encoder_layers ) def UpperCamelCase ( self ): A__ = create_student_by_copying_alternating_layers(UpperCamelCase__,tempfile.mkdtemp(),e=1,d=1 ) self.assertEqual(student.config.encoder_layers,1 ) self.assertEqual(student.config.decoder_layers,1 ) def UpperCamelCase ( self ): with self.assertRaises(UpperCamelCase__ ): create_student_by_copying_alternating_layers(UpperCamelCase__,tempfile.mkdtemp(),e=UpperCamelCase__,d=UpperCamelCase__ )
709
from ....configuration_utils import PretrainedConfig from ....utils import logging a__: Any = logging.get_logger(__name__) a__: Optional[int] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mctct''' def __init__( self,__lowerCamelCase=8065,__lowerCamelCase=1536,__lowerCamelCase=36,__lowerCamelCase=6144,__lowerCamelCase=4,__lowerCamelCase=384,__lowerCamelCase=920,__lowerCamelCase=1E-5,__lowerCamelCase=0.3,__lowerCamelCase="relu",__lowerCamelCase=0.02,__lowerCamelCase=0.3,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=(7,),__lowerCamelCase=(3,),__lowerCamelCase=80,__lowerCamelCase=1,__lowerCamelCase=None,__lowerCamelCase="sum",__lowerCamelCase=False,**__lowerCamelCase,): super().__init__(**__lowerCamelCase,pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = num_attention_heads A__ = attention_head_dim A__ = max_position_embeddings A__ = layer_norm_eps A__ = layerdrop A__ = hidden_act A__ = initializer_range A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = pad_token_id A__ = bos_token_id A__ = eos_token_id A__ = conv_glu_dim A__ = conv_dropout A__ = num_conv_layers A__ = input_feat_per_channel A__ = input_channels A__ = conv_channels A__ = ctc_loss_reduction A__ = ctc_zero_infinity # prevents config testing fail with exporting to json A__ = list(__lowerCamelCase ) A__ = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
212
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A_ ( _lowerCamelCase : Tuple ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A_ ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" _lowerCAmelCase = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend('unsupported backend' ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def A_ ( _lowerCamelCase : Optional[int] ): _lowerCAmelCase = [1, 2] _lowerCAmelCase = {'a': 1, 'b': 2} _lowerCAmelCase = {'a': [1, 2], 'b': [3, 4]} _lowerCAmelCase = {'a': {'1': 1}, 'b': 2} _lowerCAmelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4} _lowerCAmelCase = [2, 3] _lowerCAmelCase = {'a': 2, 'b': 3} _lowerCAmelCase = {'a': [2, 3], 'b': [4, 5]} _lowerCAmelCase = {'a': {'1': 2}, 'b': 3} _lowerCAmelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
309
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase__ :Optional[Any] = pytest.mark.integration UpperCAmelCase__ :int = {"""comet"""} UpperCAmelCase__ :int = importlib.util.find_spec("""fairseq""") is not None UpperCAmelCase__ :Union[str, Any] = {"""code_eval"""} UpperCAmelCase__ :List[Any] = os.name == """nt""" UpperCAmelCase__ :Optional[Any] = {"""bertscore""", """frugalscore""", """perplexity"""} UpperCAmelCase__ :int = importlib.util.find_spec("""transformers""") is not None def __lowercase (_lowercase ) -> str: """simple docstring""" @wraps(_lowercase ) def wrapper(self, _lowercase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self, _lowercase ) return wrapper def __lowercase (_lowercase ) -> Tuple: """simple docstring""" @wraps(_lowercase ) def wrapper(self, _lowercase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self, _lowercase ) return wrapper def __lowercase (_lowercase ) -> Dict: """simple docstring""" @wraps(_lowercase ) def wrapper(self, _lowercase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self, _lowercase ) return wrapper def __lowercase () -> Optional[Any]: """simple docstring""" __lowerCamelCase : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @local class SCREAMING_SNAKE_CASE ( parameterized.TestCase ): snake_case__ : Dict = {} snake_case__ : List[str] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def a_ ( self : int , A__ : List[str] ): """simple docstring""" __lowerCamelCase : Optional[int] = """[...]""" __lowerCamelCase : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , A__ ) ).module_path ) __lowerCamelCase : int = datasets.load.import_main_class(metric_module.__name__ , dataset=A__ ) # check parameters __lowerCamelCase : Optional[Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(A__ , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCamelCase : Any = doctest.testmod(A__ , verbose=A__ , raise_on_error=A__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def a_ ( self : Optional[int] , A__ : Any ): """simple docstring""" __lowerCamelCase : List[Any] = """[...]""" __lowerCamelCase : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , A__ ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCamelCase : int = doctest.testmod(A__ , verbose=A__ , raise_on_error=A__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def a_ ( self : int , A__ : Union[str, Any] , A__ : Optional[Any] ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](A__ ): yield else: yield @contextmanager def a_ ( self : Any ): """simple docstring""" def load_local_metric(A__ : Optional[Any] , *A__ : str , **A__ : str ): return load_metric(os.path.join("""metrics""" , A__ ) , *A__ , **A__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: __lowerCamelCase : str = load_local_metric yield @classmethod def a_ ( cls : Any , A__ : Union[str, Any] ): """simple docstring""" def wrapper(A__ : Tuple ): __lowerCamelCase : List[str] = contextmanager(A__ ) __lowerCamelCase : List[str] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""", """""", """""" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def a_ ( self : Union[str, Any] , A__ : Dict ): """simple docstring""" assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: __lowerCamelCase : Optional[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def __lowercase (_lowercase ) -> List[str]: """simple docstring""" import torch def bert_cos_score_idf(_lowercase, _lowercase, *_lowercase, **_lowercase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowercase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: __lowerCamelCase : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def __lowercase (_lowercase ) -> int: """simple docstring""" def load_from_checkpoint(_lowercase ): class SCREAMING_SNAKE_CASE : def a_ ( self : Dict , A__ : Dict , *A__ : Dict , **A__ : Optional[int] ): """simple docstring""" assert len(A__ ) == 2 __lowerCamelCase : Any = [0.19, 0.92] return scores, sum(A__ ) / len(A__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: __lowerCamelCase : Dict = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: __lowerCamelCase : str = load_from_checkpoint yield def __lowercase () -> Optional[Any]: """simple docstring""" __lowerCamelCase : Dict = load_metric(os.path.join("""metrics""", """seqeval""" ) ) __lowerCamelCase : Optional[int] = """ERROR""" __lowerCamelCase : Optional[int] = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_lowercase, match=re.escape(_lowercase ) ): metric.compute(predictions=[], references=[], scheme=_lowercase )
710
'''simple docstring''' from __future__ import annotations from random import random class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A__ : int | None = None ): """simple docstring""" __lowerCamelCase : int = value __lowerCamelCase : Dict = random() __lowerCamelCase : Node | None = None __lowerCamelCase : Node | None = None def __repr__( self : Any ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self : List[Any] ): """simple docstring""" __lowerCamelCase : List[str] = str(self.value ) + """ """ __lowerCamelCase : Any = str(self.left or """""" ) __lowerCamelCase : List[str] = str(self.right or """""" ) return value + left + right def __lowercase (_lowercase, _lowercase ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowerCamelCase , __lowerCamelCase : int = split(root.left, _lowercase ) return left, root else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = split(root.right, _lowercase ) return root, right def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowerCamelCase : Tuple = merge(left.right, _lowercase ) return left else: __lowerCamelCase : int = merge(_lowercase, right.left ) return right def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" __lowerCamelCase : List[str] = Node(_lowercase ) __lowerCamelCase , __lowerCamelCase : List[Any] = split(_lowercase, _lowercase ) return merge(merge(_lowercase, _lowercase ), _lowercase ) def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" __lowerCamelCase , __lowerCamelCase : int = split(_lowercase, value - 1 ) __lowerCamelCase , __lowerCamelCase : List[str] = split(_lowercase, _lowercase ) return merge(_lowercase, _lowercase ) def __lowercase (_lowercase ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value, end=""",""" ) inorder(root.right ) def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": __lowerCamelCase : Dict = insert(_lowercase, int(arg[1:] ) ) elif arg[0] == "-": __lowerCamelCase : List[str] = erase(_lowercase, int(arg[1:] ) ) else: print("""Unknown command""" ) return root def __lowercase () -> None: """simple docstring""" __lowerCamelCase : str = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) __lowerCamelCase : int = input() while args != "q": __lowerCamelCase : List[Any] = interact_treap(_lowercase, _lowercase ) print(_lowercase ) __lowerCamelCase : List[Any] = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
483
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } lowerCamelCase = { """gpt-neox-20b""": 2048, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]="<|endoftext|>" , _lowerCAmelCase : List[str]="<|endoftext|>" , _lowerCAmelCase : int="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : Tuple , ): '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase) != add_prefix_space: __lowercase =getattr(_lowerCAmelCase , pre_tok_state.pop('type')) __lowercase =add_prefix_space __lowercase =pre_tok_class(**_lowerCAmelCase) __lowercase =add_prefix_space def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' __lowercase =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase) return tuple(_lowerCAmelCase) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : "Conversation"): '''simple docstring''' __lowercase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) + [self.eos_token_id]) if len(_lowerCAmelCase) > self.model_max_length: __lowercase =input_ids[-self.model_max_length :] return input_ids
474
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = tf.data.AUTOTUNE def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=_lowerCAmelCase , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=_lowerCAmelCase , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=_lowerCAmelCase , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=_lowerCAmelCase , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=_lowerCAmelCase , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=_lowerCAmelCase , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=_lowerCAmelCase , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=_lowerCAmelCase , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=_lowerCAmelCase , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=_lowerCAmelCase , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=_lowerCAmelCase , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=_lowerCAmelCase , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=_lowerCAmelCase , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=_lowerCAmelCase , help='Model ID to upload to on the Hugging Face Hub.' ) __lowercase =parser.parse_args() return args def _A ( _lowerCAmelCase ): """simple docstring""" try: if args.tpu_name: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(_lowerCAmelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCAmelCase ) return tpu def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =0 for file in file_list: __lowercase =file.split('/' )[-1] __lowercase =re.search(r'-\d+-(\d+)\.tfrecord' , _lowerCAmelCase ).group(1 ) __lowercase =int(_lowerCAmelCase ) num_samples += sample_count return num_samples def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =count_samples(_lowerCAmelCase ) __lowercase =tf.data.Dataset.from_tensor_slices(_lowerCAmelCase ) if shuffle: __lowercase =dataset.shuffle(len(_lowerCAmelCase ) ) __lowercase =tf.data.TFRecordDataset(_lowerCAmelCase , num_parallel_reads=_lowerCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowercase =dataset.apply(tf.data.experimental.assert_cardinality(_lowerCAmelCase ) ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) if shuffle: assert shuffle_buffer_size is not None __lowercase =dataset.shuffle(args.shuffle_buffer_size ) __lowercase =dataset.batch(_lowerCAmelCase , drop_remainder=_lowerCAmelCase ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) __lowercase =dataset.prefetch(_lowerCAmelCase ) return dataset def _A ( _lowerCAmelCase ): """simple docstring""" if not args.no_tpu: __lowercase =initialize_tpu(_lowerCAmelCase ) __lowercase =tf.distribute.TPUStrategy(_lowerCAmelCase ) else: __lowercase =tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) __lowercase =AutoTokenizer.from_pretrained(args.tokenizer ) __lowercase =AutoConfig.from_pretrained(args.pretrained_model_config ) __lowercase =tokenizer.vocab_size __lowercase =tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) __lowercase =tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) __lowercase =count_samples(_lowerCAmelCase ) __lowercase =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowercase =steps_per_epoch * args.num_epochs with strategy.scope(): __lowercase =TFAutoModelForMaskedLM.from_config(_lowerCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowercase , __lowercase =create_optimizer( num_train_steps=_lowerCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCAmelCase , metrics=['accuracy'] ) def decode_fn(_lowerCAmelCase ): __lowercase ={ 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCAmelCase , _lowerCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowercase =DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm_probability=args.mlm_probability , mlm=_lowerCAmelCase , return_tensors='tf' ) def mask_with_collator(_lowerCAmelCase ): # TF really needs an isin() function __lowercase =( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) __lowercase , __lowercase =data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(_lowerCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCAmelCase , ) return batch __lowercase =args.per_replica_batch_size * strategy.num_replicas_in_sync __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , ) __lowercase =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCAmelCase ) ) model.fit( _lowerCAmelCase , validation_data=_lowerCAmelCase , epochs=args.num_epochs , callbacks=_lowerCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase = parse_args() main(args)
474
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
713
"""simple docstring""" from math import sqrt def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int: SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'{solution() = }')
12
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _A ( UpperCamelCase ): """simple docstring""" def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : float ) -> float: return 0.0 def lowercase__ ( A_: np.ndarray , A_: int ) -> tuple[int | float, int | float]: """simple docstring""" __UpperCAmelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCAmelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowercase__ ( A_: FilterType , A_: int ) -> None: """simple docstring""" __UpperCAmelCase =512 __UpperCAmelCase =[1] + [0] * (size - 1) __UpperCAmelCase =[filter_type.process(A_ ) for item in inputs] __UpperCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase =np.abs(np.fft.fft(A_ ) ) __UpperCAmelCase =20 * np.logaa(A_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds __UpperCAmelCase =get_bounds(A_ , A_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(A_ ) plt.show() def lowercase__ ( A_: FilterType , A_: int ) -> None: """simple docstring""" __UpperCAmelCase =512 __UpperCAmelCase =[1] + [0] * (size - 1) __UpperCAmelCase =[filter_type.process(A_ ) for item in inputs] __UpperCAmelCase =[0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase =np.angle(np.fft.fft(A_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(A_ , -2 * pi ) ) plt.show()
68
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Any )->Any: _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) _UpperCAmelCase = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _UpperCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] , **__UpperCamelCase : str )->str: return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : int , **__UpperCamelCase : Any )->List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : str , **__UpperCamelCase : Optional[Any] )->List[str]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : List[str] )->Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def lowercase__ ( self : Dict )->Optional[Any]: _UpperCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors='''np''' ) _UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = processor(text=__UpperCamelCase ) _UpperCAmelCase = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : Optional[int] )->str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def lowercase__ ( self : Any )->int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(images=__UpperCamelCase , visual_prompt=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def lowercase__ ( self : Any )->Any: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(__UpperCamelCase ) _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
602
0
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
684
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> str: snake_case__ = 1 snake_case__ = 3 snake_case__ = (32, 32) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=UpperCamelCase_ , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case__ = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> List[str]: snake_case__ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 snake_case__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) snake_case__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _snake_case ( self ) -> str: snake_case__ = self.dummy_cond_unet_upscale snake_case__ = DDPMScheduler() snake_case__ = DDIMScheduler(prediction_type='v_prediction' ) snake_case__ = self.dummy_vae snake_case__ = self.dummy_text_encoder snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case__ = unet.half() snake_case__ = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case__ = StableDiffusionUpscalePipeline( unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , max_noise_level=350 , ) snake_case__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) snake_case__ = 'A painting of a squirrel eating a burger' snake_case__ = torch.manual_seed(0 ) snake_case__ = sd_pipe( [prompt] , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='np' , ).images snake_case__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[int]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _snake_case ( self ) -> List[Any]: snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _snake_case ( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) snake_case__ = 'stabilityai/stable-diffusion-x4-upscaler' snake_case__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ = 'a cat sitting on a park bench' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , output_type='np' , ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
368
0
A_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> list[int]: """simple docstring""" lowercase = True lowercase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) order.append(UpperCAmelCase ) return order def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> list[int]: """simple docstring""" lowercase = True lowercase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) return component def __UpperCAmelCase ( UpperCAmelCase )-> list[list[int]]: """simple docstring""" lowercase = len(UpperCAmelCase ) * [False] lowercase = {vert: [] for vert in range(len(UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCAmelCase ) lowercase = [] for i, was_visited in enumerate(UpperCAmelCase ): if not was_visited: order += topology_sort(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) lowercase = [] lowercase = len(UpperCAmelCase ) * [False] for i in range(len(UpperCAmelCase ) ): lowercase = order[len(UpperCAmelCase ) - i - 1] if not visited[vert]: lowercase = find_components(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) components_list.append(UpperCAmelCase ) return components_list
479
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __lowercase ( datasets.BeamBasedBuilder ): def __a ( self : Tuple ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__lowerCamelCase , ) def __a ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) -> int: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def __a ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCamelCase ) class __lowercase ( datasets.BeamBasedBuilder ): def __a ( self : int ) -> Any: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__lowerCamelCase , ) def __a ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> int: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def __a ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCamelCase ) def __UpperCAmelCase ( )-> Dict: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __UpperCAmelCase ( )-> List[str]: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __lowercase ( _A ): @require_beam def __a ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=__lowerCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __a ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' import apache_beam as beam lowercase = beam.io.parquetio.WriteToParquet lowercase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=__lowerCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowercase = partial(__lowerCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def __a ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = DummyBeamDataset(cache_dir=__lowerCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : str ) -> List[Any]: '''simple docstring''' lowercase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase = NestedBeamDataset(cache_dir=__lowerCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowercase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
479
1
'''simple docstring''' import re import subprocess import sys UpperCamelCase__ : Union[str, Any] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') UpperCamelCase__ : Dict = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() UpperCamelCase__ : Dict = '|'.join(sys.argv[1:]) UpperCamelCase__ : Tuple = re.compile(rf"""^({joined_dirs}).*?\.py$""") UpperCamelCase__ : List[str] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
614
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = int(_snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(_snake_case ) UpperCAmelCase , UpperCAmelCase = divmod(_snake_case , 2 ) return binary_recursive(_snake_case ) + str(_snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = str(_snake_case ).strip() if not number: raise ValueError("""No input value was provided""" ) UpperCAmelCase = """-""" if number.startswith("""-""" ) else """""" UpperCAmelCase = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(_snake_case ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
341
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCAmelCase = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = torch.load(a , map_location='''cpu''' ) return sd def UpperCamelCase ( a , a , a=rename_keys_prefix ) -> List[Any]: '''simple docstring''' __magic_name__ = OrderedDict() __magic_name__ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __magic_name__ = key for name_pair in rename_keys_prefix: __magic_name__ = new_key.replace(name_pair[0] , name_pair[1] ) __magic_name__ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __magic_name__ = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __magic_name__ = '''pretraining''' if "vcr" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 512} __magic_name__ = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 2048} __magic_name__ = '''vqa_advanced''' elif "vqa" in checkpoint_path: __magic_name__ = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} __magic_name__ = '''vqa''' elif "nlvr" in checkpoint_path: __magic_name__ = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } __magic_name__ = '''nlvr''' __magic_name__ = VisualBertConfig(**a ) # Load State Dict __magic_name__ = load_state_dict(a ) __magic_name__ = get_new_dict(a , a ) if model_type == "pretraining": __magic_name__ = VisualBertForPreTraining(a ) elif model_type == "vqa": __magic_name__ = VisualBertForQuestionAnswering(a ) elif model_type == "nlvr": __magic_name__ = VisualBertForVisualReasoning(a ) elif model_type == "multichoice": __magic_name__ = VisualBertForMultipleChoice(a ) model.load_state_dict(a ) # Save Checkpoints Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCAmelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
245
'''simple docstring''' _lowerCAmelCase = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase ( a ) -> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a ) ) def UpperCamelCase ( ) -> int: '''simple docstring''' return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(a ) ) if __name__ == "__main__": print(solution())
245
1
import sys import turtle def lowerCamelCase ( a_ , a_ ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase ( a_ , a_ , a_ , a_ , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) triangle(a_ , get_mid(a_ , a_ ) , get_mid(a_ , a_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) lowerCamelCase_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") lowerCamelCase_ = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
318
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a_ ( a_ , a_ ): '''simple docstring''' __a: Union[str, Any] = '''resnet''' __a: List[Any] = ['''basic''', '''bottleneck'''] def __init__( self , lowercase_=3 , lowercase_=6_4 , lowercase_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase_=[3, 4, 6, 3] , lowercase_="bottleneck" , lowercase_="relu" , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = embedding_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = layer_type lowerCAmelCase_ = hidden_act lowerCAmelCase_ = downsample_in_first_stage lowerCAmelCase_ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class a_ ( a_ ): '''simple docstring''' __a: Optional[int] = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowercase ( self ) -> float: '''simple docstring''' return 1e-3
318
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _a : Tuple= False try: _a : str= _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCamelCase : def __init__(self : List[str] , _A : str = None , _A : list = []) -> Any: __snake_case : int = 0 __snake_case : List[Any] = choices __snake_case : List[str] = prompt if sys.platform == "win32": __snake_case : Union[str, Any] = '*' else: __snake_case : Optional[Any] = '➔ ' def _lowercase (self : Any , _A : Optional[Any] , _A : str = "") -> Optional[Any]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , _A) else: forceWrite(self.choices[index] , _A) def _lowercase (self : List[Any] , _A : int) -> Any: if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(_A) else: forceWrite(f" {self.choices[index]}") reset_cursor() def _lowercase (self : Dict , _A : Direction , _A : int = 1) -> List[Any]: __snake_case : List[str] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_A) move_cursor(_A , direction.name) self.print_choice(self.position) @input.mark(KEYMAP['up']) def _lowercase (self : Optional[int]) -> Tuple: self.move_direction(Direction.UP) @input.mark(KEYMAP['down']) def _lowercase (self : Any) -> Optional[int]: self.move_direction(Direction.DOWN) @input.mark(KEYMAP['newline']) def _lowercase (self : Union[str, Any]) -> int: move_cursor(len(self.choices) - self.position , 'DOWN') return self.position @input.mark(KEYMAP['interrupt']) def _lowercase (self : Any) -> List[Any]: move_cursor(len(self.choices) - self.position , 'DOWN') raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_A)] for number in range(10)]) def _lowercase (self : List[Any]) -> int: __snake_case : Optional[Any] = int(chr(self.current_selection)) __snake_case : List[Any] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP , -movement) elif self.position < index: self.move_direction(Direction.DOWN , _A) else: return else: return def _lowercase (self : List[Any] , _A : int = 0) -> List[str]: if self.prompt: linebreak() forceWrite(self.prompt , '\n') if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n') else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n') __snake_case : str = default_choice for i in range(len(self.choices)): self.print_choice(_A) forceWrite('\n') move_cursor(len(self.choices) - self.position , 'UP') with cursor.hide(): while True: if in_colab: try: __snake_case : Optional[Any] = int(builtins.input()) except ValueError: __snake_case : str = default_choice else: __snake_case : Dict = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1 , 'UP') clear_line() self.write_choice(_A , '\n') return choice
192
"""simple docstring""" import math def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> int: '''simple docstring''' __snake_case : List[str] = len(UpperCAmelCase_ ) __snake_case : List[Any] = int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) __snake_case : Any = 0 while arr[min(UpperCAmelCase_ , UpperCAmelCase_ ) - 1] < x: __snake_case : Tuple = step step += int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __snake_case : Union[str, Any] = prev + 1 if prev == min(UpperCAmelCase_ , UpperCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _a : str= input("Enter numbers separated by a comma:\n").strip() _a : int= [int(item) for item in user_input.split(",")] _a : Optional[Any]= int(input("Enter the number to be searched:\n")) _a : Tuple= jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
192
1
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = 9, 14 # noqa: F841 UpperCAmelCase__ : Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ : Optional[int] = defaultdict(snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ : Union[str, Any] = mst(snake_case ) UpperCAmelCase__ : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ : Dict = tuple(answer[:2] ) UpperCAmelCase__ : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
438
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCAmelCase : Union[str, Any] = threading.Lock() _lowerCAmelCase : Optional[logging.Handler] = None _lowerCAmelCase : Union[str, Any] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _lowerCAmelCase : Dict = logging.WARNING _lowerCAmelCase : Optional[Any] = True def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = os.getenv("TRANSFORMERS_VERBOSITY" , snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' f'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def SCREAMING_SNAKE_CASE__ ( )-> str: '''simple docstring''' return __name__.split("." )[0] def SCREAMING_SNAKE_CASE__ ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase__ : Any = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase__ : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase__ : int = False def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase__ : Optional[int] = None def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' return log_levels def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None )-> logging.Logger: '''simple docstring''' if name is None: UpperCAmelCase__ : Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' return set_verbosity(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' return set_verbosity(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> Tuple: '''simple docstring''' return set_verbosity(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> str: '''simple docstring''' return set_verbosity(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( snake_case : logging.Handler )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : logging.Handler )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase__ : Dict = False def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' _configure_library_root_logger() UpperCAmelCase__ : List[Any] = True def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase__ : Union[str, Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Any = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *snake_case : List[str] , **snake_case : str )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , snake_case ) if no_advisory_warnings: return self.warning(*snake_case , **snake_case ) _lowerCAmelCase : int = warning_advice @functools.lru_cache(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *snake_case : Dict , **snake_case : Any )-> Any: '''simple docstring''' self.warning(*snake_case , **snake_case ) _lowerCAmelCase : Tuple = warning_once class lowerCAmelCase__ : def __init__( self : List[str] , *snake_case__ : Any , **snake_case__ : List[str] ): # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase__ : List[Any] = args[0] if args else None def __iter__( self : Any ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' def empty_fn(*snake_case__ : Dict , **snake_case__ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[Any] ): '''simple docstring''' return self def __exit__( self : Tuple , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[int] ): '''simple docstring''' return class lowerCAmelCase__ : def __call__( self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def __a ( self : Dict , *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCAmelCase : Optional[int] = _tqdm_cls() def SCREAMING_SNAKE_CASE__ ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase__ : int = True hf_hub_utils.enable_progress_bars() def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' global _tqdm_active UpperCAmelCase__ : Optional[Any] = False hf_hub_utils.disable_progress_bars()
438
1
'''simple docstring''' def snake_case_ ( a__ : list[int] ,a__ : list[int] ,a__ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(a__ ) ) def snake_case_ ( a__ : list[list[int]] ,a__ : int ,a__ : list[int] ,a__ : int ): """simple docstring""" if index == len(a__ ): return True # Recursive Step for i in range(a__ ): if valid_coloring(graph[index] ,a__ ,a__ ): # Color current vertex __lowercase = i # Validate coloring if util_color(a__ ,a__ ,a__ ,index + 1 ): return True # Backtrack __lowercase = -1 return False def snake_case_ ( a__ : list[list[int]] ,a__ : int ): """simple docstring""" __lowercase = [-1] * len(a__ ) if util_color(a__ ,a__ ,a__ ,0 ): return colored_vertices return []
717
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = str(id_ ) __lowercase = None __lowercase = None __lowercase = [] __lowercase = {} # {vertex:distance} def __lt__( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self ) -> Any: """simple docstring""" return self.id def snake_case__ ( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" self.neighbors.append(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __lowercase = weight def snake_case_ ( a__ : Optional[int] ,a__ : List[str] ,a__ : Dict ,a__ : List[str] ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,a__ ) graph[b - 1].add_edge(graph[a - 1] ,a__ ) def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" __lowercase = [] for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = graph[:] while q: __lowercase = min(a__ ) q.remove(a__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] for i in range(1 ,len(a__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = list(a__ ) hq.heapify(a__ ) while h: __lowercase = hq.heappop(a__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] hq.heapify(a__ ) for i in range(1 ,len(a__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
163
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = 42 class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[Edge]] = [[] for _ in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE_ : List[str] = size def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._size def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = deque([start_vertex] ) SCREAMING_SNAKE_CASE_ : list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_ : int = 0 while queue: SCREAMING_SNAKE_CASE_ : Tuple = queue.popleft() SCREAMING_SNAKE_CASE_ : Dict = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_ : Dict = current_distance + edge.weight SCREAMING_SNAKE_CASE_ : List[Any] = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_ : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "codegen" lowercase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase__=50400 , UpperCamelCase__=2048 , UpperCamelCase__=2048 , UpperCamelCase__=4096 , UpperCamelCase__=28 , UpperCamelCase__=16 , UpperCamelCase__=64 , UpperCamelCase__=None , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=50256 , UpperCamelCase__=50256 , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = n_ctx A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = rotary_dim A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ = "default" , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase__ ): # TODO: how to do that better? A_ = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) A_ = {0: """batch""", 1: """past_sequence + sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_head def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' A_ = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A_ = common_inputs["""attention_mask"""] if self.use_past: A_ = ordered_inputs["""attention_mask"""].dtype A_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return 13
288
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __lowercase ): A_ = 'informer' A_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Tuple , _snake_case : Union[str, Any] = None , _snake_case : Dict = None , _snake_case : str = "student_t" , _snake_case : List[str] = "nll" , _snake_case : Optional[int] = 1 , _snake_case : Optional[Any] = None , _snake_case : Optional[Any] = "mean" , _snake_case : str = 0 , _snake_case : List[Any] = 0 , _snake_case : Optional[int] = 0 , _snake_case : Union[str, Any] = 0 , _snake_case : Optional[int] = None , _snake_case : Dict = None , _snake_case : List[str] = 64 , _snake_case : Optional[Any] = 32 , _snake_case : Optional[int] = 32 , _snake_case : str = 2 , _snake_case : List[Any] = 2 , _snake_case : List[str] = 2 , _snake_case : Tuple = 2 , _snake_case : Dict = True , _snake_case : int = "gelu" , _snake_case : int = 0.05 , _snake_case : Dict = 0.1 , _snake_case : str = 0.1 , _snake_case : List[str] = 0.1 , _snake_case : Union[str, Any] = 0.1 , _snake_case : Any = 100 , _snake_case : Tuple = 0.02 , _snake_case : int=True , _snake_case : Optional[Any] = "prob" , _snake_case : Optional[int] = 5 , _snake_case : List[Any] = True , **_snake_case : int , )->List[str]: '''simple docstring''' __lowerCAmelCase : int = prediction_length __lowerCAmelCase : Tuple = context_length or prediction_length __lowerCAmelCase : Optional[int] = distribution_output __lowerCAmelCase : Any = loss __lowerCAmelCase : str = input_size __lowerCAmelCase : List[Any] = num_time_features __lowerCAmelCase : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __lowerCAmelCase : str = scaling __lowerCAmelCase : List[str] = num_dynamic_real_features __lowerCAmelCase : List[Any] = num_static_real_features __lowerCAmelCase : List[Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __lowerCAmelCase : Union[str, Any] = cardinality else: __lowerCAmelCase : Dict = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __lowerCAmelCase : Tuple = embedding_dimension else: __lowerCAmelCase : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCAmelCase : Optional[int] = num_parallel_samples # Transformer architecture configuration __lowerCAmelCase : int = input_size * len(self.lags_sequence ) + self._number_of_features __lowerCAmelCase : List[Any] = d_model __lowerCAmelCase : Optional[int] = encoder_attention_heads __lowerCAmelCase : Dict = decoder_attention_heads __lowerCAmelCase : Union[str, Any] = encoder_ffn_dim __lowerCAmelCase : List[Any] = decoder_ffn_dim __lowerCAmelCase : Dict = encoder_layers __lowerCAmelCase : int = decoder_layers __lowerCAmelCase : Optional[Any] = dropout __lowerCAmelCase : Optional[int] = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : List[str] = decoder_layerdrop __lowerCAmelCase : Tuple = activation_function __lowerCAmelCase : Optional[Any] = init_std __lowerCAmelCase : Dict = use_cache # Informer __lowerCAmelCase : Optional[int] = attention_type __lowerCAmelCase : Union[str, Any] = sampling_factor __lowerCAmelCase : str = distil super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def UpperCAmelCase__ ( self : List[Any] )->Dict: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
708
import sys import turtle def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :tuple[float, float] , SCREAMING_SNAKE_CASE :tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :tuple[float, float] , SCREAMING_SNAKE_CASE :tuple[float, float] , SCREAMING_SNAKE_CASE :tuple[float, float] , SCREAMING_SNAKE_CASE :int , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(SCREAMING_SNAKE_CASE , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , get_mid(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) _UpperCAmelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') _UpperCAmelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
240
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _A = JukeboxTokenizer _A = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def __magic_name__ ( self ) -> Any: import torch __a : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) __a : str = tokenizer(**self.metas )['input_ids'] # fmt: off __a : int = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __magic_name__ ( self ) -> int: import torch __a : Any = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) __a : List[Any] = tokenizer(**self.metas )['input_ids'] # fmt: off __a : str = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
597
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _A = 'data2vec-audio' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.02 , _A=1E-5 , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=16 , _A=19 , _A=5 , _A=0.05 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A="sum" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=False , _A=3 , _A=2 , _A=3 , _A=None , **_A , ) -> Any: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __a : Any = hidden_size __a : Union[str, Any] = feat_extract_activation __a : Dict = list(_A ) __a : Optional[int] = list(_A ) __a : Optional[int] = list(_A ) __a : List[Any] = conv_bias __a : List[Any] = num_conv_pos_embeddings __a : List[str] = num_conv_pos_embedding_groups __a : str = conv_pos_kernel_size __a : Dict = len(self.conv_dim ) __a : Optional[Any] = num_hidden_layers __a : str = intermediate_size __a : Optional[Any] = hidden_act __a : str = num_attention_heads __a : List[Any] = hidden_dropout __a : List[str] = attention_dropout __a : List[Any] = activation_dropout __a : Tuple = feat_proj_dropout __a : Any = final_dropout __a : int = layerdrop __a : Optional[Any] = layer_norm_eps __a : List[str] = initializer_range __a : Any = vocab_size __a : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Any = mask_time_prob __a : Dict = mask_time_length __a : Optional[int] = mask_time_min_masks __a : int = mask_feature_prob __a : Optional[Any] = mask_feature_length __a : Tuple = mask_feature_min_masks # ctc loss __a : Optional[Any] = ctc_loss_reduction __a : List[Any] = ctc_zero_infinity # adapter __a : Optional[Any] = add_adapter __a : List[Any] = adapter_kernel_size __a : Union[str, Any] = adapter_stride __a : Union[str, Any] = num_adapter_layers __a : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a : Tuple = list(_A ) __a : Optional[int] = list(_A ) __a : Any = list(_A ) __a : int = xvector_output_dim @property def __magic_name__ ( self ) -> Optional[int]: return math.prod(self.conv_stride )
597
1
from random import randint from tempfile import TemporaryFile import numpy as np def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[Any] = 0 if start < end: __lowerCAmelCase : Optional[Any] = randint(_lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase : Dict = a[end] __lowerCAmelCase : int = a[pivot] __lowerCAmelCase : List[str] = temp __lowerCAmelCase : Any = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Union[str, Any] = randint(_lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase : List[str] = a[end] __lowerCAmelCase : Tuple = a[pivot] __lowerCAmelCase : str = temp __lowerCAmelCase : Tuple = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowerCAmelCase : str = new_pivot_index + 1 __lowerCAmelCase : Tuple = a[new_pivot_index] __lowerCAmelCase : Optional[Any] = a[index] __lowerCAmelCase : int = temp __lowerCAmelCase : str = a[new_pivot_index + 1] __lowerCAmelCase : List[Any] = a[end] __lowerCAmelCase : Tuple = temp return new_pivot_index + 1, count a = TemporaryFile() a = 100 # 1000 elements are to be sorted a , a = 0, 1 # mean and standard deviation a = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array a = np.load(outfile) a = len(M) - 1 a = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
716
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __lowerCAmelCase : Any = [1_4_4, 1_9_2, 2_4_0] __lowerCAmelCase : Dict = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: __lowerCAmelCase : int = [9_6, 1_2_0, 1_4_4] __lowerCAmelCase : str = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: __lowerCAmelCase : List[str] = [6_4, 8_0, 9_6] __lowerCAmelCase : List[Any] = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] __lowerCAmelCase : Tuple = 0.0_5 __lowerCAmelCase : List[str] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): __lowerCAmelCase : int = 5_1_2 __lowerCAmelCase : Dict = 1_6 __lowerCAmelCase : Union[str, Any] = 2_1 __lowerCAmelCase : List[Any] = '''pascal-voc-id2label.json''' else: __lowerCAmelCase : List[str] = 1_0_0_0 __lowerCAmelCase : Any = '''imagenet-1k-id2label.json''' __lowerCAmelCase : Union[str, Any] = '''huggingface/label-files''' __lowerCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __lowerCAmelCase : Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} __lowerCAmelCase : Optional[int] = idalabel __lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def _lowercase ( lowercase__ , lowercase__=False ): for i in range(1 , 6 ): if f"""layer_{i}.""" in name: __lowerCAmelCase : Dict = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: __lowerCAmelCase : int = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: __lowerCAmelCase : Dict = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: __lowerCAmelCase : Optional[Any] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: __lowerCAmelCase : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: __lowerCAmelCase : int = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: __lowerCAmelCase : Optional[Any] = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: __lowerCAmelCase : List[str] = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: __lowerCAmelCase : List[Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: __lowerCAmelCase : List[Any] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __lowerCAmelCase : Union[str, Any] = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __lowerCAmelCase : Any = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: __lowerCAmelCase : List[Any] = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: __lowerCAmelCase : Optional[int] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: __lowerCAmelCase : Any = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: __lowerCAmelCase : int = name.replace(f""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if f""".global_rep.{i}.bias""" in name: __lowerCAmelCase : Dict = name.replace(f""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: __lowerCAmelCase : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: __lowerCAmelCase : str = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: __lowerCAmelCase : Any = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: __lowerCAmelCase : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: __lowerCAmelCase : Dict = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: __lowerCAmelCase : Union[str, Any] = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: __lowerCAmelCase : List[str] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: __lowerCAmelCase : Dict = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: __lowerCAmelCase : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: __lowerCAmelCase : Optional[Any] = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: __lowerCAmelCase : Tuple = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: __lowerCAmelCase : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): __lowerCAmelCase : Optional[Any] = '''mobilevit.''' + name return name def _lowercase ( lowercase__ , lowercase__ , lowercase__=False ): if base_model: __lowerCAmelCase : List[Any] = '''''' else: __lowerCAmelCase : List[str] = '''mobilevit.''' for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Optional[int] = orig_state_dict.pop(lowercase__ ) if key[:8] == "encoder.": __lowerCAmelCase : Dict = key[8:] if "qkv" in key: __lowerCAmelCase : List[str] = key.split('''.''' ) __lowerCAmelCase : Any = int(key_split[0][6:] ) - 1 __lowerCAmelCase : List[Any] = int(key_split[3] ) __lowerCAmelCase : List[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) __lowerCAmelCase : Union[str, Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __lowerCAmelCase : Union[str, Any] = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: __lowerCAmelCase : Dict = val[:dim, :] __lowerCAmelCase : List[Any] = val[dim : dim * 2, :] __lowerCAmelCase : Optional[int] = val[-dim:, :] else: __lowerCAmelCase : Optional[int] = val[:dim] __lowerCAmelCase : List[str] = val[dim : dim * 2] __lowerCAmelCase : List[Any] = val[-dim:] else: __lowerCAmelCase : int = val return orig_state_dict def _lowercase ( ): __lowerCAmelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase : Dict = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): __lowerCAmelCase : Optional[Any] = get_mobilevit_config(lowercase__ ) # load original state_dict __lowerCAmelCase : Any = torch.load(lowercase__ , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): __lowerCAmelCase : str = MobileViTForSemanticSegmentation(lowercase__ ).eval() else: __lowerCAmelCase : Optional[int] = MobileViTForImageClassification(lowercase__ ).eval() __lowerCAmelCase : int = convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowerCAmelCase : List[str] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) __lowerCAmelCase : List[str] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowerCAmelCase : List[Any] = model(**lowercase__ ) __lowerCAmelCase : Dict = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": __lowerCAmelCase : int = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __lowerCAmelCase : Dict = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __lowerCAmelCase : Tuple = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1E-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": __lowerCAmelCase : Optional[Any] = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": __lowerCAmelCase : str = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": __lowerCAmelCase : Tuple = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: __lowerCAmelCase : Union[str, Any] = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) __lowerCAmelCase : str = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase__ , organization='''apple''' ) model.push_to_hub(lowercase__ , organization='''apple''' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs'," " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
583
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __magic_name__ ( ) -> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__snake_case ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def __magic_name__ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def __magic_name__ ( ) -> int: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__snake_case ): http_head("https://huggingface.co" )
361
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _A : List[str] = True from torch.cuda.amp import autocast _A : Any = logging.getLogger(__name__) @dataclass class a__ : __lowerCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """Whether to log verbose messages or not."""}, ) __lowerCAmelCase = field( default=2.0, metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __lowerCAmelCase = field( default=0.5, metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __lowerCAmelCase = field( default=0.999995, metadata={"""help""": """Decay of gumbel temperature during training."""} ) def __magic_name__ ( __snake_case : ModelArguments , __snake_case : TrainingArguments ) -> Any: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase : Optional[int] = logging.WARNING if model_args.verbose_logging: lowercase : Union[str, Any] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase : Union[str, Any] = logging.INFO logger.setLevel(__snake_case ) @dataclass class a__ : __lowerCAmelCase = field( default=a_, metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field( default="""train""", metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" }, ) __lowerCAmelCase = field( default="""validation""", metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) }, ) __lowerCAmelCase = field( default="""file""", metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""}, ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __lowerCAmelCase = field( default=1, metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" }, ) __lowerCAmelCase = field( default=a_, metadata={"""help""": """The number of processes to use for the preprocessing."""}, ) __lowerCAmelCase = field( default=20.0, metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class a__ : __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = "longest" __lowerCAmelCase = None __lowerCAmelCase = None def __call__( self , _a ): # reformat list to dict and set to pytorch format lowercase : Tuple = self.feature_extractor.pad( _a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase : str = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase : Tuple = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase : Any = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase : int = 1 lowercase : List[Any] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase : int = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , ) return batch class a__ ( a_ ): def __init__( self , *_a , _a=1 , _a=0 , _a=1.0 , **_a ): super().__init__(*_a , **_a ) lowercase : Tuple = 0 lowercase : Optional[Any] = max_gumbel_temp lowercase : Union[str, Any] = min_gumbel_temp lowercase : str = gumbel_temp_decay def __magic_name__ ( self , _a , _a ): model.train() lowercase : Union[str, Any] = self._prepare_inputs(_a ) if self.use_amp: with autocast(): lowercase : Optional[Any] = self.compute_loss(_a , _a ) else: lowercase : List[str] = self.compute_loss(_a , _a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase : Tuple = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase : Any = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: lowercase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_a ).backward() elif self.use_apex: with amp.scale_loss(_a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __magic_name__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(__snake_case , __snake_case ) # Downloading and loading a dataset from the hub. lowercase : Any = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase : Union[str, Any] = DatasetDict() lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) lowercase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase : Tuple = DatasetDict() lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__snake_case ) def prepare_dataset(__snake_case : Tuple ): # check that all files have the correct sampling rate lowercase , lowercase : Union[str, Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase : str = datasets.map( __snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase : Optional[Any] = vectorized_datasets.filter( lambda __snake_case : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__snake_case : Union[str, Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase : Any = vectorized_datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase : Union[str, Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) lowercase : Optional[Any] = WavaVecaForPreTraining(__snake_case ) lowercase : Optional[int] = DataCollatorForWavaVecaPretraining(model=__snake_case , feature_extractor=__snake_case ) lowercase : List[Any] = WavaVecaPreTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
361
1
'''simple docstring''' def snake_case_ ( a__ : str ,a__ : str ): """simple docstring""" def get_matched_characters(a__ : str ,a__ : str ) -> str: __lowercase = [] __lowercase = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 ,i - limit ) ) __lowercase = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(a__ ) __lowercase = f'{_stra[0:_stra.index(a__ )]} {_stra[_stra.index(a__ ) + 1:]}' return "".join(a__ ) # matching characters __lowercase = get_matched_characters(a__ ,a__ ) __lowercase = get_matched_characters(a__ ,a__ ) __lowercase = len(a__ ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(a__ ,a__ ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(a__ ) + match_count / len(a__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
163
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , lowerCamelCase__=1000 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = range_bbox def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase = bbox[i, j, 3] __lowercase = bbox[i, j, 1] __lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase = bbox[i, j, 2] __lowercase = bbox[i, j, 0] __lowercase = t __lowercase = tf.convert_to_tensor(lowerCamelCase__ ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __lowercase = TFLayoutLMModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMForMaskedLM(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForSequenceClassification(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = TFLayoutLMForTokenClassification(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) = config_and_inputs __lowercase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE( __A , __A , unittest.TestCase ): snake_case_ : Union[str, Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case_ : Tuple = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case_ : Optional[int] = False snake_case_ : Optional[int] = True snake_case_ : Tuple = 10 def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = TFLayoutLMModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Dict: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFLayoutLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def snake_case__ ( self ) -> str: """simple docstring""" pass def snake_case_ ( ): """simple docstring""" __lowercase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __lowercase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowercase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the sequence output on [0, :3, :3] __lowercase = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-3 ) ) # test the pooled output on [1, :3] __lowercase = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCamelCase__ , atol=1E-3 ) ) @slow def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowercase = outputs.loss __lowercase = (2,) self.assertEqual(loss.shape , lowerCamelCase__ ) # test the shape of the logits __lowercase = outputs.logits __lowercase = (2, 2) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) # test the shape of the logits __lowercase = outputs.logits __lowercase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs() # forward pass __lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the shape of the logits __lowercase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , lowerCamelCase__ ) self.assertEqual(outputs.end_logits.shape , lowerCamelCase__ )
163
1
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) A_ = img A_ = img.shape[1] A_ = img.shape[0] A_ = dst_width A_ = dst_height A_ = self.src_w / self.dst_w A_ = self.src_h / self.dst_h A_ = A_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): A_ = self.img[self.get_y(UpperCamelCase__ )][self.get_x(UpperCamelCase__ )] def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return int(self.ratio_x * x ) def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase = 800, 600 __lowerCamelCase = imread('''image_data/lena.jpg''', 1) __lowerCamelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
288
'''simple docstring''' from math import pow def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ = int(pow(UpperCAmelCase__, UpperCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_ , A_ = backtrack( UpperCAmelCase__, UpperCAmelCase__, current_number + 1, UpperCAmelCase__, UpperCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_ , A_ = backtrack( UpperCAmelCase__, UpperCAmelCase__, current_number + 1, UpperCAmelCase__, UpperCAmelCase__ ) return current_sum, solutions_count def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(UpperCAmelCase__, UpperCAmelCase__, 1, 0, 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
288
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Tuple = logging.get_logger(__name__) A_ :str = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[Any] ="""gpt_neox""" def __init__( self , lowerCamelCase__=50432 , lowerCamelCase__=6144 , lowerCamelCase__=44 , lowerCamelCase__=64 , lowerCamelCase__=24576 , lowerCamelCase__="gelu" , lowerCamelCase__=0.25 , lowerCamelCase__=10000 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=2048 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-5 , lowerCamelCase__=True , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =max_position_embeddings __UpperCamelCase : Optional[Any] =hidden_size __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : Union[str, Any] =num_attention_heads __UpperCamelCase : int =intermediate_size __UpperCamelCase : Optional[int] =hidden_act __UpperCamelCase : str =rotary_pct __UpperCamelCase : List[Any] =rotary_emb_base __UpperCamelCase : Union[str, Any] =attention_dropout __UpperCamelCase : Optional[Any] =hidden_dropout __UpperCamelCase : int =classifier_dropout __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : Any =layer_norm_eps __UpperCamelCase : Dict =use_cache __UpperCamelCase : Optional[Any] =tie_word_embeddings __UpperCamelCase : int =use_parallel_residual __UpperCamelCase : str =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def __lowercase ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) __UpperCamelCase : Union[str, Any] =self.rope_scaling.get('type' , lowerCamelCase__ ) __UpperCamelCase : Tuple =self.rope_scaling.get('factor' , lowerCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
718
A_ :str = '''Tobias Carryer''' from time import time class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=int(time() ) ): # noqa: B008 """simple docstring""" __UpperCamelCase : Optional[int] =multiplier __UpperCamelCase : str =increment __UpperCamelCase : Union[str, Any] =modulo __UpperCamelCase : str =seed def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =(self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A_ :Optional[int] = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
154
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase__ ( datasets.BeamBasedBuilder): """simple docstring""" def a__ ( self : Union[str, Any] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=UpperCamelCase_ , ) def a__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase_ ) class UpperCamelCase__ ( datasets.BeamBasedBuilder): """simple docstring""" def a__ ( self : str ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=UpperCamelCase_ , ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def a__ ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase_ ) def A ( ) -> Tuple: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def A ( ) -> Dict: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class UpperCamelCase__ ( a_): """simple docstring""" @require_beam def a__ ( self : Tuple ): '''simple docstring''' __magic_name__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __magic_name__ = DummyBeamDataset(cache_dir=UpperCamelCase_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __magic_name__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase_ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def a__ ( self : List[str] ): '''simple docstring''' import apache_beam as beam __magic_name__ = beam.io.parquetio.WriteToParquet __magic_name__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __magic_name__ = DummyBeamDataset(cache_dir=UpperCamelCase_ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: __magic_name__ = partial(UpperCamelCase_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __magic_name__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def a__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __magic_name__ = DummyBeamDataset(cache_dir=UpperCamelCase_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __magic_name__ = NestedBeamDataset(cache_dir=UpperCamelCase_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) __magic_name__ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase_ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
545
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = [] def a__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , **UpperCamelCase_ : int ): '''simple docstring''' self.events.append('on_init_end' ) def a__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , **UpperCamelCase_ : str ): '''simple docstring''' self.events.append('on_train_begin' ) def a__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_train_end' ) def a__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_epoch_begin' ) def a__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_epoch_end' ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' self.events.append('on_step_begin' ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_step_end' ) def a__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ): '''simple docstring''' self.events.append('on_evaluate' ) def a__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ): '''simple docstring''' self.events.append('on_predict' ) def a__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_save' ) def a__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ): '''simple docstring''' self.events.append('on_log' ) def a__ ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): '''simple docstring''' self.events.append('on_prediction_step' ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = tempfile.mkdtemp() def a__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.output_dir ) def a__ ( self : List[str] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : Optional[int]=6_4 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=False , **UpperCamelCase_ : str ): '''simple docstring''' __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionDataset(length=UpperCamelCase_ ) __magic_name__ = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) __magic_name__ = RegressionPreTrainedModel(UpperCamelCase_ ) __magic_name__ = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def a__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) __magic_name__ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : Any ): '''simple docstring''' __magic_name__ = ['on_init_end', 'on_train_begin'] __magic_name__ = 0 __magic_name__ = len(trainer.get_eval_dataloader() ) __magic_name__ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = self.get_trainer() __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __magic_name__ = self.get_trainer(disable_tqdm=UpperCamelCase_ ) __magic_name__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __magic_name__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) __magic_name__ = self.get_trainer() __magic_name__ = trainer.callback_handler.callbacks[0] __magic_name__ = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def a__ ( self : Any ): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=UpperCamelCase_ ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) __magic_name__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() __magic_name__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: __magic_name__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
545
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Optional[Any] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a_ : str = "pt" elif is_tf_available(): a_ : Any = "tf" else: a_ : List[str] = "jax" class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =PerceiverTokenizer __UpperCamelCase =False def UpperCamelCase ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def UpperCamelCase ( self : List[str] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : str , snake_case__ : Optional[Any]=False , snake_case__ : Optional[Any]=2_0 , snake_case__ : str=5 ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for i in range(len(snake_case__ ) ): try: SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE = list(filter(lambda snake_case__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , snake_case__ ) ) SCREAMING_SNAKE_CASE = list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: SCREAMING_SNAKE_CASE = toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: SCREAMING_SNAKE_CASE = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: SCREAMING_SNAKE_CASE = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE = ' ' + output_txt SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = 'Unicode €.' SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ) SCREAMING_SNAKE_CASE = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , snake_case__ ) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , '[CLS]Unicode €.[SEP]' ) SCREAMING_SNAKE_CASE = tokenizer('e è é ê ë' ) SCREAMING_SNAKE_CASE = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , snake_case__ ) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off SCREAMING_SNAKE_CASE = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE = tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('decoder_input_ids' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = [ 'Summary of the text.', 'Another summary.', ] SCREAMING_SNAKE_CASE = tokenizer( text_target=snake_case__ , max_length=3_2 , padding='max_length' , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) shutil.rmtree(snake_case__ ) SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) SCREAMING_SNAKE_CASE = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(snake_case__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: SCREAMING_SNAKE_CASE = json.load(snake_case__ ) with open(os.path.join(snake_case__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: SCREAMING_SNAKE_CASE = json.load(snake_case__ ) SCREAMING_SNAKE_CASE = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ 'an_additional_special_token' ] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(snake_case__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(snake_case__ , snake_case__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( snake_case__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=snake_case__ )] SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def UpperCamelCase ( self : str ): """simple docstring""" pass def UpperCamelCase ( self : Dict ): """simple docstring""" pass def UpperCamelCase ( self : Tuple ): """simple docstring""" pass def UpperCamelCase ( self : Any ): """simple docstring""" pass def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ )
439
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = args.pruning_method SCREAMING_SNAKE_CASE = args.threshold SCREAMING_SNAKE_CASE = args.model_name_or_path.rstrip('/' ) SCREAMING_SNAKE_CASE = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) SCREAMING_SNAKE_CASE = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": SCREAMING_SNAKE_CASE = MagnitudeBinarizer.apply(inputs=_UpperCamelCase , threshold=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE = TopKBinarizer.apply(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE = ThresholdBinarizer.apply(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -0.1, 1.1 SCREAMING_SNAKE_CASE = torch.sigmoid(_UpperCamelCase ) SCREAMING_SNAKE_CASE = s * (r - l) + l SCREAMING_SNAKE_CASE = s_bar.clamp(min=0.0 , max=1.0 ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: SCREAMING_SNAKE_CASE = os.path.join( os.path.dirname(_UpperCamelCase ) , f"""bertarized_{os.path.basename(_UpperCamelCase )}""" ) if not os.path.isdir(_UpperCamelCase ): shutil.copytree(_UpperCamelCase , _UpperCamelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) a_ : Dict = parser.parse_args() main(args)
439
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class a ( _UpperCAmelCase , unittest.TestCase ): _snake_case : List[Any] = DebertaVaTokenizer _snake_case : str = DebertaVaTokenizerFast _snake_case : Dict = True _snake_case : List[Any] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = DebertaVaTokenizer(A_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = """this is a test""" _UpperCAmelCase = """this is a test""" return input_text, output_text def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = """<pad>""" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(A_ ) , 3_0001 ) def lowerCAmelCase_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def lowerCAmelCase_ ( self : List[str] ): # fmt: off _UpperCAmelCase = """ \tHeLLo!how \n Are yoU? """ _UpperCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase_ ( self : str ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : List[str] ): # fmt: off _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , split_by_punct=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , split_by_punct=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Tuple ): # fmt: off _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): # fmt: off _UpperCAmelCase = """ \tHeLLo!how \n Are yoU? """ _UpperCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , do_lower_case=A_ , split_by_punct=A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A_ , add_special_tokens=A_ ) ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A_ , add_special_tokens=A_ ) ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) _UpperCAmelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(A_ ) _UpperCAmelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = """This is a test""" _UpperCAmelCase = [13, 1, 4398, 25, 21, 1289] _UpperCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] _UpperCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] _UpperCAmelCase = DebertaVaTokenizer(A_ , keep_accents=A_ ) _UpperCAmelCase = DebertaVaTokenizerFast(A_ , keep_accents=A_ ) _UpperCAmelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) # fmt: off _UpperCAmelCase = """I was born in 92000, and this is falsé.""" _UpperCAmelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] _UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on _UpperCAmelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual(A_ , A_ ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = DebertaVaTokenizer(A_ ) _UpperCAmelCase = tokenizer.encode("""sequence builders""" ) _UpperCAmelCase = tokenizer.encode("""multi-sequence build""" ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A_ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , A_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , A_ , ) @slow def lowerCAmelCase_ ( self : List[Any] ): # fmt: off _UpperCAmelCase = {"""input_ids""": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
705
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): """simple docstring""" return [ord(lowercase ) - 96 for elem in plain] def __UpperCAmelCase ( lowercase ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ ,lowercase ) print("""Decoded:""" ,decode(lowercase ) ) if __name__ == "__main__": main()
275
0
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->bool: if len(_lowerCamelCase ) == 0: return False _UpperCAmelCase =len(_lowerCamelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowerCamelCase ) else: return binary_search(a_list[midpoint + 1 :] , _lowerCamelCase ) if __name__ == "__main__": snake_case__ : Tuple = input('Enter numbers separated by comma:\n').strip() snake_case__ : str = [int(item.strip()) for item in user_input.split(',')] snake_case__ : Union[str, Any] = int(input('Enter the number to be found in the list:\n').strip()) snake_case__ : str = '' if binary_search(sequence, target) else 'not ' print(F"""{target} was {not_str}found in {sequence}""")
408
0
import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str=0 ) -> Tuple: '''simple docstring''' if name is None: _snake_case = None else: _snake_case = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _snake_case = fmt.format(UpperCamelCase__ ) # Print and recurse (if needed). if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if msg is not None: print(UpperCamelCase__ ) for k in val.keys(): recursive_print(UpperCamelCase__ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase__ , torch.Tensor ): print(UpperCamelCase__ , ':' , val.size() ) else: print(UpperCamelCase__ , ':' , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _snake_case = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _snake_case = (num_heads, hidden_size, num_splits) + input_shape[1:] _snake_case = param.view(*UpperCamelCase__ ) _snake_case = param.transpose(0 , 2 ) _snake_case = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _snake_case = (num_heads, num_splits, hidden_size) + input_shape[1:] _snake_case = param.view(*UpperCamelCase__ ) _snake_case = param.transpose(0 , 1 ).contiguous() _snake_case = param.view(*UpperCamelCase__ ) return param def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ) -> int: '''simple docstring''' _snake_case = {} # old versions did not store training args _snake_case = input_state_dict.get('args' , UpperCamelCase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _snake_case = ds_args.padded_vocab_size _snake_case = ds_args.max_position_embeddings _snake_case = ds_args.hidden_size _snake_case = ds_args.num_layers _snake_case = ds_args.num_attention_heads _snake_case = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _snake_case = config.n_head # The hidden_size per head. _snake_case = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _snake_case = input_state_dict['checkpoint_version'] else: _snake_case = 0.0 # The model. _snake_case = input_state_dict['model'] # The language model. _snake_case = model['language_model'] # The embeddings. _snake_case = lm['embedding'] # The word embeddings. _snake_case = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _snake_case = word_embeddings[: config.vocab_size, :] _snake_case = word_embeddings # The position embeddings. _snake_case = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _snake_case = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _snake_case = pos_embeddings # The transformer. _snake_case = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _snake_case = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _snake_case = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _snake_case = layer_re.match(UpperCamelCase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. _snake_case = int(m.group(1 ) ) # The name of the operation. _snake_case = m.group(2 ) # Is it a weight or a bias? _snake_case = m.group(3 ) # The name of the layer. _snake_case = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _snake_case = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _snake_case = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _snake_case = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = causal_mask # Insert a "dummy" tensor for masked_bias. _snake_case = torch.tensor(-1e4 , dtype=torch.floataa ) _snake_case = masked_bias _snake_case = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _snake_case = out_val.transpose(0 , 1 ).contiguous() # Store. _snake_case = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _snake_case = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Store. No change of shape. _snake_case = out_val # Transpose the weights. elif weight_or_bias == "weight": _snake_case = megatron_to_transformers[op_name] _snake_case = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _snake_case = megatron_to_transformers[op_name] _snake_case = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _snake_case = transformer['final_layernorm.weight'] _snake_case = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _snake_case = word_embeddings # It should be done! return output_state_dict def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=UpperCamelCase__ , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=UpperCamelCase__ , help='An optional config json file describing the pre-trained model.' , ) _snake_case = parser.parse_args() # Extract the basename. _snake_case = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) else: _snake_case = torch.load(args.path_to_checkpoint , map_location='cpu' ) _snake_case = input_state_dict.get('args' , UpperCamelCase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _snake_case = 'gelu_fast' elif ds_args.openai_gelu: _snake_case = 'gelu_new' else: _snake_case = 'gelu' else: # in the very early days this used to be "gelu_new" _snake_case = 'gelu_new' # Spell out all parameters in case the defaults change. _snake_case = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=UpperCamelCase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=UpperCamelCase__ , summary_activation=UpperCamelCase__ , summary_proj_to_labels=UpperCamelCase__ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase__ , use_cache=UpperCamelCase__ , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _snake_case = GPTaConfig.from_json_file(args.config_file ) _snake_case = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _snake_case = convert_megatron_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase__ , UpperCamelCase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _snake_case = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _snake_case = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _snake_case = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _snake_case = 'gpt2' _snake_case = AutoTokenizer.from_pretrained(UpperCamelCase__ ) _snake_case = type(UpperCamelCase__ ).__name__ _snake_case = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(UpperCamelCase__ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(UpperCamelCase__ ) # Store the state_dict to file. _snake_case = os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) print(F'''Saving checkpoint to \"{output_checkpoint_file}\"''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
705
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
541
0