code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=False ): """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _A ( lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = dct.pop(lowerCAmelCase_ ) lowerCAmelCase__ = val def _A ( ): """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" lowerCAmelCase__ = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase__ = 8 # set labels if required if not base_model: lowerCAmelCase__ = 1000 lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1536 lowerCAmelCase__ = 12 lowerCAmelCase__ = 6 # load original model from torch hub lowerCAmelCase__ = torch.hub.load("facebookresearch/dino:main" , lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) lowerCAmelCase__ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if base_model: lowerCAmelCase__ = ViTModel(lowerCAmelCase_ , add_pooling_layer=lowerCAmelCase_ ).eval() else: lowerCAmelCase__ = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase__ = ViTImageProcessor() lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase__ = encoding["pixel_values"] lowerCAmelCase__ = model(lowerCAmelCase_ ) if base_model: lowerCAmelCase__ = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase__ = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
61
from collections import defaultdict def a__ (__lowercase :str , __lowercase :str ) -> bool: _A : Union[str, Any] = first_str.lower().strip() _A : int = second_str.lower().strip() # Remove whitespace _A : int = first_str.replace(''' ''' , '''''' ) _A : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__lowercase ) != len(__lowercase ): return False # Default values for count should be 0 _A : defaultdict[str, int] = defaultdict(__lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase : Dict =input('Enter the first string ').strip() _UpperCamelCase : Union[str, Any] =input('Enter the second string ').strip() _UpperCamelCase : Dict =check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
206
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a : List[Any] = '''\ ''' a : List[Any] = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a : Union[str, Any] = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : int = 16 , __UpperCamelCase : bool = True , __UpperCamelCase : Any=None ) ->Union[str, Any]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = """cuda""" else: _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model.to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""pt""" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) _UpperCAmelCase = encodings["""input_ids"""] _UpperCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
717
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = test_results.split(""" """ ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(_A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = None _UpperCAmelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , _A ): _UpperCAmelCase = True _UpperCAmelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): _UpperCAmelCase = line _UpperCAmelCase = False return failures class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = title _UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0] _UpperCAmelCase = doc_test_results["""success"""] _UpperCAmelCase = doc_test_results["""failures"""] _UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase = doc_test_results @property def _snake_case ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase = [self._time_spent] _UpperCAmelCase = 0 for time in time_spent: _UpperCAmelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCamelCase ) == 1: _UpperCAmelCase = [0, 0, time_parts[0]] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s""" @property def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase = 40 _UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )} _UpperCAmelCase = """""" for category, failures in category_failures.items(): if len(__UpperCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCamelCase ) @staticmethod def _snake_case ( ) ->Any: '''simple docstring''' _UpperCAmelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) _UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" _UpperCAmelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase = """""" for key, value in failures.items(): _UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value failures_text += f"""*{key}*\n_{value}_\n\n""" _UpperCAmelCase = job_name _UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: _UpperCAmelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self : int ) ->Optional[Any]: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) _UpperCAmelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) _UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): _UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n""" _UpperCAmelCase = job_result["""failures"""] _UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" _UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""] _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A ).json() _UpperCAmelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , _A ) return {} def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} if os.path.exists(_A ): _UpperCAmelCase = os.listdir(_A ) for file in files: try: with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e return _artifact def _UpperCamelCase ( ) -> int: """simple docstring""" class a_ : def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase = name _UpperCAmelCase = [] def __str__( self : int ) ->Optional[Any]: '''simple docstring''' return self.name def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) _UpperCAmelCase = {} _UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: _UpperCAmelCase = directory if artifact_name not in _available_artifacts: _UpperCAmelCase = Artifact(_A ) _available_artifacts[artifact_name].add_path(_A ) return _available_artifacts if __name__ == "__main__": a : Dict = get_job_links() a : Dict = retrieve_available_artifacts() a : Optional[int] = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' a : Dict = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job a : int = github_actions_job_links.get('''run_doctests''') a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] a : Optional[Any] = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: a , a , a : str = handle_test_results(artifact['''stats''']) a : Tuple = failed a : int = success a : Any = time_spent[1:-1] + ''', ''' a : Dict = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): a : List[Any] = line.replace('''FAILED ''', '''''') a : Tuple = line.split()[0].replace('''\n''', '''''') if "::" in line: a , a : Union[str, Any] = line.split('''::''') else: a , a : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): a : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A''' a : List[str] = failure break a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
19
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } __magic_name__ = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } __magic_name__ = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } __magic_name__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __magic_name__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __magic_name__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[Any] = VOCAB_FILES_NAMES _A : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Dict = VOCAB_FILES_NAMES _A : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __magic_name__ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __magic_name__ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE : def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): if titles is None and texts is None: return super().__call__( lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) elif titles is None or texts is None: snake_case__ = titles if texts is None else texts return super().__call__( lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) snake_case__ = titles if not isinstance(lowerCamelCase , lowerCamelCase ) else [titles] snake_case__ = texts if not isinstance(lowerCamelCase , lowerCamelCase ) else [texts] snake_case__ = len(lowerCamelCase ) snake_case__ = questions if not isinstance(lowerCamelCase , lowerCamelCase ) else [questions] * n_passages if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( F"""There should be as many titles than texts but got {len(lowerCamelCase )} titles and {len(lowerCamelCase )} texts.""" ) snake_case__ = super().__call__(lowerCamelCase , lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["input_ids"] snake_case__ = super().__call__(lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase )["input_ids"] snake_case__ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase , lowerCamelCase ) ] } if return_attention_mask is not False: snake_case__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ = attention_mask return self.pad(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors=lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = 16 , lowerCamelCase = 64 , lowerCamelCase = 4 , ): snake_case__ = reader_input["input_ids"] snake_case__ , snake_case__ , snake_case__ = reader_output[:3] snake_case__ = len(lowerCamelCase ) snake_case__ = sorted(range(lowerCamelCase ) , reverse=lowerCamelCase , key=relevance_logits.__getitem__ ) snake_case__ = [] for doc_id in sorted_docs: snake_case__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ = sequence_ids.index(self.pad_token_id ) else: snake_case__ = len(lowerCamelCase ) snake_case__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase , top_spans=lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase , start_index=lowerCamelCase , end_index=lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): snake_case__ = [] for start_index, start_score in enumerate(lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[1] , reverse=lowerCamelCase ) snake_case__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) snake_case__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase ): _A : Any = VOCAB_FILES_NAMES _A : Any = READER_PRETRAINED_VOCAB_FILES_MAP _A : Tuple = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION _A : Any = ['input_ids', 'attention_mask']
276
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __magic_name__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 16_000 ): snake_case__ = int(round(sample_rate * max_length ) ) if len(__lowerCAmelCase ) <= sample_length: return wav snake_case__ = randint(0 , len(__lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _SCREAMING_SNAKE_CASE : _A : Optional[str] = field(default=__UpperCamelCase , metadata={'help': 'Name of a dataset from the datasets package'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} ) _A : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _A : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _A : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _A : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _A : Optional[int] = field( default=__UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _A : Optional[int] = field( default=__UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _A : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class _SCREAMING_SNAKE_CASE : _A : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _A : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _A : bool = field( default=__UpperCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _A : bool = field( default=__UpperCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _A : bool = field( default=__UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _A : Optional[bool] = field( default=__UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _A : bool = field( default=__UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def A_ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , lowerCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case__ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. snake_case__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " F"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--label_column_name` to the correct text column - one of " F"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy snake_case__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. snake_case__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) snake_case__ = feature_extractor.model_input_names[0] def train_transforms(__lowerCAmelCase ): snake_case__ = [] for audio in batch[data_args.audio_column_name]: snake_case__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowerCAmelCase ) snake_case__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) snake_case__ = {model_input_name: inputs.get(__lowerCAmelCase )} snake_case__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowerCAmelCase ): snake_case__ = [audio["array"] for audio in batch[data_args.audio_column_name]] snake_case__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) snake_case__ = {model_input_name: inputs.get(__lowerCAmelCase )} snake_case__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case__ = raw_datasets["train"].features[data_args.label_column_name].names snake_case__ , snake_case__ = {}, {} for i, label in enumerate(__lowerCAmelCase ): snake_case__ = str(__lowerCAmelCase ) snake_case__ = label # Load the accuracy metric from the datasets package snake_case__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): snake_case__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=eval_pred.label_ids ) snake_case__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: snake_case__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) # Initialize our trainer snake_case__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # Training if training_args.do_train: snake_case__ = None if training_args.resume_from_checkpoint is not None: snake_case__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ = last_checkpoint snake_case__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case__ = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub snake_case__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
276
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = FlaxAutoencoderKL @property def snake_case__ ( self : str ): """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.uniform(__lowercase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict
716
import baseaa def lowerCamelCase__ ( _A ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' return baseaa.baadecode(_A ).decode("utf-8" ) if __name__ == "__main__": lowercase__ : str = "Hello World!" lowercase__ : Tuple = baseaa_encode(test) print(encoded) lowercase__ : Optional[Any] = baseaa_decode(encoded) print(decoded)
139
0
from __future__ import annotations class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : list[list[int]] ): '''simple docstring''' lowercase__ = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowerCamelCase ) != 0: lowercase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase ) != cols: raise error for value in row: if not isinstance(lowerCamelCase, (int, float) ): raise error lowercase__ = rows else: lowercase__ = [] def lowercase__ ( self : Optional[int] ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.rows ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return len(self.rows[0] ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def lowercase__ ( self : int ): '''simple docstring''' return self.order[0] == self.order[1] def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase__ ( self : List[Any] ): '''simple docstring''' return bool(self.determinant() ) def lowercase__ ( self : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase ).determinant() def lowercase__ ( self : str, lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase, lowerCamelCase ) return -1 * self.get_minor(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' return Matrix( [ [self.get_minor(lowerCamelCase, lowerCamelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase__ ( self : Dict ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : Tuple ): '''simple docstring''' return str(self.rows ) def __str__( self : str ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowerCamelCase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def lowercase__ ( self : List[Any], lowerCamelCase : list[int], lowerCamelCase : int | None = None ): '''simple docstring''' lowercase__ = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowerCamelCase, lowerCamelCase ): raise type_error for value in row: if not isinstance(lowerCamelCase, (int, float) ): raise type_error if len(lowerCamelCase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowerCamelCase ) else: lowercase__ = self.rows[0:position] + [row] + self.rows[position:] def lowercase__ ( self : List[str], lowerCamelCase : list[int], lowerCamelCase : int | None = None ): '''simple docstring''' lowercase__ = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowerCamelCase, lowerCamelCase ): raise type_error for value in column: if not isinstance(lowerCamelCase, (int, float) ): raise type_error if len(lowerCamelCase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: lowercase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any], lowerCamelCase : object ): '''simple docstring''' if not isinstance(lowerCamelCase, lowerCamelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : int, lowerCamelCase : object ): '''simple docstring''' return not self == other def __neg__( self : Tuple ): '''simple docstring''' return self * -1 def __add__( self : List[str], lowerCamelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Tuple, lowerCamelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str, lowerCamelCase : Matrix | int | float ): '''simple docstring''' if isinstance(lowerCamelCase, (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase, lowerCamelCase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowerCamelCase, lowerCamelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : List[str], lowerCamelCase : int ): '''simple docstring''' if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) lowercase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase__ ( cls : List[Any], lowerCamelCase : list[int], lowerCamelCase : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
183
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[int] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] A__ : List[Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Optional[int]: a : List[str] = parent a : Any = batch_size a : Optional[int] = image_size a : List[str] = num_channels a : List[Any] = embeddings_size a : List[str] = hidden_sizes a : List[Any] = depths a : Dict = is_training a : List[str] = use_labels a : Tuple = hidden_act a : List[str] = num_labels a : Dict = scope a : Optional[int] = len(__UpperCAmelCase ) def lowercase_ ( self ) -> str: a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : List[Any] = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.num_labels ) a : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: a : List[str] = RegNetModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : str = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: a : Dict = self.num_labels a : Any = RegNetForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : Optional[Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ) -> int: a : Tuple = self.prepare_config_and_inputs() a , a , a : str = config_and_inputs a : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowercase : Any = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) lowercase : str = False lowercase : Optional[int] = False lowercase : Optional[Any] = False lowercase : int = False def lowercase_ ( self ) -> Optional[int]: a : str = RegNetModelTester(self ) a : Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowercase_ ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Optional[int]: return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase_ ( self ) -> str: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase_ ( self ) -> Optional[Any]: pass def lowercase_ ( self ) -> Tuple: a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Optional[int] = model_class(__UpperCAmelCase ) a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Union[str, Any] = [*signature.parameters.keys()] a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowercase_ ( self ) -> Dict: a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ ( self ) -> str: a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : int = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowercase_ ( self ) -> Any: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): a : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a : Union[str, Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : Dict = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a , a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a : Optional[int] = layer_type a : Optional[int] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> Tuple: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def lowercase_ ( self ) -> Union[str, Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : List[Any] = RegNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A_ ( ) -> Optional[Any]: a : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> Union[str, Any]: a : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) a : Optional[Any] = self.default_image_processor a : Optional[int] = prepare_img() a : Tuple = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a : str = model(**__UpperCAmelCase ) # verify the logits a : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a : Dict = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
509
"""simple docstring""" from collections import Counter from timeit import timeit def A_ ( UpperCAmelCase__ = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A_ ( UpperCAmelCase__ = "" ) -> bool: if len(UpperCAmelCase__ ) == 0: return True a : Union[str, Any] = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string a : dict[str, int] = {} for character in lower_case_input_str: a : Optional[Any] = character_freq_dict.get(UpperCAmelCase__ , 0 ) + 1 a : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( UpperCAmelCase__ = "" ) -> None: print('\nFor string = ' , UpperCAmelCase__ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(UpperCAmelCase__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) SCREAMING_SNAKE_CASE__ : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
509
1
"""simple docstring""" def snake_case__ ( _snake_case : Any , _snake_case : Union[str, Any] ): """simple docstring""" return int(input_a == input_a == 0 ) def snake_case__ ( ): """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(F'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(F'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(F'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
516
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __snake_case : Union[str, Any] = logging.getLogger(__name__) @dataclass class A__(a_ ): """simple docstring""" _A : Optional[float] = field( default=0.0, metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) _A : bool = field(default=a_, metadata={'''help''': '''Whether to SortishSamler or not.'''} ) _A : bool = field( default=a_, metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _A : bool = field(default=a_, metadata={'''help''': '''whether to use adafactor'''} ) _A : Optional[float] = field( default=a_, metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) _A : Optional[float] = field( default=a_, metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) _A : Optional[float] = field(default=a_, metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) _A : Optional[float] = field( default=a_, metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) _A : Optional[str] = field( default='''linear''', metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''}, )
540
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=__UpperCAmelCase , ) assert hasattr(self , '''env''' ) def _UpperCAmelCase ( self , __UpperCAmelCase=1 ) -> str: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def _UpperCAmelCase ( self ) -> str: # create estimator _a = self.create_estimator() # run training estimator.fit() # result dataframe _a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _a = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __UpperCAmelCase )
285
"""simple docstring""" def A_ ( _lowerCAmelCase : Dict=2_81_23 ): """simple docstring""" _a = [1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i _a = set() _a = 0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(_lowerCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
285
1
"""simple docstring""" from itertools import count def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 50 ): '''simple docstring''' lowerCAmelCase = [1] * min_block_length for n in count(SCREAMING_SNAKE_CASE ): fill_count_functions.append(1 ) for block_length in range(SCREAMING_SNAKE_CASE , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'{solution() = }')
532
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'fnet' def __init__( self , lowercase=32_000 , lowercase=768 , lowercase=12 , lowercase=3_072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=512 , lowercase=4 , lowercase=0.02 , lowercase=1e-12 , lowercase=False , lowercase=512 , lowercase=3 , lowercase=1 , lowercase=2 , **lowercase , ) -> int: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
532
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase_ = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
710
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase_ = logging.getLogger(__name__) @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) A : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) A : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) A : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) A : Optional[int] = field( default=1_024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) A : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Source language id for translation.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Target language id for translation.'''} ) A : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: List[str] ,__UpperCamelCase: Dict ): """simple docstring""" logger.info(f"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(f" {key} = {metrics[key]}" ) save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,f"{split}_results.json" ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() check_output_dir(__UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' ,__UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : List[str] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): assert hasattr(__UpperCamelCase ,__UpperCamelCase ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf='.ckpt' in model_args.model_name_or_path ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(__UpperCamelCase ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__UpperCamelCase ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE : Tuple = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE : str = ( dataset_class( __UpperCamelCase ,type_path='train' ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Any = ( dataset_class( __UpperCamelCase ,type_path='val' ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE : List[str] = ( dataset_class( __UpperCamelCase ,type_path='test' ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE : Dict = ( build_compute_metrics_fn(data_args.task ,__UpperCamelCase ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE : List[Any] = SeqaSeqTrainer( model=__UpperCamelCase ,args=__UpperCamelCase ,data_args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,data_collator=SeqaSeqDataCollator( __UpperCamelCase ,__UpperCamelCase ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,) SCREAMING_SNAKE_CASE : List[str] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE : Optional[Any] = train_result.metrics SCREAMING_SNAKE_CASE : Tuple = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate(metric_key_prefix='val' ) SCREAMING_SNAKE_CASE : int = data_args.n_val SCREAMING_SNAKE_CASE : List[Any] = round(metrics['val_loss'] ,4 ) if trainer.is_world_process_zero(): handle_metrics('val' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) SCREAMING_SNAKE_CASE : str = trainer.predict(test_dataset=__UpperCamelCase ,metric_key_prefix='test' ) SCREAMING_SNAKE_CASE : Optional[int] = test_output.metrics SCREAMING_SNAKE_CASE : Tuple = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE : Optional[Any] = round(metrics['test_loss'] ,4 ) handle_metrics('test' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = lmap(str.strip ,__UpperCamelCase ) write_txt_file(__UpperCamelCase ,os.path.join(training_args.output_dir ,'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__UpperCamelCase ,os.path.join(training_args.output_dir ,'all_results.json' ) ) return all_metrics def lowercase__( __UpperCamelCase: Any ): """simple docstring""" main() if __name__ == "__main__": main()
508
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): def __init__( self : List[str] ,*A : Union[str, Any] ,**A : Tuple ): '''simple docstring''' warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" ,A ,) super().__init__(*A ,**A )
65
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCAmelCase__ : List[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase ) # Let's go UpperCAmelCase__ : int = parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run UpperCAmelCase__ : Union[str, Any] = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
65
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
153
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] =failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =[0] SCREAMING_SNAKE_CASE_ : List[str] =0 SCREAMING_SNAKE_CASE_ : int =1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: SCREAMING_SNAKE_CASE_ : Optional[int] =failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE = 'abc1abc12' __SCREAMING_SNAKE_CASE = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE = 'ABABX' __SCREAMING_SNAKE_CASE = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE = 'AAAB' __SCREAMING_SNAKE_CASE = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE = 'abcdabcy' __SCREAMING_SNAKE_CASE = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
153
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCamelCase__ ( a_ ): __lowerCamelCase = """naver-clova-ix/donut-base-finetuned-docvqa""" __lowerCamelCase = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __lowerCamelCase = """document_qa""" __lowerCamelCase = AutoProcessor __lowerCamelCase = VisionEncoderDecoderModel __lowerCamelCase = ["""image""", """text"""] __lowerCamelCase = ["""text"""] def __init__( self : Any , *__a : str , **__a : Dict ): '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def lowerCamelCase_ ( self : List[str] , __a : "Image" , __a : str ): '''simple docstring''' lowerCamelCase__: str = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCamelCase__: Optional[int] = task_prompt.replace("""{user_input}""" , __lowerCamelCase ) lowerCamelCase__: int = self.pre_processor.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="""pt""" ).input_ids lowerCamelCase__: List[str] = self.pre_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase_ ( self : Dict , __a : Any ): '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences def lowerCamelCase_ ( self : Tuple , __a : Dict ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.pre_processor.batch_decode(__lowerCamelCase )[0] lowerCamelCase__: Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowerCamelCase__: Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowerCamelCase__: Dict = re.sub(R"""<.*?>""" , """""" , __lowerCamelCase , count=1 ).strip() # remove first task start token lowerCamelCase__: Union[str, Any] = self.pre_processor.tokenajson(__lowerCamelCase ) return sequence["answer"]
306
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int]=7 ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : Any=18 ,__lowerCamelCase : List[Any]=30 ,__lowerCamelCase : Optional[Any]=4_00 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : int=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {'''height''': 18, '''width''': 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
387
0
def _UpperCamelCase (a__ :list[int] , a__ :int ): """simple docstring""" UpperCamelCase__ = len(a__ ) UpperCamelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCamelCase__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCamelCase__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCamelCase__ = subset[i - 1][j] if arr[i - 1] <= j: UpperCamelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
702
from math import ceil, sqrt def _UpperCamelCase (a__ :int = 100_0000 ): """simple docstring""" UpperCamelCase__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCamelCase__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCamelCase__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
548
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = WavaVecaPhonemeCTCTokenizer _lowerCAmelCase : str = False def A( self): super().setUp() __UpperCAmelCase : Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''') __UpperCAmelCase : Union[str, Any] = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : List[Any] = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowercase__) + '''\n''') def A( self , lowercase__ , lowercase__=False , lowercase__=2_0 , lowercase__=5): __UpperCAmelCase : str = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase__)) for i in range(len(lowercase__))] __UpperCAmelCase : int = list(filter(lambda lowercase__: [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase__) , lowercase__)) if max_length is not None and len(lowercase__) > max_length: __UpperCAmelCase : Tuple = toks[:max_length] if min_length is not None and len(lowercase__) < min_length and len(lowercase__) > 0: while len(lowercase__) < min_length: __UpperCAmelCase : List[Any] = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase : List[str] = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase : Optional[int] = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) if " " not in output_txt and len(lowercase__) > 1: __UpperCAmelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase__) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase__) ) if with_prefix_space: __UpperCAmelCase : Optional[Any] = ''' ''' + output_txt __UpperCAmelCase : str = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) return output_txt, output_ids def A( self , **lowercase__): kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase__) def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') # check adding a single token tokenizer.add_tokens('''xxx''') __UpperCAmelCase : int = tokenizer('''m xxx ɪ''' , do_phonemize=lowercase__).input_ids self.assertEqual(lowercase__ , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc''']) __UpperCAmelCase : Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=lowercase__).input_ids self.assertEqual(lowercase__ , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa __UpperCAmelCase : str = tokenizer('''maɪ c''' , do_phonemize=lowercase__).input_ids self.assertEqual(lowercase__ , [3, 2_0_0]) # mai should be <unk> (=3) def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') __UpperCAmelCase : List[str] = '''Hello how are you''' __UpperCAmelCase : Union[str, Any] = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') self.assertEqual(lowercase__ , '''h ə l oʊ h aʊ ɑːɹ j uː''') def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') __UpperCAmelCase : List[str] = '''Hello how are you''' __UpperCAmelCase : Optional[Any] = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') self.assertEqual(tokenizer(lowercase__).input_ids , tokenizer(lowercase__ , do_phonemize=lowercase__).input_ids) def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') __UpperCAmelCase : Any = '''Hello how are you''' __UpperCAmelCase : Any = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') __UpperCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer(lowercase__).input_ids) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') __UpperCAmelCase : Dict = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] __UpperCAmelCase : int = tokenizer.decode(sample_ids[0]) __UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(lowercase__) self.assertEqual(lowercase__ , batch_tokens[0]) self.assertEqual(lowercase__ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ''']) def A( self): __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') __UpperCAmelCase : Optional[Any] = '''Hello how are you''' __UpperCAmelCase : Union[str, Any] = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') self.assertEqual(lowercase__ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''') def A( self): __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') __UpperCAmelCase : Dict = '''Hello how are you''' __UpperCAmelCase : Dict = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') self.assertEqual(tokenizer(lowercase__).input_ids , tokenizer(lowercase__ , do_phonemize=lowercase__).input_ids) def A( self): __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') # fmt: off __UpperCAmelCase : Dict = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter __UpperCAmelCase : List[str] = tokenizer.decode(sample_ids[0]) __UpperCAmelCase : str = tokenizer.batch_decode(lowercase__) self.assertEqual(lowercase__ , batch_tokens[0]) self.assertEqual(lowercase__ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ''']) # decode with no word_del_token filter __UpperCAmelCase : Optional[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase__) __UpperCAmelCase : List[str] = tokenizer.batch_decode(lowercase__ , filter_word_delimiter_token=lowercase__) self.assertEqual(lowercase__ , batch_tokens[0]) self.assertEqual(lowercase__ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ''']) def A( self): __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') __UpperCAmelCase : Any = '''Hello how are you''' __UpperCAmelCase : List[str] = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') __UpperCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer(lowercase__).input_ids , filter_word_delimiter_token=lowercase__) self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') __UpperCAmelCase : Optional[int] = '''Hello how are you''' __UpperCAmelCase : Optional[Any] = tokenizer.phonemize(lowercase__ , phonemizer_lang='''en-us''') __UpperCAmelCase : Optional[int] = tokenizer.decode(tokenizer(lowercase__).input_ids , filter_word_delimiter_token=lowercase__) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''')]).strip() , lowercase__) def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=lowercase__) __UpperCAmelCase : Optional[Any] = '''Hello how are you''' __UpperCAmelCase : Optional[int] = tokenizer(lowercase__ , phonemizer_lang='''en-us''').input_ids __UpperCAmelCase : Tuple = tokenizer(lowercase__ , phonemizer_lang='''fr-fr''').input_ids self.assertNotEqual(lowercase__ , lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowercase__) __UpperCAmelCase : Any = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , '''h ə l oʊ h aʊ ɑːɹ j uː''') self.assertEqual(lowercase__ , '''ɛ l o h aʊ a ʁ j u''') def A( self): __UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') __UpperCAmelCase : Tuple = '''Hello how Are you''' __UpperCAmelCase : Any = '''hello how are you''' __UpperCAmelCase : Optional[int] = tokenizer(lowercase__).input_ids __UpperCAmelCase : str = tokenizer(lowercase__).input_ids self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') tokenizer.add_tokens(['''!''', '''?''']) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''}) # fmt: off __UpperCAmelCase : Optional[Any] = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on __UpperCAmelCase : Any = tokenizer.batch_decode(lowercase__) self.assertEqual(lowercase__ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$''']) @staticmethod def A( lowercase__ , lowercase__): __UpperCAmelCase : Tuple = [d[key] for d in offsets] return retrieved_list def A( self): __UpperCAmelCase : Any = self.get_tokenizer(word_delimiter_token='''|''') tokenizer.add_tokens('''|''') # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __UpperCAmelCase : Dict = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on __UpperCAmelCase : Tuple = tokenizer.decode(lowercase__ , output_char_offsets=lowercase__ , filter_word_delimiter_token=lowercase__) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue('''text''' in outputs) self.assertTrue('''char_offsets''' in outputs) self.assertTrue(isinstance(lowercase__ , lowercase__)) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''')) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''') , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ''']) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''') , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''') , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def A( self): __UpperCAmelCase : Dict = self.get_tokenizer(word_delimiter_token='''|''') def check_list_tuples_equal(lowercase__ , lowercase__): self.assertTrue(isinstance(lowercase__ , lowercase__)) self.assertTrue(isinstance(outputs_list[0] , lowercase__)) # transform list to ModelOutput __UpperCAmelCase : str = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text''']) def recursive_check(lowercase__ , lowercase__): if isinstance(lowercase__ , lowercase__): [recursive_check(lowercase__ , lowercase__) for la, la in zip(lowercase__ , lowercase__)] self.assertEqual(lowercase__ , lowercase__) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets''']) # fmt: off __UpperCAmelCase : int = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __UpperCAmelCase : List[Any] = tokenizer.batch_decode(lowercase__ , output_char_offsets=lowercase__) __UpperCAmelCase : str = [tokenizer.decode(lowercase__ , output_char_offsets=lowercase__) for ids in sample_ids] check_list_tuples_equal(lowercase__ , lowercase__) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''') def A( self): pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''') def A( self): pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''') def A( self): pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''') def A( self): pass def A( self): __UpperCAmelCase : Dict = self.get_tokenizers(do_lower_case=lowercase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __UpperCAmelCase : List[str] = tokenizer.vocab_size __UpperCAmelCase : List[Any] = len(lowercase__) self.assertNotEqual(lowercase__ , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __UpperCAmelCase : List[str] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __UpperCAmelCase : int = tokenizer.add_tokens(lowercase__) __UpperCAmelCase : Tuple = tokenizer.vocab_size __UpperCAmelCase : str = len(lowercase__) self.assertNotEqual(lowercase__ , 0) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , len(lowercase__)) self.assertEqual(lowercase__ , all_size + len(lowercase__)) __UpperCAmelCase : List[Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=lowercase__) self.assertGreaterEqual(len(lowercase__) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) __UpperCAmelCase : List[str] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __UpperCAmelCase : str = tokenizer.add_special_tokens(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.vocab_size __UpperCAmelCase : Tuple = len(lowercase__) self.assertNotEqual(lowercase__ , 0) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , len(lowercase__)) self.assertEqual(lowercase__ , all_size_a + len(lowercase__)) __UpperCAmelCase : int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=lowercase__) self.assertGreaterEqual(len(lowercase__) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''') def A( self): pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''') def A( self): pass def A( self): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __UpperCAmelCase : List[Any] = self.get_tokenizers(fast=lowercase__ , do_lower_case=lowercase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __UpperCAmelCase : int = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_string(lowercase__) self.assertIsInstance(output['''text'''] , lowercase__)
462
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ lowerCAmelCase = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ lowerCAmelCase = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_="dummy_doc" ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = {doc: key_lines} __UpperCAmelCase : Tuple = {doc: sys_lines} __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Any = 0 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.get_doc_mentions(lowercase_ , key_doc_lines[doc] , lowercase_ ) key_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : List[Any] = reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = reader.get_doc_mentions(lowercase_ , sys_doc_lines[doc] , lowercase_ ) sys_singletons_num += singletons_num if NP_only or min_span: __UpperCAmelCase : Union[str, Any] = reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) if remove_nested: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __UpperCAmelCase , __UpperCAmelCase : str = reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __UpperCAmelCase : List[Any] = reader.get_mention_assignments(lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[Any] = reader.get_mention_assignments(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = get_coref_infos(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = 0 for name, metric in metrics: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = evaluator.evaluate_documents(lowercase_ , lowercase_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 100:.2f}" , f" Precision: {precision * 100:.2f}" , f" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: __UpperCAmelCase : Optional[int] = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: __UpperCAmelCase : List[Any] = line.split()[5] if not parse_col == "-": __UpperCAmelCase : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Sequence(datasets.Value('''string''')), }) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def A( self , lowercase__ , lowercase__ , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False): __UpperCAmelCase : List[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __UpperCAmelCase : Optional[Any] = util.check_gold_parse_annotation(lowercase__) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __UpperCAmelCase : Tuple = evaluate( key_lines=lowercase__ , sys_lines=lowercase__ , metrics=lowercase__ , NP_only=lowercase__ , remove_nested=lowercase__ , keep_singletons=lowercase__ , min_span=lowercase__ , ) return score
462
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
281
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A : int = '\nHuman: <<task>>\n\nAssistant: ' __A : List[str] = 'huggingface-tools/default-prompts' __A : Tuple = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase="run" ) ->Optional[int]: """simple docstring""" if prompt_or_repo_id is None: __lowercase : Any = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s", _lowerCamelCase ) is not None: return prompt_or_repo_id __lowercase : Optional[Any] = cached_file( _lowerCamelCase, PROMPT_FILES[mode], repo_type="dataset", user_agent={"agent": agent_name} ) with open(_lowerCamelCase, "r", encoding="utf-8" ) as f: return f.read()
281
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a: List[Any] = logging.get_logger(__name__) __a: List[str] = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "deta" SCREAMING_SNAKE_CASE = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=900 , __lowerCAmelCase=2048 , __lowerCAmelCase=6 , __lowerCAmelCase=2048 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=1024 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=256 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1.0 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="sine" , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=True , __lowerCAmelCase=300 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.2_5 , **__lowerCAmelCase , ) -> List[Any]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__ : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Any = backbone_config.pop('''model_type''' ) lowercase__ : Tuple = CONFIG_MAPPING[backbone_model_type] lowercase__ : int = config_class.from_dict(__lowerCAmelCase ) lowercase__ : Optional[Any] = backbone_config lowercase__ : List[str] = num_queries lowercase__ : List[str] = max_position_embeddings lowercase__ : Tuple = d_model lowercase__ : Union[str, Any] = encoder_ffn_dim lowercase__ : str = encoder_layers lowercase__ : Any = encoder_attention_heads lowercase__ : int = decoder_ffn_dim lowercase__ : Any = decoder_layers lowercase__ : Optional[Any] = decoder_attention_heads lowercase__ : Any = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : List[str] = activation_dropout lowercase__ : int = activation_function lowercase__ : List[str] = init_std lowercase__ : Union[str, Any] = init_xavier_std lowercase__ : List[str] = encoder_layerdrop lowercase__ : Any = auxiliary_loss lowercase__ : Any = position_embedding_type # deformable attributes lowercase__ : Optional[Any] = num_feature_levels lowercase__ : List[Any] = encoder_n_points lowercase__ : Any = decoder_n_points lowercase__ : List[Any] = two_stage lowercase__ : Optional[Any] = two_stage_num_proposals lowercase__ : str = with_box_refine lowercase__ : Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase__ : int = class_cost lowercase__ : Dict = bbox_cost lowercase__ : str = giou_cost # Loss coefficients lowercase__ : Any = mask_loss_coefficient lowercase__ : Optional[int] = dice_loss_coefficient lowercase__ : Optional[int] = bbox_loss_coefficient lowercase__ : List[str] = giou_loss_coefficient lowercase__ : List[Any] = eos_coefficient lowercase__ : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCAmelCase( self ) -> int: return self.encoder_attention_heads @property def _lowerCAmelCase( self ) -> int: return self.d_model def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : str = copy.deepcopy(self.__dict__ ) lowercase__ : List[Any] = self.backbone_config.to_dict() lowercase__ : int = self.__class__.model_type return output
152
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 0 lowercase__ : int = len(UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCamelCase ( UpperCAmelCase ): if len(UpperCAmelCase ) <= 1: return arr, 0 lowercase__ : List[str] = len(UpperCAmelCase ) // 2 lowercase__ : Optional[Any] = arr[0:mid] lowercase__ : Any = arr[mid:] lowercase__ , lowercase__ : Any = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : List[str] = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : Optional[Any] = _count_cross_inversions(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = 0 while i < len(UpperCAmelCase ) and j < len(UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCamelCase ( ): lowercase__ : str = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ : Dict = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : Union[str, Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ : Optional[int] = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : int = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) # an empty list should also have zero inversions lowercase__ : Optional[Any] = [] lowercase__ : Any = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) if __name__ == "__main__": main()
152
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = False if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __UpperCAmelCase : Tuple = parser.parse_args() __UpperCAmelCase : Optional[int] = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __UpperCAmelCase : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __UpperCAmelCase : int = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __UpperCAmelCase : Tuple = reader.read() __UpperCAmelCase : str = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __UpperCAmelCase : Optional[Any] = UNetaDModel(**config) else: __UpperCAmelCase : Tuple = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __UpperCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __UpperCAmelCase : List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __UpperCAmelCase : Tuple = config[key] del config[key] __UpperCAmelCase : Tuple = [k.replace("UNetRes", "") for k in config["down_block_types"]] __UpperCAmelCase : List[Any] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __UpperCAmelCase : int = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __UpperCAmelCase : int = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __UpperCAmelCase : List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __UpperCAmelCase : Any = param_value __UpperCAmelCase : Optional[Any] = True if not has_changed: __UpperCAmelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
714
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Tuple: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case: List[str] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj) assert isinstance(_test_patching.os.path , _PatchedModuleObj) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Tuple: assert _test_patching.open is open __snake_case: Tuple = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> Dict: # pandas.read_csv is not present in _test_patching __snake_case: Tuple = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__): pass def A__ ( ) -> int: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case: Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> List[Any]: __snake_case: Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" __snake_case: Union[str, Any] = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> List[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case: int = """__test_patch_submodule_successive_join__""" __snake_case: Union[str, Any] = """__test_patch_submodule_successive_dirname__""" __snake_case: Tuple = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> Optional[Any]: __snake_case: Tuple = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass
155
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase (_lowercase , _lowercase , _lowercase = 10**-10 ): """simple docstring""" a__ = a while True: a__ = Decimal(_lowercase ) - ( Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowercase ) ) < precision: # noqa: S307 return float(_lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
331
'''simple docstring''' def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _lowerCAmelCase (_lowercase , _lowercase=0 ): """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): a__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: a__ = current_dis return min_dis def _lowerCAmelCase (_lowercase , _lowercase , _lowercase=float("inf" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): a__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: a__ = current_dis return min_dis def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion a__ = points_counts // 2 a__ = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) a__ = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) a__ = min(_lowercase , _lowercase ) a__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) a__ = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = column_based_sort(_lowercase , column=0 ) a__ = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": UpperCamelCase_ : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
331
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=32 , snake_case_=3 , snake_case_=4 , snake_case_=[10, 20, 30, 40] , snake_case_=[2, 2, 3, 2] , snake_case_=True , snake_case_=True , snake_case_=37 , snake_case_="gelu" , snake_case_=10 , snake_case_=0.02 , snake_case_=["stage2", "stage3", "stage4"] , snake_case_=[2, 3, 4] , snake_case_=None , ): _snake_case : Dict = parent _snake_case : Tuple = batch_size _snake_case : Optional[int] = image_size _snake_case : Dict = num_channels _snake_case : List[Any] = num_stages _snake_case : str = hidden_sizes _snake_case : Union[str, Any] = depths _snake_case : int = is_training _snake_case : Optional[Any] = use_labels _snake_case : Tuple = intermediate_size _snake_case : Tuple = hidden_act _snake_case : Tuple = num_labels _snake_case : Optional[Any] = initializer_range _snake_case : int = out_features _snake_case : Union[str, Any] = out_indices _snake_case : Union[str, Any] = scope def lowerCamelCase__ ( self ): _snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Union[str, Any] = ConvNextVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : Optional[Any] = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[int] = ConvNextVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : str = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Tuple = ConvNextVaBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : Optional[Any] = model(snake_case_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Any = None _snake_case : str = ConvNextVaBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() _snake_case : str = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self ): _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : str = config_and_inputs _snake_case : Dict = {"pixel_values": pixel_values} return config, inputs_dict def lowerCamelCase__ ( self ): _snake_case : List[str] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Optional[int] = config_and_inputs _snake_case : Union[str, Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( _snake_case , _snake_case , unittest.TestCase): __lowercase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowercase : str = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Union[str, Any] = False __lowercase : Optional[int] = False def lowerCamelCase__ ( self ): _snake_case : Any = ConvNextVaModelTester(self ) _snake_case : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCamelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : Tuple = True if model_class.__name__ in [ *get_values(snake_case_ ), *get_values(snake_case_ ), ]: continue _snake_case : str = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _snake_case : List[Any] = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) _snake_case : List[str] = model(**snake_case_ ).loss loss.backward() def lowerCamelCase__ ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case : List[str] = False _snake_case : Optional[int] = True if ( model_class.__name__ in [*get_values(snake_case_ ), *get_values(snake_case_ )] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Optional[int] = model_class(snake_case_ ) model.to(snake_case_ ) model.gradient_checkpointing_enable() model.train() _snake_case : Optional[int] = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) _snake_case : List[Any] = model(**snake_case_ ).loss loss.backward() def lowerCamelCase__ ( self ): _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(snake_case_ ) _snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase__ ( self ): def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _snake_case : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _snake_case : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase__ ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Dict = ConvNextVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def a__ ( ): """simple docstring""" _snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase): @cached_property def lowerCamelCase__ ( self ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ): _snake_case : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(snake_case_ ) _snake_case : Any = self.default_image_processor _snake_case : List[str] = prepare_img() _snake_case : Tuple = preprocessor(images=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**snake_case_ ) # verify the logits _snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _snake_case : Any = torch.tensor([0.9996, 0.1966, -0.4386] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
87
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Optional[int] = dataset _snake_case : str = process _snake_case : int = params def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): _snake_case : Union[str, Any] = self.dataset[i] _snake_case : Optional[Any] = self.process(snake_case_ , **self.params ) return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): _snake_case : Union[str, Any] = loader _snake_case : Tuple = infer _snake_case : List[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _snake_case : int = None _snake_case : int = loader_batch_size # Internal bookkeeping _snake_case : Any = None _snake_case : Dict = None def __len__( self ): return len(self.loader ) def __iter__( self ): _snake_case : int = iter(self.loader ) return self def lowerCamelCase__ ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case_ , snake_case_ ): # Convert ModelOutput to tuple first _snake_case : Tuple = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _snake_case : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _snake_case : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _snake_case : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _snake_case : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _snake_case : List[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _snake_case : int = self._loader_batch_data.__class__(snake_case_ ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _snake_case : Tuple = next(self.iterator ) _snake_case : Any = self.infer(snake_case_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Optional[int] = list(processed.keys() )[0] _snake_case : List[str] = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Dict = len(snake_case_ ) else: _snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch _snake_case : str = processed _snake_case : List[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): super().__init__(snake_case_ , snake_case_ , snake_case_ ) def __iter__( self ): _snake_case : Tuple = iter(self.loader ) _snake_case : List[Any] = None return self def lowerCamelCase__ ( self ): if self.subiterator is None: _snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _snake_case : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _snake_case : str = self.infer(next(self.iterator ) , **self.params ) _snake_case : Tuple = next(self.subiterator ) return processed class _UpperCAmelCase ( _snake_case): def __iter__( self ): _snake_case : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _snake_case : Optional[Any] = False _snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : str = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator while not is_last: _snake_case : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case_ , torch.Tensor ): _snake_case : Union[str, Any] = processed else: _snake_case : Tuple = list(processed.keys() )[0] _snake_case : Tuple = processed[key] if isinstance(snake_case_ , snake_case_ ): _snake_case : Any = len(snake_case_ ) else: _snake_case : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _snake_case : Dict = observed_batch_size _snake_case : List[Any] = processed _snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: _snake_case : Union[str, Any] = self.loader_batch_item() _snake_case : int = item.pop("is_last" ) accumulator.append(snake_case_ ) if is_last: return accumulator else: _snake_case : Dict = processed _snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case_ ) return accumulator class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ ): _snake_case : str = dataset _snake_case : Any = key def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return self.dataset[i][self.key] class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : int = dataset _snake_case : Any = keya _snake_case : int = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , snake_case_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
87
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : List[Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
679
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_a : Union[str, Any] , **_a : Optional[Any] ) -> int: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : str , *_a : Optional[int] , **_a : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Optional[Any] , *_a : Dict , **_a : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_a : Optional[int] , **_a : str ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Union[str, Any] , *_a : List[str] , **_a : int ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Optional[int] , *_a : List[str] , **_a : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : str , *_a : int , **_a : List[str] ) -> Any: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Any , *_a : Optional[int] , **_a : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : List[str] , *_a : Dict , **_a : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *_a : Optional[Any] , **_a : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : List[Any] , *_a : Any , **_a : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : str , *_a : Dict , **_a : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_a : Union[str, Any] , **_a : int ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : List[Any] , *_a : Union[str, Any] , **_a : Tuple ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Union[str, Any] , *_a : Dict , **_a : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=A__ ): A__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_a : Union[str, Any] , **_a : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : Optional[Any] , *_a : Optional[Any] , **_a : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def A ( cls : List[Any] , *_a : Optional[int] , **_a : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
405
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase = 16 __lowerCamelCase = 32 def lowercase ( __UpperCamelCase , __UpperCamelCase = 16 ) -> Union[str, Any]: __magic_name__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ = 16 elif accelerator.mixed_precision != "no": __magic_name__ = 8 else: __magic_name__ = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase = mocked_dataloaders # noqa: F811 def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": __magic_name__ = 2 # Initialize accelerator __magic_name__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__UpperCamelCase ) def inner_training_loop(__UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ = AdamW(params=model.parameters() , lr=__UpperCamelCase ) __magic_name__ , __magic_name__ = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate scheduler __magic_name__ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ = model(**__UpperCamelCase ) __magic_name__ = outputs.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase ) __magic_name__ = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase ( ) -> Union[str, Any]: __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
190
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = ReformerTokenizer _lowerCamelCase = ReformerTokenizerFast _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = ReformerTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ): __magic_name__ = '''<s>''' __magic_name__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCamelCase_ ) , 1000 ) def lowerCAmelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self ): if not self.test_rust_tokenizer: return __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = '''I was born in 92000, and this is falsé.''' __magic_name__ = tokenizer.tokenize(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = self.get_rust_tokenizer() __magic_name__ = tokenizer.encode(UpperCamelCase_ ) __magic_name__ = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # Simple input __magic_name__ = '''This is a simple input''' __magic_name__ = ['''This is a simple input 1''', '''This is a simple input 2'''] __magic_name__ = ('''This is a simple input''', '''This is a pair''') __magic_name__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='''max_length''' , ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): __magic_name__ = ReformerTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __magic_name__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [285, 46, 10, 170, 382] , ) __magic_name__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCAmelCase__ ( self ): return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def lowerCAmelCase__ ( self ): __magic_name__ = '''Hello World!''' __magic_name__ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): __magic_name__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __magic_name__ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @require_torch @slow def lowerCAmelCase__ ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence __magic_name__ = list(self.big_tokenizer.get_vocab().keys() )[:10] __magic_name__ = ''' '''.join(UpperCamelCase_ ) __magic_name__ = self.big_tokenizer.encode_plus(UpperCamelCase_ , return_tensors='''pt''' ) __magic_name__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) __magic_name__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __magic_name__ = encoded_sequence['''input_ids'''].shape __magic_name__ = ReformerModel(UpperCamelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase_ ) model(**UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self ): # fmt: off __magic_name__ = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __magic_name__ = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=UpperCamelCase_ , sequences=UpperCamelCase_ , )
190
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> int: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=__a , speech_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , ) def UpperCamelCase__ (self , __a = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(__a ) @torch.no_grad() def __call__(self , __a , __a=16000 , __a = 512 , __a = 512 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.speech_processor.feature_extractor( __a , return_tensors='pt' , sampling_rate=__a ).input_features.to(self.device ) UpperCAmelCase__ = self.speech_model.generate(__a , max_length=480000 ) UpperCAmelCase__ = self.speech_processor.tokenizer.batch_decode(__a , skip_special_tokens=__a , normalize=__a )[ 0 ] if isinstance(__a , __a ): UpperCAmelCase__ = 1 elif isinstance(__a , __a ): UpperCAmelCase__ = len(__a ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__a )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__a )}." ) # get prompt text embeddings UpperCAmelCase__ = self.tokenizer( __a , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_embeddings.shape UpperCAmelCase__ = text_embeddings.repeat(1 , __a , 1 ) UpperCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , __a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ = 42 if negative_prompt is None: UpperCAmelCase__ = [''] * batch_size elif type(__a ) is not type(__a ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=" F" {type(__a )}." ) elif isinstance(__a , __a ): UpperCAmelCase__ = [negative_prompt] elif batch_size != len(__a ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: UpperCAmelCase__ = negative_prompt UpperCAmelCase__ = text_input_ids.shape[-1] UpperCAmelCase__ = self.tokenizer( __a , padding='max_length' , max_length=__a , truncation=__a , return_tensors='pt' , ) UpperCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ = uncond_embeddings.shape[1] UpperCAmelCase__ = uncond_embeddings.repeat(1 , __a , 1 ) UpperCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase__ = torch.randn(__a , generator=__a , device='cpu' , dtype=__a ).to( self.device ) else: UpperCAmelCase__ = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ = {} if accepts_eta: UpperCAmelCase__ = eta for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCAmelCase__ = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ = noise_pred.chunk(2 ) UpperCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) UpperCAmelCase__ = 1 / 0.1_82_15 * latents UpperCAmelCase__ = self.vae.decode(__a ).sample UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(__a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
146
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.dummy_uncond_unet UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' ).images UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' , return_dict=__a )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'google/ncsnpp-celebahq-256' UpperCAmelCase__ = UNetaDModel.from_pretrained(__a ) UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=20 , generator=__a , output_type='numpy' ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
146
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase_ : Optional[Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' UpperCAmelCase_ : List[Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' UpperCAmelCase_ : int = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(self._get_feature_types() ),reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ],) def lowerCamelCase_ ( self : Dict ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCamelCase_ ( self : Optional[Any],__A : Tuple,__A : Any,__A : Optional[int]=None,__A : List[str]="uniform_average",__A : List[Any]=True ): _lowerCamelCase : int = mean_squared_error( __A,__A,sample_weight=__A,multioutput=__A,squared=__A ) return {"mse": mse}
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A : List[str] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : List[str] , A : Path , A : Union[str, None] = None , A : Union[List[str], None] = None , A : Union[str, List[str], None] = None , A : bool = True , ) ->str: lowerCamelCase__ : Tuple = [file for file in os.listdir(__lowerCAmelCase ) if os.path.isfile(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )] if identifier is not None: lowerCamelCase__ : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for n_ in n_identifier: lowerCamelCase__ : Optional[Any] = [file for file in files if n_ not in file] else: lowerCamelCase__ : Any = [file for file in files if n_identifier not in file] lowerCamelCase__ : Optional[int] = ignore_files or [] ignore_files.append('''__init__.py''' ) lowerCamelCase__ : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __lowerCAmelCase ) if only_modules: lowerCamelCase__ : Optional[int] = file.split('''.''' )[0] try: lowerCamelCase__ : Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ : int = doctest.DocTestSuite(__lowerCAmelCase ) lowerCamelCase__ : Tuple = unittest.TextTestRunner().run(__lowerCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: lowerCamelCase__ : Union[str, Any] = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : Tuple = Path('''src/transformers''' ) lowerCamelCase__ : Dict = '''modeling''' lowerCamelCase__ : Dict = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__lowerCAmelCase , identifier=__lowerCAmelCase , ignore_files=__lowerCAmelCase ) def __lowerCamelCase ( self : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ : int = Path('''src/transformers''' ) lowerCamelCase__ : Optional[Any] = '''tokenization''' self.analyze_directory(__lowerCAmelCase , identifier=__lowerCAmelCase ) def __lowerCamelCase ( self : List[str] ) ->Optional[int]: lowerCamelCase__ : Any = Path('''src/transformers''' ) lowerCamelCase__ : Tuple = '''configuration''' self.analyze_directory(__lowerCAmelCase , identifier=__lowerCAmelCase ) def __lowerCamelCase ( self : Optional[int] ) ->Tuple: lowerCamelCase__ : str = Path('''src/transformers''' ) lowerCamelCase__ : Tuple = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__lowerCAmelCase , n_identifier=__lowerCAmelCase ) def __lowerCamelCase ( self : Any ) ->int: lowerCamelCase__ : List[str] = Path('''docs/source''' ) lowerCamelCase__ : Tuple = ['''favicon.ico'''] self.analyze_directory(__lowerCAmelCase , ignore_files=__lowerCAmelCase , only_modules=__lowerCAmelCase )
315
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') A : List[str] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : '''simple docstring''' __lowerCamelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) __lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the training data.'''} ) __lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the validation data.'''} ) __lowerCamelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) __lowerCamelCase : int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) __lowerCamelCase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) __lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def a_ ( self : Union[str, Any] ) -> Any: """simple docstring""" A__ = {} if self.train_dir is not None: A__ = self.train_dir if self.validation_dir is not None: A__ = self.validation_dir A__ = data_files if data_files else None @dataclass class A : '''simple docstring''' __lowerCamelCase : str = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE )} , ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) __lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) __lowerCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowerCamelCase : str = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) __lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) __lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class A : '''simple docstring''' def __init__( self : str , __lowerCAmelCase : Optional[Any]=1_92 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Union[str, Any]=0.6 ) -> Union[str, Any]: """simple docstring""" A__ = input_size A__ = mask_patch_size A__ = model_patch_size A__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) A__ = self.input_size // self.mask_patch_size A__ = self.mask_patch_size // self.model_patch_size A__ = self.rand_size**2 A__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ) -> Optional[Any]: """simple docstring""" A__ = np.random.permutation(self.token_count )[: self.mask_count] A__ = np.zeros(self.token_count , dtype=__lowerCAmelCase ) A__ = 1 A__ = mask.reshape((self.rand_size, self.rand_size) ) A__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __lowerCamelCase ( __a :Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = torch.stack([example["""pixel_values"""] for example in examples] ) A__ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , __a , __a ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. A__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __a ) and data_args.train_val_split > 0.0: A__ = ds["""train"""].train_test_split(data_args.train_val_split ) A__ = split["""train"""] A__ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: A__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__a ) elif model_args.model_name_or_path: A__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__a ) else: A__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__a , """decoder_type""" ): A__ = """simmim""" # adapt config A__ = model_args.image_size if model_args.image_size is not None else config.image_size A__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size A__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: A__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__a ) elif model_args.model_name_or_path: A__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__a ) else: A__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } A__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: A__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) A__ = AutoModelForMaskedImageModeling.from_config(__a ) if training_args.do_train: A__ = ds["""train"""].column_names else: A__ = ds["""validation"""].column_names if data_args.image_column_name is not None: A__ = data_args.image_column_name elif "image" in column_names: A__ = """image""" elif "img" in column_names: A__ = """img""" else: A__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py A__ = Compose( [ Lambda(lambda __a : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator A__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__a :Any ): A__ = [transforms(__a ) for image in examples[image_column_name]] A__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: A__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__a ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: A__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__a ) # Initialize our trainer A__ = Trainer( model=__a , args=__a , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=__a ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ = trainer.evaluate() trainer.log_metrics("""eval""" , __a ) trainer.save_metrics("""eval""" , __a ) # Write model card and (optionally) push to hub A__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) if __name__ == "__main__": main()
176
0
'''simple docstring''' import requests def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = {'''Content-Type''': '''application/json'''} lowerCamelCase_ : Optional[int] = requests.post(__UpperCAmelCase , json={'''text''': message_body} , headers=__UpperCAmelCase ) if response.status_code != 200: lowerCamelCase_ : int = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
705
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case (__UpperCAmelCase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = [state.process_index] lowerCamelCase_ : str = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, F"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase_ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase_ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase_ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Dict = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = reduce(__UpperCAmelCase , '''sum''' ) lowerCamelCase_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Any = reduce(__UpperCAmelCase , '''mean''' ) lowerCamelCase_ : Any = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For xla_spawn (TPUs) main() def __snake_case (): """simple docstring""" lowerCamelCase_ : int = PartialState() state.print(F"""State: {state}""" ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
418
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return 1 / (1 + np.exp(-z )) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return (-y * np.log(lowerCAmelCase_ ) - (1 - y) * np.log(1 - h )).mean() def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase_ ) ) ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=7_0000 ): """simple docstring""" lowercase = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase_ ): lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = sigmoid_function(lowerCAmelCase_ ) lowercase = np.dot(x.T , h - y ) / y.size lowercase = theta - alpha * gradient # updating the weights lowercase = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = sigmoid_function(lowerCAmelCase_ ) lowercase = cost_function(lowerCAmelCase_ , lowerCAmelCase_ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase : int = datasets.load_iris() __lowerCamelCase : Any = iris.data[:, :2] __lowerCamelCase : List[Any] = (iris.target != 0) * 1 __lowerCamelCase : Tuple = 0.1 __lowerCamelCase : Dict = logistic_reg(alpha, x, y, max_iterations=7_0000) print("theta: ", theta) # printing the theta i.e our weights vector def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return sigmoid_function( np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__lowerCamelCase) , (__lowerCamelCase)) : int = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : int = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase) , (__lowerCamelCase)) : Optional[int] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
310
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCamelCase : Dict = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" inspect_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = path + ".py" assert script_name in os.listdir(lowerCAmelCase_ ) assert "__pycache__" not in os.listdir(lowerCAmelCase_ ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" inspect_metric(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = path + ".py" assert script_name in os.listdir(lowerCAmelCase_ ) assert "__pycache__" not in os.listdir(lowerCAmelCase_ ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_config_info(lowerCAmelCase_ , config_name=lowerCAmelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): get_dataset_config_info(lowerCAmelCase_ , config_name=lowerCAmelCase_ ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_config_names(lowerCAmelCase_ ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_infos(lowerCAmelCase_ ) assert list(infos.keys() ) == expected_configs lowercase = expected_configs[0] assert expected_config in infos lowercase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_infos(lowerCAmelCase_ ) assert expected_config in infos lowercase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): get_dataset_split_names(lowerCAmelCase_ , config_name=lowerCAmelCase_ )
310
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase ( UpperCAmelCase__ : List[Any]): lowerCamelCase , lowerCamelCase : List[str] = image.size lowerCamelCase , lowerCamelCase : Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCamelCase : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos']) lowerCamelCase : List[Any] = np.array(UpperCAmelCase__).astype(np.floataa) / 2_5_5.0 lowerCamelCase : int = image[None].transpose(0 , 3 , 1 , 2) lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase__) return 2.0 * image - 1.0 class __snake_case ( a__): def __init__( self, A, A, A, ): """simple docstring""" super().__init__() self.register_modules(vqvae=A, unet=A, scheduler=A ) @torch.no_grad() def __call__( self, A = None, A = 1, A = 100, A = 0.0, A = None, A = "pil", A = True, ): """simple docstring""" if isinstance(A, PIL.Image.Image ): lowerCamelCase : List[str] = 1 elif isinstance(A, torch.Tensor ): lowerCamelCase : Any = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A )}''' ) if isinstance(A, PIL.Image.Image ): lowerCamelCase : Any = preprocess(A ) lowerCamelCase , lowerCamelCase : List[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCamelCase : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCamelCase : Union[str, Any] = next(self.unet.parameters() ).dtype lowerCamelCase : Dict = randn_tensor(A, generator=A, device=self.device, dtype=A ) lowerCamelCase : Tuple = image.to(device=self.device, dtype=A ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A, device=self.device ) lowerCamelCase : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase : Union[str, Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase : Optional[Any] = {} if accepts_eta: lowerCamelCase : Optional[int] = eta for t in self.progress_bar(A ): # concat latents and low resolution image in the channel dimension. lowerCamelCase : Union[str, Any] = torch.cat([latents, image], dim=1 ) lowerCamelCase : Tuple = self.scheduler.scale_model_input(A, A ) # predict the noise residual lowerCamelCase : str = self.unet(A, A ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : List[str] = self.scheduler.step(A, A, A, **A ).prev_sample # decode the image latents with the VQVAE lowerCamelCase : int = self.vqvae.decode(A ).sample lowerCamelCase : str = torch.clamp(A, -1.0, 1.0 ) lowerCamelCase : Union[str, Any] = image / 2 + 0.5 lowerCamelCase : Dict = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase : Union[str, Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
449
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase__ : int): lowerCamelCase : List[Any] = str(UpperCAmelCase__) return len(UpperCAmelCase__) == 9 and set(UpperCAmelCase__) == set('123456789') def UpperCAmelCase ( ): for base_num in range(99_99 , 49_99 , -1): lowerCamelCase : Tuple = 10_00_02 * base_num if is_9_pandigital(UpperCAmelCase__): return candidate for base_num in range(3_33 , 99 , -1): lowerCamelCase : List[Any] = 1_00_20_03 * base_num if is_9_pandigital(UpperCAmelCase__): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
449
1
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = text, pattern _UpperCAmelCase , _UpperCAmelCase : Tuple = len(A ), len(A ) def __lowerCAmelCase ( self , A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase ( self , A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase ( self ) -> list[int]: # searches pattern in text and returns index positions _UpperCAmelCase : Dict = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCAmelCase : Dict = self.mismatch_in_text(A ) if mismatch_index == -1: positions.append(A ) else: _UpperCAmelCase : List[Any] = self.match_in_pattern(self.text[mismatch_index] ) _UpperCAmelCase : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCAmelCase :Tuple = 'ABAABA' _lowerCAmelCase :Optional[int] = 'AB' _lowerCAmelCase :Optional[int] = BoyerMooreSearch(text, pattern) _lowerCAmelCase :Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
506
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :Any = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''lxmert''' a__ ={} def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=9_5_0_0 , A=1_6_0_0 , A=4_0_0 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=9 , A=5 , A=5 , A=2_0_4_8 , A=4 , A=6.67 , A=True , A=True , A=True , A=True , A=True , A=True , A=True , **A , ) -> List[Any]: _UpperCAmelCase : int = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Optional[int] = num_qa_labels _UpperCAmelCase : Tuple = num_object_labels _UpperCAmelCase : Optional[int] = num_attr_labels _UpperCAmelCase : List[str] = l_layers _UpperCAmelCase : Any = x_layers _UpperCAmelCase : Tuple = r_layers _UpperCAmelCase : Optional[Any] = visual_feat_dim _UpperCAmelCase : Optional[int] = visual_pos_dim _UpperCAmelCase : Optional[Any] = visual_loss_normalizer _UpperCAmelCase : int = task_matched _UpperCAmelCase : Optional[Any] = task_mask_lm _UpperCAmelCase : Union[str, Any] = task_obj_predict _UpperCAmelCase : Optional[int] = task_qa _UpperCAmelCase : Union[str, Any] = visual_obj_loss _UpperCAmelCase : List[str] = visual_attr_loss _UpperCAmelCase : Optional[int] = visual_feat_loss _UpperCAmelCase : Tuple = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**A )
506
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ : Any = logging.get_logger(__name__) a__ : List[Any] = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) a__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( __lowerCamelCase ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCAmelCase = model_type_to_module_name(__lowerCamelCase ) _lowerCAmelCase = importlib.import_module(F'''.{module_name}''', 'transformers.models' ) try: return getattr(__lowerCamelCase, __lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCamelCase, '__name__', __lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCAmelCase = importlib.import_module('transformers' ) if hasattr(__lowerCamelCase, __lowerCamelCase ): return getattr(__lowerCamelCase, __lowerCamelCase ) return None def A__ ( __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = False, __lowerCamelCase = False, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = False, **__lowerCamelCase, ): """simple docstring""" _lowerCAmelCase = get_file_from_repo( __lowerCamelCase, __lowerCamelCase, cache_dir=__lowerCamelCase, force_download=__lowerCamelCase, resume_download=__lowerCamelCase, proxies=__lowerCamelCase, use_auth_token=__lowerCamelCase, revision=__lowerCamelCase, local_files_only=__lowerCamelCase, ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__lowerCamelCase, encoding='utf-8' ) as reader: return json.load(__lowerCamelCase ) class __magic_name__ : def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__magic_name__ ) def _lowerCamelCase ( cls , __magic_name__ , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = kwargs.pop('config' , __magic_name__ ) _lowerCAmelCase = kwargs.pop('trust_remote_code' , __magic_name__ ) _lowerCAmelCase = True _lowerCAmelCase , _lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(__magic_name__ , **__magic_name__ ) _lowerCAmelCase = config_dict.get('image_processor_type' , __magic_name__ ) _lowerCAmelCase = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _lowerCAmelCase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCAmelCase = config_dict.pop('feature_extractor_type' , __magic_name__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _lowerCAmelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowerCAmelCase = config_dict['auto_map']['AutoFeatureExtractor'] _lowerCAmelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ , **__magic_name__ ) # It could be in `config.image_processor_type`` _lowerCAmelCase = getattr(__magic_name__ , 'image_processor_type' , __magic_name__ ) if hasattr(__magic_name__ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _lowerCAmelCase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowerCAmelCase = image_processor_class_from_name(__magic_name__ ) _lowerCAmelCase = image_processor_auto_map is not None _lowerCAmelCase = image_processor_class is not None or type(__magic_name__ ) in IMAGE_PROCESSOR_MAPPING _lowerCAmelCase = resolve_trust_remote_code( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if has_remote_code and trust_remote_code: _lowerCAmelCase = get_class_from_dynamic_module( __magic_name__ , __magic_name__ , **__magic_name__ ) _lowerCAmelCase = kwargs.pop('code_revision' , __magic_name__ ) if os.path.isdir(__magic_name__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__magic_name__ , **__magic_name__ ) elif image_processor_class is not None: return image_processor_class.from_dict(__magic_name__ , **__magic_name__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__magic_name__ ) in IMAGE_PROCESSOR_MAPPING: _lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(__magic_name__ )] return image_processor_class.from_dict(__magic_name__ , **__magic_name__ ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _lowerCamelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(__magic_name__ , __magic_name__ )
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_: List[Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: Tuple = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: int = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A_: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
398
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A_: Tuple = logging.get_logger(__name__) A_: Optional[Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'gpt_neo' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , UpperCAmelCase=50257 , UpperCAmelCase=2048 , UpperCAmelCase=2048 , UpperCAmelCase=24 , UpperCAmelCase=[[["global", "local"], 12]] , UpperCAmelCase=16 , UpperCAmelCase=None , UpperCAmelCase=256 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=50256 , UpperCAmelCase=50256 , **UpperCAmelCase , ): '''simple docstring''' _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = num_layers _lowercase = num_heads _lowercase = intermediate_size _lowercase = window_size _lowercase = activation_function _lowercase = resid_dropout _lowercase = embed_dropout _lowercase = attention_dropout _lowercase = classifier_dropout _lowercase = layer_norm_epsilon _lowercase = initializer_range _lowercase = use_cache _lowercase = bos_token_id _lowercase = eos_token_id _lowercase = attention_types _lowercase = self.expand_attention_types_params(UpperCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCAmelCase ( _A ,_A ,_A ,_A ): """simple docstring""" import torch _lowercase = input.size() _lowercase = len(_A ) _lowercase = shape[dimension] _lowercase = torch.arange(0 ,_A ,_A ) _lowercase = torch.div(sizedim - size ,_A ,rounding_mode="""floor""" ) + 1 _lowercase = torch.arange(_A ) + low_indices[:min_length][:, None] _lowercase = [slice(_A )] * rank _lowercase = indices _lowercase = input[s] _lowercase = list(range(0 ,rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_A ) def __lowerCAmelCase ( _A ,_A ): """simple docstring""" import torch _lowercase = torch.arange(1 ,_A ) _lowercase = torch.remainder(_A ,_A ) _lowercase = remainders == 0 _lowercase = candidates[divisor_indices] _lowercase = torch.max(_A ) return largest_divisor, torch.div(_A ,_A ,rounding_mode="""floor""" ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" @property def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) _lowercase = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowercase = {0: """batch""", 1: """sequence"""} return common_inputs @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._config.num_heads def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): '''simple docstring''' _lowercase = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _lowercase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowercase , _lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowercase = seqlen + 2 _lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] _lowercase = common_inputs["""attention_mask"""] if self.use_past: _lowercase = ordered_inputs["""attention_mask"""].dtype _lowercase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ): '''simple docstring''' return 13
398
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = '''''' _UpperCAmelCase : Tuple = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[DatasetInfo] = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(self ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = repo_info __lowerCamelCase : int = token __lowerCamelCase : Optional[Any] = None def lowerCAmelCase ( self : Any): if self.dir_cache is None: __lowerCamelCase : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __lowerCamelCase : List[Any] = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE__): {'name': str(SCREAMING_SNAKE_CASE__), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str = "rb" ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): if not isinstance(self.repo_info ,SCREAMING_SNAKE_CASE__): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}") __lowerCamelCase : Tuple = hf_hub_url(self.repo_info.id ,SCREAMING_SNAKE_CASE__ ,revision=self.repo_info.sha) return fsspec.open( SCREAMING_SNAKE_CASE__ ,mode=SCREAMING_SNAKE_CASE__ ,headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE__ ,use_auth_token=self.token) ,client_kwargs={'trust_env': True} ,).open() def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : int): self._get_dirs() __lowerCamelCase : List[str] = self._strip_protocol(SCREAMING_SNAKE_CASE__) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any=False ,**SCREAMING_SNAKE_CASE__ : Optional[int]): self._get_dirs() __lowerCamelCase : List[str] = PurePosixPath(path.strip('/')) __lowerCamelCase : Tuple = {} for p, f in self.dir_cache.items(): __lowerCamelCase : int = PurePosixPath(p.strip('/')) __lowerCamelCase : int = p.parent if root == path: __lowerCamelCase : Union[str, Any] = f __lowerCamelCase : int = list(paths.values()) if detail: return out else: return sorted(f['name'] for f in out)
337
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: if length <= 0 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
337
1
from collections import deque from math import floor from random import random from time import time class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ): '''simple docstring''' if self.graph.get(lowerCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __lowerCamelCase = [[w, v]] if not self.graph.get(lowerCamelCase__ ): __lowerCamelCase = [] def lowerCamelCase ( self ): '''simple docstring''' return list(self.graph ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) def lowerCamelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowerCamelCase ( self , __UpperCAmelCase=-1 ): '''simple docstring''' if c == -1: __lowerCamelCase = floor(random() * 10000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowerCamelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return len(self.graph[u] ) def lowerCamelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return sorted_nodes def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowerCamelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' __lowerCamelCase = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = time() return end - begin def lowerCamelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __lowerCamelCase = time() self.bfs(lowerCamelCase__ ) __lowerCamelCase = time() return end - begin class __lowerCAmelCase : def __init__( self ): '''simple docstring''' __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ): '''simple docstring''' if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __lowerCamelCase = [[w, v]] # add the other way if self.graph.get(lowerCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __lowerCamelCase = [[w, u]] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.graph.get(lowerCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCamelCase__ ) # the other way round if self.graph.get(lowerCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCamelCase__ ) def lowerCamelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return visited def lowerCamelCase ( self , __UpperCAmelCase=-1 ): '''simple docstring''' if c == -1: __lowerCamelCase = floor(random() * 10000 ) + 10 for i in range(lowerCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCamelCase__ , lowerCamelCase__ , 1 ) def lowerCamelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return len(self.graph[u] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return list(lowerCamelCase__ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(lowerCamelCase__ ) visited.append(lowerCamelCase__ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(lowerCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(lowerCamelCase__ ) != 0: __lowerCamelCase = stack[len(lowerCamelCase__ ) - 1] else: __lowerCamelCase = False indirect_parents.append(lowerCamelCase__ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(lowerCamelCase__ ) == 0: return False def lowerCamelCase ( self ): '''simple docstring''' return list(self.graph ) def lowerCamelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ): '''simple docstring''' __lowerCamelCase = time() self.dfs(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = time() return end - begin def lowerCamelCase ( self , __UpperCAmelCase=-2 ): '''simple docstring''' __lowerCamelCase = time() self.bfs(lowerCamelCase__ ) __lowerCamelCase = time() return end - begin
175
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''<pad>''' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase__ ) , 1_0_0_2 ) def UpperCAmelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase__ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase__ ) UpperCamelCase = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = '''I was born in 92000, and this is falsé.''' UpperCamelCase = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''Hello World!''' UpperCamelCase = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCamelCase = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {'''input_ids''': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
212
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase (__snake_case ): def __snake_case ( self :str ) ->Optional[Any]: lowercase : int = tempfile.mkdtemp() lowercase : str = 8 # DPR tok lowercase : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : Optional[int] = os.path.join(__magic_name__ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowercase : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowercase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : Union[str, Any] = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowercase : Optional[int] = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Any = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def __snake_case ( self :List[str] ) ->DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def __snake_case ( self :Union[str, Any] ) ->BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def __snake_case ( self :List[str] ) ->Optional[int]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def __snake_case ( self :Any ) ->str: lowercase : List[str] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) lowercase : Tuple = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowercase : str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__magic_name__ ) rag_tokenizer.save_pretrained(__magic_name__ ) lowercase : Union[str, Any] = RagTokenizer.from_pretrained(__magic_name__ , config=__magic_name__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __magic_name__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __magic_name__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __snake_case ( self :Optional[Any] ) ->Any: lowercase : Optional[int] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowercase : int = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowercase : Optional[Any] = tokenizer(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow def __snake_case ( self :str ) ->Any: lowercase : Tuple = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowercase : Union[str, Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowercase : Union[str, Any] = tokenizer(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
348
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""flax""", """transformers"""] def __init__( self :List[str] , *__magic_name__ :int , **__magic_name__ :Tuple ) ->Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :List[Any] , *__magic_name__ :Any , **__magic_name__ :Union[str, Any] ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :str , *__magic_name__ :Optional[Any] , **__magic_name__ :Union[str, Any] ) ->Tuple: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : List[str] = ["""flax""", """transformers"""] def __init__( self :str , *__magic_name__ :int , **__magic_name__ :List[str] ) ->str: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Optional[int] , *__magic_name__ :Tuple , **__magic_name__ :Dict ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Tuple , *__magic_name__ :Tuple , **__magic_name__ :Optional[int] ) ->Optional[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Tuple = ["""flax""", """transformers"""] def __init__( self :Tuple , *__magic_name__ :Dict , **__magic_name__ :Optional[int] ) ->Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :List[str] , *__magic_name__ :Any , **__magic_name__ :Tuple ) ->Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :Any , *__magic_name__ :List[Any] , **__magic_name__ :Optional[Any] ) ->Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class UpperCamelCase (metaclass=__snake_case ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["""flax""", """transformers"""] def __init__( self :List[str] , *__magic_name__ :int , **__magic_name__ :Dict ) ->Optional[int]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :str , *__magic_name__ :Any , **__magic_name__ :Any ) ->Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __snake_case ( cls :int , *__magic_name__ :List[str] , **__magic_name__ :Any ) ->Any: requires_backends(cls , ["""flax""", """transformers"""] )
348
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __snake_case : # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # sigma(t_i) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ): """simple docstring""" return cls() @dataclass class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 class __snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return True @register_to_config def __init__( self ,a_ = 0.02 ,a_ = 100 ,a_ = 1.007 ,a_ = 80 ,a_ = 0.05 ,a_ = 50 ,): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ = () ): """simple docstring""" lowerCAmelCase__ = jnp.arange(0 ,a_ )[::-1].copy() lowerCAmelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=a_ ,schedule=jnp.array(a_ ,dtype=jnp.floataa ) ,timesteps=a_ ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase__ = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: lowerCAmelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase__ = random.split(a_ ,num=1 ) lowerCAmelCase__ = self.config.s_noise * random.normal(key=a_ ,shape=sample.shape ) lowerCAmelCase__ = sigma + gamma * sigma lowerCAmelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ = True ,): """simple docstring""" lowerCAmelCase__ = sample_hat + sigma_hat * model_output lowerCAmelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=a_ ,derivative=a_ ,state=a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ = True ,): """simple docstring""" lowerCAmelCase__ = sample_prev + sigma_prev * model_output lowerCAmelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=a_ ,derivative=a_ ,state=a_ ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" raise NotImplementedError()
193
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowerCAmelCase : str = logging.get_logger(__name__) # General docstring _lowerCAmelCase : Optional[int] = "MobileNetV1Config" # Base docstring _lowerCAmelCase : Tuple = "google/mobilenet_v1_1.0_224" _lowerCAmelCase : Optional[int] = [1, 1_0_2_4, 7, 7] # Image classification docstring _lowerCAmelCase : Tuple = "google/mobilenet_v1_1.0_224" _lowerCAmelCase : List[Any] = "tabby, tabby cat" _lowerCAmelCase : Tuple = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = {} if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = model.mobilenet_va else: lowerCAmelCase__ = model lowerCAmelCase__ = 'MobilenetV1/Conv2d_0/' lowerCAmelCase__ = backbone.conv_stem.convolution.weight lowerCAmelCase__ = backbone.conv_stem.normalization.bias lowerCAmelCase__ = backbone.conv_stem.normalization.weight lowerCAmelCase__ = backbone.conv_stem.normalization.running_mean lowerCAmelCase__ = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCAmelCase__ = i + 1 lowerCAmelCase__ = i * 2 lowerCAmelCase__ = backbone.layer[pt_index] lowerCAmelCase__ = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' lowerCAmelCase__ = pointer.convolution.weight lowerCAmelCase__ = pointer.normalization.bias lowerCAmelCase__ = pointer.normalization.weight lowerCAmelCase__ = pointer.normalization.running_mean lowerCAmelCase__ = pointer.normalization.running_var lowerCAmelCase__ = backbone.layer[pt_index + 1] lowerCAmelCase__ = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' lowerCAmelCase__ = pointer.convolution.weight lowerCAmelCase__ = pointer.normalization.bias lowerCAmelCase__ = pointer.normalization.weight lowerCAmelCase__ = pointer.normalization.running_mean lowerCAmelCase__ = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowerCAmelCase__ = model.classifier.weight lowerCAmelCase__ = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model lowerCAmelCase__ = tf.train.list_variables(snake_case__ ) lowerCAmelCase__ = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) lowerCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) lowerCAmelCase__ = array # Build TF to PyTorch weights loading map lowerCAmelCase__ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue lowerCAmelCase__ = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) lowerCAmelCase__ = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer lowerCAmelCase__ = array.squeeze().transpose() else: lowerCAmelCase__ = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) lowerCAmelCase__ = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + '/RMSProp' , snake_case__ ) tf_weights.pop(name + '/RMSProp_1' , snake_case__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , snake_case__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> torch.Tensor: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = features.shape[-2:] lowerCAmelCase__ , lowerCAmelCase__ = conv_layer.stride lowerCAmelCase__ , lowerCAmelCase__ = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase__ = max(kernel_height - stride_height , 0 ) else: lowerCAmelCase__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCAmelCase__ = max(kernel_width - stride_width , 0 ) else: lowerCAmelCase__ = max(kernel_width - (in_width % stride_width) , 0 ) lowerCAmelCase__ = pad_along_width // 2 lowerCAmelCase__ = pad_along_width - pad_left lowerCAmelCase__ = pad_along_height // 2 lowerCAmelCase__ = pad_along_height - pad_top lowerCAmelCase__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , 'constant' , 0.0 ) class __snake_case ( nn.Module ): def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_ = 1 ,a_ = 1 ,a_ = False ,a_ = True ,a_ = True ,): """simple docstring""" super().__init__() lowerCAmelCase__ = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) lowerCAmelCase__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase__ = nn.Convad( in_channels=a_ ,out_channels=a_ ,kernel_size=a_ ,stride=a_ ,padding=a_ ,groups=a_ ,bias=a_ ,padding_mode='zeros' ,) if use_normalization: lowerCAmelCase__ = nn.BatchNormad( num_features=a_ ,eps=config.layer_norm_eps ,momentum=0.9997 ,affine=a_ ,track_running_stats=a_ ,) else: lowerCAmelCase__ = None if use_activation: if isinstance(a_ ,a_ ): lowerCAmelCase__ = ACTaFN[use_activation] elif isinstance(config.hidden_act ,a_ ): lowerCAmelCase__ = ACTaFN[config.hidden_act] else: lowerCAmelCase__ = config.hidden_act else: lowerCAmelCase__ = None def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if self.config.tf_padding: lowerCAmelCase__ = apply_tf_padding(a_ ,self.convolution ) lowerCAmelCase__ = self.convolution(a_ ) if self.normalization is not None: lowerCAmelCase__ = self.normalization(a_ ) if self.activation is not None: lowerCAmelCase__ = self.activation(a_ ) return features class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = MobileNetVaConfig SCREAMING_SNAKE_CASE__ = load_tf_weights_in_mobilenet_va SCREAMING_SNAKE_CASE__ = 'mobilenet_v1' SCREAMING_SNAKE_CASE__ = 'pixel_values' SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if isinstance(a_ ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a_ ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowerCAmelCase : Tuple = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , SCREAMING_SNAKE_CASE , ) class __snake_case ( SCREAMING_SNAKE_CASE ): def __init__( self ,a_ ,a_ = True ): """simple docstring""" super().__init__(a_ ) lowerCAmelCase__ = config lowerCAmelCase__ = 32 lowerCAmelCase__ = max(int(depth * config.depth_multiplier ) ,config.min_depth ) lowerCAmelCase__ = MobileNetVaConvLayer( a_ ,in_channels=config.num_channels ,out_channels=a_ ,kernel_size=3 ,stride=2 ,) lowerCAmelCase__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase__ = nn.ModuleList() for i in range(13 ): lowerCAmelCase__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase__ = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( a_ ,in_channels=a_ ,out_channels=a_ ,kernel_size=3 ,stride=strides[i] ,groups=a_ ,) ) self.layer.append( MobileNetVaConvLayer( a_ ,in_channels=a_ ,out_channels=a_ ,kernel_size=1 ,) ) lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=a_ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ = None ,a_ = None ,a_ = None ,): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCAmelCase__ = self.conv_stem(a_ ) lowerCAmelCase__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase__ = layer_module(a_ ) if output_hidden_states: lowerCAmelCase__ = all_hidden_states + (hidden_states,) lowerCAmelCase__ = hidden_states if self.pooler is not None: lowerCAmelCase__ = torch.flatten(self.pooler(a_ ) ,start_dim=1 ) else: lowerCAmelCase__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ ,pooler_output=a_ ,hidden_states=a_ ,) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE , ) class __snake_case ( SCREAMING_SNAKE_CASE ): def __init__( self ,a_ ): """simple docstring""" super().__init__(a_ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = MobileNetVaModel(a_ ) lowerCAmelCase__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase__ = nn.Dropout(config.classifier_dropout_prob ,inplace=a_ ) lowerCAmelCase__ = nn.Linear(a_ ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=a_ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,): """simple docstring""" lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.mobilenet_va(a_ ,output_hidden_states=a_ ,return_dict=a_ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier(self.dropout(a_ ) ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = 'single_label_classification' else: lowerCAmelCase__ = 'multi_label_classification' if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(a_ ,a_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(a_ ,a_ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a_ ,logits=a_ ,hidden_states=outputs.hidden_states ,)
193
1
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( lowercase : int ) -> Any: """simple docstring""" snake_case : List[str] = R"\w+[.]\d+" snake_case : List[str] = re.findall(lowercase , lowercase ) for pat in pats: snake_case : List[str] = key.replace(lowercase , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : int ) -> str: """simple docstring""" snake_case : Tuple = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case : str = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case : Optional[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case : Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": snake_case : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case : int = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case : int = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any]=42 ) -> Dict: """simple docstring""" snake_case : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case : List[Any] = flax_model.init_weights(PRNGKey(lowercase ) ) snake_case : Tuple = flatten_dict(lowercase ) snake_case : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : List[str] = rename_key(lowercase ) snake_case : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters snake_case ,snake_case : str = rename_key_and_reshape_tensor(lowercase , lowercase , lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown snake_case : List[Any] = jnp.asarray(lowercase ) return unflatten_dict(lowercase )
709
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __snake_case = """src/diffusers""" __snake_case = """.""" # This is to make sure the diffusers module imported is the one in the repo. __snake_case = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) __snake_case = spec.loader.load_module() def __lowerCAmelCase ( lowercase : List[str] , lowercase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return line.startswith(lowercase ) or len(lowercase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , lowercase ) is not None def __lowerCAmelCase ( lowercase : List[Any] ) -> Union[str, Any]: """simple docstring""" snake_case : Any = object_name.split("." ) snake_case : Dict = 0 # First let's find the module where our object lives. snake_case : Optional[Any] = parts[i] while i < len(lowercase ) and not os.path.isfile(os.path.join(lowercase , F'{module}.py' ) ): i += 1 if i < len(lowercase ): snake_case : List[Any] = os.path.join(lowercase , parts[i] ) if i >= len(lowercase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowercase , F'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case : str = f.readlines() # Now let's find the class / func in the code! snake_case : List[str] = "" snake_case : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case : Union[str, Any] = line_index while line_index < len(lowercase ) and _should_continue(lines[line_index] , lowercase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case : Tuple = lines[start_index:line_index] return "".join(lowercase ) __snake_case = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") __snake_case = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") __snake_case = re.compile(R"""<FILL\s+[^>]*>""") def __lowerCAmelCase ( lowercase : Optional[int] ) -> Dict: """simple docstring""" snake_case : List[str] = code.split("\n" ) snake_case : Tuple = 0 while idx < len(lowercase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def __lowerCAmelCase ( lowercase : Any ) -> Optional[int]: """simple docstring""" snake_case : Optional[int] = len(get_indent(lowercase ) ) > 0 if has_indent: snake_case : List[Any] = F'class Bla:\n{code}' snake_case : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowercase ) snake_case : str = black.format_str(lowercase , mode=lowercase ) snake_case ,snake_case : int = style_docstrings_in_code(lowercase ) return result[len("class Bla:\n" ) :] if has_indent else result def __lowerCAmelCase ( lowercase : Dict , lowercase : List[Any]=False ) -> Dict: """simple docstring""" with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case : str = f.readlines() snake_case : Optional[int] = [] snake_case : List[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase ): snake_case : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case ,snake_case ,snake_case : List[str] = search.groups() snake_case : List[Any] = find_code_in_diffusers(lowercase ) snake_case : Dict = get_indent(lowercase ) snake_case : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case : Any = theoretical_indent snake_case : Optional[int] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case : Dict = True while line_index < len(lowercase ) and should_continue: line_index += 1 if line_index >= len(lowercase ): break snake_case : int = lines[line_index] snake_case : Tuple = _should_continue(lowercase , lowercase ) and re.search(F'^{indent}# End copy' , lowercase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case : Optional[int] = lines[start_index:line_index] snake_case : List[Any] = "".join(lowercase ) # Remove any nested `Copied from` comments to avoid circular copies snake_case : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowercase ) is None] snake_case : Optional[int] = "\n".join(lowercase ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase ) > 0: snake_case : List[str] = replace_pattern.replace("with" , "" ).split("," ) snake_case : Union[str, Any] = [_re_replace_pattern.search(lowercase ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case ,snake_case ,snake_case : str = pattern.groups() snake_case : Any = re.sub(lowercase , lowercase , lowercase ) if option.strip() == "all-casing": snake_case : int = re.sub(obja.lower() , obja.lower() , lowercase ) snake_case : Optional[int] = re.sub(obja.upper() , obja.upper() , lowercase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case : Tuple = blackify(lines[start_index - 1] + theoretical_code ) snake_case : Any = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case : Any = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case : Tuple = start_index + 1 if overwrite and len(lowercase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase ) return diffs def __lowerCAmelCase ( lowercase : bool = False ) -> Optional[Any]: """simple docstring""" snake_case : str = glob.glob(os.path.join(lowercase , "**/*.py" ) , recursive=lowercase ) snake_case : List[str] = [] for filename in all_files: snake_case : List[str] = is_copy_consistent(lowercase , lowercase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowercase ) > 0: snake_case : List[str] = "\n".join(lowercase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __snake_case = parser.parse_args() check_copies(args.fix_and_overwrite)
117
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Any , _lowercase : Optional[int] , _lowercase : Any=3 , _lowercase : int=32 , _lowercase : int=3 , _lowercase : Optional[Any]=10 , _lowercase : List[Any]=[10, 20, 30, 40] , _lowercase : Union[str, Any]=[1, 1, 2, 1] , _lowercase : List[str]=True , _lowercase : str=True , _lowercase : Dict="relu" , _lowercase : Optional[Any]=3 , _lowercase : int=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = num_channels __UpperCAmelCase = embeddings_size __UpperCAmelCase = hidden_sizes __UpperCAmelCase = depths __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_act __UpperCAmelCase = num_labels __UpperCAmelCase = scope __UpperCAmelCase = len(_lowerCamelCase ) def a ( self : Optional[Any] ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = self.get_config() return config, pixel_values def a ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a ( self : Dict , _lowercase : List[Any] , _lowercase : Any ): __UpperCAmelCase = FlaxRegNetModel(config=_lowerCamelCase ) __UpperCAmelCase = model(_lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : List[Any] , _lowercase : Dict , _lowercase : Dict ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = FlaxRegNetForImageClassification(config=_lowerCamelCase ) __UpperCAmelCase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a__ : str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a__ : Optional[int] = False a__ : str = False a__ : Optional[Any] = False def a ( self : Tuple ): __UpperCAmelCase = FlaxRegNetModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def a ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Dict ): return def a ( self : Any ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a ( self : List[str] ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a ( self : Union[str, Any] ): pass def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowerCamelCase ) __UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def a ( self : Optional[int] ): def check_hidden_states_output(_lowercase : List[str] , _lowercase : Optional[int] , _lowercase : int ): __UpperCAmelCase = model_class(_lowerCamelCase ) __UpperCAmelCase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowercase : int , **_lowercase : Optional[Any] ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( ): __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a ( self : int ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a ( self : Any ): __UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) __UpperCAmelCase = model(**_lowerCamelCase ) # verify the logits __UpperCAmelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) __UpperCAmelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
49
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "mask2former" SCREAMING_SNAKE_CASE__ : Any = ["swin"] SCREAMING_SNAKE_CASE__ : int = {"hidden_size": "hidden_dim"} def __init__( self: str , _lowerCamelCase: Optional[Dict] = None , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 10_24 , _lowerCamelCase: str = "relu" , _lowerCamelCase: int = 6 , _lowerCamelCase: int = 10 , _lowerCamelCase: int = 8 , _lowerCamelCase: float = 0.0 , _lowerCamelCase: int = 20_48 , _lowerCamelCase: bool = False , _lowerCamelCase: bool = False , _lowerCamelCase: int = 4 , _lowerCamelCase: int = 2_55 , _lowerCamelCase: int = 1_00 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 2.0 , _lowerCamelCase: float = 5.0 , _lowerCamelCase: float = 5.0 , _lowerCamelCase: int = 1_25_44 , _lowerCamelCase: float = 3.0 , _lowerCamelCase: float = 0.75 , _lowerCamelCase: float = 0.02 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: bool = True , _lowerCamelCase: List[int] = [4, 8, 16, 32] , _lowerCamelCase: bool = None , **_lowerCamelCase: Optional[int] , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported )}" ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = mask_feature_size SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = encoder_feedforward_dim SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = dim_feedforward SCREAMING_SNAKE_CASE_ = pre_norm SCREAMING_SNAKE_CASE_ = enforce_input_projection SCREAMING_SNAKE_CASE_ = common_stride SCREAMING_SNAKE_CASE_ = ignore_value SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = no_object_weight SCREAMING_SNAKE_CASE_ = class_weight SCREAMING_SNAKE_CASE_ = mask_weight SCREAMING_SNAKE_CASE_ = dice_weight SCREAMING_SNAKE_CASE_ = train_num_points SCREAMING_SNAKE_CASE_ = oversample_ratio SCREAMING_SNAKE_CASE_ = importance_sample_ratio SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = feature_strides SCREAMING_SNAKE_CASE_ = output_auxiliary_logits SCREAMING_SNAKE_CASE_ = decoder_layers super().__init__(**_lowerCamelCase ) @classmethod def _A ( cls: int , _lowerCamelCase: PretrainedConfig , **_lowerCamelCase: Tuple ): return cls( backbone_config=_lowerCamelCase , **_lowerCamelCase , ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
234
0
def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: int ) -> Tuple: if digit_amount > 0: return round(number - int(_lowerCamelCase ) ,_lowerCamelCase ) return number - int(_lowerCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
719
'''simple docstring''' from math import ceil def _UpperCamelCase ( lowerCAmelCase__: int = 1001 ) -> int: SCREAMING_SNAKE_CASE_ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE_ = 2 * i + 1 SCREAMING_SNAKE_CASE_ = 2 * i SCREAMING_SNAKE_CASE_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
238
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a: str = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[Any] = ["""MaskFormerFeatureExtractor"""] __a: Tuple = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] __a: str = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
152
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Dict: lowercase__ : Any = parent lowercase__ : List[Any] = config_class lowercase__ : Dict = has_text_modality lowercase__ : List[str] = kwargs lowercase__ : List[Any] = common_properties def _lowerCAmelCase( self ) -> Any: lowercase__ : int = self.config_class(**self.inputs_dict ) lowercase__ : Any = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) , msg=F"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(__lowerCAmelCase ): try: setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.parent.assertEqual( getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , msg=F"""`{name} value {idx} expected, but was {getattr(__lowerCAmelCase , __lowerCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__lowerCAmelCase ): try: lowercase__ : Tuple = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , msg=F"""`{name} value {idx} expected, but was {getattr(__lowerCAmelCase , __lowerCAmelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) lowercase__ : int = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: lowercase__ : List[str] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Tuple = os.path.join(__lowerCAmelCase , '''config.json''' ) config_first.to_json_file(__lowerCAmelCase ) lowercase__ : Tuple = self.config_class.from_json_file(__lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__lowerCAmelCase ) lowercase__ : Dict = self.config_class.from_pretrained(__lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) lowercase__ : str = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Any = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) config_first.save_pretrained(__lowerCAmelCase ) lowercase__ : Tuple = self.config_class.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[Any] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowercase__ : List[Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowerCAmelCase( self ) -> Any: if self.config_class.is_composition: return lowercase__ : Tuple = self.config_class() self.parent.assertIsNotNone(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: lowercase__ : str = copy.deepcopy(__lowerCAmelCase ) lowercase__ : Dict = self.config_class(**__lowerCAmelCase ) lowercase__ : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(__lowerCAmelCase , __lowerCAmelCase ) != value: wrong_values.append((key, getattr(__lowerCAmelCase , __lowerCAmelCase ), value) ) if len(__lowerCAmelCase ) > 0: lowercase__ : Any = '''\n'''.join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" ) def _lowerCAmelCase( self ) -> Any: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
152
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=False , _snake_case=True , _snake_case="None" , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = TFDebertaVaModel(config=__UpperCamelCase ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(__UpperCamelCase ) UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = TFDebertaVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def snake_case_ ( self ) -> Dict: """simple docstring""" pass @slow def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) UpperCAmelCase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] UpperCAmelCase = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 )
719
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None ) -> Any: """simple docstring""" UpperCAmelCase = self.layer[current_layer](_snake_case , _snake_case , head_mask[current_layer] ) UpperCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , A__ , ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = BertEncoderWithPabee(_snake_case ) self.init_weights() UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = threshold def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = patience def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.inference_layers_num / self.inference_instances_num UpperCAmelCase = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: UpperCAmelCase = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = encoder_hidden_states.size() UpperCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase = torch.ones(_snake_case , device=_snake_case ) UpperCAmelCase = self.invert_attention_mask(_snake_case ) else: UpperCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) UpperCAmelCase = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) UpperCAmelCase = embedding_output if self.training: UpperCAmelCase = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](output_dropout(_snake_case ) ) res.append(_snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase = self.pooler(encoder_outputs[0] ) UpperCAmelCase = [output_layers[self.config.num_hidden_layers - 1](_snake_case )] else: UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) UpperCAmelCase = self.pooler(_snake_case ) UpperCAmelCase = output_layers[i](_snake_case ) if regression: UpperCAmelCase = logits.detach() if patient_result is not None: UpperCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase = 0 else: UpperCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_snake_case ) ): patient_counter += 1 else: UpperCAmelCase = 0 UpperCAmelCase = logits if patient_counter == self.patience: break UpperCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , A__ , ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> Optional[int]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = config.num_labels UpperCAmelCase = BertModelWithPabee(_snake_case ) UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def snake_case_ ( self , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> Tuple: """simple docstring""" UpperCAmelCase = self.bert( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase = (logits[-1],) if labels is not None: UpperCAmelCase = None UpperCAmelCase = 0 for ix, logits_item in enumerate(_snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase = MSELoss() UpperCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase = (total_loss / total_weights,) + outputs return outputs
391
0
_UpperCamelCase = "Tobias Carryer" from time import time class __lowercase : def __init__( self , A_ , A_ , A_ , A_=int(time() ) ) ->Optional[int]: # noqa: B008 '''simple docstring''' __lowerCAmelCase : Tuple = multiplier __lowerCAmelCase : Tuple = increment __lowerCAmelCase : int = modulo __lowerCAmelCase : Dict = seed def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _UpperCamelCase = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
492
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
492
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCamelCase : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCamelCase : int = spec.loader.load_module() _lowerCamelCase : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCamelCase : List[str] = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') _lowerCamelCase : Optional[int] = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def _a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE__ : str = False # source code of `config_class` SCREAMING_SNAKE_CASE__ : Dict = inspect.getsource(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE__ : int = True break SCREAMING_SNAKE_CASE__ : Optional[int] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: SCREAMING_SNAKE_CASE__ : List[Any] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
157
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
1
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase ( *UpperCAmelCase__ : Optional[Any]): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): lowerCamelCase : str = list(UpperCAmelCase__) for i in range(len(UpperCAmelCase__)): lowerCamelCase : Tuple = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase ( UpperCAmelCase__ : Exception): lowerCamelCase : Dict = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def UpperCAmelCase ( UpperCAmelCase__ : callable = None , UpperCAmelCase__ : int = 1_28): if function is None: return functools.partial(UpperCAmelCase__ , starting_batch_size=UpperCAmelCase__) lowerCamelCase : Optional[int] = starting_batch_size def decorator(*UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : int): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCamelCase : Optional[Any] = list(inspect.signature(UpperCAmelCase__).parameters.keys()) # Guard against user error if len(UpperCAmelCase__) < (len(UpperCAmelCase__) + 1): lowerCamelCase : Any = ', '.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:])]) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''') while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.') try: return function(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) except Exception as e: if should_reduce_batch_size(UpperCAmelCase__): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
320
'''simple docstring''' A = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
320
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a (_lowerCAmelCase ): return (data["data"], data["target"]) def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(_lowerCAmelCase , _lowerCAmelCase ) # Predict target for test data SCREAMING_SNAKE_CASE_ = xgb.predict(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = predictions.reshape(len(_lowerCAmelCase ) , 1 ) return predictions def a (): SCREAMING_SNAKE_CASE_ = fetch_california_housing() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_handling(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = train_test_split( _lowerCAmelCase , _lowerCAmelCase , test_size=0.25 , random_state=1 ) SCREAMING_SNAKE_CASE_ = xgboost(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Error printing print(F"Mean Absolute Error : {mean_absolute_error(_lowerCAmelCase , _lowerCAmelCase )}" ) print(F"Mean Square Error : {mean_squared_error(_lowerCAmelCase , _lowerCAmelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
89
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = "realm" def __init__( self: Tuple , _lowerCamelCase: Union[str, Any]=3_05_22 , _lowerCamelCase: Tuple=7_68 , _lowerCamelCase: str=1_28 , _lowerCamelCase: str=12 , _lowerCamelCase: int=12 , _lowerCamelCase: Union[str, Any]=8 , _lowerCamelCase: Optional[Any]=30_72 , _lowerCamelCase: str="gelu_new" , _lowerCamelCase: str=0.1 , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: Optional[int]=5_12 , _lowerCamelCase: Union[str, Any]=2 , _lowerCamelCase: int=0.02 , _lowerCamelCase: Tuple=1E-12 , _lowerCamelCase: List[Any]=2_56 , _lowerCamelCase: Any=10 , _lowerCamelCase: Optional[Any]=1E-3 , _lowerCamelCase: Any=5 , _lowerCamelCase: List[str]=3_20 , _lowerCamelCase: List[str]=13_35_37_18 , _lowerCamelCase: str=50_00 , _lowerCamelCase: str=1 , _lowerCamelCase: str=0 , _lowerCamelCase: Dict=2 , **_lowerCamelCase: Tuple , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
89
1
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Dict = str(_lowerCamelCase ) snake_case_ : Any = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] = 1_1 ): """simple docstring""" snake_case_ : list[int] = [] snake_case_ : Any = 1_3 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): snake_case_ : List[str] = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
480
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a = 1, __a = 50, __a = None, __a = "pil", __a = True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = self.unet.config.sample_size _lowerCAmelCase : Optional[Any] = (batch_size, 3, img_size, img_size) _lowerCAmelCase : Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCAmelCase : Union[str, Any] = randn_tensor(__a, generator=__a, device=self.device) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper _lowerCAmelCase : Optional[Any] = self.scheduler.schedule[t] _lowerCAmelCase : int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCAmelCase , _lowerCAmelCase : Dict = self.scheduler.add_noise_to_input(__a, __a, generator=__a) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCAmelCase : Optional[int] = self.scheduler.step(__a, __a, __a, __a) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample _lowerCAmelCase : List[str] = self.scheduler.step_correct( __a, __a, __a, __a, step_output.prev_sample, step_output["derivative"], ) _lowerCAmelCase : Optional[int] = step_output.prev_sample _lowerCAmelCase : Tuple = (sample / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : int = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : int = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
500
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: print('Loading config file...' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="." ): _lowercase : Optional[int] = [] for k, v in d.items(): _lowercase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sep=SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = argparse.Namespace() with open(SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: _lowercase : List[str] = yaml.load(SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) _lowercase : str = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(SCREAMING_SNAKE_CASE , str(SCREAMING_SNAKE_CASE ) ) ) return config def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : List[Any] = MobileViTVaConfig() _lowercase : Dict = False # dataset if task_name.startswith('imagenet1k_' ): _lowercase : Any = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: _lowercase : Any = 384 else: _lowercase : List[str] = 256 _lowercase : str = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _lowercase : Optional[Any] = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: _lowercase : Dict = 384 else: _lowercase : Optional[Any] = 256 _lowercase : str = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _lowercase : int = 151 _lowercase : List[str] = 512 _lowercase : Optional[Any] = 'ade20k-id2label.json' _lowercase : Any = True elif task_name.startswith('voc_' ): _lowercase : Union[str, Any] = 21 _lowercase : List[Any] = 512 _lowercase : List[Any] = 'pascal-voc-id2label.json' _lowercase : Dict = True # orig_config _lowercase : List[str] = load_orig_config_file(SCREAMING_SNAKE_CASE ) assert getattr(SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _lowercase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _lowercase : str = getattr(SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) _lowercase : str = getattr(SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _lowercase : Tuple = 'huggingface/label-files' _lowercase : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : str = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : Dict = idalabel _lowercase : Dict = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : List[str] = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = val def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Any: if base_model: _lowercase : Optional[int] = '' else: _lowercase : int = 'mobilevitv2.' _lowercase : Optional[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _lowercase : str = k[8:] else: _lowercase : Union[str, Any] = k if ".block." in k: _lowercase : Tuple = k_new.replace('.block.' , '.' ) if ".conv." in k: _lowercase : Dict = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _lowercase : List[str] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _lowercase : Optional[Any] = k_new.replace('conv_1.' , F"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if F"""layer_{i}.""" in k: _lowercase : Tuple = k_new.replace(F"""layer_{i}.""" , F"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: _lowercase : List[Any] = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _lowercase : Optional[int] = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F"""layer_{i}.0.""" in k: _lowercase : Any = k_new.replace(F"""layer_{i}.0.""" , F"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if F"""layer_{i}.1.local_rep.0.""" in k: _lowercase : Tuple = k_new.replace(F"""layer_{i}.1.local_rep.0.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if F"""layer_{i}.1.local_rep.1.""" in k: _lowercase : str = k_new.replace(F"""layer_{i}.1.local_rep.1.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: _lowercase : str = [0, 1] elif i == 4: _lowercase : int = [0, 1, 2, 3] elif i == 5: _lowercase : Union[str, Any] = [0, 1, 2] for j in j_in: if F"""layer_{i}.1.global_rep.{j}.""" in k: _lowercase : int = k_new.replace( F"""layer_{i}.1.global_rep.{j}.""" , F"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if F"""layer_{i}.1.global_rep.{j+1}.""" in k: _lowercase : int = k_new.replace( F"""layer_{i}.1.global_rep.{j+1}.""" , F"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if F"""layer_{i}.1.conv_proj.""" in k: _lowercase : Any = k_new.replace(F"""layer_{i}.1.conv_proj.""" , F"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: _lowercase : Dict = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _lowercase : Tuple = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _lowercase : str = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _lowercase : Optional[Any] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _lowercase : List[Any] = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _lowercase : Optional[Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _lowercase : Optional[Any] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _lowercase : Any = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _lowercase : Union[str, Any] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Union[str, Any] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _lowercase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = get_mobilevitva_config(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load original state_dict _lowercase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _lowercase : Tuple = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE ).eval() _lowercase : List[str] = False else: _lowercase : Optional[int] = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE ).eval() _lowercase : Any = False # remove and rename some keys of load the original model _lowercase : Optional[Any] = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase : List[str] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase : Any = image_processor(images=prepare_img() , return_tensors='pt' ) _lowercase : int = model(**SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): _lowercase : Union[str, Any] = outputs.logits _lowercase : str = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _lowercase : Any = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCAmelCase_ = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_a , _a ) def __a ( self , **_a ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __a ( self , **_a ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ) -> Dict: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __a ( self ) -> Dict: lowerCAmelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowerCAmelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(_a , return_tensors="np" ) lowerCAmelCase_ = processor(images=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = processor(text=_a ) lowerCAmelCase_ = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def __a ( self ) -> str: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(_a ) lowerCAmelCase_ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> int: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
122
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore UpperCAmelCase__ : Union[str, Any] = namedtuple('covid_data', 'cases deaths recovered') def lowercase_ ( _snake_case = "https://www.worldometers.info/coronavirus/" ): SCREAMING_SNAKE_CASE__ : str = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__UpperCamelCase ).content ).xpath(__UpperCamelCase ) ) UpperCAmelCase__ : Tuple = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
711
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = '''summarization''' __UpperCamelCase : int = ['''loss'''] __UpperCamelCase : Dict = ROUGE_KEYS __UpperCamelCase : Any = '''rouge2''' def __init__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , mode=self.mode , **SCREAMING_SNAKE_CASE__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ : str = Path(self.output_dir ) / """metrics.json""" SCREAMING_SNAKE_CASE__ : Any = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = self.config.model_type SCREAMING_SNAKE_CASE__ : Dict = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size SCREAMING_SNAKE_CASE__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } SCREAMING_SNAKE_CASE__ : Optional[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ : Tuple = get_git_info()["""repo_sha"""] SCREAMING_SNAKE_CASE__ : List[str] = hparams.num_workers SCREAMING_SNAKE_CASE__ : Optional[int] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ : List[Any] = self.decoder_start_token_id SCREAMING_SNAKE_CASE__ : List[str] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ : List[str] = self.model.config.max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict[str, List[str]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(SCREAMING_SNAKE_CASE__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) SCREAMING_SNAKE_CASE__ : str = True return readable_batch def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self.model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.batch_decode( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) return lmap(str.strip , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch["""input_ids"""], batch["""attention_mask"""] SCREAMING_SNAKE_CASE__ : Dict = batch["""labels"""] if isinstance(self.model , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : int = self.model._shift_right(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = shift_tokens_right(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ : List[Any] = decoder_input_ids self.save_readable_batch(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = self(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ : Dict = nn.CrossEntropyLoss(ignore_index=SCREAMING_SNAKE_CASE__ ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : int = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = label_smoothed_nll_loss( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.hparams.label_smoothing , ignore_index=SCREAMING_SNAKE_CASE__ ) return (loss,) @property def __magic_name__ (self ) -> int: """simple docstring""" return self.tokenizer.pad_token_id def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self._step(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = dict(zip(self.loss_names , SCREAMING_SNAKE_CASE__ ) ) # tokens per batch SCREAMING_SNAKE_CASE__ : List[Any] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ : int = batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE__ : int = batch["""input_ids"""].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ : int = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" return self._generative_step(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="val" ) -> Dict: """simple docstring""" self.step_count += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ : Any = losses["""loss"""] SCREAMING_SNAKE_CASE__ : Dict = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } SCREAMING_SNAKE_CASE__ : str = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ : torch.FloatTensor = torch.tensor(SCREAMING_SNAKE_CASE__ ).type_as(SCREAMING_SNAKE_CASE__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ : List[Any] = self.step_count self.metrics[prefix].append(SCREAMING_SNAKE_CASE__ ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ : Optional[Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" return calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ : int = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ : Optional[int] = (time.time() - ta) / batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE__ : List[str] = self.ids_to_clean_text(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._step(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(self.loss_names , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Dict = self.calc_generative_metrics(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = np.mean(lmap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) base_metrics.update(gen_time=SCREAMING_SNAKE_CASE__ , gen_len=SCREAMING_SNAKE_CASE__ , preds=SCREAMING_SNAKE_CASE__ , target=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return base_metrics def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return self._generative_step(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return self.validation_epoch_end(SCREAMING_SNAKE_CASE__ , prefix="""test""" ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> SeqaSeqDataset: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.n_obs[type_path] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.target_lens[type_path] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dataset_class( self.tokenizer , type_path=SCREAMING_SNAKE_CASE__ , n_obs=SCREAMING_SNAKE_CASE__ , max_target_length=SCREAMING_SNAKE_CASE__ , **self.dataset_kwargs , ) return dataset def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ) -> DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_dataset(SCREAMING_SNAKE_CASE__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ : Tuple = dataset.make_sortish_sampler(SCREAMING_SNAKE_CASE__ , distributed=self.hparams.gpus > 1 ) return DataLoader( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , collate_fn=dataset.collate_fn , shuffle=SCREAMING_SNAKE_CASE__ , num_workers=self.num_workers , sampler=SCREAMING_SNAKE_CASE__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( SCREAMING_SNAKE_CASE__ , batch_sampler=SCREAMING_SNAKE_CASE__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , collate_fn=dataset.collate_fn , shuffle=SCREAMING_SNAKE_CASE__ , num_workers=self.num_workers , sampler=SCREAMING_SNAKE_CASE__ , ) def __magic_name__ (self ) -> DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=SCREAMING_SNAKE_CASE__ ) return dataloader def __magic_name__ (self ) -> DataLoader: """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def __magic_name__ (self ) -> DataLoader: """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __magic_name__ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) add_generic_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) parser.add_argument( """--max_source_length""" , default=10_24 , type=SCREAMING_SNAKE_CASE__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=SCREAMING_SNAKE_CASE__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_42 , type=SCREAMING_SNAKE_CASE__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_42 , type=SCREAMING_SNAKE_CASE__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--max_tokens_per_batch""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--logger_name""" , type=SCREAMING_SNAKE_CASE__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=SCREAMING_SNAKE_CASE__ , default=5_00 , required=SCREAMING_SNAKE_CASE__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=SCREAMING_SNAKE_CASE__ , default="""summarization""" , required=SCREAMING_SNAKE_CASE__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=SCREAMING_SNAKE_CASE__ , default=0.0 , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--src_lang""" , type=SCREAMING_SNAKE_CASE__ , default="""""" , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--tgt_lang""" , type=SCREAMING_SNAKE_CASE__ , default="""""" , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--eval_beams""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument( """--val_metric""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=SCREAMING_SNAKE_CASE__ , default=1 , required=SCREAMING_SNAKE_CASE__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = '''translation''' __UpperCamelCase : Optional[Any] = ['''loss'''] __UpperCamelCase : Optional[int] = ['''bleu'''] __UpperCamelCase : Tuple = '''bleu''' def __init__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hparams.src_lang SCREAMING_SNAKE_CASE__ : int = hparams.tgt_lang def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" return calculate_bleu(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( _snake_case ,_snake_case=None ): Path(args.output_dir ).mkdir(exist_ok=_snake_case ) check_output_dir(_snake_case ,expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ : SummarizationModule = SummarizationModule(_snake_case ) else: SCREAMING_SNAKE_CASE__ : SummarizationModule = TranslationModule(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): SCREAMING_SNAKE_CASE__ : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ : Optional[int] = os.environ.get("""WANDB_PROJECT""" ,_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = WandbLogger(name=model.output_dir.name ,project=_snake_case ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ : Tuple = WandbLogger(name=model.output_dir.name ,project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ : List[str] = get_early_stopping_callback(model.val_metric ,args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Any = args.val_metric == """loss""" SCREAMING_SNAKE_CASE__ : pl.Trainer = generic_train( _snake_case ,_snake_case ,logging_callback=SeqaSeqLoggingCallback() ,checkpoint_callback=get_checkpoint_callback( args.output_dir ,model.val_metric ,args.save_top_k ,_snake_case ) ,early_stopping_callback=_snake_case ,logger=_snake_case ,) pickle_save(model.hparams ,model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ : List[str] = """""" SCREAMING_SNAKE_CASE__ : List[Any] = sorted(glob.glob(os.path.join(args.output_dir ,"""*.ckpt""" ) ,recursive=_snake_case ) ) if checkpoints: SCREAMING_SNAKE_CASE__ : Optional[int] = checkpoints[-1] SCREAMING_SNAKE_CASE__ : Any = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() UpperCAmelCase__ : Optional[int] = pl.Trainer.add_argparse_args(parser) UpperCAmelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase__ : Any = parser.parse_args() main(args)
545
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" for param in module.parameters(): snake_case_ : Dict = False def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case_ : Tuple = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = datetime.now() snake_case_ : Optional[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
60
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a (): SCREAMING_SNAKE_CASE_ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) SCREAMING_SNAKE_CASE_ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) DownloadCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) RunCommand.register_subcommand(_lowerCAmelCase ) ServeCommand.register_subcommand(_lowerCAmelCase ) UserCommands.register_subcommand(_lowerCAmelCase ) AddNewModelCommand.register_subcommand(_lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCAmelCase ) LfsCommands.register_subcommand(_lowerCAmelCase ) PTtoTFCommand.register_subcommand(_lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ = parser.parse_args() if not hasattr(_lowerCAmelCase , '''func''' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
234
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> set: __lowercase : List[Any] = set() # edges = list of graph's edges __lowercase : Dict = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __lowercase : List[Any] = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def UpperCAmelCase_ ( __lowerCAmelCase ) -> set: __lowercase : Optional[int] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
713
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : List[Any] = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : List[Any] = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __lowercase : int = TextIteratorStreamer(_snake_case ) __lowercase : int = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[Any] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() __lowercase : Optional[int] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : List[str] ): __lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[Any] = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : str = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : List[Any] = greedy_ids[:, input_ids.shape[1] :] __lowercase : Optional[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : int = TextStreamer(_snake_case , skip_prompt=_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : int = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase : Dict = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase : List[str] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_snake_case ) __lowercase : str = -1 __lowercase : Dict = torch.ones((1, 5) , device=_snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case , skip_special_tokens=_snake_case ) model.generate(_snake_case , max_new_tokens=1 , do_sample=_snake_case , streamer=_snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase : Dict = cs.out[:-1] # Remove the final "\n" __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case_ ( self : Any ): __lowercase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : Dict = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = TextIteratorStreamer(_snake_case , timeout=0.0_01 ) __lowercase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[int] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_snake_case ): __lowercase : List[Any] = '''''' for new_text in streamer: streamer_text += new_text
284
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Dict = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase__ : List[str] = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = EfficientNetConfig() snake_case_ = CONFIG_MAP[model_name]["hidden_dim"] snake_case_ = CONFIG_MAP[model_name]["width_coef"] snake_case_ = CONFIG_MAP[model_name]["depth_coef"] snake_case_ = CONFIG_MAP[model_name]["image_size"] snake_case_ = CONFIG_MAP[model_name]["dropout_rate"] snake_case_ = CONFIG_MAP[model_name]["dw_padding"] snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = 1000 snake_case_ = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(_A ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return im def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = CONFIG_MAP[model_name]["image_size"] snake_case_ = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_A , ) return preprocessor def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] snake_case_ = sorted(set(_A ) ) snake_case_ = len(_A ) snake_case_ = {b: str(_A ) for b, i in zip(_A , range(_A ) )} snake_case_ = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: snake_case_ = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) snake_case_ = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ = "efficientnet." + item[1] snake_case_ = "classifier.weight" snake_case_ = "classifier.bias" return key_mapping def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ = torch.from_numpy(np.transpose(_A ) ) else: snake_case_ = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = model_classes[model_name]( include_top=_A , weights="imagenet" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1000 , classifier_activation="softmax" , ) snake_case_ = original_model.trainable_variables snake_case_ = original_model.non_trainable_variables snake_case_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ = param.numpy() snake_case_ = list(tf_params.keys() ) # Load HuggingFace model snake_case_ = get_efficientnet_config(_A ) snake_case_ = EfficientNetForImageClassification(_A ).eval() snake_case_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) snake_case_ = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image snake_case_ = convert_image_processor(_A ) snake_case_ = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ = hf_model(**_A ) snake_case_ = outputs.logits.detach().numpy() # Original model inference snake_case_ = False snake_case_ = CONFIG_MAP[model_name]["image_size"] snake_case_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ = image.img_to_array(_A ) snake_case_ = np.expand_dims(_A , axis=0 ) snake_case_ = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) snake_case_ = f"efficientnet-{model_name}" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") lowercase__ : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
376
'''simple docstring''' from __future__ import annotations import math _lowercase : Dict = """2020.9.26""" _lowercase : Any = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( A : float , A : float , A : float , A : float , A : float ): '''simple docstring''' if not all(isinstance(A , (float, int) ) for val in locals().values() ): UpperCAmelCase = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(A ) UpperCAmelCase = ((x * distance) / (z + distance)) * scale UpperCAmelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( A : float , A : float , A : float , A : str , A : float ): '''simple docstring''' if not isinstance(A , A ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase = locals() del input_variables["axis"] if not all(isinstance(A , (float, int) ) for val in input_variables.values() ): UpperCAmelCase = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(A ) UpperCAmelCase = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": UpperCAmelCase = x * math.cos(A ) - y * math.sin(A ) UpperCAmelCase = y * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = z elif axis == "x": UpperCAmelCase = y * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + y * math.sin(A ) UpperCAmelCase = x elif axis == "y": UpperCAmelCase = x * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
210
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __a ( _lowerCAmelCase ): UpperCamelCase_ : Optional[Any] = '''pix2struct_text_model''' UpperCamelCase_ : int = ['''past_key_values'''] UpperCamelCase_ : Tuple = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase_ : int=50_244 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Any=64 , UpperCAmelCase_ : Optional[Any]=2_048 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Tuple=128 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Tuple=1e-6 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : List[str]="gelu_new" , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : List[Any] , )-> Tuple: """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = d_kv UpperCamelCase = d_ff UpperCamelCase = num_layers UpperCamelCase = num_heads UpperCamelCase = relative_attention_num_buckets UpperCamelCase = relative_attention_max_distance UpperCamelCase = dropout_rate UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_factor UpperCamelCase = use_cache UpperCamelCase = eos_token_id UpperCamelCase = decoder_start_token_id # for backwards compatibility UpperCamelCase = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : int )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": UpperCamelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __a ( _lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = '''pix2struct_vision_model''' def __init__( self : Tuple , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : str="gelu_new" , UpperCAmelCase_ : List[Any]=1e-6 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : List[str]=1e-10 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : int=4_096 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[Any]=128 , **UpperCAmelCase_ : List[Any] , )-> Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) UpperCamelCase = hidden_size UpperCamelCase = patch_embed_hidden_size UpperCamelCase = d_ff UpperCamelCase = dropout_rate UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = initializer_range UpperCamelCase = initializer_factor UpperCamelCase = attention_dropout UpperCamelCase = layer_norm_eps UpperCamelCase = dense_act_fn UpperCamelCase = seq_len UpperCamelCase = relative_attention_num_buckets UpperCamelCase = relative_attention_max_distance UpperCamelCase = d_kv @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[int] )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": UpperCamelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __a ( _lowerCAmelCase ): UpperCamelCase_ : Dict = '''pix2struct''' UpperCamelCase_ : int = True def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=1.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : Optional[Any] , )-> int: """simple docstring""" super().__init__(tie_word_embeddings=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) if text_config is None: UpperCamelCase = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: UpperCamelCase = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) UpperCamelCase = PixaStructTextConfig(**UpperCAmelCase_ ) UpperCamelCase = PixaStructVisionConfig(**UpperCAmelCase_ ) UpperCamelCase = self.text_config.decoder_start_token_id UpperCamelCase = self.text_config.pad_token_id UpperCamelCase = self.text_config.eos_token_id UpperCamelCase = initializer_factor UpperCamelCase = initializer_range UpperCamelCase = self.initializer_range UpperCamelCase = self.initializer_range UpperCamelCase = is_vqa @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , UpperCAmelCase_ : PixaStructTextConfig , UpperCAmelCase_ : PixaStructVisionConfig , **UpperCAmelCase_ : int )-> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> str: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.text_config.to_dict() UpperCamelCase = self.vision_config.to_dict() UpperCamelCase = self.__class__.model_type return output
556
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Any = BarthezTokenizer UpperCamelCase_ : Tuple = BarthezTokenizerFast UpperCamelCase_ : str = True UpperCamelCase_ : Dict = True def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> int: """simple docstring""" super().setUp() UpperCamelCase = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase_ ) UpperCamelCase = tokenizer def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[Any]: """simple docstring""" UpperCamelCase = "<pad>" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCAmelCase_ ) , 101_122 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> int: """simple docstring""" UpperCamelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase = [0, 57, 3_018, 70_307, 91, 2] UpperCamelCase = self.tokenizer( UpperCAmelCase_ , max_length=len(UpperCAmelCase_ ) , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = "I was born in 92000, and this is falsé." UpperCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(UpperCAmelCase_ ) UpperCamelCase = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" # fmt: off UpperCamelCase = {"input_ids": [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=UpperCAmelCase_ , )
556
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class UpperCAmelCase__ ( _lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : Any = None def __init__( self : List[str] ,_a : Any=None ,_a : Optional[Any]=None ,_a : Optional[Any]=None ,_a : List[str]="<unk>" ,_a : List[str]="<s>" ,_a : Dict="</s>" ,_a : Tuple="<pad>" ,_a : str=False ,_a : str=False ,**_a : Any ,): '''simple docstring''' super().__init__( __a ,__a ,tokenizer_file=__a ,unk_token=__a ,bos_token=__a ,eos_token=__a ,pad_token=__a ,add_prefix_space=__a ,clean_up_tokenization_spaces=__a ,**__a ,) _a : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__a ) != add_prefix_space: _a : List[str] = getattr(__a ,pre_tok_state.pop('type' ) ) _a : List[str] = add_prefix_space _a : List[str] = pre_tok_class(**__a ) _a : Any = add_prefix_space def __lowercase ( self : Optional[int] ,*_a : Dict ,**_a : List[str] ): '''simple docstring''' _a : int = kwargs.get('is_split_into_words' ,__a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*__a ,**__a ) def __lowercase ( self : Tuple ,*_a : Union[str, Any] ,**_a : List[Any] ): '''simple docstring''' _a : int = kwargs.get('is_split_into_words' ,__a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*__a ,**__a ) def __lowercase ( self : Any ,_a : List[Any] ,_a : List[str] = None ): '''simple docstring''' _a : Optional[int] = self._tokenizer.model.save(__a ,name=__a ) return tuple(__a ) def __lowercase ( self : List[str] ,_a : Optional[int] ): '''simple docstring''' _a : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a ,add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: _a : Tuple = input_ids[-self.model_max_length :] return input_ids
229
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[str] = CodeGenTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] = CodeGenTokenizerFast SCREAMING_SNAKE_CASE_: Any = True SCREAMING_SNAKE_CASE_: str = {"""add_prefix_space""": True} SCREAMING_SNAKE_CASE_: Any = False def _UpperCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] A__ = dict(zip(__a , range(len(__a ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = 'lower newer' A__ = 'lower newer' return input_text, output_text def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = 'lower newer' A__ = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] A__ = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) A__ = tokens + [tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer(add_prefix_space=__a ) A__ = 'lower newer' # Testing tokenization A__ = tokenizer.tokenize(__a , add_prefix_space=__a ) A__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) A__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens A__ = self.get_rust_tokenizer(add_prefix_space=__a ) A__ = tokenizer.encode(__a , add_prefix_space=__a ) A__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token A__ = tokens + [rust_tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def _UpperCAmelCase ( self , *__a , **__a ): """simple docstring""" pass def _UpperCAmelCase ( self , __a=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input looooooooong', 'This is a simple input'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] A__ = tokenizer.pad_token_id A__ = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) A__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) A__ = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) A__ = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = '$$$' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = tokenizer.bos_token_id A__ = tokenizer(__a ) A__ = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A__ = tokenizer.decode(out_s.input_ids ) A__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) A__ = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' A__ = '\nif len_a > len_b: result = a\nelse: result = b' A__ = tokenizer.encode(__a ) A__ = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] A__ = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" pass
260
0
def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
704
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__, **UpperCamelCase__ ) requires_backends(self, '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = {} lowerCAmelCase_ = {} if prompt is not None: lowerCAmelCase_ = prompt if generate_kwargs is not None: lowerCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) lowerCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return super().__call__(UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = load_image(UpperCamelCase__ ) if prompt is not None: if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise ValueError( f"Received an invalid text input, got - {type(UpperCamelCase__ )} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''' ) lowerCAmelCase_ = self.model.config.model_type if model_type == "git": lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(text=UpperCamelCase__, add_special_tokens=UpperCamelCase__ ).input_ids lowerCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase_ = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, header_text=UpperCamelCase__, return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase_ = None return model_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''], UpperCamelCase__ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): lowerCAmelCase_ = None if generate_kwargs is None: lowerCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase_ = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase_ = self.model.generate(UpperCamelCase__, **UpperCamelCase__, **UpperCamelCase__ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for output_ids in model_outputs: lowerCAmelCase_ = { '''generated_text''': self.tokenizer.decode( UpperCamelCase__, skip_special_tokens=UpperCamelCase__, ) } records.append(UpperCamelCase__ ) return records
325
0
import itertools import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = 2 while True: if is_prime(lowerCamelCase__ ): yield num num += 1 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0_0_0_1 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowerCamelCase__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
652
import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase__ ) if number < 1: __lowerCamelCase : int = F"Input value of [number={number}] must be > 0" raise ValueError(lowerCamelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: __lowerCamelCase : Any = int(math.log(number // 3 , 2 ) ) + 2 __lowerCamelCase : List[Any] = [3, 5] __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : List[str] = 3 for block in range(1 , lowerCamelCase__ ): for _ in range(lowerCamelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a =0 try: a =proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
652
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _UpperCAmelCase ( unittest.TestCase): __lowercase : int = JukeboxTokenizer __lowercase : Any = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def lowerCamelCase__ ( self ): import torch _snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) _snake_case : Dict = tokenizer(**self.metas )["input_ids"] # fmt: off _snake_case : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self ): import torch _snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) _snake_case : Dict = tokenizer(**self.metas )["input_ids"] # fmt: off _snake_case : Tuple = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
87
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : str = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _UpperCAmelCase ( _snake_case): __lowercase : Optional[Any] = """openai-gpt""" __lowercase : Dict = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case_=4_04_78 , snake_case_=5_12 , snake_case_=7_68 , snake_case_=12 , snake_case_=12 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_="cls_index" , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=0.1 , **snake_case_ , ): _snake_case : Tuple = vocab_size _snake_case : Dict = n_positions _snake_case : Any = n_embd _snake_case : Any = n_layer _snake_case : Optional[int] = n_head _snake_case : Union[str, Any] = afn _snake_case : Dict = resid_pdrop _snake_case : str = embd_pdrop _snake_case : Union[str, Any] = attn_pdrop _snake_case : str = layer_norm_epsilon _snake_case : Union[str, Any] = initializer_range _snake_case : Any = summary_type _snake_case : List[str] = summary_use_proj _snake_case : Optional[int] = summary_activation _snake_case : Union[str, Any] = summary_first_dropout _snake_case : Optional[int] = summary_proj_to_labels super().__init__(**snake_case_ )
87
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase (_A , _A=() , _A=None , _A="no" , _A="29500" ): """simple docstring""" _lowerCAmelCase : Dict = False _lowerCAmelCase : int = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): _lowerCAmelCase : str = True elif "IPython" in sys.modules: _lowerCAmelCase : Tuple = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: _lowerCAmelCase : str = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , __snake_case ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: _lowerCAmelCase : Dict = 8 _lowerCAmelCase : Union[str, Any] = PrepareForLaunch(__snake_case , distributed_type='TPU' ) print(f'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*__snake_case ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__snake_case , master_addr='127.0.01' , master_port=__snake_case , mixed_precision=__snake_case ): _lowerCAmelCase : Optional[Any] = PrepareForLaunch(__snake_case , distributed_type='MULTI_GPU' ) print(f'Launching training on {num_processes} GPUs.' ) try: start_processes(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCAmelCase : Union[str, Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*__snake_case ) def lowercase (_A , _A=() , _A=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__snake_case , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): _lowerCAmelCase : List[str] = PrepareForLaunch(__snake_case , debug=__snake_case ) start_processes(__snake_case , args=__snake_case , nprocs=__snake_case , start_method='fork' )
444
'''simple docstring''' import math import sys def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = '''''' try: with open(__snake_case , '''rb''') as binary_file: lowerCAmelCase_ = binary_file.read() for dat in data: lowerCAmelCase_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''') sys.exit() def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = {'''0''': '''0''', '''1''': '''1'''} lowerCAmelCase_ ,lowerCAmelCase_ = '''''', '''''' lowerCAmelCase_ = len(__snake_case) for i in range(len(__snake_case)): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase_ = lexicon[curr_string] result += last_match_id lowerCAmelCase_ = last_match_id + '''0''' if math.loga(__snake_case).is_integer(): lowerCAmelCase_ = {} for curr_key in list(__snake_case): lowerCAmelCase_ = lexicon.pop(__snake_case) lowerCAmelCase_ = new_lex lowerCAmelCase_ = last_match_id + '''1''' index += 1 lowerCAmelCase_ = '''''' return result def snake_case_ ( __snake_case : str , __snake_case : str) -> None: lowerCAmelCase_ = 8 try: with open(__snake_case , '''wb''') as opened_file: lowerCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(__snake_case) , __snake_case) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('''10000000''') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__snake_case , 2).to_bytes(1 , byteorder='''big''')) except OSError: print('''File not accessible''') sys.exit() def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase_ = data_bits[counter:] lowerCAmelCase_ = data_bits[counter + 1 :] return data_bits def snake_case_ ( __snake_case : str , __snake_case : str) -> None: lowerCAmelCase_ = read_file_binary(__snake_case) lowerCAmelCase_ = remove_prefix(__snake_case) lowerCAmelCase_ = decompress_data(__snake_case) write_file_binary(__snake_case , __snake_case) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
274
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) _UpperCAmelCase = value else: _UpperCAmelCase = value return new_state_dict def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any]=False ): '''simple docstring''' _UpperCAmelCase = '''''' if is_panoptic: _UpperCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:256, :] _UpperCAmelCase = in_proj_bias[:256] _UpperCAmelCase = in_proj_weight[256:512, :] _UpperCAmelCase = in_proj_bias[256:512] _UpperCAmelCase = in_proj_weight[-256:, :] _UpperCAmelCase = in_proj_bias[-256:] def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _UpperCAmelCase = '''resnet101''' if "dc5" in model_name: _UpperCAmelCase = True _UpperCAmelCase = '''panoptic''' in model_name if is_panoptic: _UpperCAmelCase = 250 else: _UpperCAmelCase = 91 _UpperCAmelCase = '''huggingface/label-files''' _UpperCAmelCase = '''coco-detection-id2label.json''' _UpperCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load image processor _UpperCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' _UpperCAmelCase = ConditionalDetrImageProcessor(format=_SCREAMING_SNAKE_CASE ) # prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) _UpperCAmelCase = encoding['''pixel_values'''] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub _UpperCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''' , _SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _UpperCAmelCase = '''conditional_detr.''' + src rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE , is_panoptic=_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): _UpperCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: _UpperCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _UpperCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val # finally, create HuggingFace model and load state dict _UpperCAmelCase = ConditionalDetrForSegmentation(_SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=_SCREAMING_SNAKE_CASE , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion _UpperCAmelCase = conditional_detr(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
95
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Dict = logging.getLogger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f'val_{metric}' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class _a ( pl.Callback): """simple docstring""" def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : Tuple=True )->None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / '''test_results.txt''' _UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _UpperCAmelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , '''a+''' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = F'{key}: {val:.6f}\n' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict )->Union[str, Any]: try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase__ ( self : str , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule )->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''' ) @rank_zero_only def lowercase__ ( self : Optional[Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : List[str] )->Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
95
1
def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : int =0 snake_case__ : int =len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case__ : Optional[int] =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None snake_case__ : List[Any] =sorted_collection[point] if current_item == item: return point else: if point < left: snake_case__ : Any =left snake_case__ : Tuple =point elif point > right: snake_case__ : List[str] =right snake_case__ : Tuple =point else: if item < current_item: snake_case__ : List[str] =point - 1 else: snake_case__ : Optional[int] =point + 1 return None def lowercase_ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case__ : Tuple =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point + 1 , SCREAMING_SNAKE_CASE ) def lowercase_ ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if collection != sorted(SCREAMING_SNAKE_CASE ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowerCamelCase__ = 0 if debug == 1: lowerCamelCase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowerCamelCase__ = 67 lowerCamelCase__ = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
381
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase__ = '''src/diffusers''' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla lowerCamelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') lowerCamelCase__ = ''' {0} = None ''' lowerCamelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' lowerCamelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" snake_case__ : Tuple =_re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowercase_ ( ): """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : int =f.readlines() # Get to the point we do the actual imports for type checking snake_case__ : Optional[Any] =0 snake_case__ : Any ={} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case__ : List[str] =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 snake_case__ : List[Any] =[] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: snake_case__ : List[str] =lines[line_index] snake_case__ : Any =_re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: snake_case__ : List[Any] =objects else: line_index += 1 return backend_specific_objects def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowercase_ ( SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if backend_specific_objects is None: snake_case__ : int =read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case__ : Dict ={} for backend, objects in backend_specific_objects.items(): snake_case__ : str ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' snake_case__ : List[Any] ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) snake_case__ : int =dummy_file return dummy_files def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int]=False ): """simple docstring""" snake_case__ : Dict =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case__ : int ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. snake_case__ : List[Any] =os.path.join(SCREAMING_SNAKE_CASE , '''utils''' ) snake_case__ : str ={ backend: os.path.join(SCREAMING_SNAKE_CASE , F'''dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } snake_case__ : Tuple ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ : Optional[int] =f.read() else: snake_case__ : Union[str, Any] ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
381
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): def __init__( self : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str]=7 , lowerCamelCase : int=3 , lowerCamelCase : int=1_8 , lowerCamelCase : Tuple=3_0 , lowerCamelCase : str=4_0_0 , lowerCamelCase : Any=True , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=True , ): '''simple docstring''' a__ = size if size is not None else {"height": 1_8, "width": 1_8} a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize def __a ( self : Optional[Any] ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCamelCase__ ( __lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : Dict = ImageGPTImageProcessor if is_vision_available() else None def __a ( self : List[Any] ): '''simple docstring''' a__ = ImageGPTImageProcessingTester(self ) @property def __a ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[int] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "clusters" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) def __a ( self : List[str] ): '''simple docstring''' a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) a__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def __a ( self : int ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) a__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(lowerCamelCase , "image_processor.json" ) image_processor_first.to_json_file(lowerCamelCase ) a__ = self.image_processing_class.from_json_file(lowerCamelCase ).to_dict() a__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase ) def __a ( self : str ): '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase ) a__ = self.image_processing_class.from_pretrained(lowerCamelCase ).to_dict() a__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __a ( self : Optional[int] ): '''simple docstring''' pass def _lowerCamelCase () -> Optional[Any]: a__ = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) a__ = Image.open(dataset[4]["file"] ) a__ = Image.open(dataset[5]["file"] ) a__ = [imagea, imagea] return images @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' a__ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) a__ = prepare_images() # test non-batched a__ = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) a__ = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase ) # test batched a__ = image_processing(lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) a__ = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase )
289
'''simple docstring''' import argparse import json from tqdm import tqdm def _lowerCamelCase () -> Any: a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowerCamelCase , help="where to store parsed gold_data_path file" , ) a__ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: a__ = json.load(__lowerCamelCase ) for dpr_record in tqdm(__lowerCamelCase ): a__ = dpr_record["question"] a__ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
289
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
81
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : int = StableDiffusionXLImgaImgPipeline __a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __a : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} __a : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __a : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ): torch.manual_seed(0 ) __lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) __lowerCamelCase : List[Any] = CLIPTextModel(__a ) __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a ) __lowerCamelCase : List[Any] = CLIPTextModelWithProjection(__a ) __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a ) __lowerCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case_ ( self , __a , __a=0 ): __lowerCamelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __lowerCamelCase : Any = image / 2 + 0.5 if str(__a ).startswith('mps' ): __lowerCamelCase : Dict = torch.manual_seed(__a ) else: __lowerCamelCase : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) __lowerCamelCase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case_ ( self ): __lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Tuple = self.get_dummy_components() __lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) __lowerCamelCase : Dict = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Any = self.get_dummy_inputs(__a ) __lowerCamelCase : Tuple = sd_pipe(**__a ).images __lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : List[str] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case_ ( self ): pass def snake_case_ ( self ): __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) __lowerCamelCase : List[Any] = sd_pipe.to(__a ) __lowerCamelCase : Optional[int] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds __lowerCamelCase : Tuple = self.get_dummy_inputs(__a ) __lowerCamelCase : Dict = 3 * ['this is a negative prompt'] __lowerCamelCase : Optional[int] = negative_prompt __lowerCamelCase : List[str] = 3 * [inputs['prompt']] __lowerCamelCase : Any = sd_pipe(**__a ) __lowerCamelCase : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCamelCase : Dict = self.get_dummy_inputs(__a ) __lowerCamelCase : str = 3 * ['this is a negative prompt'] __lowerCamelCase : List[str] = 3 * [inputs.pop('prompt' )] ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[str] = sd_pipe.encode_prompt(__a , negative_prompt=__a ) __lowerCamelCase : Union[str, Any] = sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) __lowerCamelCase : Any = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __a , __a="cpu" , __a=torch.floataa , __a=0 ): __lowerCamelCase : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowerCamelCase : List[str] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) __lowerCamelCase : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a ) __lowerCamelCase : Optional[int] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCamelCase : Dict = self.get_inputs(__a ) __lowerCamelCase : Optional[Any] = pipe(**__a ).images __lowerCamelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCamelCase : str = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
594
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : int = 5_0 ): lowerCamelCase_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
66
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowercase : List[str] = ["""bert-base-uncased""", """bert-base-cased"""] __lowercase : Tuple = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCamelCase_ = TFAutoModel.from_config(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(UpperCamelCase__ ) lowerCamelCase_ = self.bert(**UpperCamelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> int: '''simple docstring''' super().setUp() lowerCamelCase_ = [ BertTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase_ = [TFBertTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(UpperCamelCase__ , use_fast_bert_tokenizer=UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tokenizer(UpperCamelCase__ , return_tensors='''tf''' , padding='''longest''' ) lowerCamelCase_ = tf_tokenizer(UpperCamelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf_tokenizer(self.paired_sentences ) lowerCamelCase_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.function(UpperCamelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tf.constant(UpperCamelCase__ ) lowerCamelCase_ = compiled_tokenizer(UpperCamelCase__ ) lowerCamelCase_ = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase ( self ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = ModelToSave(tokenizer=UpperCamelCase__ ) lowerCamelCase_ = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase_ = model(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(UpperCamelCase__ ) / '''saved.model''' model.save(UpperCamelCase__ ) lowerCamelCase_ = tf.keras.models.load_model(UpperCamelCase__ ) lowerCamelCase_ = loaded_model(UpperCamelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
66
1
import numpy as np def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = int(np.ceil((x_end - xa) / h ) ) snake_case_ = np.zeros((n + 1,) ) snake_case_ = ya snake_case_ = xa for k in range(lowercase__ ): snake_case_ = f(lowercase__ , y[k] ) snake_case_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case_ = f(x + h , y[k] + h * ka ) snake_case_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
187
def a(lowercase__ ): '''simple docstring''' snake_case_ = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case_ , snake_case_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": A = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
187
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : List[Any] = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[Any] = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
0
from __future__ import annotations from collections.abc import Iterator class _lowercase : def __init__( self , a ): snake_case__ : List[str] =value snake_case__ : Node | None =None snake_case__ : Node | None =None class _lowercase : def __init__( self , a ): snake_case__ : List[str] =tree def lowercase__ ( self , a ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
385
import numpy as np def A__ ( _a : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
385
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : str = logging.get_logger(__name__) A__ : Any = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} A__ : int = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } A__ : Dict = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): '''simple docstring''' with open(lowerCAmelCase , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read() ) UpperCAmelCase__ : Optional[int] = collections.OrderedDict() UpperCAmelCase__ : List[str] = collections.OrderedDict() UpperCAmelCase__ : int = collections.OrderedDict() with open(lowerCAmelCase , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : Dict = f.readlines() UpperCAmelCase__ : List[str] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCAmelCase ): UpperCAmelCase__ : List[Any] = b UpperCAmelCase__ : str = idx for wd in b: UpperCAmelCase__ : str = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|startoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase=False , **__UpperCamelCase , )-> Dict: super().__init__( unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , do_clean_text=__UpperCamelCase , **__UpperCamelCase , ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase__ : List[Any] = do_clean_text UpperCAmelCase__ : int = load_vocab_and_emoji(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCAmelCase__ ( self )-> Union[str, Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowerCAmelCase__ ( self )-> Optional[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return self.subword_tokenizer.tokenize(__UpperCamelCase , clean=self.do_clean_text ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[int]: return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: return self.subword_tokenizer.convert_id_to_token(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : str = "".join(__UpperCamelCase ).strip() return out_string def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[int]: UpperCAmelCase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: UpperCAmelCase__ : List[str] = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: UpperCAmelCase__ : Any = 0 if os.path.isdir(__UpperCamelCase ): UpperCAmelCase__ : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase__ : Tuple = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase__ : str = token_index writer.write(",".join(__UpperCamelCase ) + "\n" ) index += 1 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __UpperCamelCase ) return vocab_file, emoji_file class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : Dict = vocab # same as swe UpperCAmelCase__ : Optional[int] = ids_to_tokens # same as bpe UpperCAmelCase__ : str = emoji UpperCAmelCase__ : List[Any] = np.max([len(__UpperCamelCase ) for w in self.vocab.keys()] ) UpperCAmelCase__ : Tuple = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase__ : Optional[int] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase__ : List[str] = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase__ : Any = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : List[str] = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : int = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase__ : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase__ : Tuple = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase__ : Optional[int] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self )-> List[Any]: return len(self.ids_to_tokens ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<URL>" , __UpperCamelCase ) UpperCAmelCase__ : Any = self.content_repattera.sub("<EMAIL>" , __UpperCamelCase ) UpperCAmelCase__ : str = self.content_repattera.sub("<TEL>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<DATE>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.content_repattera.sub("<DATE>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<PRICE>" , __UpperCamelCase ) UpperCAmelCase__ : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ : Union[str, Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> List[Any]: UpperCAmelCase__ : Optional[int] = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Any = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Union[str, Any] = text.replace("\r\n" , "<BR>" ) UpperCAmelCase__ : List[str] = text.replace("\n" , "<BR>" ) UpperCAmelCase__ : Any = text.replace("\r" , "<BR>" ) UpperCAmelCase__ : int = text.replace("\t" , "<TAB>" ) UpperCAmelCase__ : str = text.replace("—" , "ー" ) UpperCAmelCase__ : Optional[Any] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ : Any = text.replace(__UpperCamelCase , __UpperCamelCase ) if clean: UpperCAmelCase__ : Any = self.clean_text(__UpperCamelCase ) def check_simbol(__UpperCamelCase ): UpperCAmelCase__ : Dict = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 2: UpperCAmelCase__ : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(__UpperCamelCase ): UpperCAmelCase__ : Any = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 3: UpperCAmelCase__ : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_8080 and c <= 0Xe2_b07f: return True return False UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : str = [] while pos < len(__UpperCamelCase ): UpperCAmelCase__ : Any = min(len(__UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase__ : Any = [] # (token_id, token, pos) for e in range(__UpperCamelCase , __UpperCamelCase , -1 ): UpperCAmelCase__ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCamelCase ) > 2: UpperCAmelCase__ : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCamelCase ) > 0: # the smallest token_id is adopted UpperCAmelCase__ : List[str] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[0] )[0] result.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = e else: UpperCAmelCase__ : Union[str, Any] = pos + 1 UpperCAmelCase__ : Optional[int] = text[pos:end] if check_simbol(__UpperCamelCase ): result.append("<KIGOU>" ) elif checkuae(__UpperCamelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase__ : List[Any] = end return result def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase="\n" )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__UpperCamelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : str = "".join(__UpperCamelCase ) return text
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCAmelCase =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A__ = eval_examples A__ = post_process_function A__ = quant_trainer_args A__ = 1_28 # default number of calibration samples def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) A__ = calib_dataset if calib_dataset is not None else self.calib_dataset A__ = self._remove_unused_columns(UpperCamelCase__ , description="Calibration" ) return DataLoader( UpperCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase__ , ) def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' A__ = self.train_dataset if calib_dataset is None else calib_dataset A__ = self.get_calib_dataloader(UpperCamelCase__ ) A__ = self.model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args , calib=UpperCamelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase__ ): # Prediction step A__ , A__ , A__ = self.prediction_step(UpperCamelCase__ , UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase__ , self.quant_trainer_args ) A__ = model def lowercase_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = "eval" ): '''simple docstring''' A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) self.log(UpperCamelCase__ ) else: A__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" ): '''simple docstring''' A__ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , "predict" ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__="./" ): '''simple docstring''' A__ = self.eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = next(iter(UpperCamelCase__ ) ) # saving device - to make it consistent A__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple A__ = tuple(v.to(UpperCamelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer A__ = True A__ = self.model.to(UpperCamelCase__ ) model.eval() model.float() A__ = model.module if hasattr(UpperCamelCase__ , "module" ) else model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args ) A__ = os.path.join(UpperCamelCase__ , "model.onnx" ) logger.info(f"""exporting model to {output_model_file}""" ) A__ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , export_params=UpperCamelCase__ , opset_version=13 , do_constant_folding=UpperCamelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCamelCase__ , ) logger.info("onnx export finished" )
337
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __a ( A ) -> Union[str, Any]: '''simple docstring''' A__ = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __a ( A , A ) -> str: '''simple docstring''' A__ = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __a ( A ) -> List[str]: '''simple docstring''' A__ = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def __a ( ) -> Dict: '''simple docstring''' A__ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __a ( A , A , A , A ) -> int: '''simple docstring''' A__ = "imagenet-1k-id2label.json" A__ = 1_000 A__ = "huggingface/label-files" A__ = num_labels A__ = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) A__ = {int(A ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = A__ = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": A__ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": A__ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ = [2, 2, 20] A__ = [3, 12, 16] A__ = [192, 768, 1_024] A__ = CvtForImageClassification(A ) A__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) A__ = image_size A__ = torch.load(A , map_location=torch.device("cpu" ) ) A__ = OrderedDict() A__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ = list_of_state_dict + cls_token(A ) A__ = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): A__ = list_of_state_dict + attention(A , A ) A__ = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): A__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=384, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCAmelCase =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
337
1
def __lowerCAmelCase ( __magic_name__ , __magic_name__ = " " ): _lowercase: Dict = [] _lowercase: Dict = 0 for index, char in enumerate(__magic_name__ ): if char == separator: split_words.append(string[last_index:index] ) _lowercase: Dict = index + 1 elif index + 1 == len(__magic_name__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
721
def __lowerCAmelCase ( __magic_name__ ): _lowercase: Any = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCAmelCase ( __magic_name__ = 1_0_0 ): _lowercase: Any = 1 _lowercase: Optional[int] = 2 for i in range(2 , max_n + 1 ): _lowercase: Any = pre_numerator _lowercase: Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 _lowercase: Dict = cur_numerator _lowercase: Dict = e_cont * pre_numerator + temp return sum_digits(__magic_name__ ) if __name__ == "__main__": print(f'''{solution() = }''')
206
0
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCAmelCase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowerCAmelCase = spec.loader.load_module() __lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCAmelCase = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __lowerCAmelCase = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __UpperCamelCase ( ): """simple docstring""" a_ = [] for config_class in list(CONFIG_MAPPING.values() ): a_ = False # source code of `config_class` a_ = inspect.getsource(a__ ) a_ = _re_checkpoint.findall(a__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` a_ , a_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link a_ = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: a_ = True break a_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a__ ) if len(a__ ) > 0: a_ = '\n'.join(sorted(a__ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
536
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowerCamelCase__ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowerCamelCase__ = 0 lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = '''left''' def __init__( self : int , lowercase_ : Optional[int] , lowercase_ : Dict=False , lowercase_ : Any=True , lowercase_ : Any=False , lowercase_ : Any="<s>" , lowercase_ : Dict="</s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Optional[int]="<sep>" , lowercase_ : Optional[Any]="<pad>" , lowercase_ : Tuple="<cls>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : Dict=["<eop>", "<eod>"] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : int , ) -> None: """simple docstring""" _UpperCamelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) _UpperCamelCase = 3 _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase_) @property def __UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" return len(self.sp_model) def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[int]) -> Any: """simple docstring""" _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : Tuple , lowercase_ : List[str]) -> Dict: """simple docstring""" _UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any]) -> Tuple: """simple docstring""" if self.remove_space: _UpperCamelCase = " ".join(inputs.strip().split()) else: _UpperCamelCase = inputs _UpperCamelCase = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: _UpperCamelCase = unicodedata.normalize("NFKD" , lowercase_) _UpperCamelCase = "".join([c for c in outputs if not unicodedata.combining(lowercase_)]) if self.do_lower_case: _UpperCamelCase = outputs.lower() return outputs def __UpperCAmelCase ( self : str , lowercase_ : str) -> List[str]: """simple docstring""" _UpperCamelCase = self.preprocess_text(lowercase_) _UpperCamelCase = self.sp_model.encode(lowercase_ , out_type=lowercase_) _UpperCamelCase = [] for piece in pieces: if len(lowercase_) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): _UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _UpperCamelCase = cur_pieces[1:] else: _UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowercase_) else: new_pieces.append(lowercase_) return new_pieces def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Tuple) -> List[str]: """simple docstring""" return self.sp_model.PieceToId(lowercase_) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : int) -> Any: """simple docstring""" return self.sp_model.IdToPiece(lowercase_) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCamelCase = "".join(lowercase_).replace(lowercase_ , " ").strip() return out_string def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : bool = False , lowercase_ : bool = None , lowercase_ : bool = True , **lowercase_ : int , ) -> str: """simple docstring""" _UpperCamelCase = kwargs.pop("use_source_tokenizer" , lowercase_) _UpperCamelCase = self.convert_ids_to_tokens(lowercase_ , skip_special_tokens=lowercase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase = [] _UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_)) _UpperCamelCase = [] sub_texts.append(lowercase_) else: current_sub_text.append(lowercase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCamelCase = "".join(lowercase_) _UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase = self.clean_up_tokenization(lowercase_) return clean_text else: return text def __UpperCAmelCase ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCAmelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is not None: return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1, 1] return ([0] * len(lowercase_)) + [1, 1] def __UpperCAmelCase ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __UpperCAmelCase ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , "wb") as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
547
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _UpperCamelCase : Any = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _UpperCamelCase : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase_ ( snake_case_): lowerCamelCase__ : Dict = """maskformer""" lowerCamelCase__ : int = {"""hidden_size""": """mask_feature_size"""} lowerCamelCase__ : str = ["""resnet""", """swin"""] lowerCamelCase__ : List[str] = ["""detr"""] def __init__( self , a = 2_5_6 , a = 2_5_6 , a = 0.1 , a = False , a = None , a = None , a = 0.02 , a = 1.0 , a = 1.0 , a = 1.0 , a = 20.0 , a = None , **a , ) -> Optional[int]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Optional[int] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(a , a ): lowercase__ : str = backbone_config.pop('model_type' ) lowercase__ : int = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Optional[int] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Optional[int] = ( decoder_config.pop('model_type' ) if isinstance(a , a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(a , a ): lowercase__ : str = CONFIG_MAPPING[decoder_type] lowercase__ : List[Any] = config_class.from_dict(a ) lowercase__ : Tuple = backbone_config lowercase__ : int = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : int = init_std lowercase__ : Dict = init_xavier_std # Hungarian matcher && loss lowercase__ : int = cross_entropy_weight lowercase__ : Tuple = dice_weight lowercase__ : Dict = mask_weight lowercase__ : int = use_auxiliary_loss lowercase__ : Tuple = no_object_weight lowercase__ : List[Any] = output_auxiliary_logits lowercase__ : Optional[int] = self.decoder_config.encoder_attention_heads lowercase__ : Tuple = self.decoder_config.num_hidden_layers super().__init__(**a ) @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> List[Any]: return cls( backbone_config=a , decoder_config=a , **a , ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = copy.deepcopy(self.__dict__ ) lowercase__ : Optional[int] = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : str = self.__class__.model_type return output
701
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=1_0 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=0.9 , a=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = patch_size lowercase__ : Tuple = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : Optional[int] = is_training lowercase__ : int = use_labels lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Union[str, Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : str = mask_ratio lowercase__ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : Optional[Any] = (image_size // patch_size) ** 2 lowercase__ : str = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : str = int(mask_ratio * self.seq_length ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : Dict = VideoMAEModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Any = torch.ones((self.num_masks,) ) lowercase__ : str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase__ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase__ : str = model(a , a ) # model only returns predictions for masked patches lowercase__ : str = mask.sum().item() lowercase__ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase__ : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = False def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VideoMAEModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self , a , a , a=False ) -> Optional[int]: lowercase__ : Union[str, Any] = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) lowercase__ : Any = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase__ : Union[str, Any] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: lowercase__ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def _UpperCAmelCase ( self ) -> str: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.has_attentions: pass else: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : Optional[Any] = True lowercase__ : int = False lowercase__ : Any = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : List[str] = len(a ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : List[str] = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(a , a , a ): lowercase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) lowercase__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(a , a , a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> List[Any]: pass def a_ ( ): '''simple docstring''' lowercase__ : int = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( a ) lowercase__ : str = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : str = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : List[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(a ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(a , return_tensors='pt' ).to(a ) # add boolean mask, indicating which patches to mask lowercase__ : Union[str, Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowercase__ : str = torch.load(a ) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a ) # verify the logits lowercase__ : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowercase__ : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : List[Any] = torch.tensor([0.5_142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a ).to( a ) with torch.no_grad(): lowercase__ : Any = model(**a ) lowercase__ : List[Any] = torch.tensor(torch.tensor([0.6_469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4 ) )
645
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
'''simple docstring''' a : Dict = range(2, 20 + 1) a : Optional[int] = [10**k for k in range(ks[-1] + 1)] a : dict[int, dict[int, list[list[int]]]] = {} def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> int: __snake_case = sum(a_i[j] for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ) __snake_case = sum(a_i[j] * base[j] for j in range(min(len(_UpperCAmelCase ) , _UpperCAmelCase ) ) ) __snake_case , __snake_case = 0, 0 __snake_case = n - i __snake_case = memo.get(_UpperCAmelCase ) if sub_memo is not None: __snake_case = sub_memo.get(_UpperCAmelCase ) if jumps is not None and len(_UpperCAmelCase ) > 0: # find and make the largest jump without going over __snake_case = -1 for _k in range(len(_UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __snake_case = _k break if max_jump >= 0: __snake_case , __snake_case , __snake_case = jumps[max_jump] # since the difference between jumps is cached, add c __snake_case = diff + c for j in range(min(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): __snake_case , __snake_case = divmod(_UpperCAmelCase , 10 ) if new_c > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __snake_case = [] else: __snake_case = {c: []} __snake_case = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __snake_case , __snake_case = next_term(_UpperCAmelCase , k - 1 , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __snake_case , __snake_case = compute(_UpperCAmelCase , _UpperCAmelCase , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped __snake_case = sub_memo[c] # keep jumps sorted by # of terms skipped __snake_case = 0 while j < len(_UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Optional[int]: if i >= n: return 0, i if k > len(_UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(_UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __snake_case = i __snake_case , __snake_case , __snake_case = 0, 0, 0 for j in range(len(_UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __snake_case = ds_c + ds_b diff += addend __snake_case = 0 for j in range(_UpperCAmelCase ): __snake_case = a_i[j] + addend __snake_case , __snake_case = divmod(_UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return diff, i - start_i def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> Tuple: for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): __snake_case = digits[j] + addend if s >= 10: __snake_case , __snake_case = divmod(_UpperCAmelCase , 10 ) __snake_case = addend // 10 + quotient else: __snake_case = s __snake_case = addend // 10 if addend == 0: break while addend > 0: __snake_case , __snake_case = divmod(_UpperCAmelCase , 10 ) digits.append(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : int = 10**15 ) -> int: __snake_case = [1] __snake_case = 1 __snake_case = 0 while True: __snake_case , __snake_case = next_term(_UpperCAmelCase , 20 , i + dn , _UpperCAmelCase ) dn += terms_jumped if dn == n - i: break __snake_case = 0 for j in range(len(_UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
69
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = PhobertTokenizer _snake_case = False def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] UpperCamelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) UpperCamelCase = ['''#version: 0.2''', '''l à</w>'''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = '''Tôi là VinAI Research''' UpperCamelCase = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = '''Tôi là VinAI Research''' UpperCamelCase = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() UpperCamelCase = tokenizer.tokenize(__lowerCAmelCase ) print(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
707
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Tuple = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] snake_case_ : Union[str, Any] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : List[str]): UpperCamelCase = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase = int(re.match(R'''.*layer_(\d*).*''', _UpperCAmelCase)[1]) layer_number -= 3 return f'h.{layer_number}.' + key def __snake_case ( _UpperCAmelCase : str): if dtype == torch.bool: return 1 / 8 UpperCamelCase = re.search(R'''[^\d](\d+)$''', str(_UpperCAmelCase)) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.') UpperCamelCase = int(bit_search.groups()[0]) return bit_size // 8 def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int]): # Construct model if bloom_config_file == "": UpperCamelCase = BloomConfig() else: UpperCamelCase = BloomConfig.from_json_file(_UpperCAmelCase) if shard_model: UpperCamelCase = os.listdir(_UpperCAmelCase) UpperCamelCase = sorted(filter(lambda _UpperCAmelCase: s.startswith('''layer''') and "model_00" in s, _UpperCAmelCase)) UpperCamelCase = {'''weight_map''': {}, '''metadata''': {}} UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = BloomConfig() for j, file in enumerate(_UpperCAmelCase): print('''Processing file: {}'''.format(_UpperCAmelCase)) UpperCamelCase = None for i in range(_UpperCAmelCase): # load all TP files UpperCamelCase = file.replace('''model_00''', f'model_0{i}') UpperCamelCase = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase), map_location='''cpu''') # Rename keys in the transformers names UpperCamelCase = list(temp.keys()) for key in keys: UpperCamelCase = temp.pop(_UpperCAmelCase) if tensors is None: UpperCamelCase = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks UpperCamelCase = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): UpperCamelCase = tensors[key] / pretraining_tp torch.save( _UpperCAmelCase, os.path.join( _UpperCAmelCase, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1).zfill(5), str(len(_UpperCAmelCase)).zfill(5)), ), ) for key in tensors.keys(): UpperCamelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: UpperCamelCase = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1).zfill(5), str(len(_UpperCAmelCase)).zfill(5)) UpperCamelCase = BloomConfig() UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase = total_size with open(_UpperCAmelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) with open(os.path.join(_UpperCAmelCase, WEIGHTS_NAME + '''.index.json'''), '''w''', encoding='''utf-8''') as f: UpperCamelCase = json.dumps(_UpperCAmelCase, indent=2, sort_keys=_UpperCAmelCase) + '''\n''' f.write(_UpperCAmelCase) else: UpperCamelCase = BloomModel(_UpperCAmelCase) UpperCamelCase = os.listdir(_UpperCAmelCase) UpperCamelCase = sorted(filter(lambda _UpperCAmelCase: s.startswith('''layer''') and "model_00" in s, _UpperCAmelCase)) UpperCamelCase = None for i, file in enumerate(_UpperCAmelCase): UpperCamelCase = None for i in range(_UpperCAmelCase): # load all TP files UpperCamelCase = file.replace('''model_00''', f'model_0{i}') UpperCamelCase = torch.load(os.path.join(_UpperCAmelCase, _UpperCAmelCase), map_location='''cpu''') # Rename keys in the transformers names UpperCamelCase = list(temp.keys()) for key in keys: UpperCamelCase = temp.pop(_UpperCAmelCase) if tensors is None: UpperCamelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks UpperCamelCase = torch.cat([tensors[key], temp[key]], dim=_UpperCAmelCase) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCAmelCase) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): UpperCamelCase = tensors[key] / pretraining_tp UpperCamelCase = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: UpperCamelCase = set(other_keys.missing_keys) else: UpperCamelCase = missing_keys.intersection(set(other_keys.missing_keys)) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase) UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}') if config.torch_dtype is not None: UpperCamelCase = model.to(config.torch_dtype) torch.save(model.state_dict(), _UpperCAmelCase) print(f'Save configuration file to {pytorch_config_dump_path}') with open(_UpperCAmelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": snake_case_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) snake_case_ : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
350
0
import random def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =a[left_index] lowerCamelCase__: Optional[int] =left_index + 1 for j in range(left_index + 1 , __a ): if a[j] < pivot: lowerCamelCase__ , lowerCamelCase__: Tuple =a[i], a[j] i += 1 lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =a[i - 1], a[left_index] return i - 1 def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" if left < right: lowerCamelCase__: Dict =random.randint(__a , right - 1 ) lowerCamelCase__ , lowerCamelCase__: Any =( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase__: Any =partition(__a , __a , __a ) quick_sort_random( __a , __a , __a ) # recursive quicksort to the left of the pivot point quick_sort_random( __a , pivot_index + 1 , __a ) # recursive quicksort to the right of the pivot point def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: List[Any] =input("Enter numbers separated by a comma:\n" ).strip() lowerCamelCase__: Optional[Any] =[int(__a ) for item in user_input.split("," )] quick_sort_random(__a , 0 , len(__a ) ) print(__a ) if __name__ == "__main__": main()
59
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=10 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[1, 1, 2, 1] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=3 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = TFRegNetModel(config=UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __lowercase :Union[str, Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowercase :Optional[int] = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowercase :List[str] = False __lowercase :List[str] = False __lowercase :List[Any] = False __lowercase :Dict = False __lowercase :List[str] = False def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase__ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase_ = model_class(UpperCamelCase__ ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__={} ): lowerCamelCase_ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple() def recursive_check(UpperCamelCase__ , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ): recursive_check(UpperCamelCase__ , UpperCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCamelCase__ , UpperCamelCase__ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(UpperCamelCase__ , UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {'''output_hidden_states''': True} ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {'''output_hidden_states''': True} ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( ): lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase__ , return_tensors='''tf''' ) # forward pass lowerCamelCase_ = model(**UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase_ = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 )
142
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowerCamelCase_ ( *__magic_name__ : int , **__magic_name__ : int ): """simple docstring""" pass @is_pipeline_test @require_vision class UpperCAmelCase ( unittest.TestCase ): @require_torch def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__magic_name__ ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], ] , ) @require_tf def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_classifier(__magic_name__ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], [ {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, {"""score""": 0.333, """label""": ANY(__magic_name__ )}, ], ] , ) @slow @require_torch def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_classifier(__magic_name__ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) UpperCamelCase = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
181
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _lowercase ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase = DPTConfig() if "large" in checkpoint_url: UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 24 UpperCamelCase = 16 UpperCamelCase = [5, 11, 17, 23] UpperCamelCase = [256, 512, 1_024, 1_024] UpperCamelCase = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase = True UpperCamelCase = 150 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """ade20k-id2label.json""" UpperCamelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) ) , """r""" ) ) UpperCamelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = [1, 150, 480, 480] return config, expected_shape def _lowercase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCamelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCamelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: UpperCamelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCamelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCamelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCamelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCamelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCamelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCamelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCamelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCamelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCamelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: UpperCamelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCamelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCamelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCamelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCamelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCamelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCamelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCamelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCamelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCamelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCamelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) UpperCamelCase = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[: config.hidden_size, :] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def _lowercase ( ): """simple docstring""" UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase , UpperCamelCase = get_dpt_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict from URL UpperCamelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) # rename keys for key in state_dict.copy().keys(): UpperCamelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model UpperCamelCase = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # Check outputs on an image UpperCamelCase = 480 if """ade""" in checkpoint_url else 384 UpperCamelCase = DPTImageProcessor(size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) # forward pass UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ).logits if """ade""" in checkpoint_url else model(**SCREAMING_SNAKE_CASE_ ).predicted_depth # Assert logits UpperCamelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCamelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE_ ) ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) __snake_case = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
181
1
import qiskit def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __snake_case : Optional[Any] = qiskit.QuantumCircuit(__lowerCamelCase , __lowerCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __snake_case : List[Any] = qiskit.execute(__lowerCamelCase , __lowerCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
81
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : Any = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
81
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Optional[int] = 16 a_ : Union[str, Any] = 32 def a__ ( __lowercase , __lowercase = 16 ) -> Dict: _A = AutoTokenizer.from_pretrained("bert-base-cased" ) _A = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) _A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _A = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A = 16 elif accelerator.mixed_precision != "no": _A = 8 else: _A = None return tokenizer.pad( __UpperCamelCase , padding="longest" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _A = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) _A = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Any = mocked_dataloaders # noqa: F811 def a__ ( __lowercase , __lowercase ) -> List[Any]: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __UpperCamelCase ) == "1": _A = 2 # New Code # _A = int(args.gradient_accumulation_steps ) _A = int(args.local_sgd_steps ) # Initialize accelerator _A = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A = config["lr"] _A = int(config["num_epochs"] ) _A = int(config["seed"] ) _A = int(config["batch_size"] ) _A = evaluate.load("glue" , "mrpc" ) set_seed(__UpperCamelCase ) _A , _A = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A = model.to(accelerator.device ) # Instantiate optimizer _A = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler _A = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): _A = model(**__UpperCamelCase ) _A = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _A = model(**__UpperCamelCase ) _A = outputs.logits.argmax(dim=-1 ) _A , _A = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) _A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __UpperCamelCase ) def a__ ( ) -> List[Any]: _A = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__UpperCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__UpperCamelCase , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _A = parser.parse_args() _A = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
713
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class snake_case ( _UpperCamelCase): def __init__( self : List[Any] , a__ : Any ) -> Any: '''simple docstring''' _A = data def __iter__( self : List[str] ) -> str: '''simple docstring''' for element in self.data: yield element def a__ ( __lowercase=True ) -> Tuple: _A = Accelerator(even_batches=__lowercase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def a__ ( __lowercase , __lowercase , __lowercase , __lowercase = False ) -> Union[str, Any]: if iterable: _A = DummyIterableDataset(torch.as_tensor(range(__lowercase ) ) ) else: _A = TensorDataset(torch.as_tensor(range(__lowercase ) ) ) _A = DataLoader(__lowercase , batch_size=__lowercase ) _A = accelerator.prepare(__lowercase ) return dl def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Dict: _A = create_dataloader(accelerator=__lowercase , dataset_size=__lowercase , batch_size=__lowercase ) _A = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def a__ ( ) -> List[str]: _A = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def a__ ( ) -> List[Any]: _A = create_accelerator(even_batches=__lowercase ) verify_dataloader_batch_sizes( __lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def a__ ( ) -> int: _A = create_accelerator(even_batches=__lowercase ) _A = torch.nn.Linear(1 , 1 ) _A = accelerator.prepare(__lowercase ) _A = create_dataloader(__lowercase , dataset_size=3 , batch_size=1 ) _A = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowercase ): _A = ddp_model(batch[0].float() ) _A = output.sum() loss.backward() batch_idxs.append(__lowercase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def a__ ( __lowercase ) -> List[str]: with warnings.catch_warnings(record=__lowercase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowercase ) assert "only supported for multi-GPU" in str(w[-1].message ) def a__ ( ) -> Tuple: _A = True _A = False _A = create_accelerator(even_batches=__lowercase ) _A = torch.nn.Linear(1 , 1 ) _A = accelerator.prepare(__lowercase ) _A = create_dataloader(__lowercase , dataset_size=3 , batch_size=1 ) _A = create_dataloader(__lowercase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase ): _A = train_dl.batch_sampler.even_batches _A = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def a__ ( ) -> int: _A = True _A = False _A = create_accelerator(even_batches=__lowercase ) _A = torch.nn.Linear(1 , 1 ) _A = accelerator.prepare(__lowercase ) create_dataloader(__lowercase , dataset_size=3 , batch_size=1 , iterable=__lowercase ) _A = create_dataloader(__lowercase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase ): _A = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def a__ ( ) -> Optional[Any]: _A = create_accelerator() _A = torch.nn.Linear(1 , 1 ) _A = accelerator.prepare(__lowercase ) create_dataloader(__lowercase , dataset_size=3 , batch_size=1 , iterable=__lowercase ) with warnings.catch_warnings(record=__lowercase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowercase ): pass assert issubclass(w[-1].category , __lowercase ) assert "only supported for map-style datasets" in str(w[-1].message ) def a__ ( ) -> Optional[Any]: _A = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) _A = accelerator.state.distributed_type _A = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowercase ) _A = original_state if __name__ == "__main__": main()
621
0
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = size A__ = [0] * size A__ = [0] * size @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index | (index + 1) @staticmethod def UpperCamelCase ( __lowerCamelCase ): return (index & (index + 1)) - 1 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = value while index < self.size: A__ = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: A__ = value else: A__ = max(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = self.get_next(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): right -= 1 # Because of right is exclusive A__ = 0 while left <= right: A__ = self.get_prev(__lowerCamelCase ) if left <= current_left: A__ = max(__lowerCamelCase,self.tree[right] ) A__ = current_left else: A__ = max(__lowerCamelCase,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
190
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase__( UpperCamelCase__ : Callable[[int | float], int | float] , UpperCamelCase__ : int | float , UpperCamelCase__ : int | float , UpperCamelCase__ : int = 1_00 , )->float: A__ = x_start A__ = fnc(UpperCamelCase__ ) A__ = 0.0 for _ in range(UpperCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length A__ = (x_end - x_start) / steps + xa A__ = fnc(UpperCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A__ = xa A__ = fxa return length if __name__ == "__main__": def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] )->Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') a__: str = 10 while i <= 100_000: print(F"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
190
1
'''simple docstring''' from __future__ import annotations def snake_case (UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = 2 lowerCamelCase__ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__snake_case ) if n > 1: factors.append(__snake_case ) return factors if __name__ == "__main__": import doctest doctest.testmod()
705
import math def snake_case (UpperCamelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case (UpperCamelCase : float = 0.1 ): '''simple docstring''' lowerCamelCase__ = 3 lowerCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
235
0
import logging import os from .state import PartialState class lowerCAmelCase_ ( logging.LoggerAdapter ): @staticmethod def UpperCamelCase_ ( _A : Any ): _UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : str , *_A : int , **_A : List[Any] ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCamelCase = kwargs.pop('''main_process_only''' , _A ) _UpperCamelCase = kwargs.pop('''in_order''' , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: _UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCamelCase , _UpperCamelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _snake_case ( __snake_case , __snake_case = None ): if log_level is None: _UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __snake_case ) _UpperCamelCase = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
10
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A__ : Union[str, Any] = random.Random() def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any]=1.0 ,__UpperCamelCase : Dict=None ,__UpperCamelCase : List[Any]=None ): if rng is None: lowerCAmelCase_ : List[Any] = global_rng lowerCAmelCase_ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __snake_case ( unittest.TestCase ): def __init__( self : Union[str, Any] , A_ : Dict , A_ : Optional[Any]=7 , A_ : Union[str, Any]=4_0_0 , A_ : Dict=2_0_0_0 , A_ : Dict=1 , A_ : Optional[Any]=0.0 , A_ : Tuple=1_6_0_0_0 , A_ : Any=True , A_ : Any=8_0 , A_ : str=1_6 , A_ : Union[str, Any]=6_4 , A_ : List[Any]="hann_window" , A_ : Union[str, Any]=8_0 , A_ : Dict=7_6_0_0 , A_ : List[str]=1e-10 , A_ : Union[str, Any]=True , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : str = min_seq_length lowerCAmelCase_ : Optional[int] = max_seq_length lowerCAmelCase_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : List[Any] = feature_size lowerCAmelCase_ : Any = padding_value lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : str = do_normalize lowerCAmelCase_ : str = num_mel_bins lowerCAmelCase_ : List[str] = hop_length lowerCAmelCase_ : Tuple = win_length lowerCAmelCase_ : Tuple = win_function lowerCAmelCase_ : Optional[int] = fmin lowerCAmelCase_ : List[str] = fmax lowerCAmelCase_ : Optional[Any] = mel_floor lowerCAmelCase_ : Optional[Any] = return_attention_mask def UpperCAmelCase__ ( self : List[str]): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCAmelCase__ ( self : Optional[int] , A_ : Any=False , A_ : List[str]=False): def _flatten(A_ : Tuple): return list(itertools.chain(*A_)) if equal_length: lowerCAmelCase_ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCAmelCase_ : Dict = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCAmelCase_ : Optional[Any] = [np.asarray(A_) for x in speech_inputs] return speech_inputs def UpperCAmelCase__ ( self : Tuple , A_ : Optional[Any]=False , A_ : Dict=False): if equal_length: lowerCAmelCase_ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size lowerCAmelCase_ : Tuple = [ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCAmelCase_ : Optional[int] = [np.asarray(A_) for x in speech_inputs] return speech_inputs @require_torch class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = SpeechTaFeatureExtractor def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = SpeechTaFeatureExtractionTester(self) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int): self.assertTrue(np.all(np.mean(A_ , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(A_ , axis=0) - 1) < 1e-3)) def UpperCAmelCase__ ( self : List[Any]): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Optional[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Any = [np.asarray(A_) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : Tuple = feat_extract(speech_inputs[0] , return_tensors='''np''').input_values lowerCAmelCase_ : Dict = feat_extract(np_speech_inputs[0] , return_tensors='''np''').input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test batched lowerCAmelCase_ : Any = feat_extract(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : Optional[int] = feat_extract(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : Optional[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase_ : str = [None, 1_6_0_0, None] for max_length, padding in zip(A_ , A_): lowerCAmelCase_ : str = feat_extract(A_ , padding=A_ , max_length=A_ , return_tensors='''np''') lowerCAmelCase_ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : Dict = range(8_0_0 , 1_4_0_0 , 2_0_0) lowerCAmelCase_ : Union[str, Any] = [floats_list((1, x))[0] for x in lengths] lowerCAmelCase_ : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase_ : Optional[Any] = [None, 1_6_0_0, None] for max_length, padding in zip(A_ , A_): lowerCAmelCase_ : Optional[int] = feat_extract(A_ , max_length=A_ , padding=A_) lowerCAmelCase_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0]) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0]) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : List[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : int = feat_extract( A_ , truncation=A_ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''') lowerCAmelCase_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : str = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Any = feat_extract( A_ , truncation=A_ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''') lowerCAmelCase_ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0)) lowerCAmelCase_ : List[str] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : List[Any] = feat_extract( A_ , truncation=A_ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''') lowerCAmelCase_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0]) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0)) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCAmelCase_ : List[str] = np.random.rand(1_0_0).astype(np.floataa) lowerCAmelCase_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''') self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCAmelCase_ : List[str] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def UpperCAmelCase__ ( self : Optional[int]): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : str = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] lowerCAmelCase_ : Optional[int] = [np.asarray(A_) for speech_input in speech_inputs] # Test feature size lowerCAmelCase_ : Optional[Any] = feature_extractor(audio_target=A_ , padding=A_ , return_tensors='''np''').input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input lowerCAmelCase_ : int = feature_extractor(speech_inputs[0] , return_tensors='''np''').input_values lowerCAmelCase_ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='''np''').input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test batched lowerCAmelCase_ : Optional[int] = feature_extractor(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : int = feature_extractor(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Tuple = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase_ : Any = np.asarray(A_) lowerCAmelCase_ : Any = feature_extractor(A_ , return_tensors='''np''').input_values lowerCAmelCase_ : int = feature_extractor(A_ , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(A_ , A_): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Any = feat_extract.model_input_names[0] lowerCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(A_) == len(A_) for x, y in zip(A_ , processed_features[input_name]))) lowerCAmelCase_ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A_) lowerCAmelCase_ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''') lowerCAmelCase_ : Dict = processed_features[input_name] if len(batch_features_input.shape) < 3: lowerCAmelCase_ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=A_) lowerCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Optional[int] = feat_extract.model_input_names[0] lowerCAmelCase_ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''') lowerCAmelCase_ : Any = processed_features[input_name] if len(batch_features_input.shape) < 3: lowerCAmelCase_ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins)) @require_torch def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase_ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : str = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : List[Any] = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''')[input_name] lowerCAmelCase_ : Tuple = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''pt''')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = self.feat_extract_dict lowerCAmelCase_ : str = True lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**A_) lowerCAmelCase_ : Tuple = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : str = [len(A_) for x in speech_inputs] lowerCAmelCase_ : List[str] = feat_extract.model_input_names[0] lowerCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : str = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : Tuple = feat_extract.pad(A_ , padding='''longest''' , return_tensors='''np''') self.assertIn('''attention_mask''' , A_) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Tuple = self.feat_extract_dict lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Any = self.feature_extraction_class(**A_) lowerCAmelCase_ : Any = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase_ : Tuple = [len(A_) for x in speech_inputs] lowerCAmelCase_ : Tuple = feat_extract.model_input_names[0] lowerCAmelCase_ : str = BatchFeature({input_name: speech_inputs}) lowerCAmelCase_ : int = min(A_) lowerCAmelCase_ : Dict = feat_extract.num_mel_bins # hack! lowerCAmelCase_ : str = feat_extract.pad( A_ , padding='''max_length''' , max_length=A_ , truncation=A_ , return_tensors='''np''') self.assertIn('''attention_mask''' , A_) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs]) def UpperCAmelCase__ ( self : int , A_ : Optional[int]): from datasets import load_dataset lowerCAmelCase_ : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech lowerCAmelCase_ : Optional[Any] = ds.sort('''id''').select(range(A_))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Any): # fmt: off lowerCAmelCase_ : Optional[int] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03]) # fmt: on lowerCAmelCase_ : Tuple = self._load_datasamples(1) lowerCAmelCase_ : List[str] = SpeechTaFeatureExtractor() lowerCAmelCase_ : List[Any] = feature_extractor(A_ , return_tensors='''pt''').input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0)) self.assertTrue(torch.allclose(input_values[0, :3_0] , A_ , atol=1e-6)) def UpperCAmelCase__ ( self : Optional[int]): # fmt: off lowerCAmelCase_ : Tuple = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998]) # fmt: on lowerCAmelCase_ : Union[str, Any] = self._load_datasamples(1) lowerCAmelCase_ : Any = SpeechTaFeatureExtractor() lowerCAmelCase_ : Dict = feature_extractor(audio_target=A_ , return_tensors='''pt''').input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , A_ , atol=1e-4))
171
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowercase__( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] =GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] =AutoConfig.from_pretrained("gpt2") UpperCamelCase__ : Optional[Any] =GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def UpperCAmelCase ( self) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] =GenerationConfig() UpperCamelCase__ : Optional[Any] ={ "max_new_tokens": 10_24, "foo": "bar", } UpperCamelCase__ : Tuple =copy.deepcopy(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =generation_config.update(**__SCREAMING_SNAKE_CASE) # update_kwargs was not modified (no side effects) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__SCREAMING_SNAKE_CASE , {"foo": "bar"}) def UpperCAmelCase ( self) -> List[str]: """simple docstring""" UpperCamelCase__ : str =GenerationConfig() UpperCamelCase__ : Dict ="bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") UpperCamelCase__ : Union[str, Any] =GenerationConfig.from_model_config(__SCREAMING_SNAKE_CASE) assert not hasattr(__SCREAMING_SNAKE_CASE , "foo") # no new kwargs should be initialized if from config def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : Dict =GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __SCREAMING_SNAKE_CASE) self.assertEqual(default_config.num_beams , 1) UpperCamelCase__ : Any =GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __SCREAMING_SNAKE_CASE) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =GenerationConfig.from_pretrained(__SCREAMING_SNAKE_CASE , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __SCREAMING_SNAKE_CASE) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowercase__( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase ( cls) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any =TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def UpperCAmelCase ( cls) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] =GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) UpperCamelCase__ : List[Any] =GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="test-generation-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) UpperCamelCase__ : Union[str, Any] =GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple =GenerationConfig( do_sample=__SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) UpperCamelCase__ : str =GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-generation-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) UpperCamelCase__ : Union[str, Any] =GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE))
582
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> int: _a : Dict = '''ZinengTang/tvlt-base''' _a : List[str] = tempfile.mkdtemp() def __lowercase ( self , **_a ) -> int: return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self , **_a ) -> List[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __lowercase ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Optional[int] = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Any: _a : Optional[Any] = self.get_image_processor() _a : Dict = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : Union[str, Any] = np.ones([1_2_0_0_0] ) _a : Dict = feature_extractor(_a , return_tensors='''np''' ) _a : Tuple = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Optional[Any] = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = image_processor(_a , return_tensors='''np''' ) _a : Optional[int] = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Union[str, Any]: _a : int = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Any = TvltProcessor(image_processor=_a , feature_extractor=_a ) _a : List[str] = np.ones([1_2_0_0_0] ) _a : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) _a : int = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_feature_extractor() _a : Dict = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
14
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = """▁""" snake_case_ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} snake_case_ = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } snake_case_ = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } snake_case_ = { """ernie-m-base""": 514, """ernie-m-large""": 514, } snake_case_ = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class a__ ( _lowercase ): __magic_name__ : List[str] = ["input_ids"] __magic_name__ : Any = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = RESOURCE_FILES_NAMES def __init__(self : Optional[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : List[str]=None, __UpperCAmelCase : str=False, __UpperCAmelCase : Union[str, Any]="utf8", __UpperCAmelCase : Optional[int]="[UNK]", __UpperCAmelCase : Any="[SEP]", __UpperCAmelCase : Optional[int]="[PAD]", __UpperCAmelCase : Tuple="[CLS]", __UpperCAmelCase : List[Any]="[MASK]", __UpperCAmelCase : Optional[Dict[str, Any]] = None, **__UpperCAmelCase : Tuple, ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase, unk_token=__UpperCAmelCase, sep_token=__UpperCAmelCase, pad_token=__UpperCAmelCase, cls_token=__UpperCAmelCase, mask_token=__UpperCAmelCase, vocab_file=__UpperCAmelCase, encoding=__UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case SCREAMING_SNAKE_CASE : List[Any] = sentencepiece_model_ckpt SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.load_vocab(filepath=__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : Any = {self.sp_model.id_to_piece(__UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in self.vocab.items()} def lowercase__ (self : Dict, __UpperCAmelCase : Any ) -> Dict: """simple docstring""" if text is None: return None SCREAMING_SNAKE_CASE : List[Any] = self.tokenize(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = '''''', [] for i, ch in enumerate(__UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: SCREAMING_SNAKE_CASE : int = self.SP_CHAR_MAPPING.get(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = unicodedata.normalize('''NFKC''', __UpperCAmelCase ) if self.is_whitespace(__UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = normalized_text, [], 0 if self.do_lower_case: SCREAMING_SNAKE_CASE : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": SCREAMING_SNAKE_CASE : Optional[Any] = token[1:] SCREAMING_SNAKE_CASE : Tuple = text[offset:].index(__UpperCAmelCase ) + offset SCREAMING_SNAKE_CASE : Union[str, Any] = start + len(__UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) SCREAMING_SNAKE_CASE : Dict = end return token_mapping @property def lowercase__ (self : int ) -> Union[str, Any]: """simple docstring""" return len(self.vocab ) def lowercase__ (self : Tuple ) -> int: """simple docstring""" return dict(self.vocab, **self.added_tokens_encoder ) def __getstate__(self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.__dict__.copy() SCREAMING_SNAKE_CASE : Any = None return state def __setstate__(self : Union[str, Any], __UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__UpperCAmelCase, __UpperCAmelCase ) for c in text) ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any, __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : str=64, __UpperCAmelCase : int=0.1 ) -> int: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: SCREAMING_SNAKE_CASE : int = True if self.sp_model_kwargs.get('''alpha''' ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: SCREAMING_SNAKE_CASE : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: SCREAMING_SNAKE_CASE : int = self.sp_model.EncodeAsPieces(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : Any = self.sp_model.SampleEncodeAsPieces(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = [] for pi, piece in enumerate(__UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__UpperCAmelCase ) and pi != 0: new_pieces.append(__UpperCAmelCase ) continue else: continue SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for i, chunk in enumerate(__UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__UpperCAmelCase ) or self.is_punct(__UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) SCREAMING_SNAKE_CASE : List[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) SCREAMING_SNAKE_CASE : Dict = i if len(__UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase__ (self : Optional[int], __UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase, ''' ''' ).strip() return out_string def lowercase__ (self : Tuple, __UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase, ''' ''' ).strip() return out_string def lowercase__ (self : Optional[Any], __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return self.vocab.get(__UpperCAmelCase, self.vocab.get(self.unk_token ) ) def lowercase__ (self : Optional[Any], __UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" return self.reverse_vocab.get(__UpperCAmelCase, self.unk_token ) def lowercase__ (self : List[str], __UpperCAmelCase : List[Any], __UpperCAmelCase : int=None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase__ (self : Optional[int], __UpperCAmelCase : Any, __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase__ (self : str, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : int=None, __UpperCAmelCase : str=False ) -> str: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__UpperCAmelCase ) + 1) + [1] * (len(__UpperCAmelCase ) + 3) def lowercase__ (self : Optional[Any], __UpperCAmelCase : int ) -> Dict: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def lowercase__ (self : Optional[int], __UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase__ (self : Optional[Any], __UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any ) -> str: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE : int = unicodedata.category(__UpperCAmelCase ) if cat == "Zs": return True return False def lowercase__ (self : List[Any], __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {} with io.open(__UpperCAmelCase, '''r''', encoding='''utf-8''' ) as f: for index, line in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : List[Any] = line.rstrip('''\n''' ) SCREAMING_SNAKE_CASE : Tuple = int(__UpperCAmelCase ) return token_to_idx def lowercase__ (self : List[Any], __UpperCAmelCase : str, __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 if os.path.isdir(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = os.path.join( __UpperCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: SCREAMING_SNAKE_CASE : int = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items(), key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE : Dict = token_index writer.write(token + '''\n''' ) index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(__UpperCAmelCase, '''sentencepiece.bpe.model''' ) with open(__UpperCAmelCase, '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (vocab_file,)
507
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a__ ( UpperCamelCase_ ): snake_case__ = 4_2 snake_case__ = 4_2 class a__ ( nn.Module ): snake_case__ = 4_2 snake_case__ = (1_6, 3_2, 9_6, 2_5_6) snake_case__ = jnp.floataa def __UpperCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _lowerCAmelCase:Tuple = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCAmelCase:Tuple = [] for i in range(len(self.block_out_channels) - 1): _lowerCAmelCase:Optional[int] = self.block_out_channels[i] _lowerCAmelCase:List[str] = self.block_out_channels[i + 1] _lowerCAmelCase:List[str] = nn.Conv( a__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(a__) _lowerCAmelCase:List[str] = nn.Conv( a__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(a__) _lowerCAmelCase:int = blocks _lowerCAmelCase:Dict = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[int] ,a__ : Tuple) -> str: """simple docstring""" _lowerCAmelCase:Dict = self.conv_in(a__) _lowerCAmelCase:Tuple = nn.silu(a__) for block in self.blocks: _lowerCAmelCase:str = block(a__) _lowerCAmelCase:List[Any] = nn.silu(a__) _lowerCAmelCase:List[str] = self.conv_out(a__) return embedding @flax_register_to_config class a__ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): snake_case__ = 3_2 snake_case__ = 4 snake_case__ = ( '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''', '''DownBlock2D''', ) snake_case__ = False snake_case__ = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case__ = 2 snake_case__ = 8 snake_case__ = None snake_case__ = 1_2_8_0 snake_case__ = 0.0 snake_case__ = False snake_case__ = jnp.floataa snake_case__ = True snake_case__ = 0 snake_case__ = '''rgb''' snake_case__ = (1_6, 3_2, 9_6, 2_5_6) def __UpperCamelCase ( self : str ,a__ : jax.random.KeyArray) -> FrozenDict: """simple docstring""" _lowerCAmelCase:Tuple = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase:Optional[int] = jnp.zeros(a__ ,dtype=jnp.floataa) _lowerCAmelCase:Optional[Any] = jnp.ones((1,) ,dtype=jnp.intaa) _lowerCAmelCase:List[str] = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa) _lowerCAmelCase:List[str] = (1, 3, self.sample_size * 8, self.sample_size * 8) _lowerCAmelCase:Dict = jnp.zeros(a__ ,dtype=jnp.floataa) _lowerCAmelCase:Dict = jax.random.split(a__) _lowerCAmelCase:Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(a__ ,a__ ,a__ ,a__ ,a__)["params"] def __UpperCamelCase ( self : Any) -> int: """simple docstring""" _lowerCAmelCase:List[Any] = self.block_out_channels _lowerCAmelCase:List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase:int = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase:str = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time _lowerCAmelCase:Any = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift) _lowerCAmelCase:Any = FlaxTimestepEmbedding(a__ ,dtype=self.dtype) _lowerCAmelCase:Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) _lowerCAmelCase:Dict = self.only_cross_attention if isinstance(a__ ,a__): _lowerCAmelCase:List[Any] = (only_cross_attention,) * len(self.down_block_types) if isinstance(a__ ,a__): _lowerCAmelCase:Optional[Any] = (num_attention_heads,) * len(self.down_block_types) # down _lowerCAmelCase:Tuple = [] _lowerCAmelCase:Optional[Any] = [] _lowerCAmelCase:str = block_out_channels[0] _lowerCAmelCase:str = nn.Conv( a__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(a__) for i, down_block_type in enumerate(self.down_block_types): _lowerCAmelCase:str = output_channel _lowerCAmelCase:Any = block_out_channels[i] _lowerCAmelCase:Optional[Any] = i == len(a__) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase:Dict = FlaxCrossAttnDownBlockaD( in_channels=a__ ,out_channels=a__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: _lowerCAmelCase:Dict = FlaxDownBlockaD( in_channels=a__ ,out_channels=a__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(a__) for _ in range(self.layers_per_block): _lowerCAmelCase:Dict = nn.Conv( a__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(a__) if not is_final_block: _lowerCAmelCase:str = nn.Conv( a__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(a__) _lowerCAmelCase:Optional[int] = down_blocks _lowerCAmelCase:int = controlnet_down_blocks # mid _lowerCAmelCase:Optional[Any] = block_out_channels[-1] _lowerCAmelCase:Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=a__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) _lowerCAmelCase:Union[str, Any] = nn.Conv( a__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,a__ : List[str] ,a__ : Dict ,a__ : Optional[int] ,a__ : Tuple ,a__ : float = 1.0 ,a__ : bool = True ,a__ : bool = False ,) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" _lowerCAmelCase:Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": _lowerCAmelCase:List[str] = jnp.flip(a__ ,axis=1) # 1. time if not isinstance(a__ ,jnp.ndarray): _lowerCAmelCase:Optional[Any] = jnp.array([timesteps] ,dtype=jnp.intaa) elif isinstance(a__ ,jnp.ndarray) and len(timesteps.shape) == 0: _lowerCAmelCase:Optional[int] = timesteps.astype(dtype=jnp.floataa) _lowerCAmelCase:Any = jnp.expand_dims(a__ ,0) _lowerCAmelCase:List[str] = self.time_proj(a__) _lowerCAmelCase:Union[str, Any] = self.time_embedding(a__) # 2. pre-process _lowerCAmelCase:Any = jnp.transpose(a__ ,(0, 2, 3, 1)) _lowerCAmelCase:List[Any] = self.conv_in(a__) _lowerCAmelCase:Optional[int] = jnp.transpose(a__ ,(0, 2, 3, 1)) _lowerCAmelCase:Any = self.controlnet_cond_embedding(a__) sample += controlnet_cond # 3. down _lowerCAmelCase:Tuple = (sample,) for down_block in self.down_blocks: if isinstance(a__ ,a__): _lowerCAmelCase:Dict = down_block(a__ ,a__ ,a__ ,deterministic=not train) else: _lowerCAmelCase:List[str] = down_block(a__ ,a__ ,deterministic=not train) down_block_res_samples += res_samples # 4. mid _lowerCAmelCase:Union[str, Any] = self.mid_block(a__ ,a__ ,a__ ,deterministic=not train) # 5. contronet blocks _lowerCAmelCase:Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(a__ ,self.controlnet_down_blocks): _lowerCAmelCase:Optional[int] = controlnet_block(a__) controlnet_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase:List[Any] = controlnet_down_block_res_samples _lowerCAmelCase:str = self.controlnet_mid_block(a__) # 6. scaling _lowerCAmelCase:Tuple = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a__ ,mid_block_res_sample=a__)
715
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( UpperCamelCase_ , unittest.TestCase ): snake_case__ = AudioLDMPipeline snake_case__ = TEXT_TO_AUDIO_PARAMS snake_case__ = TEXT_TO_AUDIO_BATCH_PARAMS snake_case__ = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __UpperCamelCase ( self : int) -> Any: """simple docstring""" torch.manual_seed(0) _lowerCAmelCase:int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(32, 64) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=a__ ,) _lowerCAmelCase:Optional[int] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=a__ ,set_alpha_to_one=a__ ,) torch.manual_seed(0) _lowerCAmelCase:Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0) _lowerCAmelCase:Dict = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,projection_dim=32 ,) _lowerCAmelCase:str = ClapTextModelWithProjection(a__) _lowerCAmelCase:Dict = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=77) _lowerCAmelCase:Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=a__ ,) _lowerCAmelCase:List[Any] = SpeechTaHifiGan(a__) _lowerCAmelCase:Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __UpperCamelCase ( self : List[Any] ,a__ : int ,a__ : Tuple=0) -> Optional[int]: """simple docstring""" if str(a__).startswith('''mps'''): _lowerCAmelCase:Tuple = torch.manual_seed(a__) else: _lowerCAmelCase:Dict = torch.Generator(device=a__).manual_seed(a__) _lowerCAmelCase:Tuple = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __UpperCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _lowerCAmelCase:str = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase:Dict = self.get_dummy_components() _lowerCAmelCase:List[str] = AudioLDMPipeline(**a__) _lowerCAmelCase:Optional[int] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:str = self.get_dummy_inputs(a__) _lowerCAmelCase:Optional[Any] = audioldm_pipe(**a__) _lowerCAmelCase:List[str] = output.audios[0] assert audio.ndim == 1 assert len(a__) == 256 _lowerCAmelCase:List[str] = audio[:10] _lowerCAmelCase:Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def __UpperCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _lowerCAmelCase:int = self.get_dummy_components() _lowerCAmelCase:Optional[Any] = AudioLDMPipeline(**a__) _lowerCAmelCase:Union[str, Any] = audioldm_pipe.to(a__) _lowerCAmelCase:Any = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Dict = self.get_dummy_inputs(a__) _lowerCAmelCase:List[Any] = 3 * [inputs['''prompt''']] # forward _lowerCAmelCase:Dict = audioldm_pipe(**a__) _lowerCAmelCase:Union[str, Any] = output.audios[0] _lowerCAmelCase:Tuple = self.get_dummy_inputs(a__) _lowerCAmelCase:Optional[Any] = 3 * [inputs.pop('''prompt''')] _lowerCAmelCase:Tuple = audioldm_pipe.tokenizer( a__ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=a__ ,return_tensors='''pt''' ,) _lowerCAmelCase:Optional[int] = text_inputs['''input_ids'''].to(a__) _lowerCAmelCase:List[Any] = audioldm_pipe.text_encoder( a__ ,) _lowerCAmelCase:int = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase:List[Any] = F.normalize(a__ ,dim=-1) _lowerCAmelCase:int = prompt_embeds # forward _lowerCAmelCase:Tuple = audioldm_pipe(**a__) _lowerCAmelCase:Dict = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:Any = self.get_dummy_components() _lowerCAmelCase:str = AudioLDMPipeline(**a__) _lowerCAmelCase:int = audioldm_pipe.to(a__) _lowerCAmelCase:Any = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Any = self.get_dummy_inputs(a__) _lowerCAmelCase:Tuple = 3 * ['''this is a negative prompt'''] _lowerCAmelCase:str = negative_prompt _lowerCAmelCase:List[Any] = 3 * [inputs['''prompt''']] # forward _lowerCAmelCase:Optional[Any] = audioldm_pipe(**a__) _lowerCAmelCase:Any = output.audios[0] _lowerCAmelCase:Tuple = self.get_dummy_inputs(a__) _lowerCAmelCase:Tuple = 3 * [inputs.pop('''prompt''')] _lowerCAmelCase:Tuple = [] for p in [prompt, negative_prompt]: _lowerCAmelCase:str = audioldm_pipe.tokenizer( a__ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=a__ ,return_tensors='''pt''' ,) _lowerCAmelCase:Dict = text_inputs['''input_ids'''].to(a__) _lowerCAmelCase:int = audioldm_pipe.text_encoder( a__ ,) _lowerCAmelCase:List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase:List[str] = F.normalize(a__ ,dim=-1) embeds.append(a__) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = embeds # forward _lowerCAmelCase:List[str] = audioldm_pipe(**a__) _lowerCAmelCase:int = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" _lowerCAmelCase:Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase:Union[str, Any] = self.get_dummy_components() _lowerCAmelCase:Union[str, Any] = PNDMScheduler(skip_prk_steps=a__) _lowerCAmelCase:Union[str, Any] = AudioLDMPipeline(**a__) _lowerCAmelCase:List[str] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Tuple = self.get_dummy_inputs(a__) _lowerCAmelCase:int = '''egg cracking''' _lowerCAmelCase:Union[str, Any] = audioldm_pipe(**a__ ,negative_prompt=a__) _lowerCAmelCase:Dict = output.audios[0] assert audio.ndim == 1 assert len(a__) == 256 _lowerCAmelCase:Optional[int] = audio[:10] _lowerCAmelCase:Optional[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def __UpperCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _lowerCAmelCase:Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase:Optional[int] = self.get_dummy_components() _lowerCAmelCase:str = PNDMScheduler(skip_prk_steps=a__) _lowerCAmelCase:Any = AudioLDMPipeline(**a__) _lowerCAmelCase:List[str] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Tuple = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase:str = audioldm_pipe(a__ ,num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase:Dict = 2 _lowerCAmelCase:List[str] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase:Any = 2 _lowerCAmelCase:Tuple = audioldm_pipe(a__ ,num_inference_steps=2 ,num_waveforms_per_prompt=a__).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase:str = 2 _lowerCAmelCase:List[Any] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=a__).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase:Dict = self.get_dummy_components() _lowerCAmelCase:Optional[Any] = AudioLDMPipeline(**a__) _lowerCAmelCase:List[str] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase:Tuple = self.get_dummy_inputs(a__) _lowerCAmelCase:Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 ,**a__) _lowerCAmelCase:List[Any] = output.audios[0] assert audio.ndim == 1 assert len(a__) / vocoder_sampling_rate == 0.016 _lowerCAmelCase:List[str] = audioldm_pipe(audio_length_in_s=0.032 ,**a__) _lowerCAmelCase:Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(a__) / vocoder_sampling_rate == 0.032 def __UpperCamelCase ( self : List[Any]) -> int: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.get_dummy_components() _lowerCAmelCase:Tuple = AudioLDMPipeline(**a__) _lowerCAmelCase:Dict = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Optional[int] = ['''hey'''] _lowerCAmelCase:List[str] = audioldm_pipe(a__ ,num_inference_steps=1) _lowerCAmelCase:Tuple = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase:Any = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase:Optional[Any] = SpeechTaHifiGan(a__).to(a__) _lowerCAmelCase:int = audioldm_pipe(a__ ,num_inference_steps=1) _lowerCAmelCase:List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __UpperCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a__) def __UpperCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=a__) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def __UpperCamelCase ( self : Any) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__) @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ,a__ : Optional[Any] ,a__ : int="cpu" ,a__ : str=torch.floataa ,a__ : Union[str, Any]=0) -> int: """simple docstring""" _lowerCAmelCase:Optional[int] = torch.Generator(device=a__).manual_seed(a__) _lowerCAmelCase:Tuple = np.random.RandomState(a__).standard_normal((1, 8, 128, 16)) _lowerCAmelCase:List[str] = torch.from_numpy(a__).to(device=a__ ,dtype=a__) _lowerCAmelCase:Dict = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase:str = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''') _lowerCAmelCase:Optional[Any] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Optional[int] = self.get_inputs(a__) _lowerCAmelCase:Optional[Any] = 25 _lowerCAmelCase:int = audioldm_pipe(**a__).audios[0] assert audio.ndim == 1 assert len(a__) == 8_1920 _lowerCAmelCase:int = audio[7_7230:7_7240] _lowerCAmelCase:Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]) _lowerCAmelCase:Dict = np.abs(expected_slice - audio_slice).max() assert max_diff < 1E-2 def __UpperCamelCase ( self : List[str]) -> str: """simple docstring""" _lowerCAmelCase:Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''') _lowerCAmelCase:List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) _lowerCAmelCase:Union[str, Any] = audioldm_pipe.to(a__) audioldm_pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Optional[Any] = self.get_inputs(a__) _lowerCAmelCase:Union[str, Any] = audioldm_pipe(**a__).audios[0] assert audio.ndim == 1 assert len(a__) == 8_1920 _lowerCAmelCase:Tuple = audio[2_7780:2_7790] _lowerCAmelCase:Optional[Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212]) _lowerCAmelCase:Tuple = np.abs(expected_slice - audio_slice).max() assert max_diff < 3E-2
439
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _A = 'vivit' def __init__( self , _A=224 , _A=32 , _A=[2, 16, 16] , _A=3 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu_fast" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1E-0_6 , _A=True , **_A , ) -> Tuple: __a : Any = hidden_size __a : str = num_hidden_layers __a : List[str] = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Optional[int] = hidden_act __a : Dict = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[str] = initializer_range __a : Any = layer_norm_eps __a : Dict = image_size __a : List[Any] = num_frames __a : List[Any] = tubelet_size __a : Any = num_channels __a : Union[str, Any] = qkv_bias super().__init__(**_A )
597
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = len(SCREAMING_SNAKE_CASE__ ) // 2 # choose the middle 3 elements __a : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
597
1
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} _a = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } _a = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() _UpperCamelCase = collections.OrderedDict() with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(__snake_case ): _UpperCamelCase = b _UpperCamelCase = idx for wd in b: _UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['input_ids', 'attention_mask'] def __init__( self , __a , __a , __a="<|endoftext|>" , __a="<|endoftext|>" , __a="<|startoftext|>" , __a="<|endoftext|>" , __a=False , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''') if not os.path.isfile(__a): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''') _UpperCamelCase = do_clean_text _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = load_vocab_and_emoji(__a , __a) _UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text) def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token)) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__a) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ''''''.join(__a).strip() return out_string def UpperCAmelCase ( self , __a) -> List[int]: '''simple docstring''' _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = 0 if os.path.isdir(__a): _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file''']) else: _UpperCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__a , '''w''' , encoding='''utf-8''') as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''') _UpperCamelCase = token_index writer.write(''','''.join(__a) + '''\n''') index += 1 with open(__a , '''w''' , encoding='''utf-8''') as writer: json.dump(self.emoji , __a) return vocab_file, emoji_file class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = vocab # same as swe _UpperCamelCase = ids_to_tokens # same as bpe _UpperCamelCase = emoji _UpperCamelCase = np.max([len(__a) for w in self.vocab.keys()]) _UpperCamelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''') _UpperCamelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''') _UpperCamelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''') _UpperCamelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''') _UpperCamelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''') _UpperCamelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''') _UpperCamelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' _UpperCamelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' _UpperCamelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks}) def __len__( self) -> Optional[Any]: '''simple docstring''' return len(self.ids_to_tokens) def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.content_repattera.sub('''<URL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<EMAIL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<TEL>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<DATE>''' , __a) _UpperCamelCase = self.content_repattera.sub('''<PRICE>''' , __a) _UpperCamelCase = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: _UpperCamelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''') return content def UpperCAmelCase ( self , __a , __a=False) -> Any: '''simple docstring''' _UpperCamelCase = text.replace(''' ''' , '''<SP>''') _UpperCamelCase = text.replace(''' ''' , '''<SP>''') _UpperCamelCase = text.replace('''\r\n''' , '''<BR>''') _UpperCamelCase = text.replace('''\n''' , '''<BR>''') _UpperCamelCase = text.replace('''\r''' , '''<BR>''') _UpperCamelCase = text.replace('''\t''' , '''<TAB>''') _UpperCamelCase = text.replace('''—''' , '''ー''') _UpperCamelCase = text.replace('''−''' , '''ー''') for k, v in self.emoji["emoji"].items(): if k in text: _UpperCamelCase = text.replace(__a , __a) if clean: _UpperCamelCase = self.clean_text(__a) def check_simbol(__a): _UpperCamelCase = x.encode() if len(__a) == 1 and len(__a) == 2: _UpperCamelCase = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(__a): _UpperCamelCase = x.encode() if len(__a) == 1 and len(__a) == 3: _UpperCamelCase = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE28080 and c <= 0XE2B07F: return True return False _UpperCamelCase = 0 _UpperCamelCase = [] while pos < len(__a): _UpperCamelCase = min(len(__a) , pos + self.maxlen + 1) if text[pos] == '''<''' else pos + 3 _UpperCamelCase = [] # (token_id, token, pos) for e in range(__a , __a , -1): _UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a) > 2: _UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(__a) > 0: # the smallest token_id is adopted _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = sorted(__a , key=lambda __a: x[0])[0] result.append(__a) _UpperCamelCase = e else: _UpperCamelCase = pos + 1 _UpperCamelCase = text[pos:end] if check_simbol(__a): result.append('''<KIGOU>''') elif checkuae(__a): result.append('''<U2000U2BFF>''') else: for i in wd.encode('''utf-8'''): result.append('''<|byte%d|>''' % i) _UpperCamelCase = end return result def UpperCAmelCase ( self , __a , __a="\n") -> int: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(__a) > 0: words.append(bytearray(__a).decode('''utf-8''' , errors='''replace''')) _UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word]) elif word == "<SP>": words.append(''' ''') elif word == "<BR>": words.append(__a) elif word == "<TAB>": words.append('''\t''') elif word == "<BLOCK>": words.append('''▀''') elif word == "<KIGOU>": words.append('''ǀ''') elif word == "<U2000U2BFF>": words.append('''‖''') else: words.append(__a) if len(__a) > 0: words.append(bytearray(__a).decode('''utf-8''' , errors='''replace''')) _UpperCamelCase = ''''''.join(__a) return text
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """microsoft/speecht5_tts""" _lowerCamelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowerCamelCase = """text_reader""" _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ["""text"""] _lowerCamelCase = ["""audio"""] def A_ ( self): """simple docstring""" if self.post_processor is None: UpperCAmelCase_ : Optional[Any] = "microsoft/speecht5_hifigan" super().setup() def A_ ( self ,lowercase ,lowercase=None): """simple docstring""" UpperCAmelCase_ : Dict = self.pre_processor(text=lowercase ,return_tensors="pt" ,truncation=lowercase) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") UpperCAmelCase_ : List[Any] = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation") UpperCAmelCase_ : str = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def A_ ( self ,lowercase): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowercase) def A_ ( self ,lowercase): """simple docstring""" with torch.no_grad(): return self.post_processor(lowercase).cpu().detach()
455
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCamelCase = logging.getLogger(__name__) def _snake_case ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__snake_case , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__snake_case , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__snake_case , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__snake_case , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase_ : str = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase_ : int = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase_ : Dict = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase_ : str = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase_ : int = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase_ : Tuple = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase_ : List[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase_ : List[str] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase_ : Union[str, Any] = fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(__snake_case )} examples to process.""" ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Union[str, Any] = 1_0_0_0_0 UpperCAmelCase_ : int = time.time() for text in data: UpperCAmelCase_ : str = F"""{bos} {text.strip()} {sep}""" UpperCAmelCase_ : Any = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) rslt.append(__snake_case ) iter += 1 if iter % interval == 0: UpperCAmelCase_ : List[str] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase_ : Optional[Any] = time.time() logger.info("Finished binarization" ) logger.info(F"""{len(__snake_case )} examples processed.""" ) UpperCAmelCase_ : List[Any] = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase_ : Optional[int] = tokenizer.vocab_size if vocab_size < (1 << 1_6): UpperCAmelCase_ : List[Any] = [np.uintaa(__snake_case ) for d in rslt] else: UpperCAmelCase_ : str = [np.intaa(__snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(__snake_case , "wb" ) as handle: pickle.dump(rslt_ , __snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
455
1
import requests from bsa import BeautifulSoup def lowerCamelCase_ ( lowerCamelCase__ = "AAPL" ): lowerCamelCase_ = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowerCamelCase_ = BeautifulSoup(requests.get(lowerCamelCase__ ).text , "html.parser" ) lowerCamelCase_ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
463
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = CLIPConfig lowerCAmelCase__ = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> int: super().__init__(lowercase ) lowerCamelCase_ = CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase_ = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCamelCase_ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=0.5 , lowercase=0.5 ) -> int: lowerCamelCase_ = self.vision_model(lowercase )[0] lowerCamelCase_ = self.p_head(lowercase ) lowerCamelCase_ = nsfw_detected.flatten() lowerCamelCase_ = nsfw_detected > p_threshold lowerCamelCase_ = nsfw_detected.tolist() if any(lowercase ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(lowercase ): if nsfw_detected_: lowerCamelCase_ = np.zeros(images[idx].shape ) lowerCamelCase_ = self.w_head(lowercase ) lowerCamelCase_ = watermark_detected.flatten() lowerCamelCase_ = watermark_detected > w_threshold lowerCamelCase_ = watermark_detected.tolist() if any(lowercase ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(lowercase ): if watermark_detected_: lowerCamelCase_ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
463
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: _lowercase : List[Any] = word.split() def justify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : List[Any] = max_width - width _lowercase : int = len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Any = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : List[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE ): num_spaces_between_words_list[i] += 1 _lowercase : int = [] for i in range(SCREAMING_SNAKE_CASE ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE ) _lowercase : Any = [] _lowercase : list[str] = [] _lowercase : Optional[int] = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE ) + len(SCREAMING_SNAKE_CASE ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE ) width += len(SCREAMING_SNAKE_CASE ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # reset new line and new width _lowercase , _lowercase : str = [word], len(SCREAMING_SNAKE_CASE ) _lowercase : Dict = max_width - width - len(SCREAMING_SNAKE_CASE ) answer.append(' '.join(SCREAMING_SNAKE_CASE ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _A ( UpperCAmelCase_ ): lowercase_ : Optional[Any] = '''MCTCTFeatureExtractor''' lowercase_ : Union[str, Any] = '''AutoTokenizer''' def __init__( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[str] ): """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple = self.feature_extractor __UpperCamelCase : Tuple = False def __call__( self : Tuple , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCamelCase : Tuple = kwargs.pop("""raw_speech""" ) else: __UpperCamelCase : Union[str, Any] = kwargs.pop("""audio""" , lowerCamelCase__ ) __UpperCamelCase : Dict = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) __UpperCamelCase : str = kwargs.pop("""text""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCamelCase : Any = args[0] __UpperCamelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCamelCase : str = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: __UpperCamelCase : Union[str, Any] = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __UpperCamelCase : Dict = encodings["""input_ids"""] return inputs def a ( self : Tuple , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def a ( self : Tuple , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Tuple ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Dict = kwargs.pop("""input_features""" , lowerCamelCase__ ) __UpperCamelCase : Optional[int] = kwargs.pop("""labels""" , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCamelCase : Union[str, Any] = args[0] __UpperCamelCase : Optional[Any] = args[1:] if input_features is not None: __UpperCamelCase : str = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: __UpperCamelCase : Tuple = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCamelCase : int = labels["""input_ids"""] return input_features def a ( self : str , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Tuple ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def a ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCamelCase : int = True __UpperCamelCase : int = self.tokenizer yield __UpperCamelCase : Tuple = self.feature_extractor __UpperCamelCase : Dict = False
269
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase = logging.getLogger(__name__) class _A ( UpperCAmelCase_ ): def a ( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None , lowerCamelCase__ : int=None ): """simple docstring""" __UpperCamelCase : Optional[Any] = self.layer[current_layer](lowerCamelCase__ , lowerCamelCase__ , head_mask[current_layer] ) __UpperCamelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class _A ( UpperCAmelCase_ ): def __init__( self : Tuple , lowerCamelCase__ : Tuple ): """simple docstring""" super().__init__(lowerCamelCase__ ) __UpperCamelCase : List[str] = BertEncoderWithPabee(lowerCamelCase__ ) self.init_weights() __UpperCamelCase : Optional[int] = 0 __UpperCamelCase : Tuple = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : Optional[Any] = 0 def a ( self : Union[str, Any] , lowerCamelCase__ : Any ): """simple docstring""" __UpperCamelCase : List[Any] = threshold def a ( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCamelCase : int = patience def a ( self : Optional[int] ): """simple docstring""" __UpperCamelCase : int = 0 __UpperCamelCase : Tuple = 0 def a ( self : int ): """simple docstring""" __UpperCamelCase : int = self.inference_layers_num / self.inference_instances_num __UpperCamelCase : str = ( f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =' f' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' ) print(lowerCamelCase__ ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def a ( self : Any , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __UpperCamelCase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase : Tuple = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __UpperCamelCase : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase : Optional[Any] = torch.ones(lowerCamelCase__ , device=lowerCamelCase__ ) if token_type_ids is None: __UpperCamelCase : str = torch.zeros(lowerCamelCase__ , dtype=torch.long , device=lowerCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] = encoder_hidden_states.size() __UpperCamelCase : Union[str, Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __UpperCamelCase : Union[str, Any] = torch.ones(lowerCamelCase__ , device=lowerCamelCase__ ) __UpperCamelCase : Optional[int] = self.invert_attention_mask(lowerCamelCase__ ) else: __UpperCamelCase : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase : int = self.get_head_mask(lowerCamelCase__ , self.config.num_hidden_layers ) __UpperCamelCase : Any = self.embeddings( input_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ ) __UpperCamelCase : Optional[int] = embedding_output if self.training: __UpperCamelCase : List[Any] = [] for i in range(self.config.num_hidden_layers ): __UpperCamelCase : List[Any] = self.encoder.adaptive_forward( lowerCamelCase__ , current_layer=lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ ) __UpperCamelCase : Tuple = self.pooler(lowerCamelCase__ ) __UpperCamelCase : str = output_layers[i](output_dropout(lowerCamelCase__ ) ) res.append(lowerCamelCase__ ) elif self.patience == 0: # Use all layers for inference __UpperCamelCase : Union[str, Any] = self.encoder( lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) __UpperCamelCase : Optional[int] = self.pooler(encoder_outputs[0] ) __UpperCamelCase : Union[str, Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase__ )] else: __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : Optional[Any] = None __UpperCamelCase : List[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __UpperCamelCase : Union[str, Any] = self.encoder.adaptive_forward( lowerCamelCase__ , current_layer=lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ ) __UpperCamelCase : str = self.pooler(lowerCamelCase__ ) __UpperCamelCase : Any = output_layers[i](lowerCamelCase__ ) if regression: __UpperCamelCase : Optional[int] = logits.detach() if patient_result is not None: __UpperCamelCase : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __UpperCamelCase : List[str] = 0 else: __UpperCamelCase : Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: __UpperCamelCase : Union[str, Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase__ ) ): patient_counter += 1 else: __UpperCamelCase : str = 0 __UpperCamelCase : Union[str, Any] = logits if patient_counter == self.patience: break __UpperCamelCase : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , UpperCAmelCase_ , ) class _A ( UpperCAmelCase_ ): def __init__( self : Any , lowerCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(lowerCamelCase__ ) __UpperCamelCase : Dict = config.num_labels __UpperCamelCase : List[Any] = BertModelWithPabee(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def a ( self : List[Any] , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Dict=None , ): """simple docstring""" __UpperCamelCase : str = self.bert( input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __UpperCamelCase : List[str] = (logits[-1],) if labels is not None: __UpperCamelCase : Tuple = None __UpperCamelCase : Union[str, Any] = 0 for ix, logits_item in enumerate(lowerCamelCase__ ): if self.num_labels == 1: # We are doing regression __UpperCamelCase : Union[str, Any] = MSELoss() __UpperCamelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : Dict = CrossEntropyLoss() __UpperCamelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __UpperCamelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __UpperCamelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
269
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = ["pixel_values"] def __init__( self : List[str] , snake_case_ : bool = True , snake_case_ : int = 32 , snake_case_ : List[str]=PILImageResampling.BILINEAR , snake_case_ : bool = True , **snake_case_ : Any , ): snake_case__ : Union[str, Any] = do_resize snake_case__ : int = do_rescale snake_case__ : Tuple = size_divisor snake_case__ : Union[str, Any] = resample super().__init__(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Optional[ChannelDimension] = None , **snake_case_ : int ): snake_case__ , snake_case__ : Optional[Any] = get_image_size(snake_case_ ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Union[str, Any] = height // size_divisor * size_divisor snake_case__ : Optional[Any] = width // size_divisor * size_divisor snake_case__ : Dict = resize(snake_case_ , (new_h, new_w) , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) return image def lowerCamelCase ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : float , snake_case_ : Optional[ChannelDimension] = None , **snake_case_ : Dict ): return rescale(image=snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : List[str] , snake_case_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , snake_case_ : Optional[bool] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Union[TensorType, str]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Tuple , ): snake_case__ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : str = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : List[str] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) snake_case__ : Union[str, Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. snake_case__ : int = [to_numpy_array(snake_case_ ) for img in images] if do_resize: snake_case__ : Optional[Any] = [self.resize(snake_case_ , size_divisor=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: snake_case__ : Dict = [self.rescale(snake_case_ , scale=1 / 255 ) for image in images] snake_case__ : Any = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] snake_case__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
301
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) snake_case__ : List[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCAmelCase ) ) return round(_lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
301
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''naver-clova-ix/donut-base-finetuned-docvqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) UpperCamelCase_ = '''document_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = VisionEncoderDecoderModel UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> int: '''simple docstring''' lowercase : int ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase : Tuple =task_prompt.replace('''{user_input}''' , UpperCAmelCase ) lowercase : str =self.pre_processor.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors='''pt''' ).input_ids lowercase : str =self.pre_processor(UpperCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCAmelCase , ).sequences def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' lowercase : List[Any] =self.pre_processor.batch_decode(UpperCAmelCase )[0] lowercase : Dict =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowercase : List[str] =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowercase : Union[str, Any] =re.sub(R'''<.*?>''' , '''''' , UpperCAmelCase , count=1 ).strip() # remove first task start token lowercase : Optional[Any] =self.pre_processor.tokenajson(UpperCAmelCase ) return sequence["answer"]
94
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 class _snake_case ( nn.Module ): '''simple docstring''' __snake_case = 42 __snake_case = (1_6, 3_2, 9_6, 2_5_6) __snake_case = jnp.floataa def lowerCAmelCase__ ( self: int ) -> Optional[Any]: __magic_name__ : Dict = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __magic_name__ : Optional[Any] = self.block_out_channels[i] __magic_name__ : Dict = self.block_out_channels[i + 1] __magic_name__ : Union[str, Any] = nn.Conv( __UpperCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__UpperCamelCase ) __magic_name__ : Tuple = nn.Conv( __UpperCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__UpperCamelCase ) __magic_name__ : Optional[Any] = blocks __magic_name__ : Dict = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self: str , __UpperCamelCase: Union[str, Any] ) -> Optional[Any]: __magic_name__ : Dict = self.conv_in(__UpperCamelCase ) __magic_name__ : List[Any] = nn.silu(__UpperCamelCase ) for block in self.blocks: __magic_name__ : int = block(__UpperCamelCase ) __magic_name__ : str = nn.silu(__UpperCamelCase ) __magic_name__ : Union[str, Any] = self.conv_out(__UpperCamelCase ) return embedding @flax_register_to_config class _snake_case ( nn.Module , snake_case_ , snake_case_ ): '''simple docstring''' __snake_case = 3_2 __snake_case = 4 __snake_case = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case = False __snake_case = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __snake_case = 2 __snake_case = 8 __snake_case = None __snake_case = 1_2_8_0 __snake_case = 0.0 __snake_case = False __snake_case = jnp.floataa __snake_case = True __snake_case = 0 __snake_case = "rgb" __snake_case = (1_6, 3_2, 9_6, 2_5_6) def lowerCAmelCase__ ( self: int , __UpperCamelCase: jax.random.KeyArray ) -> FrozenDict: # init input tensors __magic_name__ : Dict = (1, self.in_channels, self.sample_size, self.sample_size) __magic_name__ : str = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa ) __magic_name__ : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) __magic_name__ : Any = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __magic_name__ : List[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) __magic_name__ : List[Any] = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa ) __magic_name__ , __magic_name__ : List[str] = jax.random.split(__UpperCamelCase ) __magic_name__ : Optional[Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["params"] def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = self.block_out_channels __magic_name__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __magic_name__ : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input __magic_name__ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __magic_name__ : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __magic_name__ : Dict = FlaxTimestepEmbedding(__UpperCamelCase , dtype=self.dtype ) __magic_name__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __magic_name__ : Union[str, Any] = self.only_cross_attention if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ : Any = (num_attention_heads,) * len(self.down_block_types ) # down __magic_name__ : Optional[int] = [] __magic_name__ : Union[str, Any] = [] __magic_name__ : Optional[int] = block_out_channels[0] __magic_name__ : Tuple = nn.Conv( __UpperCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__UpperCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): __magic_name__ : Optional[Any] = output_channel __magic_name__ : List[Any] = block_out_channels[i] __magic_name__ : int = i == len(__UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __magic_name__ : List[str] = FlaxCrossAttnDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __magic_name__ : Optional[int] = FlaxDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__UpperCamelCase ) for _ in range(self.layers_per_block ): __magic_name__ : Any = nn.Conv( __UpperCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__UpperCamelCase ) if not is_final_block: __magic_name__ : Optional[int] = nn.Conv( __UpperCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__UpperCamelCase ) __magic_name__ : str = down_blocks __magic_name__ : List[str] = controlnet_down_blocks # mid __magic_name__ : Optional[Any] = block_out_channels[-1] __magic_name__ : List[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=__UpperCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __magic_name__ : List[Any] = nn.Conv( __UpperCamelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Dict , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: float = 1.0 , __UpperCamelCase: bool = True , __UpperCamelCase: bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: __magic_name__ : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __magic_name__ : Dict = jnp.flip(__UpperCamelCase , axis=1 ) # 1. time if not isinstance(__UpperCamelCase , jnp.ndarray ): __magic_name__ : Union[str, Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __magic_name__ : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) __magic_name__ : Optional[Any] = jnp.expand_dims(__UpperCamelCase , 0 ) __magic_name__ : Optional[int] = self.time_proj(__UpperCamelCase ) __magic_name__ : Any = self.time_embedding(__UpperCamelCase ) # 2. pre-process __magic_name__ : Optional[Any] = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) __magic_name__ : List[Any] = self.conv_in(__UpperCamelCase ) __magic_name__ : List[Any] = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) __magic_name__ : Dict = self.controlnet_cond_embedding(__UpperCamelCase ) sample += controlnet_cond # 3. down __magic_name__ : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ , __magic_name__ : Dict = down_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) else: __magic_name__ , __magic_name__ : Union[str, Any] = down_block(__UpperCamelCase , __UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __magic_name__ : Optional[int] = self.mid_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) # 5. contronet blocks __magic_name__ : Optional[Any] = () for down_block_res_sample, controlnet_block in zip(__UpperCamelCase , self.controlnet_down_blocks ): __magic_name__ : Any = controlnet_block(__UpperCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) __magic_name__ : int = controlnet_down_block_res_samples __magic_name__ : List[str] = self.controlnet_mid_block(__UpperCamelCase ) # 6. scaling __magic_name__ : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__UpperCamelCase , mid_block_res_sample=__UpperCamelCase )
436
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : float , lowerCAmelCase : Callable , lowerCAmelCase : int , lowerCAmelCase : float = 1.0 , lowerCAmelCase : str = None , ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = initial_learning_rate lowercase__ = warmup_steps lowercase__ = power lowercase__ = decay_schedule_fn lowercase__ = name def __call__( self : Optional[int] , lowerCAmelCase : str) -> Any: """simple docstring""" with tf.name_scope(self.name or 'WarmUp') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase__ = tf.cast(lowerCAmelCase , tf.floataa) lowercase__ = tf.cast(self.warmup_steps , tf.floataa) lowercase__ = global_step_float / warmup_steps_float lowercase__ = self.initial_learning_rate * tf.math.pow(lowerCAmelCase , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase , ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCAmelCase ( A__ , A__ , A__ , A__ = 0.0 , A__ = 0.9 , A__ = 0.9_99 , A__ = 1E-8 , A__ = None , A__ = None , A__ = 0.0 , A__ = 1.0 , A__ = None , ): lowercase__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A__ , ) if num_warmup_steps: lowercase__ = WarmUp( initial_learning_rate=A__ , decay_schedule_fn=A__ , warmup_steps=A__ , ) if weight_decay_rate > 0.0: lowercase__ = AdamWeightDecay( learning_rate=A__ , weight_decay_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=A__ , ) else: lowercase__ = tf.keras.optimizers.Adam( learning_rate=A__ , beta_a=A__ , beta_a=A__ , epsilon=A__ , clipnorm=A__ , global_clipnorm=A__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 , lowerCAmelCase : float = 0.9 , lowerCAmelCase : float = 0.9_99 , lowerCAmelCase : float = 1E-7 , lowerCAmelCase : bool = False , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "AdamWeightDecay" , **lowerCAmelCase : Dict , ) -> List[str]: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) lowercase__ = weight_decay_rate lowercase__ = include_in_weight_decay lowercase__ = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" lowercase__ = {'WarmUp': WarmUp} return super(lowerCAmelCase , cls).from_config(lowerCAmelCase , custom_objects=lowerCAmelCase) def UpperCAmelCase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any) -> Any: """simple docstring""" super(lowerCAmelCase , self)._prepare_local(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate') def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" lowercase__, lowercase__ = list(zip(*lowerCAmelCase)) return super(lowerCAmelCase , self).apply_gradients(zip(lowerCAmelCase , lowerCAmelCase) , name=lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase__ = apply_state or {} lowercase__ = apply_state.get((var_device, var_dtype)) if coefficients is None: lowercase__ = self._fallback_apply_state(lowerCAmelCase , lowerCAmelCase) lowercase__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None) -> str: """simple docstring""" lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase) lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) with tf.control_dependencies([decay]): return super(lowerCAmelCase , self)._resource_apply_dense(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]=None) -> List[Any]: """simple docstring""" lowercase__, lowercase__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase) lowercase__ = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) with tf.control_dependencies([decay]): return super(lowerCAmelCase , self)._resource_apply_sparse(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate}) return config def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[Any]) -> Optional[int]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase) is not None: return False return True class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = None @property def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" if self._accum_steps is None: lowercase__ = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" if not self._gradients: lowercase__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase) != len(self._gradients): raise ValueError(f'''Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase)}''') for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase) self._accum_steps.assign_add(1) def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase))
715
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _UpperCamelCase = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _UpperCamelCase = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _UpperCamelCase = "zero2" _UpperCamelCase = "zero3" _UpperCamelCase = [ZEROa, ZEROa] def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowerCAmelCase : Tuple = parameterized.to_safe_name('''_'''.join(str(lowercase__ ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _UpperCamelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowercase (_UpperCAmelCase ): @parameterized.expand(A_ , name_func=A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Optional[Any]: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @require_torch_multi_gpu @parameterized.expand(A_ , name_func=A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Tuple: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @parameterized.expand(A_ , name_func=A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Dict: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) @require_torch_multi_gpu @parameterized.expand(A_ , name_func=A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Tuple: '''simple docstring''' self.run_and_check( stage=A_ , model=A_ , distributed=A_ , fpaa=A_ , ) def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' pass def UpperCamelCase__ ( self , A_ , A_ , A_ = 10 , A_ = True , A_ = True , A_ = True , ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = models[model] __lowerCAmelCase : Any = self.run_trainer( stage=A_ , model_name=A_ , eval_steps=A_ , num_train_epochs=1 , distributed=A_ , fpaa=A_ , ) self.do_checks(A_ ) return output_dir def UpperCamelCase__ ( self , A_ , A_ , A_ = 10 , A_ = 1 , A_ = True , A_ = True , ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = self.get_auto_remove_tmp_dir('''./xxx''' , after=A_ ) __lowerCAmelCase : List[str] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(A_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCAmelCase : Any = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __lowerCAmelCase : Optional[int] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __lowerCAmelCase : Dict = self.get_launcher(A_ ) __lowerCAmelCase : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A_ , env=self.get_env() ) return output_dir def UpperCamelCase__ ( self , A_=False ) ->str: '''simple docstring''' __lowerCAmelCase : Optional[int] = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
492
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
492
1
from __future__ import annotations import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" A : Union[str, Any] = np.shape(_lowerCAmelCase ) if rows != columns: A : Union[str, Any] = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(_lowerCAmelCase ) A : Optional[Any] = np.zeros((rows, columns) ) A : Dict = np.zeros((rows, columns) ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): A : int = sum(lower[i][k] * upper[k][j] for k in range(_lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) A : Any = (table[i][j] - total) / upper[j][j] A : Optional[Any] = 1 for j in range(_lowerCAmelCase , _lowerCAmelCase ): A : Tuple = sum(lower[i][k] * upper[k][j] for k in range(_lowerCAmelCase ) ) A : Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
716
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *lowerCamelCase__, **lowerCamelCase__ ): pass def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Union[str, Any] = np.array(_lowerCAmelCase ) A : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = MaskGenerationPipeline(model=lowerCamelCase__, image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _lowerCAmelCase ( self ): pass @slow @require_torch def _lowerCAmelCase ( self ): A : Tuple = pipeline("""mask-generation""", model="""facebook/sam-vit-huge""" ) A : Dict = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""", points_per_batch=256 ) # Shortening by hashing A : Union[str, Any] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__, decimals=4 ), [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ], ) # fmt: on @require_torch @slow def _lowerCAmelCase ( self ): A : Union[str, Any] = """facebook/sam-vit-huge""" A : int = pipeline("""mask-generation""", model=lowerCamelCase__ ) A : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""", pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing A : Tuple = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__, decimals=4 ), [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ], )
520
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list ) -> list: """simple docstring""" if len(_UpperCAmelCase ) <= 1: return [tuple(_UpperCAmelCase )] _UpperCAmelCase : Union[str, Any] = [] def generate(_UpperCAmelCase : int , _UpperCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _UpperCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even _UpperCAmelCase , _UpperCAmelCase : List[str] = arr[k - 1], arr[i] else: # k is odd _UpperCAmelCase , _UpperCAmelCase : List[str] = arr[k - 1], arr[0] generate(k - 1 , _UpperCAmelCase ) generate(len(_UpperCAmelCase ) , _UpperCAmelCase ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = input("""Enter numbers separated by a comma:\n""").strip() __SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
244
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __SCREAMING_SNAKE_CASE : Tuple = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = "albert" def __init__( self : str , A : List[Any]=30000 , A : List[Any]=128 , A : Tuple=4096 , A : Union[str, Any]=12 , A : List[str]=1 , A : List[Any]=64 , A : Optional[int]=16384 , A : Optional[Any]=1 , A : Tuple="gelu_new" , A : Optional[Any]=0 , A : int=0 , A : Dict=512 , A : Tuple=2 , A : Any=0.02 , A : Union[str, Any]=1E-12 , A : List[str]=0.1 , A : Any="absolute" , A : int=0 , A : Optional[Any]=2 , A : str=3 , **A : Dict , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Tuple = embedding_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[str] = num_hidden_groups _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[str] = inner_group_num _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : str = classifier_dropout_prob _UpperCAmelCase : Union[str, Any] = position_embedding_type class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @property def _A ( self : Optional[Any] ): if self.task == "multiple-choice": _UpperCAmelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
244
1
'''simple docstring''' import numpy # List of input, output pairs __snake_case : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __snake_case : Tuple = (((515, 22, 13), 555), ((61, 35, 49), 150)) __snake_case : List[Any] = [2, 4, 1, 5] __snake_case : Union[str, Any] = len(train_data) __snake_case : Tuple = 0.009 def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str]="train" ): return calculate_hypothesis_value(lowerCamelCase__, lowerCamelCase__ ) - output( lowerCamelCase__, lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = 0 for i in range(len(lowerCamelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : int ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : int ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : int=m ): _a = 0 for i in range(lowerCamelCase__ ): if index == -1: summation_value += _error(lowerCamelCase__ ) else: summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index] return summation_value def _lowercase ( lowerCamelCase__ : Tuple ): _a = summation_of_cost_derivative(lowerCamelCase__, lowerCamelCase__ ) / m return cost_derivative_value def _lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output _a = 0.00_00_02 _a = 0 _a = 0 while True: j += 1 _a = [0, 0, 0, 0] for i in range(0, len(lowerCamelCase__ ) ): _a = get_cost_derivative(i - 1 ) _a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase__, lowerCamelCase__, atol=lowerCamelCase__, rtol=lowerCamelCase__, ): break _a = temp_parameter_vector print(("Number of iterations:", j) ) def _lowercase ( ): for i in range(len(lowerCamelCase__ ) ): print(("Actual output value:", output(lowerCamelCase__, "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__, "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True _lowercase : Optional[Any] = 4 _lowercase : Tuple = (1 << p) - 1 for _ in range(p - 2 ): _lowercase : Union[str, Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
66
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( lowercase__ : str ) -> None: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = analyze_text(lowercase__ ) lowerCAmelCase_ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase_ : Any = sum(single_char_strings.values() ) # one length string lowerCAmelCase_ : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase_ : Union[str, Any] = single_char_strings[ch] lowerCAmelCase_ : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase__ ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase_ : Any = sum(two_char_strings.values() ) lowerCAmelCase_ : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase_ : List[str] = cha + cha if sequence in two_char_strings: lowerCAmelCase_ : Any = two_char_strings[sequence] lowerCAmelCase_ : Optional[Any] = int(lowercase__ ) / all_sum my_sec_sum += prob * math.loga(lowercase__ ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __UpperCamelCase ( lowercase__ : str ) -> tuple[dict, dict]: '''simple docstring''' lowerCAmelCase_ : Any = Counter() # type: ignore lowerCAmelCase_ : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowercase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
600
0
import os from collections.abc import Iterator def a__ ( _UpperCamelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCamelCase ): __lowerCamelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCamelCase ,_UpperCamelCase ).lstrip('''./''' ) def a__ ( _UpperCamelCase : Optional[int] ): return F"""{i * " "}*""" if i else "\n##" def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_UpperCamelCase )} {new_part.replace("_" ," " ).title()}""" ) return new_path def a__ ( _UpperCamelCase : str = "." ): __lowerCamelCase = '''''' for filepath in sorted(good_file_paths(_UpperCamelCase ) ): __lowerCamelCase ,__lowerCamelCase = os.path.split(_UpperCamelCase ) if filepath != old_path: __lowerCamelCase = print_path(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 __lowerCamelCase = F"""{filepath}/{filename}""".replace(''' ''' ,'''%20''' ) __lowerCamelCase = os.path.splitext(filename.replace('''_''' ,''' ''' ).title() )[0] print(F"""{md_prefix(_UpperCamelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
622
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = np.full((len(_UpperCamelCase ), sequence_length, 2) ,_UpperCamelCase ) else: __lowerCamelCase = np.full((len(_UpperCamelCase ), sequence_length) ,_UpperCamelCase ) for i, tensor in enumerate(_UpperCamelCase ): if padding_side == "right": if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = tensor[:sequence_length] else: __lowerCamelCase = tensor[:sequence_length] else: if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = tensor[:sequence_length] else: __lowerCamelCase = tensor[:sequence_length] return out_tensor.tolist() def a__ ( _UpperCamelCase : Dict ): __lowerCamelCase = ord(_UpperCamelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True __lowerCamelCase = unicodedata.category(_UpperCamelCase ) if cat.startswith('''P''' ): return True return False @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = -1_0_0 lowerCAmelCase__ = "pt" def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' import torch __lowerCamelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCamelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCamelCase = self.tokenizer.pad( __UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCamelCase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCamelCase = self.tokenizer.padding_side if padding_side == "right": __lowerCamelCase = [ list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels ] else: __lowerCamelCase = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels ] __lowerCamelCase = [feature['''ner_tags'''] for feature in features] __lowerCamelCase = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = [feature['''original_entity_spans'''] for feature in features] __lowerCamelCase = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
622
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
514
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'pegasus' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0 , lowercase=False , lowercase=0 , lowercase=1 , lowercase=1 , **lowercase , ) -> Optional[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return self.d_model
514
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) __UpperCamelCase = size if size is not None else {'shortest_edge': 256} __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __UpperCamelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] __UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[str]: __UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = target_sizes.numpy() __UpperCamelCase = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): __UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = logits.argmax(dim=1 ) __UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
567
def _a ( __lowercase ) -> bool: """simple docstring""" if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
567
1