code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase : def __init__( self , __A , __A=13 , __A=3 , __A=True , __A=True , __A=0.1 , __A=0.1 , __A=224 , __A=1_000 , __A=[3, 3, 6, 4] , __A=[48, 56, 112, 220] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def __lowerCamelCase ( self ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__A , layer_scale_init_value=1E-5 , ) def __lowerCamelCase ( self , __A , __A , __A ): __UpperCAmelCase = SwiftFormerModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowerCamelCase ( self , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __A , __A , unittest.TestCase ): _A : Any = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _A : List[str] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) _A : List[Any] = False _A : Union[str, Any] = False _A : int = False _A : str = False _A : Dict = False def __lowerCamelCase ( self ): __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=__A , has_text_modality=__A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__A ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def __lowerCamelCase ( self ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(__A ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __lowerCamelCase ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): def check_hidden_states_output(__A , __A , __A ): __UpperCAmelCase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(__A , __A ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(__A ) , __A ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__A ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(__A , __A , __A ) def __lowerCamelCase ( self ): def _config_zero_init(__A ): __UpperCAmelCase = copy.deepcopy(__A ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__A , __A , 1E-10 ) if isinstance(getattr(__A , __A , __A ) , __A ): __UpperCAmelCase = _config_zero_init(getattr(__A , __A ) ) setattr(__A , __A , __A ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(__A ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=__A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCamelCase ( self ): pass def _lowerCAmelCase ( )-> Optional[Any]: __UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(__A ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**__A ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) )
126
import comet # From: unbabel-comet import torch import datasets SCREAMING_SNAKE_CASE = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' SCREAMING_SNAKE_CASE = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' SCREAMING_SNAKE_CASE = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def snake_case_ ( self , __A ): if self.config_name == "default": __a = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __a = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def snake_case_ ( self , __A , __A , __A , __A=None , __A=False ): if gpus is None: __a = 1 if torch.cuda.is_available() else 0 __a = {"""src""": sources, """mt""": predictions, """ref""": references} __a = [dict(zip(__A , __A ) ) for t in zip(*data.values() )] __a , __a = self.scorer.predict(__A , gpus=__A , progress_bar=__A ) return {"mean_score": mean_score, "scores": scores}
99
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): lowercase = ['input_features', 'is_longer'] def __init__( self : Any , a : Union[str, Any]=64 , a : int=48_000 , a : int=480 , a : Any=10 , a : Union[str, Any]=1_024 , a : List[Any]=0.0 , a : Union[str, Any]=False , a : float = 0 , a : float = 14_000 , a : int = None , a : str = "fusion" , a : str = "repeatpad" , **a : Any , ): '''simple docstring''' super().__init__( feature_size=a , sampling_rate=a , padding_value=a , return_attention_mask=a , **a , ) lowerCAmelCase__ : List[str] = top_db lowerCAmelCase__ : Dict = truncation lowerCAmelCase__ : Dict = padding lowerCAmelCase__ : List[str] = fft_window_size lowerCAmelCase__ : Any = (fft_window_size >> 1) + 1 lowerCAmelCase__ : Optional[Any] = hop_length lowerCAmelCase__ : Optional[int] = max_length_s lowerCAmelCase__ : Any = max_length_s * sampling_rate lowerCAmelCase__ : Optional[Any] = sampling_rate lowerCAmelCase__ : Any = frequency_min lowerCAmelCase__ : Dict = frequency_max lowerCAmelCase__ : Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm=a , mel_scale='htk' , ) lowerCAmelCase__ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=a , min_frequency=a , max_frequency=a , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCamelCase ( self : Any , a : np.array , a : Optional[np.array] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = spectrogram( a , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=a , log_mel='dB' , ) return log_mel_spectrogram.T def _lowerCamelCase ( self : Any , a : Dict , a : Dict , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase__ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase__ : Optional[int] = [0] # randomly choose index for each part lowerCAmelCase__ : Dict = np.random.choice(ranges[0] ) lowerCAmelCase__ : Tuple = np.random.choice(ranges[1] ) lowerCAmelCase__ : Optional[int] = np.random.choice(ranges[2] ) lowerCAmelCase__ : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase__ : Optional[int] = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase__ : Optional[int] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase__ : List[Any] = torch.tensor(mel[None, None, :] ) lowerCAmelCase__ : List[str] = torch.nn.functional.interpolate( a , size=[chunk_frames, 64] , mode='bilinear' , align_corners=a ) lowerCAmelCase__ : List[str] = mel_shrink[0][0].numpy() lowerCAmelCase__ : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowerCamelCase ( self : List[Any] , a : np.array , a : List[str] , a : int , a : Optional[int] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase__ : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase__ : Optional[int] = len(a ) - max_length lowerCAmelCase__ : int = np.random.randint(0 , overflow + 1 ) lowerCAmelCase__ : Union[str, Any] = waveform[idx : idx + max_length] lowerCAmelCase__ : Union[str, Any] = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase__ : Dict = self._np_extract_fbank_features(a , self.mel_filters ) lowerCAmelCase__ : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase__ : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase__ : List[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase__ : Any = False else: lowerCAmelCase__ : Union[str, Any] = self._random_mel_fusion(a , a , a ) lowerCAmelCase__ : Tuple = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase__ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase__ : Optional[Any] = int(max_length / len(a ) ) lowerCAmelCase__ : Any = np.stack(np.tile(a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase__ : str = int(max_length / len(a ) ) lowerCAmelCase__ : Tuple = np.stack(np.tile(a , a ) ) lowerCAmelCase__ : Optional[Any] = np.pad(a , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase__ : Optional[int] = self._np_extract_fbank_features(a , self.mel_filters ) lowerCAmelCase__ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase__ : str = self._np_extract_fbank_features(a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : str = None , a : Optional[str] = None , a : Optional[int] = None , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , **a : Optional[int] , ): '''simple docstring''' lowerCAmelCase__ : Any = truncation if truncation is not None else self.truncation lowerCAmelCase__ : Any = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase__ : str = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase__ : Optional[Any] = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ : List[Any] = [np.asarray(a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowerCAmelCase__ : Union[str, Any] = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase__ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ : Optional[int] = [np.asarray(a )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase__ : Optional[Any] = [ self._get_input_mel(a , max_length if max_length else self.nb_max_samples , a , a ) for waveform in raw_speech ] lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Any = [] for mel, longer in padded_inputs: input_mel.append(a ) is_longer.append(a ) if truncation == "fusion" and sum(a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase__ : str = np.random.randint(0 , len(a ) ) lowerCAmelCase__ : Any = True if isinstance(input_mel[0] , a ): lowerCAmelCase__ : List[str] = [np.asarray(a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase__ : str = [[longer] for longer in is_longer] lowerCAmelCase__ : str = {'input_features': input_mel, 'is_longer': is_longer} lowerCAmelCase__ : Dict = BatchFeature(a ) if return_tensors is not None: lowerCAmelCase__ : Tuple = input_features.convert_to_tensors(a ) return input_features
69
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ConsistencyModelPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any]=False ): '''simple docstring''' if class_cond: lowerCAmelCase__ : Tuple = self.dummy_cond_unet else: lowerCAmelCase__ : Dict = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase__ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Optional[int] , a : Any=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : str = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_dummy_inputs(a ) lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : Union[str, Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Dict = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] , a : Tuple=0 , a : Optional[Any]=False , a : Optional[Any]="cpu" , a : Union[str, Any]=torch.floataa , a : Dict=(1, 3, 64, 64) ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) lowerCAmelCase__ : List[Any] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCAmelCase__ : Optional[int] = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) lowerCAmelCase__ : Tuple = latents return inputs def _lowerCamelCase ( self : str , a : Tuple=0 , a : Tuple="cpu" , a : Tuple=torch.floataa , a : str=(1, 3, 64, 64) ): '''simple docstring''' if type(a ) == str: lowerCAmelCase__ : str = torch.device(a ) lowerCAmelCase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Any = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[Any] = self.get_inputs() lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Optional[int] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_inputs() lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Any = self.get_inputs(get_fixed_latents=a , device=a ) lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
69
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _SCREAMING_SNAKE_CASE : List[Any] = Lock() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __magic_name__ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __magic_name__ : int = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __magic_name__ : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __magic_name__ : List[str] = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : int = [] __magic_name__ : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __magic_name__ : Union[str, Any] = Pipe() __magic_name__ : List[str] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : List[str] = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): __magic_name__ : Optional[int] = Pipe() __magic_name__ : Optional[int] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : Union[str, Any] = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): __magic_name__ : str = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*UpperCamelCase__ ) __magic_name__ : Tuple = odd_even_transposition(UpperCamelCase__ ) print("Sorted List\n" ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
436
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "unispeech" def __init__( self: List[str] , __UpperCamelCase: Tuple=32 , __UpperCamelCase: List[Any]=768 , __UpperCamelCase: Dict=12 , __UpperCamelCase: Any=12 , __UpperCamelCase: Dict=3072 , __UpperCamelCase: List[str]="gelu" , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: int=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Optional[Any]=0.0 , __UpperCamelCase: Optional[Any]=0.0 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: List[str]=0.1 , __UpperCamelCase: str=0.0_2 , __UpperCamelCase: List[str]=1E-5 , __UpperCamelCase: Tuple="group" , __UpperCamelCase: str="gelu" , __UpperCamelCase: Tuple=(512, 512, 512, 512, 512, 512, 512) , __UpperCamelCase: Any=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase: List[str]=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase: Dict=False , __UpperCamelCase: List[Any]=128 , __UpperCamelCase: Tuple=16 , __UpperCamelCase: List[Any]=False , __UpperCamelCase: List[str]=True , __UpperCamelCase: int=0.0_5 , __UpperCamelCase: Dict=10 , __UpperCamelCase: int=2 , __UpperCamelCase: str=0.0 , __UpperCamelCase: Tuple=10 , __UpperCamelCase: Optional[Any]=0 , __UpperCamelCase: List[Any]=320 , __UpperCamelCase: int=2 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: str=100 , __UpperCamelCase: Union[str, Any]=256 , __UpperCamelCase: List[Any]=256 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: Any="mean" , __UpperCamelCase: Any=False , __UpperCamelCase: Dict=False , __UpperCamelCase: Dict=256 , __UpperCamelCase: List[Any]=80 , __UpperCamelCase: str=0 , __UpperCamelCase: Tuple=1 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: List[str]=0.5 , **__UpperCamelCase: List[Any] , ) -> List[Any]: super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) __magic_name__ : int = hidden_size __magic_name__ : int = feat_extract_norm __magic_name__ : str = feat_extract_activation __magic_name__ : Any = list(__UpperCamelCase ) __magic_name__ : List[str] = list(__UpperCamelCase ) __magic_name__ : Tuple = list(__UpperCamelCase ) __magic_name__ : Tuple = conv_bias __magic_name__ : Tuple = num_conv_pos_embeddings __magic_name__ : Optional[Any] = num_conv_pos_embedding_groups __magic_name__ : Tuple = len(self.conv_dim ) __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Any = intermediate_size __magic_name__ : int = hidden_act __magic_name__ : str = num_attention_heads __magic_name__ : Union[str, Any] = hidden_dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : Any = activation_dropout __magic_name__ : List[str] = feat_proj_dropout __magic_name__ : Optional[int] = final_dropout __magic_name__ : Optional[Any] = layerdrop __magic_name__ : List[str] = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = num_ctc_classes __magic_name__ : Any = vocab_size __magic_name__ : int = do_stable_layer_norm __magic_name__ : str = use_weighted_layer_sum __magic_name__ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ : Optional[int] = apply_spec_augment __magic_name__ : Tuple = mask_time_prob __magic_name__ : int = mask_time_length __magic_name__ : List[Any] = mask_time_min_masks __magic_name__ : List[Any] = mask_feature_prob __magic_name__ : Tuple = mask_feature_length __magic_name__ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __magic_name__ : Union[str, Any] = num_codevectors_per_group __magic_name__ : Optional[Any] = num_codevector_groups __magic_name__ : Tuple = contrastive_logits_temperature __magic_name__ : int = feat_quantizer_dropout __magic_name__ : List[str] = num_negatives __magic_name__ : int = codevector_dim __magic_name__ : Any = proj_codevector_dim __magic_name__ : Tuple = diversity_loss_weight # ctc loss __magic_name__ : Optional[int] = ctc_loss_reduction __magic_name__ : List[str] = ctc_zero_infinity # pretraining loss __magic_name__ : int = replace_prob @property def lowerCAmelCase__ ( self: int ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
436
1
"""simple docstring""" import os from math import logaa def lowercase_ ( _snake_case = "base_exp.txt" ): SCREAMING_SNAKE_CASE__ : float = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) ,lowerCamelCase__ ) ) ): SCREAMING_SNAKE_CASE__ : Any = list(map(lowerCamelCase__ ,line.split(""",""" ) ) ) if x * logaa(lowerCamelCase__ ) > largest: SCREAMING_SNAKE_CASE__ : Any = x * logaa(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] = i + 1 return result if __name__ == "__main__": print(solution())
710
"""simple docstring""" import torch def lowercase_ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE__ : int = 0 print(f'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
545
0
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(__snake_case ) * abs(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ViTImageProcessor if is_vision_available() else None @property def __lowerCAmelCase ( self : str ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __magic_name__ : Dict = (3, 32, 128) __magic_name__ : Any = tempfile.mkdtemp() # fmt: off __magic_name__ : Optional[int] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __magic_name__ : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) __magic_name__ : Tuple = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } __magic_name__ : Union[str, Any] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def __lowerCAmelCase ( self : str , **_A : Optional[int] ) -> List[str]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : int , **_A : Optional[int] ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Dict ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ) -> Any: __magic_name__ : str = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __magic_name__ : List[Any] = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def __lowerCAmelCase ( self : List[str] ) -> List[Any]: __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : List[str] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: __magic_name__ : int = self.get_tokenizer() __magic_name__ : int = self.get_image_processor() __magic_name__ : int = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ : Optional[Any] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __magic_name__ : List[str] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Any = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : List[str] = self.prepare_image_inputs() __magic_name__ : str = image_processor(_A , return_tensors='np' ) __magic_name__ : Tuple = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Union[str, Any] = 'test' __magic_name__ : Optional[Any] = processor(text=_A ) __magic_name__ : int = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : List[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Union[str, Any] = 'test' __magic_name__ : str = self.prepare_image_inputs() __magic_name__ : Dict = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: __magic_name__ : Dict = self.get_image_processor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : Optional[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : str = processor.char_decode(_A ) __magic_name__ : Tuple = tokenizer.batch_decode(_A ) __magic_name__ : Union[str, Any] = [seq.replace(' ' , '' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: __magic_name__ : int = self.get_image_processor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : Any = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : int = None __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : Dict = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __lowerCAmelCase ( self : List[str] ) -> Dict: __magic_name__ : Any = self.get_image_processor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : List[str] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : List[str] = torch.randn(1 , 27 , 38 ) __magic_name__ : Optional[Any] = torch.randn(1 , 27 , 50257 ) __magic_name__ : Optional[int] = torch.randn(1 , 27 , 30522 ) __magic_name__ : List[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
561
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''gpt_bigcode''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCAmelCase=5_0257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=5_0256 , _lowerCAmelCase=5_0256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = attention_softmax_in_fpaa lowercase = scale_attention_softmax_in_fpaa lowercase = multi_query lowercase = bos_token_id lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = '''backbone.''' if is_semantic else '''''' lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", '''beit.embeddings.cls_token'''), (f"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (f"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (f"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): for i in range(config.num_hidden_layers ): lowerCamelCase_ = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight" ) lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias" ) lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias" ) lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = q_bias lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.gamma_1" ) lowerCamelCase_ = state_dict.pop(f"{prefix}blocks.{i}.gamma_2" ) lowerCamelCase_ = gamma_a lowerCamelCase_ = gamma_a def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = dct.pop(lowerCAmelCase__ ) lowerCamelCase_ = val def lowercase ( ): lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): lowerCamelCase_ = False if '''rvlcdip''' in checkpoint_url else True lowerCamelCase_ = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase__ ,use_mask_token=lowerCAmelCase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_ = 1_024 lowerCamelCase_ = 4_096 lowerCamelCase_ = 24 lowerCamelCase_ = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_ = 16 lowerCamelCase_ = '''huggingface/label-files''' lowerCamelCase_ = '''rvlcdip-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] lowerCamelCase_ = create_rename_keys(lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ ,lowerCAmelCase__ ,has_lm_head=lowerCAmelCase__ ) # load HuggingFace model lowerCamelCase_ = BeitForMaskedImageModeling(lowerCAmelCase__ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowerCamelCase_ = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = encoding['''pixel_values'''] lowerCamelCase_ = model(lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits # verify logits lowerCamelCase_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(lowerCAmelCase__ ), "Shape of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: if has_lm_head: lowerCamelCase_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowerCamelCase_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add image processor''' ,use_temp_dir=lowerCAmelCase__ ,) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ ,lowerCAmelCase__ ) ,organization='''nielsr''' ,commit_message='''Add model''' ,use_temp_dir=lowerCAmelCase__ ,) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) A_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __A = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = test_results.split(' ' ) lowerCAmelCase__ :Dict = 0 lowerCAmelCase__ :List[str] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCAmelCase__ :str = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_SCREAMING_SNAKE_CASE ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = {} lowerCAmelCase__ :Dict = None lowerCAmelCase__ :List[str] = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :str = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): lowerCAmelCase__ :Any = line lowerCAmelCase__ :List[str] = False return failures class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = title lowerCAmelCase__ :Optional[Any] = doc_test_results['time_spent'].split(',' )[0] lowerCAmelCase__ :Optional[Any] = doc_test_results['success'] lowerCAmelCase__ :List[Any] = doc_test_results['failures'] lowerCAmelCase__ :Tuple = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCAmelCase__ :Dict = doc_test_results @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [self._time_spent] lowerCAmelCase__ :str = 0 for time in time_spent: lowerCAmelCase__ :str = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCAmelCase ) == 1: lowerCAmelCase__ :List[str] = [0, 0, time_parts[0]] lowerCAmelCase__ :List[str] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds lowerCAmelCase__ :Optional[int] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F"{int(__UpperCAmelCase )}h{int(__UpperCAmelCase )}m{int(__UpperCAmelCase )}s" @property def snake_case ( self ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def snake_case ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" F" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = 4_0 lowerCAmelCase__ :Optional[Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(__UpperCAmelCase , __UpperCAmelCase )} lowerCAmelCase__ :Dict = '' for category, failures in category_failures.items(): if len(__UpperCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"The following examples had failures:\n\n\n{report}\n", }, } @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCAmelCase ) @staticmethod def snake_case ( ): '''simple docstring''' lowerCAmelCase__ :Any = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(__UpperCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=__UpperCAmelCase , ) def snake_case ( self ): '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) lowerCAmelCase__ :Union[str, Any] = F"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else 'All tests passed.' lowerCAmelCase__ :List[Any] = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = '' for key, value in failures.items(): lowerCAmelCase__ :Optional[int] = value[:2_0_0] + ' [Truncated]' if len(__UpperCAmelCase ) > 2_5_0 else value failures_text += F"*{key}*\n_{value}_\n\n" lowerCAmelCase__ :Optional[Any] = job_name lowerCAmelCase__ :Tuple = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: lowerCAmelCase__ :List[str] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case ( self ): '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) lowerCAmelCase__ :int = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) lowerCAmelCase__ :Optional[int] = sorted(self.doc_test_results.items() , key=lambda __UpperCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): lowerCAmelCase__ :Any = F"*Num failures* :{len(job_result['failed'] )} \n" lowerCAmelCase__ :Dict = job_result['failures'] lowerCAmelCase__ :int = self.get_reply_blocks(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text=__UpperCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"Results for {job}" , blocks=__UpperCAmelCase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = os.environ['GITHUB_RUN_ID'] lowerCAmelCase__ :List[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" lowerCAmelCase__ :Optional[int] = requests.get(_SCREAMING_SNAKE_CASE ).json() lowerCAmelCase__ :str = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCAmelCase__ :str = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = requests.get(url + F"&page={i + 2}" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _SCREAMING_SNAKE_CASE ) return {} def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :int = {} if os.path.exists(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Tuple = os.listdir(_SCREAMING_SNAKE_CASE ) for file in files: try: with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , encoding='utf-8' ) as f: lowerCAmelCase__ :List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(F"Could not open {os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}." ) from e return _artifact def __A () ->str: """simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = name lowerCAmelCase__ :Any = [] def __str__( self ): '''simple docstring''' return self.name def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) lowerCAmelCase__ :Dict[str, Artifact] = {} lowerCAmelCase__ :Optional[Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCAmelCase__ :int = directory if artifact_name not in _available_artifacts: lowerCAmelCase__ :Optional[int] = Artifact(_SCREAMING_SNAKE_CASE ) _available_artifacts[artifact_name].add_path(_SCREAMING_SNAKE_CASE ) return _available_artifacts if __name__ == "__main__": __A = get_job_links() __A = retrieve_available_artifacts() __A = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __A = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __A = github_actions_job_links.get("""run_doctests""") __A = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __A = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __A , __A , __A = handle_test_results(artifact["""stats"""]) __A = failed __A = success __A = time_spent[1:-1] + """, """ __A = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __A = line.replace("""FAILED """, """""") __A = line.split()[0].replace("""\n""", """""") if "::" in line: __A , __A = line.split("""::""") else: __A , __A = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __A = docs[file_regex] doc_test_results[category]["failed"].append(test) __A = all_failures[test] if test in all_failures else """N/A""" __A = failure break __A = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
710
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = ["""image_processor""", """tokenizer"""] __magic_name__ :str = """BlipImageProcessor""" __magic_name__ :Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = False super().__init__(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.image_processor def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCAmelCase__ :int = self.tokenizer lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ :Dict = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) if text is not None: lowerCAmelCase__ :str = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) else: lowerCAmelCase__ :Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCAmelCase ) return encoding_image_processor def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
560
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
199
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def snake_case_ ( lowercase__ ): return x + 2 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = "x = 3" UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) UpperCAmelCase__ : Any = "x = y" UpperCAmelCase__ : List[str] = {"y": 5} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 5, "y": 5} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = "y = add_two(x)" UpperCAmelCase__ : Tuple = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : Any = evaluate(snake_case__ , {} , state=snake_case__ ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = "x = 3" UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = "test_dict = {'x': x, 'y': add_two(x)}" UpperCAmelCase__ : List[Any] = {"x": 3} UpperCAmelCase__ : int = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = "x = 3\ny = 5" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Union[str, Any] = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = "text = f'This is x: {x}.'" UpperCAmelCase__ : Dict = {"x": 3} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case__ , {"x": 3, "text": "This is x: 3."} ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCAmelCase__ : Dict = {"x": 3} UpperCAmelCase__ : Dict = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case__ , {"x": 3, "y": 2} ) UpperCAmelCase__ : Optional[Any] = {"x": 8} UpperCAmelCase__ : str = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 8, "y": 5} ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]" UpperCAmelCase__ : Any = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertListEqual(snake_case__ , [3, 5] ) self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = "y = x" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3, "y": 3} ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCAmelCase__ : List[Any] = {"x": 3} UpperCAmelCase__ : List[Any] = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) UpperCAmelCase__ : Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "x = 0\nfor i in range(3):\n x = i" UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Any = evaluate(snake_case__ , {"range": range} , state=snake_case__ ) assert result == 2 self.assertDictEqual(snake_case__ , {"x": 2, "i": 2} )
199
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 16 lowerCamelCase_ = 32 def UpperCamelCase( lowercase_ , lowercase_ = 16 ): '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 16 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase_ = mocked_dataloaders # noqa: F811 def UpperCamelCase( lowercase_ , lowercase_ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": snake_case_ = 2 # Initialize accelerator snake_case_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ = batch_size // MAX_GPU_BATCH_SIZE snake_case_ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) snake_case_ , snake_case_ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ = model(**lowercase_ ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case_ = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**lowercase_ ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase_ ) def UpperCamelCase( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
707
from math import ceil def UpperCamelCase( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = list(range(0 , lowercase_ ) ) snake_case_ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check snake_case_ = [] for i in device_map_blocks: if device_map_blocks.count(lowercase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase_ ) # Missing blocks snake_case_ = [i for i in blocks if i not in device_map_blocks] snake_case_ = [i for i in device_map_blocks if i not in blocks] if len(lowercase_ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowercase_ ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = list(range(lowercase_ ) ) snake_case_ = int(ceil(n_layers / len(lowercase_ ) ) ) snake_case_ = [layers[i : i + n_blocks] for i in range(0 , lowercase_ , lowercase_ )] return dict(zip(lowercase_ , lowercase_ ) )
161
0
'''simple docstring''' class snake_case__ : """simple docstring""" def __init__( self : str , UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" snake_case : List[str] = val snake_case : Optional[Any] = None snake_case : Optional[int] = None def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" if self.val: if val < self.val: if self.left is None: snake_case : Union[str, Any] = Node(lowerCAmelCase_ ) else: self.left.insert(lowerCAmelCase_ ) elif val > self.val: if self.right is None: snake_case : Tuple = Node(lowerCAmelCase_ ) else: self.right.insert(lowerCAmelCase_ ) else: snake_case : Optional[int] = val def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' if root: inorder(root.left , A_ ) res.append(root.val ) inorder(root.right , A_ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: '''simple docstring''' if len(A_ ) == 0: return arr snake_case : Optional[Any] = Node(arr[0] ) for i in range(1 , len(A_ ) ): root.insert(arr[i] ) # Traverse BST in order. snake_case : List[Any] = [] inorder(A_ , A_ ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
638
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __snake_case: Union[str, Any] = logging.get_logger(__name__) __snake_case: Any = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __snake_case: int = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __snake_case: Any = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __snake_case: Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __snake_case: Any = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __snake_case: Optional[Any] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __snake_case: Optional[int] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __snake_case: Any = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __snake_case: str = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __snake_case: List[Any] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __snake_case: List[Any] = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __snake_case: Optional[Any] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __snake_case: List[Any] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __snake_case: str = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __snake_case: Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __snake_case: Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __snake_case: List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __snake_case: List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __snake_case: Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __snake_case: Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __snake_case: Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __snake_case: int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __snake_case: Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __snake_case: Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __snake_case: Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __snake_case: Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __snake_case: Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __snake_case: List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_MAPPING __snake_case: List[Any] = auto_class_update(FlaxAutoModel) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __snake_case: Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __snake_case: Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __snake_case: Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __snake_case: Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case: Dict = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __snake_case: List[Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __snake_case: Any = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __snake_case: Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __snake_case: Dict = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __snake_case: List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __snake_case: Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class _UpperCAmelCase ( _BaseAutoModelClass ): """simple docstring""" a_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __snake_case: Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
577
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" assert ( isinstance(_A , _A ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _lowerCAmelCase : Any = 1, 1 for _ in range(number_of_steps - 1 ): _lowerCAmelCase : Any = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = (boundary[1] - boundary[0]) / steps _lowerCAmelCase : Any = boundary[0] _lowerCAmelCase : List[str] = boundary[1] _lowerCAmelCase : Tuple = make_points(_A , _A , _A ) _lowerCAmelCase : Tuple = 0.0 y += (h / 2.0) * f(_A ) for i in x_i: # print(i) y += h * f(_A ) y += (h / 2.0) * f(_A ) return y def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = a + h while x < (b - h): yield x _lowerCAmelCase : Any = x + h def lowercase (_A ): # enter your function here """simple docstring""" _lowerCAmelCase : int = (x - 0) * (x - 0) return y def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = 0.0 # Lower bound of integration _lowerCAmelCase : Dict = 1.0 # Upper bound of integration _lowerCAmelCase : Optional[Any] = 10.0 # define number of steps or resolution _lowerCAmelCase : Optional[int] = [a, b] # define boundary of integration _lowerCAmelCase : List[Any] = method_a(_A , _A ) print(f'y = {y}' ) if __name__ == "__main__": main()
630
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : int = DPTConfig() if "large" in checkpoint_url: lowercase__ : List[Any] = 1_024 lowercase__ : List[Any] = 4_096 lowercase__ : Tuple = 24 lowercase__ : str = 16 lowercase__ : List[str] = [5, 11, 17, 23] lowercase__ : Optional[Any] = [256, 512, 1_024, 1_024] lowercase__ : Tuple = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Dict = True lowercase__ : Tuple = 150 lowercase__ : Tuple = """huggingface/label-files""" lowercase__ : Optional[int] = """ade20k-id2label.json""" lowercase__ : str = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) lowercase__ : Optional[int] = {int(_UpperCamelCase ): v for k, v in idalabel.items()} lowercase__ : str = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = [1, 150, 480, 480] return config, expected_shape def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowercase__ : Optional[Any] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowercase__ : List[Any] = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: lowercase__ : Dict = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowercase__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase__ : Optional[Any] = name.replace("proj" , "projection" ) if "blocks" in name: lowercase__ : Optional[int] = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowercase__ : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase__ : Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: lowercase__ : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowercase__ : str = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowercase__ : int = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowercase__ : List[str] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowercase__ : Dict = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowercase__ : Optional[Any] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowercase__ : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : Optional[int] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase__ : Optional[int] = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowercase__ : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowercase__ : Optional[int] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowercase__ : Union[str, Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[int] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase__ : int = name.replace("pretrained" , "dpt" ) if "bn" in name: lowercase__ : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: lowercase__ : List[str] = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowercase__ : List[str] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowercase__ : List[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase__ : Union[str, Any] = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowercase__ : int = in_proj_bias[: config.hidden_size] lowercase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : Dict = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ : str = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL lowercase__ : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_UpperCamelCase ) lowercase__ : Optional[int] = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model lowercase__ : Union[str, Any] = DPTForSemanticSegmentation(_UpperCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image lowercase__ : List[str] = 480 if """ade""" in checkpoint_url else 384 lowercase__ : str = DPTImageProcessor(size=_UpperCamelCase ) lowercase__ : str = prepare_img() lowercase__ : Optional[Any] = image_processor(_UpperCamelCase , return_tensors="pt" ) # forward pass lowercase__ : Tuple = model(**_UpperCamelCase ).logits if """ade""" in checkpoint_url else model(**_UpperCamelCase ).predicted_depth # Assert logits lowercase__ : Tuple = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowercase__ : Tuple = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_UpperCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _UpperCamelCase ) ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
496
_lowercase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
306
0
def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any]=2_8_1_2_3 )-> str: A__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i A__ = set() A__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
703
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( A__ ): UpperCamelCase__ = (DDPMScheduler,) def snake_case_ ( self , **a__): A__ = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**a__) return config def snake_case_ ( self): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a__) def snake_case_ ( self): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=a__ , beta_end=a__) def snake_case_ ( self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__) def snake_case_ ( self): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a__) def snake_case_ ( self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__) def snake_case_ ( self): self.check_over_configs(thresholding=a__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , ) def snake_case_ ( self): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a__) def snake_case_ ( self): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0_0_9_7_9)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.0_2)) < 1e-5 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = len(a__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(a__)): # 1. predict noise residual A__ = model(a__ , a__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(a__ , a__ , a__ , generator=a__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(a__)) A__ = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1e-3 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='''v_prediction''') A__ = scheduler_class(**a__) A__ = len(a__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(a__)): # 1. predict noise residual A__ = model(a__ , a__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(a__ , a__ , a__ , generator=a__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(a__)) A__ = torch.mean(torch.abs(a__)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1e-3 def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=a__) A__ = scheduler.timesteps for i, timestep in enumerate(a__): if i == len(a__) - 1: A__ = -1 else: A__ = timesteps[i + 1] A__ = scheduler.previous_timestep(a__) A__ = prev_t.item() self.assertEqual(a__ , a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(a__ , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [1_0_0, 8_7, 5_0, 1, 0] A__ = len(a__) with self.assertRaises(a__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=a__ , timesteps=a__) def snake_case_ ( self): A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**a__) A__ = [scheduler.config.num_train_timesteps] with self.assertRaises( a__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=a__)
526
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Dict , **_UpperCamelCase : List[Any] ) ->Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case_ = deprecated_arg[3:] snake_case_ = not kwargs.pop(_UpperCamelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case_ = kwargs.pop('''tpu_name''' , self.tpu_name ) snake_case_ = kwargs.pop('''device_idx''' , self.device_idx ) snake_case_ = kwargs.pop('''eager_mode''' , self.eager_mode ) snake_case_ = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE : str = field( default=__A , metadata={"help": "Name of TPU"} , ) SCREAMING_SNAKE_CASE : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) SCREAMING_SNAKE_CASE : bool = field(default=__A , metadata={"help": "Benchmark models in eager model."} ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def snake_case__( self : Optional[Any] ) ->Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) snake_case_ = None if self.tpu: try: if self.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case_ = None return tpu @cached_property def snake_case__( self : Tuple ) ->Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case_ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) snake_case_ = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU snake_case_ = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def snake_case__( self : Dict ) ->bool: requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def snake_case__( self : Union[str, Any] ) ->"tf.distribute.Strategy": requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def snake_case__( self : Optional[Any] ) ->Optional[Any]: requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def snake_case__( self : Dict ) ->int: requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def snake_case__( self : Union[str, Any] ) ->bool: return self.n_gpu > 0
39
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( _lowerCamelCase : list[int] ): # This function is recursive A__ = len(_lowerCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A__ = array[0] A__ = False A__ = 1 A__ = [] while not is_found and i < array_length: if array[i] < pivot: A__ = True A__ = [element for element in array[i:] if element >= array[i]] A__ = longest_subsequence(_lowerCamelCase ) if len(_lowerCamelCase ) > len(_lowerCamelCase ): A__ = temp_array else: i += 1 A__ = [element for element in array[1:] if element >= pivot] A__ = [pivot, *longest_subsequence(_lowerCamelCase )] if len(_lowerCamelCase ) > len(_lowerCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
440
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A : int = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
from __future__ import annotations from typing import TypedDict class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : str UpperCAmelCase : int def lowerCamelCase_ ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(UpperCamelCase_ ) )] def lowerCamelCase_ ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) _a : List[str] = all_rotations(UpperCamelCase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _a : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(UpperCamelCase_ ), } return response def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: _a : str = int(UpperCamelCase_ ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(UpperCamelCase_ ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) _a : Union[str, Any] = [''''''] * len(UpperCamelCase_ ) for _ in range(len(UpperCamelCase_ ) ): for i in range(len(UpperCamelCase_ ) ): _a : int = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = 'Provide a string that I will generate its BWT transform: ' __UpperCAmelCase : Optional[Any] = input(entry_msg).strip() __UpperCAmelCase : List[Any] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) __UpperCAmelCase : Union[str, Any] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
249
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=32 * 4 , UpperCAmelCase_ : str=32 * 6 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=32 , ): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE : Tuple = num_queries SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Any = min_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = mask_feature_size def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase_ ) > 0.5 ).float() SCREAMING_SNAKE_CASE : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase_ ) > 0.5).long() SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _A ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = output.encoder_hidden_states SCREAMING_SNAKE_CASE : List[Any] = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , config.decoder_config.decoder_layers ) def _A ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerForInstanceSegmentation(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() def comm_check_on_output(UpperCAmelCase_ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model( pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ : List[str] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[Any] = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase_ ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def _A ( self : Optional[int] ): pass @unittest.skip(reason="MaskFormer is not a generative model" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def _A ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self : Tuple ): pass def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) @slow def _A ( self : List[Any] ): for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE : Any = MaskFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE : Any = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCAmelCase_ ), "mask_labels": torch.randn((2, 10, *size) , device=UpperCAmelCase_ ), "class_labels": torch.zeros(2 , 10 , device=UpperCAmelCase_ ).long(), } SCREAMING_SNAKE_CASE : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) self.assertTrue(outputs.attentions is not None ) def _A ( self : Tuple ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ).loss loss.backward() def _A ( self : Optional[Any] ): # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case = 1e-4 def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Tuple ): return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Optional[int] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Dict = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Dict = inputs["pixel_values"].to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [el.to(UpperCAmelCase_ ) for el in inputs["mask_labels"]] SCREAMING_SNAKE_CASE : Optional[int] = [el.to(UpperCAmelCase_ ) for el in inputs["class_labels"]] with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None )
62
from __future__ import annotations class UpperCamelCase__ : def __init__( self : List[str], __lowerCamelCase : int ) -> None: UpperCamelCase__ : Union[str, Any] = order # a_{0} ... a_{k} UpperCamelCase__ : int = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCamelCase__ : Optional[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCamelCase__ : Any = [0.0] * self.order # y[n-1] ... y[n-k] UpperCamelCase__ : int = [0.0] * self.order def __lowercase( self : Optional[int], __lowerCamelCase : list[float], __lowerCamelCase : list[float] ) -> None: if len(__lowerCamelCase ) < self.order: UpperCamelCase__ : Union[str, Any] = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase__ : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase__ : Optional[int] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) UpperCamelCase__ : str = a_coeffs UpperCamelCase__ : List[str] = b_coeffs def __lowercase( self : int, __lowerCamelCase : float ) -> float: UpperCamelCase__ : Union[str, Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1, self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCamelCase__ : Any = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCamelCase__ : Tuple = self.input_history[:-1] UpperCamelCase__ : Tuple = self.output_history[:-1] UpperCamelCase__ : List[str] = sample UpperCamelCase__ : int = result return result
344
0
def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE__ =mf_knapsack(i - 1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE__ =max( mf_knapsack(i - 1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ), mf_knapsack(i - 1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, j - wt[i - 1] ) + val[i - 1], ) SCREAMING_SNAKE_CASE__ =val return f[i][j] def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE__ =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE__ =dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): if not (isinstance(_SCREAMING_SNAKE_CASE, (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE, (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) SCREAMING_SNAKE_CASE__ =len(_SCREAMING_SNAKE_CASE ) if num_items != len(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(_SCREAMING_SNAKE_CASE )} values""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): if not isinstance(wt[i], _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =knapsack(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ =set() _construct_solution(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, i - 1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) else: optimal_set.add(_SCREAMING_SNAKE_CASE ) _construct_solution(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, i - 1, j - wt[i - 1], _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase_ = [3, 2, 4, 4] lowerCamelCase_ = [4, 3, 2, 3] lowerCamelCase_ = 4 lowerCamelCase_ = 6 lowerCamelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase_ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase_ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
707
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : Union[str, Any] = KandinskyInpaintPipeline _A : Any = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] _A : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] _A : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _A : int = False @property def __A ( self : Any ) -> Dict: '''simple docstring''' return 3_2 @property def __A ( self : Optional[int] ) -> int: '''simple docstring''' return 3_2 @property def __A ( self : List[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def __A ( self : Optional[int] ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return 1_0_0 @property def __A ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_0_0_5 ,) SCREAMING_SNAKE_CASE__ =MultilingualCLIP(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =text_encoder.eval() return text_encoder @property def __A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ =UNetaDConditionModel(**_UpperCamelCase ) return model @property def __A ( self : str ) -> Tuple: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.dummy_text_encoder SCREAMING_SNAKE_CASE__ =self.dummy_tokenizer SCREAMING_SNAKE_CASE__ =self.dummy_unet SCREAMING_SNAKE_CASE__ =self.dummy_movq SCREAMING_SNAKE_CASE__ =DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_UpperCamelCase ,set_alpha_to_one=_UpperCamelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_UpperCamelCase ,) SCREAMING_SNAKE_CASE__ ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self : Union[str, Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Any=0 ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ =floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE__ =Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask SCREAMING_SNAKE_CASE__ =np.ones((6_4, 6_4) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 if str(_UpperCamelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ =torch.manual_seed(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ =torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __A ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""cpu""" SCREAMING_SNAKE_CASE__ =self.get_dummy_components() SCREAMING_SNAKE_CASE__ =self.pipeline_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =pipe( **self.get_dummy_inputs(_UpperCamelCase ) ,return_dict=_UpperCamelCase ,)[0] SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ =image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ =np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : Dict ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ =np.ones((7_6_8, 7_6_8) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ="""a hat""" SCREAMING_SNAKE_CASE__ =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ =pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =pipe_prior( _UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() SCREAMING_SNAKE_CASE__ =pipeline( _UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,image_embeds=_UpperCamelCase ,negative_image_embeds=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE__ =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCamelCase ,_UpperCamelCase )
588
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Union[str, Any] = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
def _SCREAMING_SNAKE_CASE ( __snake_case = 1_0_0_0 ) -> int: _UpperCAmelCase , _UpperCAmelCase = 1, 1 _UpperCAmelCase = [] for i in range(1 , n + 1 ): _UpperCAmelCase = prev_numerator + 2 * prev_denominator _UpperCAmelCase = prev_numerator + prev_denominator if len(str(__snake_case ) ) > len(str(__snake_case ) ): result.append(__snake_case ) _UpperCAmelCase = numerator _UpperCAmelCase = denominator return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
108
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _A ( A ) -> Union[str, Any]: lowercase : Optional[int] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: lowercase : int = 6 lowercase : Union[str, Any] = 1_2_8 lowercase : Dict = (2, 2, 1_8, 2) lowercase : Optional[int] = (4, 8, 1_6, 3_2) elif "large" in model_name: lowercase : Optional[Any] = 1_2 lowercase : Union[str, Any] = 1_9_2 lowercase : str = (2, 2, 1_8, 2) lowercase : str = (6, 1_2, 2_4, 4_8) else: raise ValueError("Model not supported, only supports base and large variants" ) lowercase : int = window_size lowercase : Any = embed_dim lowercase : Any = depths lowercase : List[Any] = num_heads return config def _A ( A ) -> List[str]: if "encoder.mask_token" in name: lowercase : str = name.replace("encoder.mask_token" ,"embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: lowercase : Dict = name.replace("encoder.patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: lowercase : List[Any] = name.replace("encoder.patch_embed.norm" ,"embeddings.norm" ) if "attn.proj" in name: lowercase : Dict = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: lowercase : Optional[int] = name.replace("attn" ,"attention.self" ) if "norm1" in name: lowercase : Union[str, Any] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: lowercase : Dict = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: lowercase : Dict = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: lowercase : Dict = name.replace("mlp.fc2" ,"output.dense" ) if name == "encoder.norm.weight": lowercase : Optional[Any] = "layernorm.weight" if name == "encoder.norm.bias": lowercase : Any = "layernorm.bias" if "decoder" in name: pass else: lowercase : List[str] = "swin." + name return name def _A ( A ,A ) -> str: for key in orig_state_dict.copy().keys(): lowercase : Optional[Any] = orig_state_dict.pop(A ) if "attn_mask" in key: pass elif "qkv" in key: lowercase : int = key.split("." ) lowercase : Optional[int] = int(key_split[2] ) lowercase : int = int(key_split[4] ) lowercase : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase : Dict = val[:dim, :] lowercase : List[Any] = val[ dim : dim * 2, : ] lowercase : Tuple = val[-dim:, :] else: lowercase : List[str] = val[ :dim ] lowercase : Optional[int] = val[ dim : dim * 2 ] lowercase : Optional[int] = val[ -dim: ] else: lowercase : Dict = val return orig_state_dict def _A ( A ,A ,A ,A ) -> str: lowercase : Tuple = torch.load(A ,map_location="cpu" )["model"] lowercase : Dict = get_swin_config(A ) lowercase : Union[str, Any] = SwinForMaskedImageModeling(A ) model.eval() lowercase : Any = convert_state_dict(A ,A ) model.load_state_dict(A ) lowercase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase : List[str] = ViTImageProcessor(size={"height": 1_9_2, "width": 1_9_2} ) lowercase : Any = Image.open(requests.get(A ,stream=A ).raw ) lowercase : Optional[Any] = image_processor(images=A ,return_tensors="pt" ) with torch.no_grad(): lowercase : int = model(**A ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
425
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] lowerCAmelCase : Any = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] lowerCAmelCase : Dict = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase : Any = F'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase : int = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase : Dict = F'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase : Tuple = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase : str = F'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase : List[str] = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase : Optional[Any] = F'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase : Any = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase : Optional[int] = F'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase : List[str] = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase : Union[str, Any] = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase : Optional[Any] = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase : Optional[Any] = """mid_block.attentions.0.""" lowerCAmelCase : Optional[int] = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase : str = F'''mid_block.resnets.{j}.''' lowerCAmelCase : int = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( A ) -> str: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowercase : List[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase : Any = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase : Optional[Any] = v.replace(A ,A ) lowercase : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase : Any = v.replace(A ,A ) lowercase : Tuple = v lowercase : Any = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase : List[Any] = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase : Optional[Any] = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase : Tuple = F'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase : Any = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase : int = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase : int = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase : List[str] = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase : Any = F'''mid_block.resnets.{i}.''' lowerCAmelCase : Optional[int] = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase : int = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _A ( A ) -> Optional[Any]: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape ,1 ,1 ) def _A ( A ) -> List[str]: lowercase : Tuple = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase : Union[str, Any] = v.replace(A ,A ) lowercase : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase : str = v.replace(A ,A ) lowercase : Dict = v lowercase : int = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase : Tuple = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) lowercase : List[Any] = reshape_weight_for_sd(A ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase : Any = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] lowerCAmelCase : int = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase : List[Any] = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase : Optional[Any] = {"""q""": 0, """k""": 1, """v""": 2} def _A ( A ) -> List[Any]: lowercase : List[Any] = {} lowercase : Optional[Any] = {} lowercase : Optional[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase : int = k[: -len(".q_proj.weight" )] lowercase : List[str] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase : Tuple = [None, None, None] lowercase : List[str] = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase : int = k[: -len(".q_proj.bias" )] lowercase : str = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase : Any = [None, None, None] lowercase : Tuple = v continue lowercase : str = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] ,A ) lowercase : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase : List[str] = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] ,A ) lowercase : List[Any] = torch.cat(A ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase : Tuple = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] ,A ) lowercase : int = torch.cat(A ) return new_state_dict def _A ( A ) -> Union[str, Any]: return text_enc_dict if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) lowerCAmelCase : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase : List[str] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase : List[Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase : Optional[Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase : str = load_file(unet_path, device="""cpu""") else: lowerCAmelCase : List[str] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") lowerCAmelCase : Any = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): lowerCAmelCase : Dict = load_file(vae_path, device="""cpu""") else: lowerCAmelCase : Optional[int] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") lowerCAmelCase : Dict = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): lowerCAmelCase : List[Any] = load_file(text_enc_path, device="""cpu""") else: lowerCAmelCase : Optional[Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") lowerCAmelCase : Optional[Any] = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model lowerCAmelCase : Any = convert_unet_state_dict(unet_state_dict) lowerCAmelCase : Union[str, Any] = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase : Any = convert_vae_state_dict(vae_state_dict) lowerCAmelCase : Any = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase : Optional[Any] = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase : Optional[Any] = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} lowerCAmelCase : List[str] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase : Any = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase : str = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase : Optional[Any] = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase : List[str] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase : Dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase : Any = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
425
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCamelCase__ : Any = { """n_samples""": 6_4, """horizon""": 3_2, """num_inference_steps""": 2_0, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": lowerCamelCase__ : Any = """hopper-medium-v2""" lowerCamelCase__ : Optional[Any] = gym.make(env_name) lowerCamelCase__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) lowerCamelCase__ : List[Any] = env.reset() lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = 1_0_0_0 lowerCamelCase__ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCamelCase__ : str = pipeline(obs, planning_horizon=3_2) # execute action in environment lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = env.step(denorm_actions) lowerCamelCase__ : Union[str, Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCamelCase__ : Tuple = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
12
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = ["pixel_values"] def __init__( self : Optional[int] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Union[str, Any] , ) ->None: super().__init__(**A ) lowerCamelCase__ : Dict = size if size is not None else {'''shortest_edge''': 2_2_4} lowerCamelCase__ : Dict = get_size_dict(A , default_to_square=A ) lowerCamelCase__ : int = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCamelCase__ : Any = get_size_dict(A , param_name='''crop_size''' ) lowerCamelCase__ : Dict = do_resize lowerCamelCase__ : List[Any] = size lowerCamelCase__ : List[Any] = do_center_crop lowerCamelCase__ : str = crop_size lowerCamelCase__ : Tuple = resample lowerCamelCase__ : int = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : Optional[int] = do_normalize lowerCamelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ) ->np.ndarray: lowerCamelCase__ : Dict = get_size_dict(A , default_to_square=A ) if "shortest_edge" in size: lowerCamelCase__ : Dict = get_resize_output_image_size(A , size['''shortest_edge'''] , default_to_square=A ) elif "height" in size and "width" in size: lowerCamelCase__ : Tuple = (size['''height'''], size['''width''']) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(A , size=A , resample=A , data_format=A , **A ) def __lowerCamelCase ( self : Optional[Any] , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[int] , ) ->np.ndarray: lowerCamelCase__ : Tuple = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __lowerCamelCase ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Any , ) ->Tuple: return rescale(A , scale=A , data_format=A , **A ) def __lowerCamelCase ( self : int , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : int , ) ->np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def __lowerCamelCase ( self : List[str] , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) ->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[str] = to_numpy_array(A ) if do_resize: lowerCamelCase__ : Dict = self.resize(image=A , size=A , resample=A ) if do_center_crop: lowerCamelCase__ : List[str] = self.center_crop(A , size=A ) if do_rescale: lowerCamelCase__ : List[Any] = self.rescale(image=A , scale=A ) if do_normalize: lowerCamelCase__ : Optional[Any] = self.normalize(image=A , mean=A , std=A ) lowerCamelCase__ : str = to_channel_dimension_format(A , A ) return image def __lowerCamelCase ( self : str , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : bool = None , A : float = None , A : bool = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : List[str] , ) ->PIL.Image.Image: lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : List[str] = resample if resample is not None else self.resample lowerCamelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Optional[int] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : int = image_std if image_std is not None else self.image_std lowerCamelCase__ : List[Any] = size if size is not None else self.size lowerCamelCase__ : Tuple = get_size_dict(A , default_to_square=A ) lowerCamelCase__ : int = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : str = get_size_dict(A , param_name='''crop_size''' ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCamelCase__ : Union[str, Any] = make_batched(A ) lowerCamelCase__ : Any = [ [ self._preprocess_image( image=A , do_resize=A , size=A , resample=A , do_center_crop=A , crop_size=A , do_rescale=A , rescale_factor=A , do_normalize=A , image_mean=A , image_std=A , data_format=A , ) for img in video ] for video in videos ] lowerCamelCase__ : int = {'''pixel_values''': videos} return BatchFeature(data=A , tensor_type=A )
130
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: lowerCamelCase__ : Tuple = 1024 lowerCamelCase__ : Any = 4096 lowerCamelCase__ : Optional[Any] = 24 lowerCamelCase__ : Dict = 16 lowerCamelCase__ : Optional[Any] = [5, 11, 17, 23] lowerCamelCase__ : str = [256, 512, 1024, 1024] lowerCamelCase__ : List[str] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ : List[str] = 768 lowerCamelCase__ : Any = [1, 1, 1, 0.5] lowerCamelCase__ : Dict = [256, 512, 768, 768] lowerCamelCase__ : Dict = 150 lowerCamelCase__ : str = 16 lowerCamelCase__ : List[Any] = (1, 384, 384) lowerCamelCase__ : Any = False lowerCamelCase__ : int = '''project''' if "ade" in checkpoint_url: lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[Any] = 768 lowerCamelCase__ : int = [1, 1, 1, 0.5] lowerCamelCase__ : Any = 150 lowerCamelCase__ : Dict = 16 lowerCamelCase__ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase__ : Any = '''ade20k-id2label.json''' lowerCamelCase__ : Optional[Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCamelCase__ : Any = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Any = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = [1, 150, 480, 480] return config, expected_shape def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Optional[int] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ : Optional[int] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: lowerCamelCase__ : Tuple = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: lowerCamelCase__ : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: lowerCamelCase__ : List[Any] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: lowerCamelCase__ : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: lowerCamelCase__ : Any = name.replace('''proj''' , '''projection''' ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: lowerCamelCase__ : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : List[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: lowerCamelCase__ : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: lowerCamelCase__ : int = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: lowerCamelCase__ : Any = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: lowerCamelCase__ : Optional[int] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: lowerCamelCase__ : Tuple = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: lowerCamelCase__ : Optional[Any] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ : List[str] = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCamelCase__ : str = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: lowerCamelCase__ : List[str] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: lowerCamelCase__ : Optional[int] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: lowerCamelCase__ : int = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: lowerCamelCase__ : List[str] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ : Optional[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ : str = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ : Optional[int] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ : str = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ : int = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ : Optional[int] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ : Dict = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ : Tuple = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: lowerCamelCase__ : Any = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: lowerCamelCase__ : List[str] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: lowerCamelCase__ : Optional[Any] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: lowerCamelCase__ : List[Any] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: lowerCamelCase__ : List[str] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: lowerCamelCase__ : Optional[Any] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: lowerCamelCase__ : str = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: lowerCamelCase__ : Tuple = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: lowerCamelCase__ : int = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ : int = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : Dict = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : str = in_proj_bias[: config.hidden_size] lowerCamelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def _a ( ) -> str: """simple docstring""" lowerCamelCase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Optional[Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str = get_dpt_config(UpperCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ : int = torch.load(UpperCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ : Union[str, Any] = state_dict.pop(UpperCAmelCase ) lowerCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model lowerCamelCase__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ : List[str] = 480 if '''ade''' in checkpoint_url else 384 lowerCamelCase__ : List[Any] = DPTImageProcessor(size=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : List[str] = image_processor(UpperCAmelCase , return_tensors='''pt''' ) # forward pass lowerCamelCase__ : Tuple = model(**UpperCAmelCase ).logits if '''ade''' in checkpoint_url else model(**UpperCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ : Union[str, Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=UpperCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": _A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) _A : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
130
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCamelCase( __lowerCamelCase ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__() __a : Tuple = value_function __a : List[Any] = unet __a : Optional[int] = scheduler __a : Optional[Any] = env __a : str = env.get_dataset() __a : Tuple = {} for key in self.data.keys(): try: __a : str = self.data[key].mean() except: # noqa: E722 pass __a : str = {} for key in self.data.keys(): try: __a : Any = self.data[key].std() except: # noqa: E722 pass __a : Optional[int] = env.observation_space.shape[0] __a : List[str] = env.action_space.shape[0] def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' if type(SCREAMING_SNAKE_CASE__ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE__ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE__ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE__ , device=self.unet.device ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' for key, val in cond.items(): __a : str = val.clone() return x_in def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a : int = x.shape[0] __a : Tuple = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __a : Union[str, Any] = torch.full((batch_size,) , SCREAMING_SNAKE_CASE__ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __a : Optional[int] = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE__ ).sample __a : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] __a : Union[str, Any] = self.scheduler._get_variance(SCREAMING_SNAKE_CASE__ ) __a : Dict = torch.exp(0.5 * posterior_variance ) __a : Tuple = model_std * grad __a : Tuple = 0 __a : str = x.detach() __a : List[str] = x + scale * grad __a : Optional[Any] = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) __a : str = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __a : Union[str, Any] = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , predict_epsilon=SCREAMING_SNAKE_CASE__ )['prev_sample'] # apply conditions to the trajectory (set the initial state) __a : int = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) __a : List[str] = self.to_torch(SCREAMING_SNAKE_CASE__ ) return x, y def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=6_4 , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any=0.1 ): '''simple docstring''' __a : Any = self.normalize(SCREAMING_SNAKE_CASE__ , 'observations' ) __a : Dict = obs[None].repeat(SCREAMING_SNAKE_CASE__ , axis=0 ) __a : Union[str, Any] = {0: self.to_torch(SCREAMING_SNAKE_CASE__ )} __a : Union[str, Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __a : Optional[Any] = randn_tensor(SCREAMING_SNAKE_CASE__ , device=self.unet.device ) __a : str = self.reset_xa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.action_dim ) __a : Any = self.to_torch(SCREAMING_SNAKE_CASE__ ) # run the diffusion process __a , __a : Dict = self.run_diffusion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # sort output trajectories by value __a : List[str] = y.argsort(0 , descending=SCREAMING_SNAKE_CASE__ ).squeeze() __a : Optional[Any] = x[sorted_idx] __a : List[Any] = sorted_values[:, :, : self.action_dim] __a : str = actions.detach().cpu().numpy() __a : int = self.de_normalize(SCREAMING_SNAKE_CASE__ , key='actions' ) # select the action with the highest value if y is not None: __a : List[str] = 0 else: # if we didn't run value guiding, select a random action __a : List[str] = np.random.randint(0 , SCREAMING_SNAKE_CASE__ ) __a : Any = denorm_actions[selected_index, 0] return denorm_actions
47
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512} class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : int = vocab_file __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' __a : Union[str, Any] = self.__dict__.copy() __a : Any = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : str = {} __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Optional[Any] = [] __a : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = 2_56 class __lowerCAmelCase ( lowercase__ ): """simple docstring""" snake_case_ = ['''melgan'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__() # From MELGAN __lowerCamelCase = math.log(1e-5 ) # Matches MelGAN training. __lowerCamelCase = 4.0 # Largest value for most examples __lowerCamelCase = 128 self.register_modules( notes_encoder=UpperCAmelCase__ , continuous_encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , melgan=UpperCAmelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=(-1.0, 1.0) , lowerCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = output_range if clip: __lowerCamelCase = torch.clip(UpperCAmelCase__ , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=(-1.0, 1.0) , lowerCamelCase__=False ) -> str: '''simple docstring''' __lowerCamelCase = input_range __lowerCamelCase = torch.clip(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = input_tokens > 0 __lowerCamelCase = self.notes_encoder( encoder_input_tokens=UpperCAmelCase__ , encoder_inputs_mask=UpperCAmelCase__ ) __lowerCamelCase = self.continuous_encoder( encoder_inputs=UpperCAmelCase__ , encoder_inputs_mask=UpperCAmelCase__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = noise_time if not torch.is_tensor(UpperCAmelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCAmelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.decoder( encodings_and_masks=UpperCAmelCase__ , decoder_input_tokens=UpperCAmelCase__ , decoder_noise_time=UpperCAmelCase__ ) return logits @torch.no_grad() def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = 100 , lowerCamelCase__ = True , lowerCamelCase__ = "numpy" , lowerCamelCase__ = None , lowerCamelCase__ = 1 , ) -> Optional[int]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(UpperCAmelCase__ )}.""" ) __lowerCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase__ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCAmelCase__ ): if i == 0: __lowerCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase = ones __lowerCamelCase = self.scale_features( UpperCAmelCase__ , output_range=[-1.0, 1.0] , clip=UpperCAmelCase__ ) __lowerCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCAmelCase__ , continuous_mask=UpperCAmelCase__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCAmelCase__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.decode( encodings_and_masks=UpperCAmelCase__ , input_tokens=UpperCAmelCase__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample __lowerCamelCase = self.scale_to_features(UpperCAmelCase__ , input_range=[-1.0, 1.0] ) __lowerCamelCase = mel[:1] __lowerCamelCase = mel.cpu().float().numpy() __lowerCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info('Generated segment' , UpperCAmelCase__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __lowerCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCAmelCase__ )
700
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __lowerCamelCase = F"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCamelCase__ ) else: __lowerCamelCase = sylvester(number - 1 ) __lowerCamelCase = num - 1 __lowerCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
167
0
'''simple docstring''' from math import factorial, radians def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 18 , lowerCAmelCase : int = 10 ): """simple docstring""" __magic_name__ : str = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __magic_name__ : int = radians(lowerCAmelCase ) __magic_name__ : Union[str, Any] = angle_in_radians __magic_name__ : str = 3 __magic_name__ : List[Any] = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) __magic_name__ : Any = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
561
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" __magic_name__ : Optional[Any] = '' __magic_name__ : Optional[int] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __magic_name__ , __magic_name__ : str = 0, 0 # length[i] shows the length of palindromic substring with center i __magic_name__ : Dict = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string __magic_name__ : Tuple = 0 for j in range(len(lowerCAmelCase ) ): __magic_name__ : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __magic_name__ : Union[str, Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __magic_name__ : Union[str, Any] = j - k + 1 # noqa: E741 __magic_name__ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: __magic_name__ : Tuple = length[j] __magic_name__ : Tuple = j # create that string __magic_name__ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
561
1
'''simple docstring''' from typing import Any class _lowercase : def __init__( self , A__ ) -> List[str]: snake_case = data snake_case = None def __repr__( self ) -> str: return F"""Node({self.data})""" class _lowercase : def __init__( self ) -> Optional[int]: snake_case = None def __iter__( self ) -> Any: snake_case = self.head while node: yield node.data snake_case = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(A__ ) for item in self] ) def __getitem__( self , A__ ) -> Any: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A__ , A__ ) -> None: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) snake_case = self.head for _ in range(A__ ): snake_case = current.next snake_case = data def UpperCamelCase ( self , A__ ) -> None: self.insert_nth(len(self ) , A__ ) def UpperCamelCase ( self , A__ ) -> None: self.insert_nth(0 , A__ ) def UpperCamelCase ( self , A__ , A__ ) -> None: if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) snake_case = Node(A__ ) if self.head is None: snake_case = new_node elif index == 0: snake_case = self.head # link new_node to head snake_case = new_node else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = new_node def UpperCamelCase ( self ) -> None: # print every node data print(self ) def UpperCamelCase ( self ) -> Any: return self.delete_nth(0 ) def UpperCamelCase ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCamelCase ( self , A__ = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) snake_case = self.head # default first node if index == 0: snake_case = self.head.next else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = temp.next.next return delete_node.data def UpperCamelCase ( self ) -> bool: return self.head is None def UpperCamelCase ( self ) -> None: snake_case = None snake_case = self.head while current: # Store the current node's next node. snake_case = current.next # Make the current node's next point backwards snake_case = prev # Make the previous node be the current node snake_case = current # Make the current node the next node (to progress iteration) snake_case = next_node # Return prev in order to put the head at the end snake_case = prev def __UpperCamelCase ( ) ->None: snake_case = LinkedList() assert linked_list.is_empty() is True assert str(a ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(a ) == i linked_list.insert_nth(a , i + 1 ) assert str(a ) == "->".join(str(a ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(a ) == "->".join(str(a ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(a ) == 9 assert str(a ) == "->".join(str(a ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): snake_case = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(a ) == "->".join(str(a ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) ->None: snake_case = [ -9, 100, Node(7734_5112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] snake_case = LinkedList() for i in test_input: linked_list.insert_tail(a ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(a ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head snake_case = linked_list.delete_head() assert result == -9 assert ( str(a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail snake_case = linked_list.delete_tail() assert result == 12.2 assert ( str(a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list snake_case = linked_list.delete_nth(10 ) assert result is None assert ( str(a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(a ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(a ) assert ( str(a ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(a ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) ->Tuple: from doctest import testmod testmod() snake_case = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(a ) print('''\nReading/changing Node data using indexing:''' ) print(f"""Element at Position 1: {linked_list[1]}""" ) snake_case = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(a ) print(f"""length of linked_list is : {len(a )}""" ) if __name__ == "__main__": main()
720
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : Dict , a : Optional[int] , a : Dict , a : Dict ) ->Union[str, Any]: snake_case = original_name.split('''.''' )[0] snake_case = key.split('''.''' ) snake_case = int(key_list[key_list.index(a ) - 2] ) snake_case = int(key_list[key_list.index(a ) - 1] ) snake_case = orig_block_num - offset snake_case = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __UpperCamelCase ( a : Tuple ) ->Dict: snake_case = OrderedDict() snake_case , snake_case = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case = key[: key.find('''proj''' )] snake_case = key.replace(a , f"""patch_embeddings.{total_embed_found}.""" ) snake_case = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case = replace_key_with_offset(a , a , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case = replace_key_with_offset(a , a , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case = key.replace('''head''' , '''classifier''' ) snake_case = value return new_state_dict def __UpperCamelCase ( ) ->Optional[int]: snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(a , stream=a ).raw ) return image @torch.no_grad() def __UpperCamelCase ( a : Dict , a : Optional[Any] , a : Tuple ) ->List[str]: snake_case = PoolFormerConfig() # set attributes based on model_name snake_case = '''huggingface/label-files''' snake_case = model_name[-3:] snake_case = 1000 snake_case = '''imagenet-1k-id2label.json''' snake_case = (1, 1000) # set config attributes snake_case = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) snake_case = {int(a ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} if size == "s12": snake_case = [2, 2, 6, 2] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s24": snake_case = [4, 4, 12, 4] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s36": snake_case = [6, 6, 18, 6] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.9 elif size == "m36": snake_case = [6, 6, 18, 6] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 elif size == "m48": snake_case = [8, 8, 24, 8] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) # Prepare image snake_case = prepare_img() snake_case = image_processor(images=a , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case = torch.load(a , map_location=torch.device('''cpu''' ) ) # rename keys snake_case = rename_keys(a ) # create HuggingFace model and load state dict snake_case = PoolFormerForImageClassification(a ) model.load_state_dict(a ) model.eval() # Define image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case = model(a ) snake_case = outputs.logits # define expected logit slices for different models if size == "s12": snake_case = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": snake_case = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": snake_case = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": snake_case = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": snake_case = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _lowercase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
0
def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> float: _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(UpperCamelCase , UpperCamelCase ) ) ) def __lowerCAmelCase ( UpperCamelCase ) -> None: if point: if isinstance(UpperCamelCase , UpperCamelCase ): for item in point: if not isinstance(UpperCamelCase , (int, float) ): lowerCAmelCase__ : Any = ( '''Expected a list of numbers as input, found ''' F"""{type(UpperCamelCase ).__name__}""" ) raise TypeError(UpperCamelCase ) else: lowerCAmelCase__ : List[str] = F"""Expected a list of numbers as input, found {type(UpperCamelCase ).__name__}""" raise TypeError(UpperCamelCase ) else: raise ValueError('''Missing an input''' ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> float: _validate_point(UpperCamelCase ) _validate_point(UpperCamelCase ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(UpperCamelCase , UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
678
from manim import * class _lowerCAmelCase ( _lowercase ): def __magic_name__( self ): lowerCAmelCase__ : Tuple = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ : Dict = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : int = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : str = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : List[str] = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : int = Text('''CPU''' , font_size=24 ) lowerCAmelCase__ : int = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = [mem.copy() for i in range(4 )] lowerCAmelCase__ : Tuple = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Tuple = Text('''GPU''' , font_size=24 ) lowerCAmelCase__ : int = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : int = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Tuple = Text('''Model''' , font_size=24 ) lowerCAmelCase__ : List[Any] = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[Any] = [] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) lowerCAmelCase__ : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) lowerCAmelCase__ : Any = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Any = Text('''Loaded Checkpoint''' , font_size=24 ) lowerCAmelCase__ : Optional[Any] = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = [] for i, rect in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) ckpt_arr.append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : List[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : str = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCAmelCase__ : Optional[Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Union[str, Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Dict = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : str = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : List[str] = Text('''Disk''' , font_size=24 ) lowerCAmelCase__ : Any = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) lowerCAmelCase__ : str = [] for i, rect in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(FadeOut(__UpperCAmelCase ) ) lowerCAmelCase__ : int = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) self.play( FadeOut(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) , ) self.wait()
678
1
from math import asin, atan, cos, radians, sin, sqrt, tan a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :Tuple = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[Any] = radians(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = radians(__magic_name__ ) # Equation _lowerCAmelCase :Dict = sin((phi_a - phi_a) / 2 ) _lowerCAmelCase :List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _lowerCAmelCase :List[Any] = sqrt(sin_sq_phi + (cos(__magic_name__ ) * cos(__magic_name__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
382
from itertools import product def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :List[Any] = sides_number _lowerCAmelCase :Any = max_face_number * dice_number _lowerCAmelCase :List[str] = [0] * (max_total + 1) _lowerCAmelCase :Union[str, Any] = 1 _lowerCAmelCase :List[str] = range(__magic_name__ , max_face_number + 1 ) for dice_numbers in product(__magic_name__ , repeat=__magic_name__ ): _lowerCAmelCase :Union[str, Any] = sum(__magic_name__ ) totals_frequencies[total] += 1 return totals_frequencies def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Any = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase :Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Dict = 9 _lowerCAmelCase :Optional[Any] = 4 * 9 _lowerCAmelCase :List[Any] = 6 for peter_total in range(__magic_name__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase :Dict = (4**9) * (6**6) _lowerCAmelCase :str = peter_wins_count / total_games_number _lowerCAmelCase :Union[str, Any] = round(__magic_name__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
382
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[str, Any] ='new-model' if is_tf_available(): class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =NewModelConfig @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert-base-cased''' lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert-base-cased''' lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase, output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase, output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase, output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @slow @require_tensorflow_probability def lowercase__ ( self ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCAmelCase, output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertEqual(model.num_parameters(), 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =copy.deepcopy(model.config ) lowerCamelCase_ =['''FunnelBaseModel'''] lowerCamelCase_ =TFAutoModel.from_config(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =TFAutoModel.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" try: AutoConfig.register('''new-model''', lowerCAmelCase ) lowerCamelCase_ =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCAmelCase ): auto_class.register(lowerCAmelCase, lowerCAmelCase ) auto_class.register(lowerCAmelCase, lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): auto_class.register(lowerCAmelCase, lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase_ =BertModelTester(self ).get_config() lowerCamelCase_ =NewModelConfig(**tiny_config.to_dict() ) lowerCamelCase_ =auto_class.from_config(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =auto_class.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase, '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCamelCase_ =TFAutoModel.from_pretrained('''bert-base''' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase, R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCamelCase_ =TFAutoModel.from_pretrained(lowerCAmelCase, revision='''aaaaaa''' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase, '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''', ): lowerCamelCase_ =TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase, '''Use `from_pt=True` to load this model''' ): lowerCamelCase_ =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCamelCase_ =TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 ) # With a sharded checkpoint lowerCamelCase_ =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: lowerCamelCase_ =TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 )
676
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any ) -> str: """simple docstring""" # Initialise PyTorch model lowerCamelCase_ =BertConfig.from_json_file(__snake_case ) print(F'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase_ =BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
676
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __snake_case : int = logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : str = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **A ) ->Optional[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ :Union[str, Any] = deprecated_arg[3:] UpperCAmelCase__ :str = not kwargs.pop(A ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase__ :List[str] = kwargs.pop('tpu_name' , self.tpu_name ) UpperCAmelCase__ :str = kwargs.pop('device_idx' , self.device_idx ) UpperCAmelCase__ :Optional[Any] = kwargs.pop('eager_mode' , self.eager_mode ) UpperCAmelCase__ :int = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**A ) __a : str = field( default=UpperCAmelCase__ , metadata={"""help""": """Name of TPU"""} , ) __a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) __a : bool = field(default=UpperCAmelCase__ , metadata={"""help""": """Benchmark models in eager model."""}) __a : bool = field( default=UpperCAmelCase__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def A__ ( self ) ->Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) UpperCAmelCase__ :List[Any] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase__ :Dict = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase__ :Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase__ :List[str] = None return tpu @cached_property def A__ ( self ) ->Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase__ :Tuple = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) UpperCAmelCase__ :str = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU UpperCAmelCase__ :Tuple = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def A__ ( self ) ->bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def A__ ( self ) ->"tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def A__ ( self ) ->Union[str, Any]: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def A__ ( self ) ->int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def A__ ( self ) ->bool: return self.n_gpu > 0
709
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Dict = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = val def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ :List[str] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCAmelCase__ :Dict = value else: UpperCAmelCase__ :Optional[Any] = value return new_state_dict def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Dict = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ :int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase__ :Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ :Optional[int] = in_proj_weight[:256, :] UpperCAmelCase__ :Dict = in_proj_bias[:256] UpperCAmelCase__ :Any = in_proj_weight[256:512, :] UpperCAmelCase__ :Union[str, Any] = in_proj_bias[256:512] UpperCAmelCase__ :List[str] = in_proj_weight[-256:, :] UpperCAmelCase__ :Any = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase__ :Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase__ :Any = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ :List[str] = in_proj_weight[:256, :] UpperCAmelCase__ :List[str] = in_proj_bias[:256] UpperCAmelCase__ :Optional[int] = in_proj_weight[256:512, :] UpperCAmelCase__ :List[str] = in_proj_bias[256:512] UpperCAmelCase__ :List[Any] = in_proj_weight[-256:, :] UpperCAmelCase__ :List[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase__ :Union[str, Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCAmelCase__ :List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase__ :int = in_proj_weight_cross_attn[:256, :] UpperCAmelCase__ :Optional[Any] = in_proj_bias_cross_attn[:256] UpperCAmelCase__ :int = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase__ :str = in_proj_bias_cross_attn[256:512] UpperCAmelCase__ :Optional[Any] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase__ :Tuple = in_proj_bias_cross_attn[-256:] def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ :str = image.size UpperCAmelCase__ :str = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = 800 if 'detection' in checkpoint_url else 1000 UpperCAmelCase__ :Any = target_max_size / current_max_size UpperCAmelCase__ :List[str] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :List[Any] = F.to_tensor(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = F.normalize(SCREAMING_SNAKE_CASE , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info('Converting model...' ) # load original state dict UpperCAmelCase__ :Any = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = rename_backbone_keys(SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ :str = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCAmelCase__ :Tuple = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = val # create HuggingFace model and load state dict UpperCAmelCase__ :List[str] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase__ :str = 15 UpperCAmelCase__ :Optional[int] = 2 UpperCAmelCase__ :Dict = {0: 'table', 1: 'table rotated'} UpperCAmelCase__ :Tuple = idalabel UpperCAmelCase__ :Tuple = {v: k for k, v in idalabel.items()} else: UpperCAmelCase__ :str = 125 UpperCAmelCase__ :List[Any] = 6 UpperCAmelCase__ :Dict = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCAmelCase__ :Tuple = idalabel UpperCAmelCase__ :List[str] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ :Optional[Any] = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) UpperCAmelCase__ :Optional[int] = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion UpperCAmelCase__ :List[Any] = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCAmelCase__ :List[Any] = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = Image.open(SCREAMING_SNAKE_CASE ).convert('RGB' ) UpperCAmelCase__ :str = normalize(resize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) UpperCAmelCase__ :List[Any] = model(SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: UpperCAmelCase__ :Dict = (1, 15, 3) UpperCAmelCase__ :List[str] = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) UpperCAmelCase__ :Optional[Any] = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: UpperCAmelCase__ :str = (1, 125, 7) UpperCAmelCase__ :Any = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) UpperCAmelCase__ :Optional[Any] = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCAmelCase__ :Tuple = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : List[str] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
433
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Tuple = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = CustomTokenizer pass
313
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , __a : Tuple , __a : int=13 , __a : Union[str, Any]=7 , __a : Dict=True , __a : str=True , __a : List[str]=True , __a : Union[str, Any]=True , __a : Union[str, Any]=99 , __a : List[Any]=64 , __a : Tuple=32 , __a : int=5 , __a : Tuple=4 , __a : Union[str, Any]=37 , __a : List[str]="gelu" , __a : List[str]=0.1 , __a : Union[str, Any]=0.1 , __a : List[str]=5_12 , __a : Optional[int]=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Any=4 , __a : Optional[int]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = embedding_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def UpperCamelCase__ ( self : Optional[Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : List[str] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : str , __a : int , __a : Union[str, Any] , __a : Tuple , __a : int , __a : Optional[int] , __a : Dict , __a : str ): _a = MegatronBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _a = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : List[str] , __a : int , __a : int , __a : Dict ): _a = MegatronBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Any , __a : int ): _a = MegatronBertForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Dict , __a : int , __a : Optional[int] , __a : Union[str, Any] , __a : str , __a : str , __a : Any , __a : Dict ): _a = MegatronBertForNextSentencePrediction(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : Optional[Any] , __a : Union[str, Any] , __a : Any , __a : int , __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int] , __a : Tuple ): _a = MegatronBertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , next_sentence_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : Dict , __a : Dict , __a : int , __a : List[str] , __a : Dict , __a : List[Any] , __a : Tuple , __a : List[Any] ): _a = MegatronBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : Tuple , __a : Optional[int] , __a : List[Any] , __a : Tuple , __a : int , __a : Union[str, Any] , __a : Dict , __a : Optional[int] ): _a = self.num_labels _a = MegatronBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Tuple , __a : List[Any] , __a : Optional[Any] , __a : List[str] , __a : Tuple , __a : int , __a : Optional[Any] , __a : Optional[Any] ): _a = self.num_labels _a = MegatronBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : int , __a : Any , __a : Any , __a : str , __a : List[str] , __a : Any , __a : Optional[int] , __a : Tuple ): _a = self.num_choices _a = MegatronBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : Dict ): _a = self.prepare_config_and_inputs() ( _a ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (__A , __A , unittest.TestCase ): """simple docstring""" __a =( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __a =( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __a =True # test_resize_embeddings = False __a =False def UpperCamelCase__ ( self : str , __a : int , __a : List[str] , __a : List[str]=False ): _a = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCamelCase__ ( self : List[str] ): _a = MegatronBertModelTester(self ) _a = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCamelCase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCamelCase__ ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCamelCase__ ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCamelCase__ ) def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCamelCase__ ) def _lowerCamelCase ( lowercase : Dict ) -> int: return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowerCAmelCase_ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available." ) def UpperCamelCase__ ( self : Optional[Any] ): _a = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _a = os.path.join(os.environ["MYDIR"] , UpperCamelCase__ ) _a = MegatronBertModel.from_pretrained(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.half() _a = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): _a = model(UpperCamelCase__ )[0] _a = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , UpperCamelCase__ ) _a = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): _a = output[0, ii, jj] _a = expected[3 * ii + jj] _a = 'ii={} jj={} a={} b={}'.format(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(math.isclose(UpperCamelCase__ , UpperCamelCase__ , rel_tol=UpperCamelCase__ , abs_tol=UpperCamelCase__ ) , msg=UpperCamelCase__ )
709
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' lowerCAmelCase_ : Union[str, Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' lowerCAmelCase_ : Tuple = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : str , __a : int=None , __a : Dict=True , __a : Optional[int]=False ): if rouge_types is None: _a = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _a = rouge_scorer.RougeScorer(rouge_types=__a , use_stemmer=__a ) if use_aggregator: _a = scoring.BootstrapAggregator() else: _a = [] for ref, pred in zip(__a , __a ): _a = scorer.score(__a , __a ) if use_aggregator: aggregator.add_scores(__a ) else: scores.append(__a ) if use_aggregator: _a = aggregator.aggregate() else: _a = {} for key in scores[0]: _a = [score[key] for score in scores] return result
521
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCAmelCase ( __A : int , __A : int , __A : float = 1 / sqrt(2 ) ): a_ : int = tau * frequency / samplerate a_ : Optional[int] = sin(__A ) a_ : Tuple = cos(__A ) a_ : Any = _sin / (2 * q_factor) a_ : List[Any] = (1 - _cos) / 2 a_ : str = 1 - _cos a_ : Any = 1 + alpha a_ : Optional[Any] = -2 * _cos a_ : List[str] = 1 - alpha a_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float = 1 / sqrt(2 ) ): a_ : Optional[int] = tau * frequency / samplerate a_ : Dict = sin(__A ) a_ : Dict = cos(__A ) a_ : Optional[int] = _sin / (2 * q_factor) a_ : Any = (1 + _cos) / 2 a_ : Optional[Any] = -1 - _cos a_ : Optional[int] = 1 + alpha a_ : str = -2 * _cos a_ : List[str] = 1 - alpha a_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float = 1 / sqrt(2 ) ): a_ : Optional[int] = tau * frequency / samplerate a_ : Union[str, Any] = sin(__A ) a_ : Optional[int] = cos(__A ) a_ : Dict = _sin / (2 * q_factor) a_ : Optional[int] = _sin / 2 a_ : Optional[int] = 0 a_ : List[str] = -ba a_ : List[str] = 1 + alpha a_ : Union[str, Any] = -2 * _cos a_ : List[Any] = 1 - alpha a_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float = 1 / sqrt(2 ) ): a_ : Any = tau * frequency / samplerate a_ : Any = sin(__A ) a_ : Dict = cos(__A ) a_ : List[Any] = _sin / (2 * q_factor) a_ : Any = 1 - alpha a_ : int = -2 * _cos a_ : Any = 1 + alpha a_ : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float , __A : float = 1 / sqrt(2 ) , ): a_ : List[Any] = tau * frequency / samplerate a_ : List[str] = sin(__A ) a_ : Dict = cos(__A ) a_ : Dict = _sin / (2 * q_factor) a_ : Optional[int] = 10 ** (gain_db / 40) a_ : Optional[Any] = 1 + alpha * big_a a_ : Dict = -2 * _cos a_ : Optional[int] = 1 - alpha * big_a a_ : Optional[int] = 1 + alpha / big_a a_ : Optional[int] = -2 * _cos a_ : Union[str, Any] = 1 - alpha / big_a a_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float , __A : float = 1 / sqrt(2 ) , ): a_ : Tuple = tau * frequency / samplerate a_ : Any = sin(__A ) a_ : int = cos(__A ) a_ : List[Any] = _sin / (2 * q_factor) a_ : Any = 10 ** (gain_db / 40) a_ : Dict = (big_a + 1) - (big_a - 1) * _cos a_ : List[str] = (big_a + 1) + (big_a - 1) * _cos a_ : List[str] = (big_a - 1) - (big_a + 1) * _cos a_ : List[Any] = (big_a - 1) + (big_a + 1) * _cos a_ : Optional[Any] = 2 * sqrt(__A ) * alpha a_ : int = big_a * (pmc + aaa) a_ : Tuple = 2 * big_a * mpc a_ : Any = big_a * (pmc - aaa) a_ : Tuple = ppmc + aaa a_ : List[Any] = -2 * pmpc a_ : Union[str, Any] = ppmc - aaa a_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCAmelCase ( __A : int , __A : int , __A : float , __A : float = 1 / sqrt(2 ) , ): a_ : str = tau * frequency / samplerate a_ : Any = sin(__A ) a_ : List[Any] = cos(__A ) a_ : List[Any] = _sin / (2 * q_factor) a_ : Optional[int] = 10 ** (gain_db / 40) a_ : Dict = (big_a + 1) - (big_a - 1) * _cos a_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos a_ : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos a_ : Tuple = (big_a - 1) + (big_a + 1) * _cos a_ : Tuple = 2 * sqrt(__A ) * alpha a_ : List[Any] = big_a * (ppmc + aaa) a_ : List[str] = -2 * big_a * pmpc a_ : Tuple = big_a * (ppmc - aaa) a_ : Optional[Any] = pmc + aaa a_ : int = 2 * mpc a_ : Dict = pmc - aaa a_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
466
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = {'facebook/bart-base': BartForConditionalGeneration} __lowerCAmelCase = {'facebook/bart-base': BartTokenizer} def _UpperCAmelCase ( ): a_ : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__A , default=__A , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__A , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__A , default=__A , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__A , ) parser.add_argument( '''--config_name''' , type=__A , default=__A , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__A , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__A , default=__A , help='''Where to store the final ONNX file.''' ) a_ : Tuple = parser.parse_args() return args def _UpperCAmelCase ( __A : List[str] , __A : Dict="cpu" ): a_ : str = model_dict[model_name].from_pretrained(__A ).to(__A ) a_ : str = tokenizer_dict[model_name].from_pretrained(__A ) if model_name in ["facebook/bart-base"]: a_ : str = 0 a_ : Any = None a_ : int = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( __A : int , __A : Dict , __A : str , __A : Optional[Any] , __A : Any ): model.eval() a_ : Union[str, Any] = None a_ : str = torch.jit.script(BARTBeamSearchGenerator(__A ) ) with torch.no_grad(): a_ : Any = '''My friends are cool but they eat too many carbs.''' a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) a_ : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __A , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __A , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__A , ) logger.info('''Model exported to {}'''.format(__A ) ) a_ : Any = remove_dup_initializers(os.path.abspath(__A ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__A ) ) a_ : int = onnxruntime.InferenceSession(__A ) a_ : Optional[Any] = ort_sess.run( __A , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__A ), '''max_length''': np.array(__A ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCAmelCase ( ): a_ : int = parse_args() a_ : List[str] = 5 a_ : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a_ : Any = torch.device(args.device ) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , __A ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__A ) if args.max_length: a_ : Dict = args.max_length if args.num_beams: a_ : str = args.num_beams if args.output_file_path: a_ : str = args.output_file_path else: a_ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__A , __A , __A , __A , __A ) if __name__ == "__main__": main()
466
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} __UpperCamelCase : Dict[Optional[str], str] = {} __UpperCamelCase : Dict[Optional[str], Exception] = {} def _a ( SCREAMING_SNAKE_CASE : type , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ): """simple docstring""" UpperCamelCase__ : Optional[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) UpperCamelCase__ : str = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) UpperCamelCase__ : Union[str, Any] = format_type def _a ( SCREAMING_SNAKE_CASE : Exception , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[List[str]] = None ): """simple docstring""" UpperCamelCase__ : Any = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCamelCase__ : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __UpperCamelCase : Optional[Any] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __UpperCamelCase : Any = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __UpperCamelCase : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _a ( SCREAMING_SNAKE_CASE : Optional[str] ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _a ( SCREAMING_SNAKE_CASE : Optional[str] , **SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : str = get_format_type_from_alias(SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
106
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __UpperCamelCase : int = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _a ( SCREAMING_SNAKE_CASE : str = "mumbai" ): """simple docstring""" UpperCamelCase__ : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): UpperCamelCase__ : Optional[Any] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCamelCase__ : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
106
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = StableDiffusionSAGPipeline _A : Any = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Optional[int] = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Union[str, Any] = CLIPTextModel(_lowercase ) a_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[int] = torch.manual_seed(_lowercase ) else: a_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Optional[int] = """.""" a_ : int = torch.manual_seed(0 ) a_ : Any = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Any = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : str = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = """.""" a_ : Dict = torch.manual_seed(0 ) a_ : Union[str, Any] = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Optional[Any] = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> Any: a_ : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : Optional[Any] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = """.""" a_ : str = torch.manual_seed(0 ) a_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) a_ : Any = output.images assert image.shape == (1, 512, 768, 3)
540
from __future__ import annotations def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : List[str] = 0 a_ : str = len(a__) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: a_ : List[Any] = i + 1 else: a_ : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
540
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCamelCase = SwinConfig(image_size=192 ) if "base" in model_name: UpperCamelCase = 6 UpperCamelCase = 128 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (4, 8, 16, 32) elif "large" in model_name: UpperCamelCase = 12 UpperCamelCase = 192 UpperCamelCase = (2, 2, 18, 2) UpperCamelCase = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) UpperCamelCase = window_size UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads return config def __lowerCamelCase ( _lowercase ) -> Dict: if "encoder.mask_token" in name: UpperCamelCase = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: UpperCamelCase = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: UpperCamelCase = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": UpperCamelCase = 'layernorm.weight' if name == "encoder.norm.bias": UpperCamelCase = 'layernorm.bias' if "decoder" in name: pass else: UpperCamelCase = 'swin.' + name return name def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "attn_mask" in key: pass elif "qkv" in key: UpperCamelCase = key.split('.' ) UpperCamelCase = int(key_split[2] ) UpperCamelCase = int(key_split[4] ) UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: UpperCamelCase = val return orig_state_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['model'] UpperCamelCase = get_swin_config(_lowercase ) UpperCamelCase = SwinForMaskedImageModeling(_lowercase ) model.eval() UpperCamelCase = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = ViTImageProcessor(size={'height': 192, 'width': 192} ) UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) UpperCamelCase = image_processor(images=_lowercase , return_tensors='pt' ) with torch.no_grad(): UpperCamelCase = model(**_lowercase ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: print(F'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(F'microsoft/{model_name}' ) image_processor.push_to_hub(F'microsoft/{model_name}' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
170
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _snake_case = None _snake_case = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _snake_case = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class _lowerCAmelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : bool =True SCREAMING_SNAKE_CASE_ : Optional[str] =None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] ="PIL.Image.Image" SCREAMING_SNAKE_CASE_ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) SCREAMING_SNAKE_CASE_ : str =field(default="Image" , init=__magic_name__ , repr=__magic_name__ ) def __call__( self : Dict ): """simple docstring""" return self.pa_type def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE__ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : List[Any]=None ): """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase = {} UpperCamelCase , UpperCamelCase = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(SCREAMING_SNAKE_CASE__ ): UpperCamelCase = PIL.Image.open(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = path.split('::' )[-1] try: UpperCamelCase = string_to_dict(SCREAMING_SNAKE_CASE__ , config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase = token_per_repo_id.get(SCREAMING_SNAKE_CASE__ ) except ValueError: UpperCamelCase = None with xopen(SCREAMING_SNAKE_CASE__ , 'rb' , use_auth_token=SCREAMING_SNAKE_CASE__ ) as f: UpperCamelCase = BytesIO(f.read() ) UpperCamelCase = PIL.Image.open(bytes_ ) else: UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowerCAmelCase ( self : Any ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.binary() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase = storage.field('bytes' ) else: UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase = storage.field('path' ) else: UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE__ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE__ , self.pa_type ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): with xopen(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: UpperCamelCase = f.read() return bytes_ UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE__ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE__ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( _lowercase ) -> bytes: UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase = image.format else: UpperCamelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def __lowerCamelCase ( _lowercase ) -> dict: if hasattr(_lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def __lowerCamelCase ( _lowercase ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase = array.dtype UpperCamelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase = dtype.kind UpperCamelCase = dtype.itemsize UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCamelCase = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def __lowerCamelCase ( _lowercase ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase , UpperCamelCase = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
170
1
from scipy.stats import spearmanr import datasets _lowercase = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" _lowercase = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" _lowercase = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def _snake_case ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def _snake_case ( self , __A , __A , __A=False ) -> Dict: SCREAMING_SNAKE_CASE_ : Dict =spearmanr(UpperCamelCase_ , UpperCamelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
443
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 1000 ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = 2**power __UpperCAmelCase : Optional[int] = 0 while n: __UpperCAmelCase , __UpperCAmelCase : Any = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
168
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def snake_case_ ( ) -> Any: lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=__snake_case , default='''microsoft/unixcoder-base-nine''') parser.add_argument('''--num_epochs''' , type=__snake_case , default=5) parser.add_argument('''--batch_size''' , type=__snake_case , default=6) parser.add_argument('''--gradient_accumulation_steps''' , type=__snake_case , default=1) parser.add_argument('''--freeze''' , type=__snake_case , default=__snake_case) parser.add_argument('''--learning_rate''' , type=__snake_case , default=5E-4) parser.add_argument('''--seed''' , type=__snake_case , default=0) parser.add_argument('''--lr_scheduler_type''' , type=__snake_case , default='''cosine''') parser.add_argument('''--num_warmup_steps''' , type=__snake_case , default=10) parser.add_argument('''--weight_decay''' , type=__snake_case , default=0.0_1) parser.add_argument('''--output_dir''' , type=__snake_case , default='''./results''') return parser.parse_args() A_ : Any =load('''accuracy''') def snake_case_ ( __snake_case : List[Any]) -> Union[str, Any]: lowerCAmelCase_ ,lowerCAmelCase_ = eval_pred lowerCAmelCase_ = np.argmax(__snake_case , axis=1) return metric.compute(predictions=__snake_case , references=__snake_case) class __UpperCAmelCase ( __a ): def __init__( self , _lowerCamelCase ): super().__init__() lowerCAmelCase_ = trainer def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): if control.should_evaluate: lowerCAmelCase_ = deepcopy(_lowerCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def snake_case_ ( ) -> Dict: lowerCAmelCase_ = get_args() set_seed(args.seed) lowerCAmelCase_ = load_dataset('''codeparrot/codecomplex''' , split='''train''') lowerCAmelCase_ = dataset.train_test_split(test_size=0.2) lowerCAmelCase_ = train_test['''test'''].train_test_split(test_size=0.5) lowerCAmelCase_ = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], }) print('''Loading tokenizer and model''') lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) lowerCAmelCase_ = tokenizer.eos_token lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7) lowerCAmelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCAmelCase_ = False lowerCAmelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity''']))) def tokenize(__snake_case : Dict): lowerCAmelCase_ = tokenizer(example['''src'''] , truncation=__snake_case , max_length=1024) lowerCAmelCase_ = labels.straint(example['''complexity''']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCAmelCase_ = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation['''train'''].column_names , ) lowerCAmelCase_ = DataCollatorWithPadding(tokenizer=__snake_case) lowerCAmelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) lowerCAmelCase_ = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print('''Training...''') trainer.add_callback(CustomCallback(__snake_case)) trainer.train() if __name__ == "__main__": main()
606
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def snake_case_ ( __snake_case : Any , __snake_case : int) -> int: lowerCAmelCase_ = tmp_path_factory.mktemp('''dset_infos_dir''') if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''') as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''') if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''') as f: f.write('''''') # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''') as f: f.write('''{"default": {"dataset_size": 42}}''') lowerCAmelCase_ = DatasetInfosDict.from_directory(__snake_case) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''')}) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def snake_case_ ( __snake_case : List[str] , __snake_case : DatasetInfo) -> str: lowerCAmelCase_ = str(__snake_case) dataset_info.write_to_directory(__snake_case) lowerCAmelCase_ = DatasetInfo.from_directory(__snake_case) assert dataset_info == reloaded assert os.path.exists(os.path.join(__snake_case , '''dataset_info.json''')) def snake_case_ ( ) -> str: lowerCAmelCase_ = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''')}) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCAmelCase_ = dataset_info._to_yaml_dict() assert sorted(__snake_case) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str)) lowerCAmelCase_ = yaml.safe_dump(__snake_case) lowerCAmelCase_ = yaml.safe_load(__snake_case) assert dataset_info_yaml_dict == reloaded def snake_case_ ( ) -> Optional[int]: lowerCAmelCase_ = DatasetInfo() lowerCAmelCase_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()}), DatasetInfosDict({'''my_config_name''': DatasetInfo()}), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''')}) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) }), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42), '''v2''': DatasetInfo(dataset_size=1337), }), ] , ) def snake_case_ ( __snake_case : List[Any] , __snake_case : DatasetInfosDict) -> List[str]: lowerCAmelCase_ = str(__snake_case) dataset_infos_dict.write_to_directory(__snake_case) lowerCAmelCase_ = DatasetInfosDict.from_directory(__snake_case) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict()) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__snake_case , '''README.md'''))
606
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=1_3 , UpperCamelCase__=3_0 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=3_2 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=3_7 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1_0 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=0.6 , UpperCamelCase__=None , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = mask_ratio UpperCAmelCase_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" UpperCAmelCase_ = ViTMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ = model(UpperCamelCase__ ) UpperCAmelCase_ = (self.image_size // self.patch_size) ** 2 UpperCAmelCase_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(UpperCamelCase__ ) UpperCAmelCase_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _A , _A , unittest.TestCase ): a_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a_ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase_ = ViTMAEModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) UpperCAmelCase_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase_ = torch.from_numpy(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase_ = pt_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase_ = outputs[0].cpu().numpy() UpperCAmelCase_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ = model_class.from_pretrained(UpperCamelCase__ ) model.to(UpperCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) # Make sure we don't have nans UpperCAmelCase_ = after_outputs[0].cpu().numpy() UpperCAmelCase_ = 0 UpperCAmelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" pass @slow def lowerCamelCase_ ( self ) -> int: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ViTMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" np.random.seed(2 ) UpperCAmelCase_ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(UpperCamelCase__ ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase_ = ViTMAEConfig() UpperCAmelCase_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**UpperCamelCase__ , noise=torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ ) ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase__ ) , atol=1e-4 ) )
660
'''simple docstring''' def lowerCamelCase__ ( A_ , A_ ): _validate_point(A_ ) _validate_point(A_ ) if len(A_ ) != len(A_ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(A_ , A_ ) ) ) def lowerCamelCase__ ( A_ ): if point: if isinstance(A_ , A_ ): for item in point: if not isinstance(A_ , (int, float) ): UpperCAmelCase_ = ( "Expected a list of numbers as input, found " F"""{type(A_ ).__name__}""" ) raise TypeError(A_ ) else: UpperCAmelCase_ = F"""Expected a list of numbers as input, found {type(A_ ).__name__}""" raise TypeError(A_ ) else: raise ValueError("Missing an input" ) def lowerCamelCase__ ( A_ , A_ ): _validate_point(A_ ) _validate_point(A_ ) if len(A_ ) != len(A_ ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(A_ , A_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase__ , lowercase__ ) ) ) def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ): '''simple docstring''' if dataset.ndim != value_array.ndim: SCREAMING_SNAKE_CASE__ : Dict = ( 'Wrong input data\'s dimensions... ' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowercase__ ) try: if dataset.shape[1] != value_array.shape[1]: SCREAMING_SNAKE_CASE__ : str = ( 'Wrong input data\'s shape... ' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowercase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: SCREAMING_SNAKE_CASE__ : List[Any] = ( 'Input data have different datatype... ' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = [] for value in value_array: SCREAMING_SNAKE_CASE__ : List[Any] = euclidean(lowercase__ , dataset[0] ) SCREAMING_SNAKE_CASE__ : str = dataset[0].tolist() for dataset_value in dataset[1:]: SCREAMING_SNAKE_CASE__ : Any = euclidean(lowercase__ , lowercase__ ) if dist > temp_dist: SCREAMING_SNAKE_CASE__ : List[str] = temp_dist SCREAMING_SNAKE_CASE__ : List[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ): '''simple docstring''' return np.dot(lowercase__ , lowercase__ ) / (norm(lowercase__ ) * norm(lowercase__ )) if __name__ == "__main__": import doctest doctest.testmod()
636
from __future__ import annotations def _a ( lowercase__ : list[int | float] , lowercase__ : int , lowercase__ : int ): '''simple docstring''' if len(lowercase__ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(lowercase__ ) or left < -len(lowercase__ ) or right >= len(lowercase__ ) or right < -len(lowercase__ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Union[str, Any] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : int = find_max(lowercase__ , lowercase__ , lowercase__ ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Tuple = find_max(lowercase__ , mid + 1 , lowercase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
636
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' UpperCamelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.35_58_18, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase_ : Union[str, Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(_UpperCamelCase )}""" ) raise ValueError(_UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
620
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A__ ( ) -> Union[str, Any]: UpperCamelCase_: List[str] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" UpperCamelCase_: Any = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("""RGB""" ) return image def A__ ( lowerCamelCase ) -> str: UpperCamelCase_: Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Any: UpperCamelCase_: Any = dct.pop(lowerCamelCase ) UpperCamelCase_: Any = val def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase_: List[str] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase_: Optional[Any] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase_: List[Any] = torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) UpperCamelCase_: int = qkv_bias def A__ ( lowerCamelCase , lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Optional[int] = 3_64 if """coco""" in model_name else 2_24 UpperCamelCase_: Optional[int] = BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase_: Optional[Any] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase_: int = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: UpperCamelCase_: Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase_: str = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() UpperCamelCase_: Optional[Any] = BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=False ) -> str: UpperCamelCase_: List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) UpperCamelCase_: List[Any] = tokenizer("""\n""" , add_special_tokens=lowerCamelCase ).input_ids[0] UpperCamelCase_, UpperCamelCase_: List[str] = get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) UpperCamelCase_: Any = BlipaForConditionalGeneration(lowerCamelCase ).eval() UpperCamelCase_: List[Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } UpperCamelCase_, UpperCamelCase_: List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCamelCase_: str = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Any = load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCamelCase_: List[Any] = original_model.state_dict() UpperCamelCase_: Union[str, Any] = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase_: List[Any] = state_dict.pop(lowerCamelCase ) if key.startswith("""Qformer.bert""" ): UpperCamelCase_: Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCamelCase_: int = key.replace("""self""" , """attention""" ) if "opt_proj" in key: UpperCamelCase_: int = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCamelCase_: Optional[int] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): UpperCamelCase_: Any = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): UpperCamelCase_: Dict = key.replace("""t5""" , """language""" ) UpperCamelCase_: Optional[int] = val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: Dict = hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase_: List[Any] = load_demo_image() UpperCamelCase_: Optional[int] = vis_processors["""eval"""](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) UpperCamelCase_: Tuple = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) # create processor UpperCamelCase_: str = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) UpperCamelCase_: Dict = BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) UpperCamelCase_: Optional[Any] = processor(images=lowerCamelCase , return_tensors="""pt""" ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase_: Any = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits UpperCamelCase_: Dict = hf_model(lowerCamelCase , lowerCamelCase ).logits else: UpperCamelCase_: List[str] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits UpperCamelCase_: Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) UpperCamelCase_: Union[str, Any] = hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase_: int = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase_: Dict = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowerCamelCase ) else: # cast to same type UpperCamelCase_: str = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) UpperCamelCase_: Optional[Any] = """""" UpperCamelCase_: Union[str, Any] = tokenizer(lowerCamelCase , return_tensors="""pt""" ).input_ids.to(lowerCamelCase ) UpperCamelCase_: List[str] = original_model.generate({"""image""": original_pixel_values} ) UpperCamelCase_: Any = hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , lowerCamelCase ) UpperCamelCase_: Any = input_ids.shape[1] UpperCamelCase_: Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) UpperCamelCase_: Any = [text.strip() for text in output_text] print("""HF generation:""" , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() lowerCamelCase_ : Dict = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) lowerCamelCase_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'van' def __init__( self : List[str] ,lowerCAmelCase__ : int=2_24 ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : Dict=[7, 3, 3, 3] ,lowerCAmelCase__ : List[str]=[4, 2, 2, 2] ,lowerCAmelCase__ : Union[str, Any]=[64, 1_28, 3_20, 5_12] ,lowerCAmelCase__ : Union[str, Any]=[3, 3, 12, 3] ,lowerCAmelCase__ : Any=[8, 8, 4, 4] ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : List[str]=0.02 ,lowerCAmelCase__ : Optional[Any]=1e-6 ,lowerCAmelCase__ : Dict=1e-2 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,**lowerCAmelCase__ : List[str] ,) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : str = patch_sizes lowerCAmelCase_ : Optional[Any] = strides lowerCAmelCase_ : List[Any] = hidden_sizes lowerCAmelCase_ : int = depths lowerCAmelCase_ : int = mlp_ratios lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : str = layer_scale_init_value lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Dict = dropout_rate
659
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ) -> int: return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : int = """▁""" snake_case__ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = BigBirdTokenizer A_ = BigBirdTokenizerFast A_ = True A_ = True def _UpperCAmelCase ( self ) -> int: super().setUp() UpperCamelCase_ = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = '<s>' UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _UpperCAmelCase ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = 'I was born in 92000, and this is falsé.' UpperCamelCase_ = tokenizer.tokenize(_UpperCAmelCase ) UpperCamelCase_ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = tokenizer.encode(_UpperCAmelCase ) UpperCamelCase_ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _UpperCAmelCase ( self ) -> List[Any]: return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = 'Hello World!' UpperCamelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off UpperCamelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCamelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase_ = ' '.join(_UpperCAmelCase ) UpperCamelCase_ = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='pt' , return_token_type_ids=_UpperCAmelCase ) UpperCamelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_UpperCAmelCase ) UpperCamelCase_ = BigBirdConfig(attention_type='original_full' ) UpperCamelCase_ = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) UpperCamelCase_ = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: # fmt: off UpperCamelCase_ = {'input_ids': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
23
"""simple docstring""" import requests a_ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __lowercase ( snake_case_ : str ) ->None: '''simple docstring''' __A : str = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] ,1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
177
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A = _symbol_database.Default() A = _descriptor_pool.Default().AddSerializedFile( B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) A = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: A = None A = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A = 45 A = 1_581 A = 1_517 A = 1_570 A = 1_584 A = 1_793 A = 1_795 A = 1_916 A = 1_864 A = 1_905 A = 1_919 A = 2_429 A = 2_208 A = 2_418 A = 2_323 A = 2_407 # @@protoc_insertion_point(module_scope)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Dict = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
163
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py A : List[Any] = 'src/transformers' A : Dict = 'docs/source/en' A : int = '.' def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase__ = f.readlines() # Find the start prompt. lowercase__ = 0 while not lines[start_index].startswith(__magic_name__ ): start_index += 1 start_index += 1 lowercase__ = start_index while not lines[end_index].startswith(__magic_name__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | A : List[Any] = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. A : Optional[int] = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') A : str = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A : Union[str, Any] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. A : str = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase ( __magic_name__ : int ) -> Dict: """simple docstring""" lowercase__ = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __magic_name__ ) return [m.group(0 ) for m in matches] def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" lowercase__ = 2 if text == """✅""" or text == """❌""" else len(__magic_name__ ) lowercase__ = (width - text_length) // 2 lowercase__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) # Let's lookup through all transformers object (once). for attr_name in dir(__magic_name__ ): lowercase__ = None if attr_name.endswith("""Tokenizer""" ): lowercase__ = slow_tokenizers lowercase__ = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase__ = fast_tokenizers lowercase__ = attr_name[:-13] elif _re_tf_models.match(__magic_name__ ) is not None: lowercase__ = tf_models lowercase__ = _re_tf_models.match(__magic_name__ ).groups()[0] elif _re_flax_models.match(__magic_name__ ) is not None: lowercase__ = flax_models lowercase__ = _re_flax_models.match(__magic_name__ ).groups()[0] elif _re_pt_models.match(__magic_name__ ) is not None: lowercase__ = pt_models lowercase__ = _re_pt_models.match(__magic_name__ ).groups()[0] if lookup_dict is not None: while len(__magic_name__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ = True break # Try again after removing the last word in the name lowercase__ = """""".join(camel_case_split(__magic_name__ )[:-1] ) # Let's build that table! lowercase__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ = [len(__magic_name__ ) + 2 for c in columns] lowercase__ = max([len(__magic_name__ ) for name in model_names] ) + 2 # Build the table per se lowercase__ = """|""" + """|""".join([_center_text(__magic_name__ , __magic_name__ ) for c, w in zip(__magic_name__ , __magic_name__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase__ = {True: """✅""", False: """❌"""} for name in model_names: lowercase__ = model_name_to_prefix[name] lowercase__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__magic_name__ , __magic_name__ ) for l, w in zip(__magic_name__ , __magic_name__ )] ) + "|\n" return table def UpperCamelCase ( __magic_name__ : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = _find_text_in_file( filename=os.path.join(__magic_name__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__magic_name__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A : Union[str, Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
15
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : int = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["""YolosFeatureExtractor"""] a__ : List[str] = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
0
class lowercase__ : def __init__( self : List[str] , _lowercase : list ): """simple docstring""" UpperCAmelCase__ = set_counts UpperCAmelCase__ = max(_lowercase ) UpperCAmelCase__ = len(_lowercase ) UpperCAmelCase__ = [1] * num_sets UpperCAmelCase__ = list(range(_lowercase ) ) def _UpperCAmelCase ( self : Dict , _lowercase : int , _lowercase : int ): """simple docstring""" UpperCAmelCase__ = self.get_parent(_lowercase ) UpperCAmelCase__ = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase__ = 0 UpperCAmelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase__ = 0 UpperCAmelCase__ = src_parent UpperCAmelCase__ = self.set_counts[src_parent] UpperCAmelCase__ = max(self.max_set , _lowercase ) return True def _UpperCAmelCase ( self : Optional[Any] , _lowercase : int ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
277
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = ort.SessionOptions() UpperCAmelCase__ = False return options def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCAmelCase__ = "A red cat sitting on a park bench" UpperCAmelCase__ = np.random.RandomState(0 ) UpperCAmelCase__ = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowercase , output_type="np" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-2
277
1
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> int: if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('''String lengths must match!''' ) _snake_case = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
224
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase__ ( A_ ): __a = """switch_transformers""" __a = ["""past_key_values"""] __a = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[Any] , _lowerCamelCase : Any=32128 , _lowerCamelCase : List[Any]=768 , _lowerCamelCase : Any=64 , _lowerCamelCase : Dict=2048 , _lowerCamelCase : int=64 , _lowerCamelCase : Dict=12 , _lowerCamelCase : str=3 , _lowerCamelCase : Union[str, Any]=12 , _lowerCamelCase : Tuple=3 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : int=False , _lowerCamelCase : Union[str, Any]=0.0_1 , _lowerCamelCase : Any="float32" , _lowerCamelCase : str=False , _lowerCamelCase : Optional[int]=32 , _lowerCamelCase : Any=128 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Any=1e-6 , _lowerCamelCase : Union[str, Any]=0.0_0_1 , _lowerCamelCase : Tuple=0.0_0_1 , _lowerCamelCase : Dict=1.0 , _lowerCamelCase : int="relu" , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=True , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : List[Any]=1 , **_lowerCamelCase : Optional[Any] , ): _snake_case = vocab_size _snake_case = d_model _snake_case = d_kv _snake_case = d_ff _snake_case = num_sparse_encoder_layers _snake_case = num_layers _snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _snake_case = self.num_layers // self.num_sparse_encoder_layers else: _snake_case = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _snake_case = self.num_decoder_layers // self.num_sparse_decoder_layers else: _snake_case = self.num_decoder_layers # HACK: this will create 0 sparse layers _snake_case = num_heads _snake_case = num_experts _snake_case = expert_capacity _snake_case = router_bias _snake_case = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _snake_case = router_dtype _snake_case = router_ignore_padding_tokens _snake_case = relative_attention_num_buckets _snake_case = relative_attention_max_distance _snake_case = dropout_rate _snake_case = layer_norm_epsilon _snake_case = initializer_factor _snake_case = feed_forward_proj _snake_case = use_cache _snake_case = add_router_probs _snake_case = router_z_loss_coef _snake_case = router_aux_loss_coef _snake_case = self.feed_forward_proj.split('''-''' ) _snake_case = act_info[-1] _snake_case = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _snake_case = '''gelu_new''' super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase , )
224
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Tuple = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase : int = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } UpperCAmelCase : str = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : str = ['''input_ids''', '''attention_mask'''] def __init__( self , _A , _A=False , _A=False , _A=False , _A=None , _A=None , _A=None , _A=None , _A = None , **_A , ): __A : Any = {} if sp_model_kwargs is None else sp_model_kwargs __A : str = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) __A : Any = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A : int = '<|endoftext|>' if eos_token is None else eos_token __A : Any = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A : Optional[int] = unk_token if pad_token is None else pad_token __A : List[Any] = eos_token if bos_token is None else bos_token else: __A : List[str] = '<pad>' if pad_token is None else pad_token __A : Optional[int] = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __A : Union[str, Any] = do_lower_case __A : int = remove_space __A : Any = keep_accents __A : str = vocab_file __A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off __A : str = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A : Union[str, Any] = re.compile( F"""[{"".join(map(_A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ): __A : List[str] = self.__dict__.copy() __A : Tuple = None return state def __setstate__( self , _A ): __A : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A : List[Any] = {} __A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase_ ( self ): return len(self.sp_model ) def UpperCAmelCase_ ( self , _A ): __A : Optional[Any] = self.non_printing_characters_re.sub('' , _A ) # Normalize whitespaces __A : str = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization __A : Optional[Any] = unicodedata.normalize('NFC' , _A ) return text def UpperCAmelCase_ ( self , _A , **_A ): __A : List[str] = self.preprocess_text(_A ) return self.sp_model.encode(_A , out_type=_A ) def UpperCAmelCase_ ( self , _A ): return self.sp_model.PieceToId(_A ) def UpperCAmelCase_ ( self , _A ): return self.sp_model.IdToPiece(_A ) @staticmethod def UpperCAmelCase_ ( _A ): return out_string def UpperCAmelCase_ ( self , _A ): __A : int = [] __A : Optional[int] = '' __A : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __A : Tuple = True __A : int = [] else: current_sub_tokens.append(_A ) __A : List[str] = False out_string += self.sp_model.decode(_A ) return out_string def UpperCAmelCase_ ( self ): __A : Optional[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , _A , _A = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : List[str] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __A : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCAmelCase_ ( self , _A , _A = False ): if isinstance(_A , _A ): __A : Union[str, Any] = self.preprocess_text(_A ) __A : Optional[Any] = self.sp_model.encode(_A ) else: __A : Any = [self.preprocess_text(_A ) for t in text] __A : str = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": __A : Dict = torch.tensor(_A ) return token_ids def UpperCAmelCase_ ( self , _A ): return self.sp_model.decode(_A ) def UpperCAmelCase_ ( self , _A ): __A : Tuple = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __A : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(_A ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=_A )
702
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase : List[Any] = logging.get_logger(__name__) class _A( snake_case__ ): """simple docstring""" def __init__( self , *_A , **_A ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _A , ) super().__init__(*_A , **_A )
77
0
from typing import Any def __magic_name__ ( lowercase ) -> list[Any]: """simple docstring""" if not input_list: return [] lowercase_ : Any = [input_list.count(lowercase ) for value in input_list] lowercase_ : Optional[Any] = max(lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
458
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""MaskFormerFeatureExtractor"""] UpperCAmelCase_ = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] UpperCAmelCase_ = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
458
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( a ): lowercase__ : int = ["""vqvae"""] def __init__( self : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase , mel=_UpperCamelCase , vqvae=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , _UpperCamelCase ) else 1_000 @torch.no_grad() def __call__( self : Any , _UpperCamelCase : Optional[int] = 1 , _UpperCamelCase : Dict = None , _UpperCamelCase : Any = None , _UpperCamelCase : List[Any] = 0 , _UpperCamelCase : Dict = 0 , _UpperCamelCase : Union[str, Any] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Any = 0 , _UpperCamelCase : Optional[int] = 0 , _UpperCamelCase : Union[str, Any] = None , _UpperCamelCase : Any = 0 , _UpperCamelCase : Tuple = None , _UpperCamelCase : List[Any] = None , _UpperCamelCase : Optional[int]=True , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCamelCase ) SCREAMING_SNAKE_CASE = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCamelCase , device=self.device , ) SCREAMING_SNAKE_CASE = noise SCREAMING_SNAKE_CASE = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.mel.audio_slice_to_image(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE = (input_image / 255) * 2 - 1 SCREAMING_SNAKE_CASE = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE = self.vqvae.encode(torch.unsqueeze(_UpperCamelCase , 0 ) ).latent_dist.sample( generator=_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE = int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE = int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCamelCase ): SCREAMING_SNAKE_CASE = self.unet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )["sample"] else: SCREAMING_SNAKE_CASE = self.unet(_UpperCamelCase , _UpperCamelCase )["sample"] if isinstance(self.scheduler , _UpperCamelCase ): SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=_UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , eta=_UpperCamelCase , generator=_UpperCamelCase , )["prev_sample"] else: SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=_UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , generator=_UpperCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE = mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE = 1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE = self.vqvae.decode(_UpperCamelCase )["sample"] SCREAMING_SNAKE_CASE = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE = (images * 255).round().astype("uint8" ) SCREAMING_SNAKE_CASE = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) SCREAMING_SNAKE_CASE = [self.mel.image_to_audio(_UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCamelCase ) ) @torch.no_grad() def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] = 50 ) -> Union[str, Any]: '''simple docstring''' assert isinstance(self.scheduler , _UpperCamelCase ) self.scheduler.set_timesteps(_UpperCamelCase ) SCREAMING_SNAKE_CASE = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE = (sample / 255) * 2 - 1 SCREAMING_SNAKE_CASE = torch.Tensor(_UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE = self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE = 1 - alpha_prod_t SCREAMING_SNAKE_CASE = self.unet(_UpperCamelCase , _UpperCamelCase )["sample"] SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __snake_case( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = acos(torch.dot(torch.flatten(_UpperCamelCase ) , torch.flatten(_UpperCamelCase ) ) / torch.norm(_UpperCamelCase ) / torch.norm(_UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCamelCase ) + sin(alpha * theta ) * xa / sin(_UpperCamelCase )
708
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCamelCase : Optional[Any] = TypeVar('''T''') class lowercase ( Generic[T] ): def __init__( self : Any , _UpperCamelCase : T ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return F"{self.data}" class lowercase ( Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None def __iter__( self : str ) -> Iterator[T]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.top while node: yield node.data SCREAMING_SNAKE_CASE = node.next def __str__( self : int ) -> str: '''simple docstring''' return "->".join([str(_UpperCamelCase ) for item in self] ) def __len__( self : Tuple ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __snake_case( self : Union[str, Any] ) -> bool: '''simple docstring''' return self.top is None def __snake_case( self : str , _UpperCamelCase : T ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = Node(_UpperCamelCase ) if not self.is_empty(): SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = node def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = self.top.next return pop_node.data def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __snake_case( self : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None if __name__ == "__main__": from doctest import testmod testmod()
647
0
from ..utils import DummyObject, requires_backends class lowerCamelCase( metaclass=__snake_case ): '''simple docstring''' __magic_name__ = ['note_seq'] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ['note_seq'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['note_seq'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['note_seq'] )
27
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCAmelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } _lowerCAmelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } _lowerCAmelCase = '''▁''' class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token lowerCAmelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : Union[str, Any] = vocab_file lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowerCAmelCase__ : Any = len(self.sp_model ) - 1 lowerCAmelCase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> str: return len(self.sp_model ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Dict = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ : Union[str, Any] = self.sp_model.PieceToId(__UpperCAmelCase ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : int = [] lowerCAmelCase__ : str = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Tuple = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[str]: lowerCAmelCase__ : int = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None return state def __setstate__( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[Any] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
565
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE_ (a__ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' @property def _lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self : Dict ) ->Any: lowerCamelCase_ : List[Any] = ort.SessionOptions() lowerCamelCase_ : List[Any] = False return options def _lowerCAmelCase ( self : int ) ->Union[str, Any]: lowerCamelCase_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCamelCase_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCamelCase_ : Dict = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Dict = """A red cat sitting on a park bench""" lowerCamelCase_ : Tuple = np.random.RandomState(0 ) lowerCamelCase_ : Any = pipe( prompt=__a , image=__a , mask_image=__a , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type="""np""" , ) lowerCamelCase_ : Tuple = output.images lowerCamelCase_ : int = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase_ : Optional[int] = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : str ) ->Optional[int]: lowerCamelCase_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCamelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCamelCase_ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCamelCase_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__a , safety_checker=__a , feature_extractor=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase_ : Dict = """A red cat sitting on a park bench""" lowerCamelCase_ : int = np.random.RandomState(0 ) lowerCamelCase_ : int = pipe( prompt=__a , image=__a , mask_image=__a , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type="""np""" , ) lowerCamelCase_ : Tuple = output.images lowerCamelCase_ : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase_ : Optional[int] = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
171
import argparse snake_case__ : Dict = 'docs/source/_static/js/custom.js' def __lowerCamelCase ( A__ : List[str] ) -> int: with open(A__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ : List[Any] = f.readlines() lowerCamelCase_ : Dict = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowerCamelCase_ : int = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') snake_case__ : Tuple = parser.parse_args() update_custom_js(args.version)
171
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : Any ='''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowercase : Any ='''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowercase : int =''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Any: A : Any =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A : Union[str, Any] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] A : List[Any] =TER( normalized=SCREAMING_SNAKE_CASE__ , no_punct=SCREAMING_SNAKE_CASE__ , asian_support=SCREAMING_SNAKE_CASE__ , case_sensitive=SCREAMING_SNAKE_CASE__ , ) A : str =sb_ter.corpus_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
712
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def _snake_case ( __snake_case , __snake_case=False ): try: _UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value _lowerCAmelCase = parse_flag_from_env("RUN_SLOW", default=False) _lowerCAmelCase = parse_flag_from_env("RUN_REMOTE", default=False) _lowerCAmelCase = parse_flag_from_env("RUN_LOCAL", default=True) _lowerCAmelCase = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression _lowerCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") _lowerCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") _lowerCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio _lowerCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam _lowerCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility _lowerCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows _lowerCAmelCase = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def _snake_case ( __snake_case ): try: import faiss # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires faiss''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import regex # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires regex''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import elasticsearch # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import sqlalchemy # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.TORCH_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires PyTorch''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.TF_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.JAX_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires JAX''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not config.PIL_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires Pillow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): def _require_spacy_model(__snake_case ): try: import spacy # noqa F401 spacy.load(__snake_case ) except ImportError: return unittest.skip('''test requires spacy''' )(__snake_case ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__snake_case ) )(__snake_case ) else: return test_case return _require_spacy_model def _snake_case ( __snake_case ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__snake_case ) else: return test_case def _snake_case ( __snake_case ): if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase = unittest.skip('''test is slow''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase = unittest.skip('''test is local''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase = unittest.skip('''test is packaged''' )(__snake_case ) return test_case def _snake_case ( __snake_case ): if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase = unittest.skip('''test requires remote''' )(__snake_case ) return test_case def _snake_case ( *__snake_case ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__snake_case ) and name.startswith('''test''' ): for decorator in decorators: _UpperCamelCase = decorator(__snake_case ) setattr(cls , __snake_case , __snake_case ) return cls return decorate class lowerCAmelCase_ ( __lowercase ): pass class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @contextmanager def _snake_case ( __snake_case=OfflineSimulationMode.CONNECTION_FAILS , __snake_case=1E-16 ): _UpperCamelCase = requests.Session().request def timeout_request(__snake_case , __snake_case , __snake_case , **__snake_case ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCamelCase = timeout try: return online_request(__snake_case , __snake_case , **__snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase = url _UpperCamelCase = e.args[0] _UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , f"""OfflineMock[{url}]""" ),) _UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__snake_case , __snake_case , **__snake_case ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __snake_case ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _snake_case ( *__snake_case , **__snake_case ): _UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__snake_case , **__snake_case ) as tmp_dir: try: os.chdir(__snake_case ) yield finally: os.chdir(__snake_case ) @contextmanager def _snake_case ( ): import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _snake_case ( ): import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _snake_case ( __snake_case , __snake_case ): return deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() == deepcopy(__snake_case ).integers(0 , 100 , 10 ).tolist() def _snake_case ( __snake_case ): import decorator from requests.exceptions import HTTPError def _wrapper(__snake_case , *__snake_case , **__snake_case ): try: return func(*__snake_case , **__snake_case ) except HTTPError as err: if str(__snake_case ).startswith('''500''' ) or str(__snake_case ).startswith('''502''' ): pytest.xfail(str(__snake_case ) ) raise err return decorator.decorator(_wrapper , __snake_case ) class lowerCAmelCase_ : def __init__( self : Any , _A : Dict , _A : str , _A : Any ): _UpperCamelCase = returncode _UpperCamelCase = stdout _UpperCamelCase = stderr async def _snake_case ( __snake_case , __snake_case ): while True: _UpperCamelCase = await stream.readline() if line: callback(__snake_case ) else: break async def _snake_case ( __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=False ): if echo: print('''\nRunning: ''' , ''' '''.join(__snake_case ) ) _UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase = [] _UpperCamelCase = [] def tee(__snake_case , __snake_case , __snake_case , __snake_case="" ): _UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case , __snake_case , file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __snake_case : tee(__snake_case , __snake_case , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __snake_case : tee(__snake_case , __snake_case , sys.stderr , label='''stderr:''' ) ), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case ) def _snake_case ( __snake_case , __snake_case=None , __snake_case=None , __snake_case=180 , __snake_case=False , __snake_case=True ): _UpperCamelCase = asyncio.get_event_loop() _UpperCamelCase = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case ) ) _UpperCamelCase = ''' '''.join(__snake_case ) if result.returncode > 0: _UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def _snake_case ( ): _UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _UpperCamelCase = re.sub(R'''^gw''' , '''''' , __snake_case , 0 , re.M ) return int(__snake_case ) def _snake_case ( ): _UpperCamelCase = 29500 _UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Dict = {'vocab_file': 'spiece.model'} lowercase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowercase : Tuple = {'bert_for_seq_generation': 5_12} class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<::::>" , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : str = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) A : List[Any] = vocab_file A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" A : Dict = self.__dict__.copy() A : int = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Optional[int] = {} A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Tuple = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) return token def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = [] A : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : str = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A : int = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
634
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : Tuple = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
421
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a_ ( lowerCAmelCase_ : Dict=32, lowerCAmelCase_ : int=10, lowerCAmelCase_ : List[str]=100, lowerCAmelCase_ : Tuple=1026, lowerCAmelCase_ : Optional[Any]=True, lowerCAmelCase_ : Tuple="data/tokenized_stories_train_wikitext103.jbl", lowerCAmelCase_ : Optional[int]="igf_context_pairs.jbl", ): set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase , __lowerCAmelCase = generate_datasets( lowerCAmelCase_, lowerCAmelCase_, number=lowerCAmelCase_, min_len=1026, trim=lowerCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowerCAmelCase = load_gpta('gpt2' ).to(lowerCAmelCase_ ) print('computing perplexity on objective set' ) __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ).item() print('perplexity on objective set:', lowerCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any=15, lowerCAmelCase_ : Optional[int]=128, lowerCAmelCase_ : Optional[int]=100, lowerCAmelCase_ : Tuple="igf_model.pt", ): set_seed(42 ) # Load pre-trained model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase = SecondaryLearner(lowerCAmelCase_ ) # Train secondary learner __lowerCAmelCase = train_secondary_learner( lowerCAmelCase_, lowerCAmelCase_, max_epochs=lowerCAmelCase_, batch_size=lowerCAmelCase_, eval_freq=100, igf_model_path=lowerCAmelCase_, ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple=32, lowerCAmelCase_ : Any=1000, lowerCAmelCase_ : Union[str, Any]=16, lowerCAmelCase_ : Any=1.0, lowerCAmelCase_ : Dict=recopy_gpta, lowerCAmelCase_ : Dict=None, lowerCAmelCase_ : Optional[Any]=10, lowerCAmelCase_ : Union[str, Any]="gpt2_finetuned.pt", ): __lowerCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase = RandomSampler(lowerCAmelCase_ ) __lowerCAmelCase = DataLoader(lowerCAmelCase_, sampler=lowerCAmelCase_ ) __lowerCAmelCase = max_steps // (len(lowerCAmelCase_ )) + 1 __lowerCAmelCase = 0 __lowerCAmelCase = torch.zeros((1, context_len), dtype=torch.long, device=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = recopy_model(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCAmelCase_ ) secondary_learner.eval() __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) test_perps.append(lowerCAmelCase_ ) print('Test perplexity, step', lowerCAmelCase_, ':', lowerCAmelCase_ ) for epoch in range(int(lowerCAmelCase_ ) ): for step, example in enumerate(lowerCAmelCase_ ): torch.cuda.empty_cache() __lowerCAmelCase = random.randint(0, example.size(2 ) - context_len - 1 ) __lowerCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase = model(lowerCAmelCase_, labels=lowerCAmelCase_ ) __lowerCAmelCase = True if secondary_learner is not None: __lowerCAmelCase = secondary_learner.forward( torch.tensor(lowerCAmelCase_, dtype=torch.long, device=lowerCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase = -1 if predicted_q < threshold: __lowerCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase = compute_perplexity(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) test_perps.append(lowerCAmelCase_ ) print('Test perplexity, step', lowerCAmelCase_, ':', lowerCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(), lowerCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='The input data dir. Should contain data files for WikiText.', ) parser.add_argument( '--model_name_or_path', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to pretrained model or model identifier from huggingface.co/models', ) parser.add_argument( '--data_file', type=lowerCAmelCase_, default=lowerCAmelCase_, help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ), ) parser.add_argument( '--igf_data_file', type=lowerCAmelCase_, default=lowerCAmelCase_, help='A jbl file containing the context and information gain pairs to train secondary learner.', ) parser.add_argument( '--output_dir', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='The output directory where the final fine-tuned model is stored.', ) parser.add_argument( '--tokenizer_name', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument('--seed', type=lowerCAmelCase_, default=lowerCAmelCase_, help='A seed for reproducible training.' ) parser.add_argument( '--context_len', default=32, type=lowerCAmelCase_, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--size_objective_set', default=100, type=lowerCAmelCase_, help='number of articles that are long enough to be used as our objective set', ) parser.add_argument( '--eval_freq', default=100, type=lowerCAmelCase_, help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps', default=1000, type=lowerCAmelCase_, help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size', default=128, type=lowerCAmelCase_, help='batch size of training data for secondary learner', ) parser.add_argument( '--batch_size', default=16, type=lowerCAmelCase_, help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval', default=10, type=lowerCAmelCase_, help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ), ) parser.add_argument( '--number', default=100, type=lowerCAmelCase_, help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len', default=1026, type=lowerCAmelCase_, help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs', default=15, type=lowerCAmelCase_, help='number of epochs to train secondary learner' ) parser.add_argument('--trim', default=lowerCAmelCase_, type=lowerCAmelCase_, help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold', default=1.0, type=lowerCAmelCase_, help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ), ) parser.add_argument('--finetuned_model_name', default='gpt2_finetuned.pt', type=lowerCAmelCase_, help='finetuned_model_name' ) parser.add_argument( '--recopy_model', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Reset the model to the original pretrained GPT-2 weights after each iteration', ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32, max_steps=10, size_objective_set=100, min_len=1026, trim=lowerCAmelCase_, data_file='data/tokenized_stories_train_wikitext103.jbl', igf_data_file='igf_context_pairs.jbl', ) # Load train data for secondary learner __lowerCAmelCase = joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowerCAmelCase = training_secondary_learner( lowerCAmelCase_, secondary_learner_max_epochs=15, secondary_learner_batch_size=128, eval_freq=100, igf_model_path='igf_model.pt', ) # load pretrained gpt2 model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase , __lowerCAmelCase = generate_datasets( context_len=32, file='data/tokenized_stories_train_wikitext103.jbl', number=100, min_len=1026, trim=lowerCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, context_len=32, max_steps=1000, batch_size=16, threshold=1.0, recopy_model=lowerCAmelCase_, secondary_learner=lowerCAmelCase_, eval_interval=10, finetuned_model_name='gpt2_finetuned.pt', ) if __name__ == "__main__": main()
421
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCamelCase__ = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase__ = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' UpperCamelCase__ = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowerCamelCase ( _snake_case ): def remove_articles(_snake_case ): UpperCAmelCase__ : str = re.compile(r'\b(a|an|the)\b' ,re.UNICODE ) return re.sub(_snake_case ,' ' ,_snake_case ) def white_space_fix(_snake_case ): return " ".join(text.split() ) def remove_punc(_snake_case ): UpperCAmelCase__ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def lowerCamelCase ( _snake_case ,_snake_case ): return int(normalize_answer(_snake_case ) == normalize_answer(_snake_case ) ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : Tuple = [any(compute_exact(_snake_case ,_snake_case ) for ref in refs ) for pred, refs in zip(_snake_case ,_snake_case )] return (sum(_snake_case ) / len(_snake_case )) * 100 def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Optional[Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase__ : Optional[Any] = Counter(_snake_case ) UpperCAmelCase__ : Tuple = Counter(_snake_case ) UpperCAmelCase__ : Union[str, Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase__ : str = scount * numref UpperCAmelCase__ : Union[str, Any] = Counter(_snake_case ) UpperCAmelCase__ : str = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase__ : Optional[Any] = ccount * numref # KEEP UpperCAmelCase__ : int = sgramcounter_rep & cgramcounter_rep UpperCAmelCase__ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase__ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Dict = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Union[str, Any] = 1 if len(_snake_case ) > 0: UpperCAmelCase__ : int = keeptmpscorea / len(_snake_case ) if len(_snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase__ : Optional[int] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase__ : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase__ : Tuple = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase__ : Any = sgramcounter_rep - cgramcounter_rep UpperCAmelCase__ : List[str] = delgramcounter_rep - rgramcounter UpperCAmelCase__ : List[str] = sgramcounter_rep - rgramcounter UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Optional[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : Dict = 1 if len(_snake_case ) > 0: UpperCAmelCase__ : Optional[Any] = deltmpscorea / len(_snake_case ) # ADDITION UpperCAmelCase__ : List[str] = set(_snake_case ) - set(_snake_case ) UpperCAmelCase__ : List[Any] = set(_snake_case ) & set(_snake_case ) UpperCAmelCase__ : List[str] = set(_snake_case ) - set(_snake_case ) UpperCAmelCase__ : Optional[int] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Optional[Any] = 1 if len(_snake_case ) > 0: UpperCAmelCase__ : Optional[Any] = addtmpscore / len(_snake_case ) if len(_snake_case ) > 0: UpperCAmelCase__ : Dict = addtmpscore / len(_snake_case ) UpperCAmelCase__ : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase__ : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Optional[Any] = len(_snake_case ) UpperCAmelCase__ : List[str] = ssent.split(' ' ) UpperCAmelCase__ : Optional[Any] = csent.split(' ' ) UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : Any = [] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Dict = [] for rsent in rsents: UpperCAmelCase__ : Union[str, Any] = rsent.split(' ' ) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Dict = [] ragramslist.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: UpperCAmelCase__ : Optional[Any] = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(_snake_case ) if i < len(_snake_case ) - 2: UpperCAmelCase__ : int = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(_snake_case ) if i < len(_snake_case ) - 3: UpperCAmelCase__ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(_snake_case ) ragramslist.append(_snake_case ) ragramslist.append(_snake_case ) ragramslist.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: UpperCAmelCase__ : Dict = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(_snake_case ) if i < len(_snake_case ) - 2: UpperCAmelCase__ : Dict = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(_snake_case ) if i < len(_snake_case ) - 3: UpperCAmelCase__ : Dict = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: UpperCAmelCase__ : Any = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(_snake_case ) if i < len(_snake_case ) - 2: UpperCAmelCase__ : int = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(_snake_case ) if i < len(_snake_case ) - 3: UpperCAmelCase__ : Dict = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(_snake_case ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[int] = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Tuple = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : int = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : Optional[Any] = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase__ : int = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase__ : Any = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase__ : int = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase__ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase ( _snake_case ,_snake_case = True ,_snake_case = "13a" ,_snake_case = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase__ : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase__ : str = sacrebleu.metrics.bleu._get_tokenizer(_snake_case )()(_snake_case ) else: UpperCAmelCase__ : List[str] = sacrebleu.TOKENIZERS[tokenizer]()(_snake_case ) elif tokenizer == "moses": UpperCAmelCase__ : Dict = sacremoses.MosesTokenizer().tokenize(_snake_case ,return_str=_snake_case ,escape=_snake_case ) elif tokenizer == "penn": UpperCAmelCase__ : List[Any] = sacremoses.MosesTokenizer().penn_tokenize(_snake_case ,return_str=_snake_case ) else: UpperCAmelCase__ : Union[str, Any] = sentence if not return_str: UpperCAmelCase__ : Tuple = normalized_sent.split() return normalized_sent def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): if not (len(_snake_case ) == len(_snake_case ) == len(_snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase__ : Optional[int] = 0 for src, pred, refs in zip(_snake_case ,_snake_case ,_snake_case ): sari_score += SARIsent(normalize(_snake_case ) ,normalize(_snake_case ) ,[normalize(_snake_case ) for sent in refs] ) UpperCAmelCase__ : Optional[int] = sari_score / len(_snake_case ) return 100 * sari_score def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case="exp" ,_snake_case=None ,_snake_case=False ,_snake_case=False ,_snake_case=False ,): UpperCAmelCase__ : List[str] = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase__ : Dict = [[refs[i] for refs in references] for i in range(_snake_case )] UpperCAmelCase__ : Any = sacrebleu.corpus_bleu( _snake_case ,_snake_case ,smooth_method=_snake_case ,smooth_value=_snake_case ,force=_snake_case ,lowercase=_snake_case ,use_effective_order=_snake_case ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : int = {} result.update({'sari': compute_sari(sources=UpperCamelCase_ , predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) result.update({'exact': compute_em(predictions=UpperCamelCase_ , references=UpperCamelCase_ )} ) return result
110
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : """simple docstring""" a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 # [batch_size x 3] a__ = 42 a__ = 42 a__ = 42 a__ = 42 a__ = 42 def A__ ( self): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def A__ ( self): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def A__ ( self): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def A__ ( self): _UpperCamelCase : Optional[int] = torch.arange(self.height * self.width) _UpperCamelCase : Optional[Any] = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='trunc'), ] , axis=1 , ) return coords @property def A__ ( self): _UpperCamelCase , *_UpperCamelCase : str = self.shape _UpperCamelCase : Any = int(np.prod(__snake_case)) _UpperCamelCase : Union[str, Any] = self.get_image_coords() _UpperCamelCase : str = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) _UpperCamelCase : List[Any] = self.get_camera_rays(__snake_case) _UpperCamelCase : Tuple = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3) return rays def A__ ( self , __snake_case): _UpperCamelCase , *_UpperCamelCase , _UpperCamelCase : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCamelCase : str = coords.view(__snake_case , -1 , 2) _UpperCamelCase : Optional[Any] = self.resolution() _UpperCamelCase : str = self.fov() _UpperCamelCase : int = (flat.float() / (res - 1)) * 2 - 1 _UpperCamelCase : str = fracs * torch.tan(fov / 2) _UpperCamelCase : Optional[Any] = fracs.view(__snake_case , -1 , 2) _UpperCamelCase : Any = ( self.z.view(__snake_case , 1 , 3) + self.x.view(__snake_case , 1 , 3) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3) * fracs[:, :, 1:] ) _UpperCamelCase : int = directions / directions.norm(dim=-1 , keepdim=__snake_case) _UpperCamelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3) def A__ ( self , __snake_case , __snake_case): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): _UpperCamelCase : Optional[Any] = np.array([np.sin(UpperCAmelCase_ ), np.cos(UpperCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCamelCase : List[Any] = -z * 4 _UpperCamelCase : Dict = np.array([np.cos(UpperCAmelCase_ ), -np.sin(UpperCAmelCase_ ), 0.0] ) _UpperCamelCase : int = np.cross(UpperCAmelCase_ , UpperCAmelCase_ ) origins.append(UpperCAmelCase_ ) xs.append(UpperCAmelCase_ ) ys.append(UpperCAmelCase_ ) zs.append(UpperCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(UpperCAmelCase_ , axis=0 ) ).float() , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(UpperCAmelCase_ )) , )
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
1
'''simple docstring''' from manim import * class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __A ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase = Text("CPU" , font_size=2_4 ) lowerCAmelCase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) lowerCAmelCase = [mem.copy() for i in range(1 )] lowerCAmelCase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase = Text("GPU" , font_size=2_4 ) lowerCAmelCase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.align_to(_UpperCAmelCase , _UpperCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_UpperCAmelCase ) lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase = Text("Model" , font_size=2_4 ) lowerCAmelCase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) , ) lowerCAmelCase = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=2.5 ) , Write(_UpperCAmelCase ) , Write(_UpperCAmelCase ) ) self.add(_UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = [] for i, rect in enumerate(_UpperCAmelCase ): lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.7 ) cpu_target.move_to(_UpperCAmelCase ) cpu_target.generate_target() lowerCAmelCase = 0.4_6 / 4 lowerCAmelCase = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_UpperCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_UpperCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_UpperCAmelCase , buff=0.0 ) cpu_targs.append(_UpperCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_UpperCAmelCase ) ) second_animations.append(MoveToTarget(_UpperCAmelCase , run_time=1.5 ) ) self.play(*_UpperCAmelCase ) self.play(*_UpperCAmelCase ) self.wait()
649
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 0 UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return arr, 0 UpperCAmelCase_ = len(lowerCAmelCase__ ) // 2 UpperCAmelCase_ = arr[0:mid] UpperCAmelCase_ = arr[mid:] UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = _count_cross_inversions(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = 0 while i < len(lowerCAmelCase__ ) and j < len(lowerCAmelCase__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): UpperCAmelCase_ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , lowerCAmelCase__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase__ ) # an empty list should also have zero inversions UpperCAmelCase_ = [] UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase__ ) if __name__ == "__main__": main()
82
0
'''simple docstring''' from __future__ import annotations def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' if b == 0: return (1, 0) (_UpperCamelCase) : List[str] = extended_euclid(UpperCAmelCase ,a % b ) _UpperCamelCase : Any = a // b return (y, x - k * y) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> Tuple: '''simple docstring''' (_UpperCamelCase) : Dict = extended_euclid(UpperCAmelCase ,UpperCAmelCase ) _UpperCamelCase : List[Any] = na * na _UpperCamelCase : int = ra * x * na + ra * y * na return (n % m + m) % m def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Any: '''simple docstring''' (_UpperCamelCase) : str = extended_euclid(UpperCAmelCase ,UpperCAmelCase ) if b < 0: _UpperCamelCase : Union[str, Any] = (b % n + n) % n return b def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> List[Any]: '''simple docstring''' _UpperCamelCase : str = invert_modulo(UpperCAmelCase ,UpperCAmelCase ), invert_modulo(UpperCAmelCase ,UpperCAmelCase ) _UpperCamelCase : Any = na * na _UpperCamelCase : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
714
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCAmelCase_ : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0522, type=int) lowerCAmelCase_ : str = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowerCAmelCase_ : Tuple = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCAmelCase_ : str = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase_ : Any = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase_ : Optional[Any] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
204
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Tuple=7 , snake_case_ : List[str]=3 , snake_case_ : Optional[Any]=18 , snake_case_ : Union[str, Any]=30 , snake_case_ : Union[str, Any]=4_00 , snake_case_ : List[Any]=True , snake_case_ : int=None , snake_case_ : Dict=True , snake_case_ : Optional[Any]=None , )-> Optional[Any]: __lowerCAmelCase =size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =num_channels __lowerCAmelCase =image_size __lowerCAmelCase =min_resolution __lowerCAmelCase =max_resolution __lowerCAmelCase =do_resize __lowerCAmelCase =size __lowerCAmelCase =do_center_crop __lowerCAmelCase =crop_size def UpperCamelCase ( self : Any)-> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __a ( __lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Optional[int])-> Any: __lowerCAmelCase =MobileNetVaImageProcessingTester(self) @property def UpperCamelCase ( self : List[Any])-> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : int)-> int: __lowerCAmelCase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """crop_size""")) def UpperCamelCase ( self : Union[str, Any])-> Tuple: __lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) __lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase ( self : Optional[int])-> List[Any]: pass def UpperCamelCase ( self : Dict)-> List[Any]: # Initialize image_processing __lowerCAmelCase =self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input __lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase ( self : Union[str, Any])-> Union[str, Any]: # Initialize image_processing __lowerCAmelCase =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input __lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase ( self : int)-> Any: # Initialize image_processing __lowerCAmelCase =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input __lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase =image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
518
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( _UpperCAmelCase ): A__ : List[str] ="""beit""" def __init__( self : Tuple , UpperCAmelCase_ : Tuple=8192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Union[str, Any]=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[Any]=1e-1_2 , UpperCAmelCase_ : str=224 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=0.4 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Any=255 , **UpperCAmelCase_ : List[str] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = use_mask_token SCREAMING_SNAKE_CASE__ = use_absolute_position_embeddings SCREAMING_SNAKE_CASE__ = use_relative_position_bias SCREAMING_SNAKE_CASE__ = use_shared_relative_position_bias SCREAMING_SNAKE_CASE__ = layer_scale_init_value SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ = out_indices SCREAMING_SNAKE_CASE__ = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ = use_auxiliary_head SCREAMING_SNAKE_CASE__ = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ = auxiliary_channels SCREAMING_SNAKE_CASE__ = auxiliary_num_convs SCREAMING_SNAKE_CASE__ = auxiliary_concat_input SCREAMING_SNAKE_CASE__ = semantic_loss_ignore_index class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] =version.parse("""1.11""" ) @property def A_ ( self : int ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self : List[str] ): return 1e-4
400
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mobilenet_v1''' def __init__( self : Optional[Any] , snake_case__ : List[str]=3 , snake_case__ : int=2_2_4 , snake_case__ : str=1.0 , snake_case__ : Optional[Any]=8 , snake_case__ : str="relu6" , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=0.999 , snake_case__ : List[str]=0.02 , snake_case__ : Dict=0.001 , **snake_case__ : int , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : str = depth_multiplier UpperCAmelCase__ : int = min_depth UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : int = tf_padding UpperCAmelCase__ : List[Any] = classifier_dropout_prob UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : int = layer_norm_eps class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =version.parse('''1.11''' ) @property def __a ( self : Dict ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self : Optional[int] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self : Optional[int] ): '''simple docstring''' return 1e-4
438
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : bool = False , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = nn.Embedding(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[Any] = nn.Embedding(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = nn.Dropout(p=snake_case__ ) UpperCAmelCase__ : Optional[int] = TaConfig( vocab_size=snake_case__ , d_model=snake_case__ , num_heads=snake_case__ , d_kv=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , feed_forward_proj=snake_case__ , is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , ) UpperCAmelCase__ : Tuple = nn.ModuleList() for lyr_num in range(snake_case__ ): UpperCAmelCase__ : Tuple = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) UpperCAmelCase__ : str = TaLayerNorm(snake_case__ ) UpperCAmelCase__ : Tuple = nn.Dropout(p=snake_case__ ) def __a ( self : int , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.token_embedder(snake_case__ ) UpperCAmelCase__ : Optional[int] = encoder_input_tokens.shape[1] UpperCAmelCase__ : List[Any] = torch.arange(snake_case__ , device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.dropout_pre(snake_case__ ) # inverted the attention mask UpperCAmelCase__ : List[Any] = encoder_input_tokens.size() UpperCAmelCase__ : Tuple = self.get_extended_attention_mask(snake_case__ , snake_case__ ) for lyr in self.encoders: UpperCAmelCase__ : Any = lyr(snake_case__ , snake_case__ )[0] UpperCAmelCase__ : Any = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
438
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __snake_case = logging.getLogger(__name__) def _lowercase ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , encoding="""utf_8""" ) as f: UpperCamelCase = csv.reader(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowercase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase = [] for dataset in encoded_datasets: UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCamelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCamelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) UpperCamelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase = with_conta UpperCamelCase = with_conta UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 UpperCamelCase = with_conta UpperCamelCase = with_conta UpperCamelCase = mc_label UpperCamelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def _lowercase ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=SCREAMING_SNAKE_CASE_ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=SCREAMING_SNAKE_CASE_ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=SCREAMING_SNAKE_CASE_ , default="""""" ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument("""--train_batch_size""" , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=SCREAMING_SNAKE_CASE_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=SCREAMING_SNAKE_CASE_ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument("""--n_valid""" , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument("""--server_ip""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) UpperCamelCase = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCamelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCamelCase = ["_start_", "_delimiter_", "_classify_"] UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info("""Encoding dataset...""" ) UpperCamelCase = load_rocstories_dataset(args.train_dataset ) UpperCamelCase = load_rocstories_dataset(args.eval_dataset ) UpperCamelCase = (train_dataset, eval_dataset) UpperCamelCase = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer UpperCamelCase = model.config.n_positions // 2 - 2 UpperCamelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCamelCase = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCamelCase = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tensor_datasets[0], tensor_datasets[1] UpperCamelCase = TensorDataset(*SCREAMING_SNAKE_CASE_ ) UpperCamelCase = RandomSampler(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) UpperCamelCase = TensorDataset(*SCREAMING_SNAKE_CASE_ ) UpperCamelCase = SequentialSampler(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCamelCase = args.max_steps UpperCamelCase = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCamelCase = list(model.named_parameters() ) UpperCamelCase = ["bias", "LayerNorm.bias", "LayerNorm.weight"] UpperCamelCase = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] UpperCamelCase = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCamelCase = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: UpperCamelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(SCREAMING_SNAKE_CASE_ , desc="""Training""" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) UpperCamelCase = batch UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCamelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCamelCase = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCamelCase = model.module if hasattr(SCREAMING_SNAKE_CASE_ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCamelCase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCamelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCamelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() UpperCamelCase = 0, 0 UpperCamelCase = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc="""Evaluating""" ): UpperCamelCase = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) UpperCamelCase = batch with torch.no_grad(): UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = mc_logits.detach().cpu().numpy() UpperCamelCase = mc_labels.to("""cpu""" ).numpy() UpperCamelCase = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCamelCase = eval_loss / nb_eval_steps UpperCamelCase = eval_accuracy / nb_eval_examples UpperCamelCase = tr_loss / nb_tr_steps if args.do_train else None UpperCamelCase = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} UpperCamelCase = os.path.join(args.output_dir , """eval_results.txt""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
702
import torch from transformers import AutoModel class UpperCAmelCase ( torch.nn.Module ): def __init__( self : int , __magic_name__ : List[Any]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__magic_name__ , self ).__init__() UpperCamelCase = AutoModel.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) UpperCamelCase = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase = torch.nn.Softmax(dim=1 ) def lowerCamelCase_ ( self : Optional[int] , **__magic_name__ : List[Any] ): """simple docstring""" return self.bert(**__magic_name__ ).last_hidden_state def lowerCamelCase_ ( self : Tuple , __magic_name__ : int ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__magic_name__ ) def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=1 ): """simple docstring""" return self.softmax(T * self.cos(__magic_name__ , __magic_name__ ) ) def lowerCamelCase_ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = W_supports["""sizes"""].tolist() UpperCamelCase = W_supports["""start_token_id"""].item() UpperCamelCase = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase = self.BERT(**__magic_name__ ) UpperCamelCase = self.BERT(**__magic_name__ ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = W_supports["""input_ids"""] == start_token_id UpperCamelCase = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__magic_name__ ): if i == 0: UpperCamelCase = 0 else: UpperCamelCase = support_sizes[i - 1] UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase = torch.vstack((p_starts, p_start) ) UpperCamelCase = torch.vstack((p_ends, p_end) ) else: UpperCamelCase = p_start UpperCamelCase = p_end return p_starts, p_ends
181
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : str , __A : str ): a_ : int = get_failure_array(__A ) # 2) Step through text searching for pattern a_ , a_ : Any = 0, 0 # index into text, pattern while i < len(__A ): if pattern[j] == text[i]: if j == (len(__A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a_ : Any = failure[j - 1] continue i += 1 return False def _UpperCAmelCase ( __A : str ): a_ : Optional[Any] = [0] a_ : Any = 0 a_ : int = 1 while j < len(__A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a_ : List[Any] = failure[i - 1] continue j += 1 failure.append(__A ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase = 'abc1abc12' __lowerCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowerCAmelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase = 'ABABX' __lowerCAmelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __lowerCAmelCase = 'AAAB' __lowerCAmelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __lowerCAmelCase = 'abcdabcy' __lowerCAmelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __lowerCAmelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
466
'''simple docstring''' import functools def _UpperCAmelCase ( __A : list[int] , __A : list[int] ): # Validation if not isinstance(__A , __A ) or not all(isinstance(__A , __A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__A ) != 3 or not all(isinstance(__A , __A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) a_ : List[Any] = set(__A ) @functools.cache def dynamic_programming(__A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
466
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase (__lowerCamelCase , __lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "swin" UpperCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int, _UpperCAmelCase : List[str]=2_2_4, _UpperCAmelCase : Tuple=4, _UpperCAmelCase : Any=3, _UpperCAmelCase : List[str]=9_6, _UpperCAmelCase : Tuple=[2, 2, 6, 2], _UpperCAmelCase : Dict=[3, 6, 1_2, 2_4], _UpperCAmelCase : List[Any]=7, _UpperCAmelCase : Any=4.0, _UpperCAmelCase : Dict=True, _UpperCAmelCase : Tuple=0.0, _UpperCAmelCase : List[str]=0.0, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : str="gelu", _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : Optional[Any]=0.02, _UpperCAmelCase : Optional[int]=1E-5, _UpperCAmelCase : Dict=3_2, _UpperCAmelCase : Any=None, _UpperCAmelCase : Tuple=None, **_UpperCAmelCase : List[Any], ) -> Any: """simple docstring""" super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : Any = patch_size SCREAMING_SNAKE_CASE__ : str = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = embed_dim SCREAMING_SNAKE_CASE__ : Dict = depths SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = num_heads SCREAMING_SNAKE_CASE__ : Tuple = window_size SCREAMING_SNAKE_CASE__ : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = drop_path_rate SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__ : List[str] = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ["stem"] + [F'''stage{idx}''' for idx in range(1, len(_UpperCAmelCase ) + 1 )] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase, out_indices=_UpperCAmelCase, stage_names=self.stage_names ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = version.parse("1.11" ) @property def A_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A_ ( self : List[str] ) -> float: """simple docstring""" return 1E-4
157
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _lowerCamelCase : Tuple = logging.getLogger(__name__) def _a ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=SCREAMING_SNAKE_CASE__ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=SCREAMING_SNAKE_CASE__ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=SCREAMING_SNAKE_CASE__ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=SCREAMING_SNAKE_CASE__ , default=10_00 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=SCREAMING_SNAKE_CASE__ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE__ , default=5_12 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=SCREAMING_SNAKE_CASE__ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() return args def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : int ): return tokenizer(examples["text"] ) return fn def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = [] for i in range(len(tokenized_data["input_ids"] ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } SCREAMING_SNAKE_CASE__ : Dict = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _a ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: SCREAMING_SNAKE_CASE__ : int = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) SCREAMING_SNAKE_CASE__ : int = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. SCREAMING_SNAKE_CASE__ : str = tokenize_function(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : List[Any] ): # Concatenate all texts. SCREAMING_SNAKE_CASE__ : Tuple = {k: sum(examples[k] , [] ) for k in examples.keys()} SCREAMING_SNAKE_CASE__ : Optional[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 SCREAMING_SNAKE_CASE__ : List[str] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. SCREAMING_SNAKE_CASE__ : str = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result SCREAMING_SNAKE_CASE__ : str = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=10_00 , num_proc=4 ) SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): SCREAMING_SNAKE_CASE__ : List[str] = grouped_dataset[shard : shard + args.shard_size] SCREAMING_SNAKE_CASE__ : int = len(dataset_snapshot["input_ids"] ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) SCREAMING_SNAKE_CASE__ : List[str] = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): SCREAMING_SNAKE_CASE__ : List[Any] = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("Wrote file {} containing {} records".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , "w" ) as f: print(f'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : int = parse_args() main(args)
157
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
228
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 10 , __lowerCAmelCase = 22 ) -> int: UpperCamelCase__ : Any = range(1 , __lowerCAmelCase ) UpperCamelCase__ : Any = range(1 , __lowerCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
228
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss snake_case_ : List[Any] = pytest.mark.integration @require_faiss class snake_case_ ( __lowercase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: lowerCamelCase_ : Tuple = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__magic_name__ ) for x in np.arange(30 ).tolist()]} ) return dset def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() lowerCamelCase_ : int = dset.map( lambda __magic_name__ , __magic_name__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__magic_name__ , keep_in_memory=__magic_name__ ) lowerCamelCase_ : str = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ : List[Any] = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ : List[str] = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: import faiss lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__magic_name__ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ : str = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: lowerCamelCase_ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__magic_name__ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: from elasticsearch import Elasticsearch lowerCamelCase_ : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ : List[Any] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ : List[Any] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__magic_name__ ) lowerCamelCase_ : Dict = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class snake_case_ ( __lowercase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: import faiss lowerCamelCase_ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : List[str] = index.search(__magic_name__ ) self.assertRaises(__magic_name__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ : Optional[int] = index.search_batch(__magic_name__ ) self.assertRaises(__magic_name__ , index.search_batch , queries[0] ) lowerCamelCase_ : int = [scores[0] for scores in total_scores] lowerCamelCase_ : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: import faiss lowerCamelCase_ : Optional[Any] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ : str = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__magic_name__ ): lowerCamelCase_ : Union[str, Any] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: import faiss lowerCamelCase_ : Optional[int] = faiss.IndexFlat(5 ) lowerCamelCase_ : List[Any] = FaissIndex(custom_index=__magic_name__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: import faiss lowerCamelCase_ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__magic_name__ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ : Any = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : List[str] = 1 lowerCamelCase_ : Optional[Any] = index.search(__magic_name__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __a ( __UpperCAmelCase : Dict ) -> Any: """simple docstring""" import faiss lowerCamelCase_ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ : str = "index.faiss" lowerCamelCase_ : Dict = f"mock://{index_name}" index.save(_lowerCamelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ : int = FaissIndex.load(_lowerCamelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ : List[Any] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ : Optional[int] = 1 lowerCamelCase_ : List[str] = index.search(_lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class snake_case_ ( __lowercase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ : Tuple = Elasticsearch() lowerCamelCase_ : Any = {"acknowledged": True} lowerCamelCase_ : str = ElasticSearchIndex(es_client=__magic_name__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ : List[Any] = "foo" lowerCamelCase_ : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ : Union[str, Any] = index.search(__magic_name__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ : Any = "foo" lowerCamelCase_ : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ : int = index.search(__magic_name__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ : List[Any] = ["foo", "bar", "foobar"] lowerCamelCase_ : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ : int = index.search_batch(__magic_name__ ) lowerCamelCase_ : Dict = [scores[0] for scores in total_scores] lowerCamelCase_ : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([1, 1, 1] , __magic_name__ ) # batched queries with timeout lowerCamelCase_ : Optional[int] = ["foo", "bar", "foobar"] lowerCamelCase_ : Dict = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ : List[Any] = index.search_batch(__magic_name__ , request_timeout=30 ) lowerCamelCase_ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase_ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__magic_name__ ) , 0 ) self.assertListEqual([1, 1, 1] , __magic_name__ )
706
from collections.abc import Generator from math import sin def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" if len(__UpperCAmelCase ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __a ( __UpperCAmelCase : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:] lowerCamelCase_ : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = b"" for char in message: bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" ) lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512] lowerCamelCase_ : Any = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" ) lowerCamelCase_ : Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = preprocess(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ : List[str] = 0X67_452_301 lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89 lowerCamelCase_ : str = 0X98_BAD_CFE lowerCamelCase_ : Optional[int] = 0X10_325_476 lowerCamelCase_ : Union[str, Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = aa lowerCamelCase_ : List[str] = ba lowerCamelCase_ : Optional[int] = ca lowerCamelCase_ : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ : Dict = d ^ (b & (c ^ d)) lowerCamelCase_ : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ : Any = c ^ (d & (b ^ c)) lowerCamelCase_ : List[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ : List[Any] = b ^ c ^ d lowerCamelCase_ : int = (3 * i + 5) % 16 else: lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase )) lowerCamelCase_ : int = (7 * i) % 16 lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ : Union[str, Any] = d lowerCamelCase_ : Optional[int] = c lowerCamelCase_ : Union[str, Any] = b lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
253
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase ( a ): def __init__( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = process SCREAMING_SNAKE_CASE = params def __len__( self : List[str] ) -> Dict: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , _UpperCamelCase : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dataset[i] SCREAMING_SNAKE_CASE = self.process(_UpperCamelCase , **self.params ) return processed class lowercase ( a ): def __init__( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = loader SCREAMING_SNAKE_CASE = infer SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __len__( self : Dict ) -> str: '''simple docstring''' return len(self.loader ) def __iter__( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) return self def __snake_case( self : Any ) -> str: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_UpperCamelCase , _UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(_UpperCamelCase ) self._loader_batch_index += 1 return result def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE = next(self.iterator ) SCREAMING_SNAKE_CASE = self.infer(_UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_UpperCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase ( a ): def __init__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=None ) -> List[str]: '''simple docstring''' super().__init__(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __iter__( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) SCREAMING_SNAKE_CASE = None return self def __snake_case( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.subiterator is None: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class lowercase ( a ): def __iter__( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = iter(self.loader ) return self def __snake_case( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_UpperCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE = processed else: SCREAMING_SNAKE_CASE = list(processed.keys() )[0] SCREAMING_SNAKE_CASE = processed[key] if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE = observed_batch_size SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE = self.loader_batch_item() SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE = processed SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(_UpperCamelCase ) return accumulator class lowercase ( a ): def __init__( self : List[str] , _UpperCamelCase : Dataset , _UpperCamelCase : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = key def __len__( self : str ) -> List[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' return self.dataset[i][self.key] class lowercase ( a ): def __init__( self : int , _UpperCamelCase : Dataset , _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = keya SCREAMING_SNAKE_CASE = keya def __len__( self : str ) -> str: '''simple docstring''' return len(self.dataset ) def __getitem__( self : str , _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
403
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Union[str, Any] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : Optional[Any] = '''huggingface-tools/default-prompts''' _lowerCamelCase : int = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCAmelCase__ ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE = cached_file( UpperCAmelCase__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as f: return f.read()
403
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=UpperCAmelCase__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=UpperCAmelCase__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=UpperCAmelCase__ ) return parser.parse_args() def _a ( ) -> int: __SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. __SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __SCREAMING_SNAKE_CASE = script_fpath.stem __SCREAMING_SNAKE_CASE = importlib.import_module(UpperCAmelCase__ ) # Patch sys.argv __SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''MobileViTFeatureExtractor'''] _lowerCamelCase : List[str] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
663
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCamelCase : int = False @skip_mps class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = StableDiffusionAttendAndExcitePipeline UpperCAmelCase_ = False UpperCAmelCase_ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def A_ ( cls : str ) -> Union[str, Any]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_UpperCAmelCase ) @classmethod def A_ ( cls : Tuple ) -> str: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_UpperCAmelCase ) def A_ ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=1, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, attention_head_dim=(2, 4), use_linear_projection=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=_UpperCAmelCase, set_alpha_to_one=_UpperCAmelCase, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=1_2_8, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, hidden_act="gelu", projection_dim=5_1_2, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CLIPTextModel(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A_ ( self : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any=0 ) -> Optional[Any]: """simple docstring""" if str(_UpperCAmelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "cpu" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = pipe(**_UpperCAmelCase ).images SCREAMING_SNAKE_CASE__ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 6_4, 6_4, 3) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) SCREAMING_SNAKE_CASE__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase, 1E-3 ) def A_ ( self : str ) -> List[Any]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def A_ ( self : Any ) -> str: """simple docstring""" # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self : Optional[Any] ) -> str: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=7E-4 ) def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A_ ( self : Any ) -> List[str]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def A_ ( cls : Union[str, Any] ) -> Tuple: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_UpperCAmelCase ) @classmethod def A_ ( cls : List[str] ) -> List[str]: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_UpperCAmelCase ) def A_ ( self : str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(5_1 ) SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=_UpperCAmelCase, torch_dtype=torch.floataa ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE__ : List[str] = "a painting of an elephant with glasses" SCREAMING_SNAKE_CASE__ : Optional[int] = [5, 7] SCREAMING_SNAKE_CASE__ : str = pipe( prompt=_UpperCAmelCase, token_indices=_UpperCAmelCase, guidance_scale=7.5, generator=_UpperCAmelCase, num_inference_steps=5, max_iter_to_alter=5, output_type="numpy", ).images[0] SCREAMING_SNAKE_CASE__ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5E-1
663
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase="pt" ) -> List[str]: '''simple docstring''' lowercase_ = {"""add_prefix_space""": True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(""" """ ) else {} lowercase_ = padding_side return tokenizer( [line] , max_length=__lowerCAmelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' lowercase_ = input_ids.ne(__lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict="train" , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]="" , ): """simple docstring""" super().__init__() lowercase_ = Path(lowerCAmelCase_).joinpath(type_path + """.source""") lowercase_ = Path(lowerCAmelCase_).joinpath(type_path + """.target""") lowercase_ = self.get_char_lens(self.src_file) lowercase_ = max_source_length lowercase_ = max_target_length assert min(self.src_lens) > 0, F'''found empty line in {self.src_file}''' lowercase_ = tokenizer lowercase_ = prefix if n_obs is not None: lowercase_ = self.src_lens[:n_obs] lowercase_ = src_lang lowercase_ = tgt_lang def __len__( self : str): """simple docstring""" return len(self.src_lens) def __getitem__( self : Optional[int] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = index + 1 # linecache starts at 1 lowercase_ = self.prefix + linecache.getline(str(self.src_file) , lowerCAmelCase_).rstrip("""\n""") lowercase_ = linecache.getline(str(self.tgt_file) , lowerCAmelCase_).rstrip("""\n""") assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase_): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer ) lowercase_ = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer lowercase_ = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_source_length , """right""") lowercase_ = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_target_length , """right""") lowercase_ = source_inputs["""input_ids"""].squeeze() lowercase_ = target_inputs["""input_ids"""].squeeze() lowercase_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : List[Any]): """simple docstring""" return [len(lowerCAmelCase_) for x in Path(lowerCAmelCase_).open().readlines()] def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = torch.stack([x["""input_ids"""] for x in batch]) lowercase_ = torch.stack([x["""attention_mask"""] for x in batch]) lowercase_ = torch.stack([x["""decoder_input_ids"""] for x in batch]) lowercase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer.pad_token_id ) lowercase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_) else self.tokenizer.pad_token_id ) lowercase_ = trim_batch(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ , lowercase_ = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_) lowercase_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase : Any = getLogger(__name__) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return list(itertools.chain.from_iterable(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' lowercase_ = get_git_info() save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """git_log.json""" ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=4 , **__lowerCAmelCase ) -> Any: '''simple docstring''' with open(__lowerCAmelCase , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with open(__lowerCAmelCase ) as f: return json.load(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = git.Repo(search_parent_directories=__lowerCAmelCase ) lowercase_ = { """repo_id""": str(__lowerCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List: '''simple docstring''' return list(map(__lowerCAmelCase , __lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' with open(__lowerCAmelCase , """wb""" ) as f: return pickle.dump(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = normalize_answer(__lowerCAmelCase ).split() lowercase_ = normalize_answer(__lowerCAmelCase ).split() lowercase_ = Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase ) lowercase_ = sum(common.values() ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = 0 for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: em /= len(__lowerCAmelCase ) return {"em": em} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return model_prefix.startswith("""rag""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ = """dropout_rate""" for p in extra_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) continue lowercase_ = p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p] setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) return hparams, config
100
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' lowercase_ , lowercase_ = analyze_text(__lowerCAmelCase ) lowercase_ = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowercase_ = sum(single_char_strings.values() ) # one length string lowercase_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase_ = single_char_strings[ch] lowercase_ = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowercase_ = sum(two_char_strings.values() ) lowercase_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase_ = cha + cha if sequence in two_char_strings: lowercase_ = two_char_strings[sequence] lowercase_ = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[dict, dict]: '''simple docstring''' lowercase_ = Counter() # type: ignore lowercase_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
100
1
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> List[str]: if hor == 128: a_ : Union[str, Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ : str = (32, 128, 256) a_ : int = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a_ : Optional[Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ : int = (32, 64, 128, 256) a_ : Optional[int] = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a_ : Optional[Any] = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) a_ : List[str] = model.state_dict() a_ : int = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a_ : Tuple = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) a_ : Union[str, Any] = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict(), F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""", "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ) -> Union[str, Any]: a_ : List[str] = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a_ : int = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a_ : str = model a_ : Optional[Any] = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) a_ : Any = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json", "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
237
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE_ = """hf-internal-testing/tiny-random-bert""" SCREAMING_SNAKE_CASE_ = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") SCREAMING_SNAKE_CASE_ = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): a_ : int = cached_file(a_ , a_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(a_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(a_ , a_ ) ) ) with open(os.path.join(a_ , "refs" , "main" ) ) as f: a_ : Any = f.read() self.assertEqual(a_ , os.path.join(a_ , "snapshots" , a_ , a_ ) ) self.assertTrue(os.path.isfile(a_ ) ) # File is cached at the same place the second time. a_ : Tuple = cached_file(a_ , a_ ) self.assertEqual(a_ , a_ ) # Using a specific revision to test the full commit hash. a_ : str = cached_file(a_ , a_ , revision="9b8c223" ) self.assertEqual(a_ , os.path.join(a_ , "snapshots" , a_ , a_ ) ) def snake_case_ ( self ): with self.assertRaisesRegex(a_ , "is not a valid model identifier" ): a_ : str = cached_file("tiny-random-bert" , a_ ) with self.assertRaisesRegex(a_ , "is not a valid git identifier" ): a_ : str = cached_file(a_ , a_ , revision="aaaa" ) with self.assertRaisesRegex(a_ , "does not appear to have a file named" ): a_ : List[Any] = cached_file(a_ , "conf" ) def snake_case_ ( self ): with self.assertRaisesRegex(a_ , "does not appear to have a file named" ): a_ : Optional[Any] = cached_file(a_ , "conf" ) with open(os.path.join(a_ , "refs" , "main" ) ) as f: a_ : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(a_ , ".no_exist" , a_ , "conf" ) ) ) a_ : str = cached_file(a_ , "conf" , _raise_exceptions_for_missing_entries=a_ ) self.assertIsNone(a_ ) a_ : Union[str, Any] = cached_file(a_ , "conf" , local_files_only=a_ , _raise_exceptions_for_missing_entries=a_ ) self.assertIsNone(a_ ) a_ : Optional[Any] = mock.Mock() a_ : int = 5_0_0 a_ : int = {} a_ : Dict = HTTPError a_ : Union[str, Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: a_ : int = cached_file(a_ , "conf" , _raise_exceptions_for_connection_errors=a_ ) self.assertIsNone(a_ ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , a_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , a_ ) ) def snake_case_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(a_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , a_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(a_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , a_ , revision="ahaha" ) a_ : List[str] = get_file_from_repo("bert-base-cased" , a_ ) # The name is the cached name which is not very easy to test, so instead we load the content. a_ : List[Any] = json.loads(open(a_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_6_8 ) def snake_case_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: a_ : Union[str, Any] = Path(a_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(a_ , "a.txt" ) , str(a_ ) ) self.assertIsNone(get_file_from_repo(a_ , "b.txt" ) )
237
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): UpperCAmelCase__ : Union[str, Any] = True from torch.cuda.amp import autocast UpperCAmelCase__ : Tuple = logging.getLogger(__name__) def lowercase_ ( _snake_case=None ,_snake_case=None ): return field(default_factory=lambda: default ,metadata=_snake_case ) @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase : Optional[str] = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __UpperCamelCase : Optional[bool] = field( default=a__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __UpperCamelCase : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __UpperCamelCase : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __UpperCamelCase : Optional[float] = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __UpperCamelCase : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : Optional[str] = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __UpperCamelCase : bool = field( default=a__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __UpperCamelCase : Optional[int] = field( default=a__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __UpperCamelCase : Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase : Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __UpperCamelCase : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : WavaVecaProcessor __UpperCamelCase : Union[bool, str] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__(self , SCREAMING_SNAKE_CASE__ ) -> Dict[str, torch.Tensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [{"""input_values""": feature["""input_values"""]} for feature in features] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [{"""input_ids""": feature["""labels"""]} for feature in features] SCREAMING_SNAKE_CASE__ : Any = self.processor.pad( SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.processor.pad( labels=SCREAMING_SNAKE_CASE__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE__ : List[str] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = labels return batch class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> torch.Tensor: """simple docstring""" model.train() SCREAMING_SNAKE_CASE__ : str = self._prepare_inputs(SCREAMING_SNAKE_CASE__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE__ : Optional[int] = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = self.compute_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE__ : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE__ : Union[str, Any] = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE__ : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE__ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE__ ) else: loss.backward() return loss.detach() def lowercase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" ,_snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: SCREAMING_SNAKE_CASE__ : Optional[Any] = datasets.load_dataset( """common_voice""" ,data_args.dataset_config_name ,split=data_args.train_split_name ) SCREAMING_SNAKE_CASE__ : int = datasets.load_dataset("""common_voice""" ,data_args.dataset_config_name ,split="""test""" ) # Create and save tokenizer SCREAMING_SNAKE_CASE__ : int = f'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(_snake_case ): SCREAMING_SNAKE_CASE__ : int = re.sub(_snake_case ,"""""" ,batch["""sentence"""] ).lower() + """ """ return batch SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map(_snake_case ,remove_columns=["""sentence"""] ) SCREAMING_SNAKE_CASE__ : Dict = eval_dataset.map(_snake_case ,remove_columns=["""sentence"""] ) def extract_all_chars(_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = """ """.join(batch["""text"""] ) SCREAMING_SNAKE_CASE__ : int = list(set(_snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE__ : Tuple = train_dataset.map( _snake_case ,batched=_snake_case ,batch_size=-1 ,keep_in_memory=_snake_case ,remove_columns=train_dataset.column_names ,) SCREAMING_SNAKE_CASE__ : Optional[int] = train_dataset.map( _snake_case ,batched=_snake_case ,batch_size=-1 ,keep_in_memory=_snake_case ,remove_columns=eval_dataset.column_names ,) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {v: k for k, v in enumerate(_snake_case )} SCREAMING_SNAKE_CASE__ : str = vocab_dict[""" """] del vocab_dict[" "] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = len(_snake_case ) with open("""vocab.json""" ,"""w""" ) as vocab_file: json.dump(_snake_case ,_snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : List[str] = WavaVecaCTCTokenizer( """vocab.json""" ,unk_token="""[UNK]""" ,pad_token="""[PAD]""" ,word_delimiter_token="""|""" ,) SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0.0 ,do_normalize=_snake_case ,return_attention_mask=_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = WavaVecaProcessor(feature_extractor=_snake_case ,tokenizer=_snake_case ) SCREAMING_SNAKE_CASE__ : Any = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,activation_dropout=model_args.activation_dropout ,attention_dropout=model_args.attention_dropout ,hidden_dropout=model_args.hidden_dropout ,feat_proj_dropout=model_args.feat_proj_dropout ,mask_time_prob=model_args.mask_time_prob ,gradient_checkpointing=training_args.gradient_checkpointing ,layerdrop=model_args.layerdrop ,ctc_loss_reduction="""mean""" ,pad_token_id=processor.tokenizer.pad_token_id ,vocab_size=len(processor.tokenizer ) ,) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = min(len(_snake_case ) ,data_args.max_train_samples ) SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.select(range(_snake_case ) ) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.select(range(data_args.max_val_samples ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torchaudio.transforms.Resample(48_000 ,16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = torchaudio.load(batch["""path"""] ) SCREAMING_SNAKE_CASE__ : Tuple = resampler(_snake_case ).squeeze().numpy() SCREAMING_SNAKE_CASE__ : Optional[Any] = 16_000 SCREAMING_SNAKE_CASE__ : List[str] = batch["""text"""] return batch SCREAMING_SNAKE_CASE__ : int = train_dataset.map( _snake_case ,remove_columns=train_dataset.column_names ,num_proc=data_args.preprocessing_num_workers ,) SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map( _snake_case ,remove_columns=eval_dataset.column_names ,num_proc=data_args.preprocessing_num_workers ,) def prepare_dataset(_snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' SCREAMING_SNAKE_CASE__ : str = processor( audio=batch["""speech"""] ,text=batch["""target_text"""] ,sampling_rate=batch["""sampling_rate"""][0] ) batch.update(_snake_case ) return batch SCREAMING_SNAKE_CASE__ : str = train_dataset.map( _snake_case ,remove_columns=train_dataset.column_names ,batch_size=training_args.per_device_train_batch_size ,batched=_snake_case ,num_proc=data_args.preprocessing_num_workers ,) SCREAMING_SNAKE_CASE__ : int = eval_dataset.map( _snake_case ,remove_columns=eval_dataset.column_names ,batch_size=training_args.per_device_train_batch_size ,batched=_snake_case ,num_proc=data_args.preprocessing_num_workers ,) # Metric SCREAMING_SNAKE_CASE__ : Any = datasets.load_metric("""wer""" ) def compute_metrics(_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pred.predictions SCREAMING_SNAKE_CASE__ : Tuple = np.argmax(_snake_case ,axis=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.batch_decode(_snake_case ) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE__ : Optional[Any] = processor.batch_decode(pred.label_ids ,group_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ : int = wer_metric.compute(predictions=_snake_case ,references=_snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE__ : Dict = DataCollatorCTCWithPadding(processor=_snake_case ,padding=_snake_case ) # Initialize our Trainer SCREAMING_SNAKE_CASE__ : Optional[int] = CTCTrainer( model=_snake_case ,data_collator=_snake_case ,args=_snake_case ,compute_metrics=_snake_case ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,tokenizer=processor.feature_extractor ,) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE__ : str = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE__ : str = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE__ : str = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) SCREAMING_SNAKE_CASE__ : Tuple = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() SCREAMING_SNAKE_CASE__ : int = train_result.metrics SCREAMING_SNAKE_CASE__ : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = min(_snake_case ,len(_snake_case ) ) trainer.log_metrics("""train""" ,_snake_case ) trainer.save_metrics("""train""" ,_snake_case ) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE__ : Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Tuple = data_args.max_val_samples if data_args.max_val_samples is not None else len(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = min(_snake_case ,len(_snake_case ) ) trainer.log_metrics("""eval""" ,_snake_case ) trainer.save_metrics("""eval""" ,_snake_case ) return results if __name__ == "__main__": main()
707
"""simple docstring""" import logging from transformers import PretrainedConfig UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase__ : Any = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''bertabs''' def __init__(self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=0.2 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Any = max_pos SCREAMING_SNAKE_CASE__ : List[Any] = enc_layers SCREAMING_SNAKE_CASE__ : Tuple = enc_hidden_size SCREAMING_SNAKE_CASE__ : Dict = enc_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = enc_ff_size SCREAMING_SNAKE_CASE__ : Dict = enc_dropout SCREAMING_SNAKE_CASE__ : Any = dec_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = dec_hidden_size SCREAMING_SNAKE_CASE__ : Any = dec_heads SCREAMING_SNAKE_CASE__ : List[Any] = dec_ff_size SCREAMING_SNAKE_CASE__ : str = dec_dropout
545
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): UpperCAmelCase : Dict = True from torch.cuda.amp import autocast UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=a , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=a , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.99_99_95 , metadata={"help": "Decay of gumbel temperature during training."} ) def a__ ( a__ , a__ ): """simple docstring""" logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: __SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(__UpperCamelCase ) @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = field( default=a , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=a , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> Dict[str, torch.Tensor]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.feature_extractor.pad( UpperCamelCase_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) __SCREAMING_SNAKE_CASE = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) __SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCamelCase_ , min_masks=2 , ) return batch class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : str , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Any=1.0 , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = max_gumbel_temp __SCREAMING_SNAKE_CASE = min_gumbel_temp __SCREAMING_SNAKE_CASE = gumbel_temp_decay def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ) -> torch.Tensor: """simple docstring""" model.train() __SCREAMING_SNAKE_CASE = self._prepare_inputs(UpperCamelCase_ ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) else: __SCREAMING_SNAKE_CASE = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(__UpperCamelCase , __UpperCamelCase ) # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__UpperCamelCase ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __SCREAMING_SNAKE_CASE = datasets.map( __UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long __SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda a__ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __SCREAMING_SNAKE_CASE = vectorized_datasets.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm=\'layer\'""" ) __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(__UpperCamelCase ) __SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=__UpperCamelCase , data_collator=__UpperCamelCase , args=__UpperCamelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=__UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
627
"""simple docstring""" a_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
76
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase (__snake_case , __snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = CycleDiffusionPipeline _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } _SCREAMING_SNAKE_CASE : str = PipelineTesterMixin.required_optional_params - {"""latents"""} _SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) _SCREAMING_SNAKE_CASE : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __snake_case ( self :Any ) ->Optional[int]: torch.manual_seed(0 ) lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) lowercase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase : List[Any] = CLIPTextModel(__magic_name__ ) lowercase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __snake_case ( self :List[Any] , __magic_name__ :int , __magic_name__ :Any=0 ) ->List[str]: lowercase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowercase : Union[str, Any] = image / 2 + 0.5 if str(__magic_name__ ).startswith("""mps""" ): lowercase : Union[str, Any] = torch.manual_seed(__magic_name__ ) else: lowercase : Optional[Any] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowercase : Optional[Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __snake_case ( self :int ) ->str: lowercase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.get_dummy_components() lowercase : List[Any] = CycleDiffusionPipeline(**__magic_name__ ) lowercase : List[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : List[str] = self.get_dummy_inputs(__magic_name__ ) lowercase : int = pipe(**__magic_name__ ) lowercase : Tuple = output.images lowercase : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase : Dict = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __snake_case ( self :Dict ) ->Optional[Any]: lowercase : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__magic_name__ , """half""" ): lowercase : str = module.half() lowercase : Optional[int] = CycleDiffusionPipeline(**__magic_name__ ) lowercase : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : Optional[int] = self.get_dummy_inputs(__magic_name__ ) lowercase : int = pipe(**__magic_name__ ) lowercase : str = output.images lowercase : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase : List[str] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __snake_case ( self :List[str] ) ->List[Any]: return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def __snake_case ( self :Union[str, Any] ) ->str: return super().test_inference_batch_single_identical() @skip_mps def __snake_case ( self :Any ) ->List[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __snake_case ( self :Optional[Any] ) ->Tuple: return super().test_save_load_optional_components() @skip_mps def __snake_case ( self :str ) ->Optional[int]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :Tuple ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self :Union[str, Any] ) ->Optional[Any]: lowercase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowercase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowercase : int = init_image.resize((512, 512) ) lowercase : Optional[int] = """CompVis/stable-diffusion-v1-4""" lowercase : Dict = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" ) lowercase : List[str] = CycleDiffusionPipeline.from_pretrained( __magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() lowercase : List[str] = """A black colored car""" lowercase : int = """A blue colored car""" lowercase : Optional[int] = torch.manual_seed(0 ) lowercase : Optional[Any] = pipe( prompt=__magic_name__ , source_prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__magic_name__ , output_type="""np""" , ) lowercase : int = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __snake_case ( self :Tuple ) ->Optional[int]: lowercase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowercase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowercase : str = init_image.resize((512, 512) ) lowercase : Any = """CompVis/stable-diffusion-v1-4""" lowercase : str = DDIMScheduler.from_pretrained(__magic_name__ , subfolder="""scheduler""" ) lowercase : List[Any] = CycleDiffusionPipeline.from_pretrained(__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) pipe.enable_attention_slicing() lowercase : Union[str, Any] = """A black colored car""" lowercase : Tuple = """A blue colored car""" lowercase : int = torch.manual_seed(0 ) lowercase : List[str] = pipe( prompt=__magic_name__ , source_prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__magic_name__ , output_type="""np""" , ) lowercase : Optional[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
348
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase (__snake_case , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase (unittest.TestCase ): @property def __snake_case ( self :Union[str, Any] ) ->List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self :Union[str, Any] ) ->Optional[Any]: lowercase : Optional[Any] = ort.SessionOptions() lowercase : List[Any] = False return options def __snake_case ( self :int ) ->Union[str, Any]: lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : List[Any] = """A red cat sitting on a park bench""" lowercase : List[str] = np.random.RandomState(0 ) lowercase : str = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="""np""" , ) lowercase : Optional[Any] = output.images lowercase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case ( self :int ) ->Optional[int]: lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowercase : Union[str, Any] = """A red cat sitting on a park bench""" lowercase : Tuple = np.random.RandomState(0 ) lowercase : Union[str, Any] = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type="""np""" , ) lowercase : List[Any] = output.images lowercase : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase : Dict = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
348
1
'''simple docstring''' import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = "." ): for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): _snake_case = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip("""./""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return f"""{i * " "}*""" if i else "\n##" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = "." ): _snake_case = """""" for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): _snake_case, _snake_case = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: _snake_case = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = (filepath.count(os.sep ) + 1) if filepath else 0 _snake_case = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) _snake_case = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
585
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCAmelCase = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCAmelCase = concatenate_datasets __lowerCAmelCase = DownloadConfig __lowerCAmelCase = DownloadManager __lowerCAmelCase = DownloadMode __lowerCAmelCase = DownloadConfig __lowerCAmelCase = DownloadMode __lowerCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
585
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __magic_name__ ( lowercase_ ): def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_encoder_blocks" ) ) class __magic_name__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=13 , UpperCamelCase__ : Optional[Any]=64 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : str=[2, 2, 2, 2] , UpperCamelCase__ : Optional[Any]=[8, 4, 2, 1] , UpperCamelCase__ : Any=[16, 32, 64, 1_28] , UpperCamelCase__ : Tuple=[1, 4, 8, 16] , UpperCamelCase__ : Dict=[1, 2, 4, 8] , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Dict=None , ) -> Dict: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = num_encoder_blocks UpperCAmelCase = sr_ratios UpperCAmelCase = depths UpperCAmelCase = hidden_sizes UpperCAmelCase = downsampling_rates UpperCAmelCase = num_attention_heads UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = scope def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase = SegformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = SegformerForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = SegformerForSemanticSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase__ ) UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowercase_, lowercase_, unittest.TestCase ): lowercase : str =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase : Dict =( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : int =True lowercase : Dict =False lowercase : List[str] =False lowercase : List[Any] =False def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase = SegformerModelTester(self ) UpperCAmelCase = SegformerConfigTester(self , config_class=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(UpperCamelCase__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCAmelCase = len(UpperCamelCase__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ): UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ): continue UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() UpperCAmelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) UpperCAmelCase = model(**UpperCamelCase__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SegformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_() -> List[str]: UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __magic_name__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) UpperCAmelCase = encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(UpperCamelCase__ ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) UpperCAmelCase = encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-1 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) UpperCAmelCase = encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(5_00, 3_00)] ) UpperCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) UpperCAmelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
720
from __future__ import annotations def lowerCamelCase_(lowerCamelCase_ ) -> int: UpperCAmelCase = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements UpperCAmelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
457
0
from __future__ import annotations from random import choice def _lowerCamelCase ( snake_case ): return choice(snake_case ) def _lowerCamelCase ( snake_case , snake_case ): _lowerCAmelCase = random_pivot(snake_case ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case ) < k - 1: return kth_number(snake_case , k - len(snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
192
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , lowercase__ : Any , lowercase__ : List[Any]=7 , lowercase__ : List[str]=3 , lowercase__ : str=18 , lowercase__ : List[Any]=30 , lowercase__ : Optional[int]=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : int=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Tuple=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowercase__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowercase__ : Any=True , ): _lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} _lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple=False , lowercase__ : List[Any]=False , lowercase__ : str=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _lowerCAmelCase = [] for i in range(self.batch_size ): _lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] if torchify: _lowerCAmelCase = [torch.from_numpy(lowercase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : int ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ ) _lowerCAmelCase = 3 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
192
1
"""simple docstring""" a_ = """Tobias Carryer""" from time import time class A_: """simple docstring""" def __init__( self , A , A , A , A=int(time() ) ): # noqa: B008 _lowerCamelCase : int = multiplier _lowerCamelCase : int = increment _lowerCamelCase : Any = modulo _lowerCamelCase : Tuple = seed def _lowerCAmelCase ( self ): _lowerCamelCase : str = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a_ = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
714
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : str = XLMRobertaTokenizer a_ : Tuple = XLMRobertaTokenizerFast a_ : List[str] = True a_ : Optional[Any] = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = '<pad>' _lowerCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(A ) , 1002 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = XLMRobertaTokenizer(A , keep_accents=A ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCAmelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) _lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(A , **A ) _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : List[Any] = tokenizer_r.save_pretrained(A ) _lowerCamelCase : List[str] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _lowerCamelCase : str = tokenizer_r.from_pretrained(A ) _lowerCamelCase : Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : int = tempfile.mkdtemp() _lowerCamelCase : int = tokenizer_r.save_pretrained(A , legacy_format=A ) _lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way _lowerCamelCase : Dict = tokenizer_r.from_pretrained(A ) _lowerCamelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : Dict = tempfile.mkdtemp() _lowerCamelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) _lowerCamelCase : str = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : int = tokenizer_r.from_pretrained(A ) _lowerCamelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def _lowerCAmelCase ( self ): return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _lowerCAmelCase ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) _lowerCamelCase : Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=A ) _lowerCamelCase : Optional[Any] = pickle.dumps(A ) pickle.loads(A ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = 'I was born in 92000, and this is falsé.' _lowerCamelCase : str = tokenizer.tokenize(A ) _lowerCamelCase : Optional[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _lowerCamelCase : List[str] = tokenizer.encode(A , add_special_tokens=A ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _lowerCamelCase : Dict = self.get_rust_tokenizer() _lowerCamelCase : Tuple = tokenizer.encode(A ) _lowerCamelCase : Tuple = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Any = 'Hello World!' _lowerCamelCase : List[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCamelCase : Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def _lowerCAmelCase ( self ): # fmt: off _lowerCamelCase : List[Any] = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
349
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index == number_of_items: return 0 __a = 0 __a = 0 __a = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: __a = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
225
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict=True ): """simple docstring""" model.train() __a = model(_SCREAMING_SNAKE_CASE ) __a = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" set_seed(42 ) __a = RegressionModel() __a = deepcopy(_SCREAMING_SNAKE_CASE ) __a = RegressionDataset(length=80 ) __a = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=16 ) model.to(accelerator.device ) if sched: __a = AdamW(params=model.parameters() , lr=1e-3 ) __a = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __a = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.65 ) __a = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: __a , __a , __a , __a = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" __a , __a , __a = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __a , __a = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __a = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __a , __a , __a = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __a , __a = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __a = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" __a = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __a , __a , __a = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __a , __a = batch.values() # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __a = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any]=False , _SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" __a = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __a , __a , __a , __a , __a , __a , __a = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __a , __a = batch.values() # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" __a = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCAmelCase__ ( ): """simple docstring""" __a = Accelerator() __a = RegressionDataset(length=80 ) __a = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=16 ) __a = RegressionDataset(length=96 ) __a = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=16 ) __a , __a = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase__ ( ): """simple docstring""" __a = Accelerator() __a = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" main() if __name__ == "__main__": main()
225
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]=99 , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : str = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , *UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , *UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , *UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowercase__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase): UpperCamelCase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase_ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = inputs_dict['''labels'''] SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['''labels'''] SCREAMING_SNAKE_CASE : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def __A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def __A ( self : str ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class lowercase__ ( unittest.TestCase): @slow def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is SCREAMING_SNAKE_CASE : str = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE : List[str] = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
710
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __UpperCamelCase : int = logging.get_logger(__name__) def A ( _lowercase , _lowercase , _lowercase , _lowercase ): def constraint_to_multiple_of(_lowercase , _lowercase , _lowercase=0 , _lowercase=None ): SCREAMING_SNAKE_CASE : int = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE : Dict = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE : Optional[Any] = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE : Optional[Any] = (output_size, output_size) if isinstance(_lowercase , _lowercase ) else output_size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = get_image_size(_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = output_size # determine new height and width SCREAMING_SNAKE_CASE : Dict = output_height / input_height SCREAMING_SNAKE_CASE : Optional[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE : List[Any] = scale_width else: # fit height SCREAMING_SNAKE_CASE : List[Any] = scale_height SCREAMING_SNAKE_CASE : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase ) return (new_height, new_width) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ["""pixel_values"""] def __init__( self : int , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} SCREAMING_SNAKE_CASE : Any = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : str = keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size( UpperCamelCase__ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase__ , multiple=UpperCamelCase__ , ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Optional[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Dict = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Any = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Tuple] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[int] = [] for idx in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : List[Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
0
from math import log from scipy.constants import Boltzmann, physical_constants __SCREAMING_SNAKE_CASE : int = 3_00 # TEMPERATURE (unit = K) def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ): '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __SCREAMING_SNAKE_CASE : Optional[int] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase__ ( __magic_name__ : Tuple ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase__ ( __magic_name__ : int , __magic_name__ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Tuple = False elif args.student_type == "gpt2": lowerCAmelCase : Optional[int] = False def UpperCAmelCase__ ( __magic_name__ : Tuple , __magic_name__ : int ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Optional[Any] = False def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__magic_name__ , required=__magic_name__ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__magic_name__ , required=__magic_name__ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__magic_name__ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__magic_name__ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__magic_name__ , required=__magic_name__ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__magic_name__ , type=__magic_name__ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__magic_name__ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__magic_name__ , required=__magic_name__ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__magic_name__ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__magic_name__ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__magic_name__ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__magic_name__ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__magic_name__ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__magic_name__ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__magic_name__ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__magic_name__ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__magic_name__ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__magic_name__ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__magic_name__ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__magic_name__ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__magic_name__ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__magic_name__ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__magic_name__ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__magic_name__ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__magic_name__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=__magic_name__ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=__magic_name__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__magic_name__ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__magic_name__ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__magic_name__ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__magic_name__ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__magic_name__ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__magic_name__ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__magic_name__ , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__magic_name__ , default=40_00 , help='''Checkpoint interval.''' ) lowerCAmelCase : List[Any] = parser.parse_args() sanity_checks(__magic_name__ ) # ARGS # init_gpu_params(__magic_name__ ) set_seed(__magic_name__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__magic_name__ ) , __magic_name__ , indent=4 ) git_log(args.dump_path ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = MODEL_CLASSES[args.student_type] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase : List[Any] = tokenizer.all_special_tokens.index(__magic_name__ ) lowerCAmelCase : Dict = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) lowerCAmelCase : Optional[int] = special_tok_ids lowerCAmelCase : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: lowerCAmelCase : Optional[int] = pickle.load(__magic_name__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: lowerCAmelCase : Tuple = pickle.load(__magic_name__ ) lowerCAmelCase : Tuple = np.maximum(__magic_name__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase : List[str] = 0.0 # do not predict special tokens lowerCAmelCase : Any = torch.from_numpy(__magic_name__ ) else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = LmSeqsDataset(params=__magic_name__ , data=__magic_name__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) lowerCAmelCase : Tuple = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase : str = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowerCAmelCase : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=__magic_name__ ) else: lowerCAmelCase : str = student_model_class(__magic_name__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # lowerCAmelCase : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__magic_name__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__magic_name__ , __magic_name__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__magic_name__ , __magic_name__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase : List[Any] = Distiller( params=__magic_name__ , dataset=__magic_name__ , token_probs=__magic_name__ , student=__magic_name__ , teacher=__magic_name__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
348
1
import warnings from ..trainer import Trainer from ..utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.', lowerCamelCase, ) super().__init__(args=lowerCamelCase, **lowerCamelCase)
354
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=30, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=10, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=None, lowerCamelCase=2, ) -> Optional[int]: """simple docstring""" _lowercase : Any = parent _lowercase : int = batch_size _lowercase : int = image_size _lowercase : str = patch_size _lowercase : int = num_channels _lowercase : Any = is_training _lowercase : Union[str, Any] = use_labels _lowercase : Dict = hidden_size _lowercase : List[str] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Tuple = type_sequence_label_size _lowercase : List[str] = initializer_range _lowercase : Any = scope _lowercase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowercase : Union[str, Any] = (image_size // patch_size) ** 2 _lowercase : Any = num_patches + 2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : str = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self) -> int: """simple docstring""" return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = DeiTModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Optional[Any] = DeiTForMaskedImageModeling(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _lowercase : Any = 1 _lowercase : Optional[Any] = DeiTForMaskedImageModeling(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = self.type_sequence_label_size _lowercase : Dict = DeiTForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowercase : Optional[Any] = 1 _lowercase : Optional[Any] = DeiTForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ : Optional[Any] = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ : Dict = False lowercase_ : List[str] = False lowercase_ : Union[str, Any] = False def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = DeiTModelTester(self) _lowercase : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = model_class(lowerCamelCase) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear)) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Any = model_class(lowerCamelCase) _lowercase : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Union[str, Any] = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Any: """simple docstring""" _lowercase : Dict = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Tuple = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowercase : Optional[int] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.train() _lowercase : Optional[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) _lowercase : List[str] = model(**lowerCamelCase).loss loss.backward() def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowercase : Dict = False _lowercase : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowercase : str = model_class(lowerCamelCase) model.gradient_checkpointing_enable() model.to(lowerCamelCase) model.train() _lowercase : Union[str, Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) _lowercase : List[Any] = model(**lowerCamelCase).loss loss.backward() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : int = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase), *get_values(lowerCamelCase), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''): _lowercase : List[Any] = problem_type['title'] _lowercase : str = problem_type['num_labels'] _lowercase : Optional[int] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.train() _lowercase : Tuple = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if problem_type["num_labels"] > 1: _lowercase : Dict = inputs['labels'].unsqueeze(1).repeat(1, problem_type['num_labels']) _lowercase : Optional[int] = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase) as warning_list: _lowercase : Dict = model(**lowerCamelCase).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''') loss.backward() @slow def UpperCamelCase ( self) -> str: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DeiTModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> List[str]: _lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> Dict: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( lowerCamelCase) _lowercase : List[str] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : int = model(**lowerCamelCase) # verify the logits _lowercase : Any = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow @require_accelerate @require_torch_gpu def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto') _lowercase : Union[str, Any] = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : int = image_processor(images=lowerCamelCase, return_tensors='pt') _lowercase : Union[str, Any] = inputs.pixel_values.to(lowerCamelCase) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowercase : Optional[int] = model(lowerCamelCase)
354
1
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int | None = None , _SCREAMING_SNAKE_CASE : int | None = None ) -> None: """simple docstring""" if start is None: UpperCAmelCase_ : Union[str, Any] = 0 if end is None: UpperCAmelCase_ : List[str] = len(_SCREAMING_SNAKE_CASE ) - 1 if start >= end: return UpperCAmelCase_ : Optional[Any] = (start + end) // 2 slowsort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) slowsort(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = sequence[mid], sequence[end] slowsort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
71
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _A : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = parent def _lowerCAmelCase ( self : List[Any]): """simple docstring""" return {} def lowerCamelCase_()-> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" _SCREAMING_SNAKE_CASE : Dict = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class _snake_case ( __snake_case , unittest.TestCase ): """simple docstring""" a = MarkupLMFeatureExtractor if is_bsa_available() else None def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = MarkupLMFeatureExtractionTester(self) @property def _lowerCAmelCase ( self : Dict): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class() # Test not batched input _SCREAMING_SNAKE_CASE : Any = get_html_strings()[0] _SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(_A) # fmt: off _SCREAMING_SNAKE_CASE : Tuple = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] _SCREAMING_SNAKE_CASE : Tuple = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , _A) self.assertEqual(encoding.xpaths , _A) # Test batched _SCREAMING_SNAKE_CASE : Optional[Any] = get_html_strings() _SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(_A) # fmt: off _SCREAMING_SNAKE_CASE : str = expected_nodes + [["""My First Heading""", """My first paragraph."""]] _SCREAMING_SNAKE_CASE : int = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , _A) self.assertEqual(encoding.xpaths , _A)
338
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 16 lowercase_ = 32 def __lowerCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 , __lowerCamelCase : str = "bert-base-cased" ) -> Tuple: __lowerCAmelCase =AutoTokenizer.from_pretrained(__lowerCamelCase ) __lowerCAmelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase =datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) __lowerCAmelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> str: model.eval() __lowerCAmelCase =0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase =model(**__lowerCamelCase ) __lowerCAmelCase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCAmelCase , __lowerCAmelCase =accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: __lowerCAmelCase =predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCAmelCase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) __lowerCAmelCase =metric.compute() return eval_metric["accuracy"] def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: # Initialize accelerator __lowerCAmelCase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase =config["""lr"""] __lowerCAmelCase =int(config["""num_epochs"""] ) __lowerCAmelCase =int(config["""seed"""] ) __lowerCAmelCase =int(config["""batch_size"""] ) __lowerCAmelCase =args.model_name_or_path set_seed(__lowerCamelCase ) __lowerCAmelCase , __lowerCAmelCase =get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) # Instantiate optimizer __lowerCAmelCase =( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase =optimizer_cls(params=model.parameters() , lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase =accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase =1 __lowerCAmelCase =(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase =get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: __lowerCAmelCase =DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase =0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase =0 __lowerCAmelCase =evaluate.load("""glue""" , """mrpc""" ) __lowerCAmelCase =num_epochs if args.partial_train_epoch is not None: __lowerCAmelCase =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase =args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCAmelCase ="""""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCAmelCase =int(__lowerCamelCase ) + 1 __lowerCAmelCase =evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __lowerCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: __lowerCAmelCase =json.load(__lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCAmelCase ={} for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): __lowerCAmelCase =model(**__lowerCamelCase ) __lowerCAmelCase =outputs.loss __lowerCAmelCase =loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCAmelCase =f"""epoch_{epoch}""" __lowerCAmelCase =os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) __lowerCAmelCase =evaluation_loop(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =accuracy __lowerCAmelCase =lr_scheduler.get_lr()[0] __lowerCAmelCase =optimizer.param_groups[0]["""lr"""] __lowerCAmelCase =epoch __lowerCAmelCase =overall_step accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def __lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=__lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) __lowerCAmelCase =parser.parse_args() __lowerCAmelCase ={"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
456
def __lowerCAmelCase ( __lowerCamelCase : list ) -> list: if len(__lowerCamelCase ) <= 1: return lst __lowerCAmelCase =1 while i < len(__lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __lowerCAmelCase , __lowerCAmelCase =lst[i], lst[i - 1] i -= 1 if i == 0: __lowerCAmelCase =1 return lst if __name__ == "__main__": lowercase_ = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
456
1
"""simple docstring""" from collections.abc import Iterable from typing import Any class _lowerCAmelCase : def __init__( self , UpperCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = value snake_case : Optional[Any] = None # Added in order to delete a node easier snake_case : int = None snake_case : Optional[int] = None def __repr__( self ) -> Dict: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ = None ) -> Any: '''simple docstring''' snake_case : Optional[Any] = root def __str__( self ) -> str: '''simple docstring''' return str(self.root ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if new_children is not None: # reset its kids snake_case : List[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children snake_case : List[str] = new_children else: snake_case : List[Any] = new_children else: snake_case : Union[str, Any] = new_children def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return self.root is None def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Any = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty snake_case : str = new_node # set its root else: # Tree is not empty snake_case : int = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: snake_case : List[str] = new_node # We insert the new node in a leaf break else: snake_case : Optional[Any] = parent_node.left else: if parent_node.right is None: snake_case : Any = new_node break else: snake_case : List[str] = parent_node.right snake_case : Dict = parent_node def lowerCamelCase ( self , *UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' for value in values: self.__insert(snake_case__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: snake_case : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: snake_case : Optional[Any] = node.left if value < node.value else node.right return node def lowerCamelCase ( self , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' if node is None: if self.root is None: return None snake_case : List[str] = self.root if not self.empty(): while node.right is not None: snake_case : List[str] = node.right return node def lowerCamelCase ( self , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' if node is None: snake_case : Union[str, Any] = self.root if self.root is None: return None if not self.empty(): snake_case : str = self.root while node.left is not None: snake_case : List[str] = node.left return node def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : Any = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: snake_case : Optional[Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore snake_case : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase ( self , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : int = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : List[Any] = [] if curr_node is not None: snake_case : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Optional[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) snake_case : Optional[Any] = BinarySearchTree() for i in testlist: t.insert(lowerCamelCase__ ) # Prints all the elements of the list in order traversal print(lowerCamelCase__ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCamelCase__ ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
178
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCAmelCase : Dict = TypeVar("KT") __lowerCAmelCase : Optional[Any] = TypeVar("VT") class a_ ( Generic[KT, VT] ): def __init__( self : Tuple , snake_case__ : KT | str = "root" , snake_case__ : VT | None = None ): lowerCAmelCase__ = key lowerCAmelCase__ = value lowerCAmelCase__ = [] def __repr__( self : Union[str, Any] ): return F"""Node({self.key}: {self.value})""" @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return len(self.forward ) class a_ ( Generic[KT, VT] ): def __init__( self : int , snake_case__ : float = 0.5 , snake_case__ : int = 16 ): lowerCAmelCase__ = Node[KT, VT]() lowerCAmelCase__ = 0 lowerCAmelCase__ = p lowerCAmelCase__ = max_level def __str__( self : int ): lowerCAmelCase__ = list(self ) if len(snake_case__ ) == 0: return F"""SkipList(level={self.level})""" lowerCAmelCase__ = max((len(str(snake_case__ ) ) for item in items) , default=4 ) lowerCAmelCase__ = max(snake_case__ , 4 ) + 4 lowerCAmelCase__ = self.head lowerCAmelCase__ = [] lowerCAmelCase__ = node.forward.copy() lines.append(F"""[{node.key}]""".ljust(snake_case__ , """-""" ) + """* """ * len(snake_case__ ) ) lines.append(""" """ * label_size + """| """ * len(snake_case__ ) ) while len(node.forward ) != 0: lowerCAmelCase__ = node.forward[0] lines.append( F"""[{node.key}]""".ljust(snake_case__ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(snake_case__ ) ) lowerCAmelCase__ = node.forward lines.append("""None""".ljust(snake_case__ ) + """* """ * len(snake_case__ ) ) return F"""SkipList(level={self.level})\n""" + "\n".join(snake_case__ ) def __iter__( self : Any ): lowerCAmelCase__ = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ = node.forward[0] def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : List[str] ): lowerCAmelCase__ = [] lowerCAmelCase__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : KT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: for i, update_node in enumerate(snake_case__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ = node.forward[i] else: lowerCAmelCase__ = update_node.forward[:i] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : KT , snake_case__ : VT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: lowerCAmelCase__ = value else: lowerCAmelCase__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case__ ): update_vector.append(self.head ) lowerCAmelCase__ = level lowerCAmelCase__ = Node(snake_case__ , snake_case__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case__ ) else: lowerCAmelCase__ = new_node def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : VT ): lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(snake_case__ ) if node is not None: return node.value return None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value if len(lowerCamelCase__ ) != 4: print() assert len(lowerCamelCase__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() assert skip_list.find("""Some key""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(lowerCamelCase__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCamelCase__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _UpperCAmelCase ( ): """simple docstring""" def is_sorted(lowerCamelCase__ ): return all(next_item >= item for item, next_item in zip(lowerCamelCase__ , lst[1:] ) ) lowerCAmelCase__ = SkipList() for i in range(10 ): skip_list.insert(lowerCamelCase__ , lowerCamelCase__ ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCamelCase__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(lowerCamelCase__ ) ) def _UpperCAmelCase ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
644
0
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return 1 if input_a == input_a else 0 def snake_case__ ( ) ->None: """simple docstring""" assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
718
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->list[list[str]]: """simple docstring""" __lowercase : List[Any] = word_bank or [] # create a table __lowercase : int = len(_lowerCamelCase ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value __lowercase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
281
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class _A ( A_ ): _UpperCamelCase : Union[str, Any] = "sew" def __init__( self : Dict , _A : Tuple=32 , _A : Dict=768 , _A : Optional[int]=12 , _A : str=12 , _A : Union[str, Any]=3_072 , _A : List[str]=2 , _A : List[str]="gelu" , _A : str=0.1 , _A : Union[str, Any]=0.1 , _A : Tuple=0.1 , _A : Optional[int]=0.0 , _A : str=0.1 , _A : Optional[int]=0.1 , _A : int=0.02 , _A : Tuple=1E-5 , _A : Union[str, Any]="group" , _A : List[Any]="gelu" , _A : int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _A : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A : Union[str, Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A : str=False , _A : str=128 , _A : Union[str, Any]=16 , _A : Optional[int]=True , _A : Dict=0.05 , _A : Optional[Any]=10 , _A : str=2 , _A : List[Any]=0.0 , _A : Tuple=10 , _A : List[str]=0 , _A : str="mean" , _A : List[Any]=False , _A : Union[str, Any]=False , _A : Dict=256 , _A : str=0 , _A : Optional[int]=1 , _A : Dict=2 , **_A : str , ) -> int: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase : Any = hidden_size lowercase : Union[str, Any] = feat_extract_norm lowercase : Tuple = feat_extract_activation lowercase : List[Any] = list(snake_case__ ) lowercase : str = list(snake_case__ ) lowercase : Dict = list(snake_case__ ) lowercase : List[str] = conv_bias lowercase : List[Any] = num_conv_pos_embeddings lowercase : List[str] = num_conv_pos_embedding_groups lowercase : Optional[Any] = len(self.conv_dim ) lowercase : Optional[int] = num_hidden_layers lowercase : int = intermediate_size lowercase : int = squeeze_factor lowercase : Optional[int] = hidden_act lowercase : List[str] = num_attention_heads lowercase : int = hidden_dropout lowercase : Any = attention_dropout lowercase : str = activation_dropout lowercase : str = feat_proj_dropout lowercase : List[Any] = final_dropout lowercase : Any = layerdrop lowercase : int = layer_norm_eps lowercase : Optional[int] = initializer_range lowercase : Optional[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase : Optional[Any] = apply_spec_augment lowercase : Tuple = mask_time_prob lowercase : Dict = mask_time_length lowercase : Optional[int] = mask_time_min_masks lowercase : Optional[int] = mask_feature_prob lowercase : Dict = mask_feature_length lowercase : Any = mask_feature_min_masks # ctc loss lowercase : Any = ctc_loss_reduction lowercase : Optional[int] = ctc_zero_infinity # sequence classification lowercase : int = use_weighted_layer_sum lowercase : Dict = classifier_proj_size @property def __a ( self : Union[str, Any] ) -> int: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
217
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): # Initialise PyTorch model snake_case : Optional[int] = BertConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case : Any = BertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
204
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[int] = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
527
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = ["onnx"] def __init__( self , *snake_case_ , **snake_case_ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''onnx'''] ) @classmethod def A ( cls , *snake_case_ , **snake_case_ ) -> int: '''simple docstring''' requires_backends(cls , ['''onnx'''] ) @classmethod def A ( cls , *snake_case_ , **snake_case_ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''onnx'''] )
527
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ =pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"] ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): inspect_dataset(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = path + ".py" assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path", ["accuracy"] ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): inspect_metric(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = path + ".py" assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = get_dataset_config_info(__lowerCamelCase, config_name=__lowerCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with pytest.raises(__lowerCamelCase ): get_dataset_config_info(__lowerCamelCase, config_name=__lowerCamelCase ) @pytest.mark.parametrize( "path, expected", [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = get_dataset_config_names(__lowerCamelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = get_dataset_infos(__lowerCamelCase ) assert list(infos.keys() ) == expected_configs _SCREAMING_SNAKE_CASE : List[str] = expected_configs[0] assert expected_config in infos _SCREAMING_SNAKE_CASE : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = get_dataset_infos(__lowerCamelCase ) assert expected_config in infos _SCREAMING_SNAKE_CASE : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with pytest.raises(__lowerCamelCase ): get_dataset_split_names(__lowerCamelCase, config_name=__lowerCamelCase )
249
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 42 __snake_case = 42 class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self , __lowerCamelCase = 2_0_0_0 , __lowerCamelCase = 0.15 , __lowerCamelCase = 0.01 , __lowerCamelCase = 1348.0 , __lowerCamelCase = 1E-5 , __lowerCamelCase = 1 , ) -> List[Any]: # standard deviation of the initial noise distribution _SCREAMING_SNAKE_CASE : List[str] = sigma_max # setable values _SCREAMING_SNAKE_CASE : Optional[int] = None self.set_sigmas(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> torch.FloatTensor: return sample def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = sampling_eps if sampling_eps is not None else self.config.sampling_eps _SCREAMING_SNAKE_CASE : Optional[Any] = torch.linspace(1 , __lowerCamelCase , __lowerCamelCase , device=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _SCREAMING_SNAKE_CASE : int = sigma_max if sigma_max is not None else self.config.sigma_max _SCREAMING_SNAKE_CASE : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _SCREAMING_SNAKE_CASE : Tuple = torch.exp(torch.linspace(math.log(__lowerCamelCase ) , math.log(__lowerCamelCase ) , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) _SCREAMING_SNAKE_CASE : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _SCREAMING_SNAKE_CASE : Tuple = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _SCREAMING_SNAKE_CASE : List[Any] = timesteps.to(self.discrete_sigmas.device ) _SCREAMING_SNAKE_CASE : Any = self.discrete_sigmas[timesteps].to(sample.device ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_adjacent_sigma(__lowerCamelCase , __lowerCamelCase ).to(sample.device ) _SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _SCREAMING_SNAKE_CASE : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _SCREAMING_SNAKE_CASE : Dict = diffusion.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE : List[str] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _SCREAMING_SNAKE_CASE : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=__lowerCamelCase , device=sample.device , dtype=sample.dtype ) _SCREAMING_SNAKE_CASE : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _SCREAMING_SNAKE_CASE : Optional[Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCamelCase , prev_sample_mean=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _SCREAMING_SNAKE_CASE : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=__lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _SCREAMING_SNAKE_CASE : Any = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _SCREAMING_SNAKE_CASE : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _SCREAMING_SNAKE_CASE : List[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _SCREAMING_SNAKE_CASE : List[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _SCREAMING_SNAKE_CASE : Dict = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _SCREAMING_SNAKE_CASE : Any = step_size.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE : List[str] = sample + step_size * model_output _SCREAMING_SNAKE_CASE : Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _SCREAMING_SNAKE_CASE : int = timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] _SCREAMING_SNAKE_CASE : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCamelCase ) * sigmas[:, None, None, None] ) _SCREAMING_SNAKE_CASE : List[str] = noise + original_samples return noisy_samples def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
249
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : List[str] =logging.get_logger(__name__) @add_end_docstrings(A_ ) class _SCREAMING_SNAKE_CASE ( A_ ): """simple docstring""" def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _lowerCamelCase ( self , _snake_case=None , _snake_case=None , _snake_case=None ): """simple docstring""" __lowerCamelCase = {} __lowerCamelCase = {} if prompt is not None: __lowerCamelCase = prompt if generate_kwargs is not None: __lowerCamelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowerCamelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) __lowerCamelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _snake_case , **_snake_case ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case=None ): """simple docstring""" __lowerCamelCase = load_image(_snake_case ) if prompt is not None: if not isinstance(_snake_case , _snake_case ): raise ValueError( F'''Received an invalid text input, got - {type(_snake_case )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) __lowerCamelCase = self.model.config.model_type if model_type == "git": __lowerCamelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(text=_snake_case , add_special_tokens=_snake_case ).input_ids __lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids __lowerCamelCase = torch.tensor(_snake_case ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": __lowerCamelCase = self.image_processor(images=_snake_case , header_text=_snake_case , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowerCamelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: __lowerCamelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowerCamelCase = None return model_inputs def _lowerCamelCase ( self , _snake_case , _snake_case=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , _snake_case ) and all(x is None for x in model_inputs['''input_ids'''] ) ): __lowerCamelCase = None if generate_kwargs is None: __lowerCamelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowerCamelCase = model_inputs.pop(self.model.main_input_name ) __lowerCamelCase = self.model.generate(_snake_case , **_snake_case , **_snake_case ) return model_outputs def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = [] for output_ids in model_outputs: __lowerCamelCase = { """generated_text""": self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , ) } records.append(_snake_case ) return records
708
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCamelCase : Optional[int] =version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _UpperCamelCase : Any ="\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _UpperCamelCase : Optional[Any] ="\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _UpperCamelCase : List[str] ="\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case=0.9 , _snake_case=3 , _snake_case=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) , word_tokenize(_snake_case ) , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(_snake_case , _snake_case , alpha=_snake_case , beta=_snake_case , gamma=_snake_case ) for ref, pred in zip(_snake_case , _snake_case ) ] return {"meteor": np.mean(_snake_case )}
575
0
"""simple docstring""" _lowercase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowercase = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(snake_case__ )}' ) raise ValueError(snake_case__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = BlenderbotSmallTokenizer _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: super().setUp() A = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] A = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,**A_ : Union[str, Any] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ) -> List[Any]: A = 'adapt act apte' A = 'adapt act apte' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) A = 'adapt act apte' A = ['adapt', 'act', 'ap@@', 'te'] A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] A = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] A = 'I am a small frog.' A = tok([src_text] ,padding=A_ ,truncation=A_ )['input_ids'] A = tok.batch_decode(A_ ,skip_special_tokens=A_ ,clean_up_tokenization_spaces=A_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) A = 'I am a small frog .' A = '.' A = tok(A_ )['input_ids'] A = tok(A_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
91
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(lowercase ): os.makedirs(lowercase ) UpperCamelCase = model.state_dict() def to_tf_var_name(lowercase ): for patt, repl in iter(lowercase ): UpperCamelCase = name.replace(lowercase , lowercase ) return f'''bert/{name}''' def create_tf_var(lowercase , lowercase , lowercase ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=lowercase , shape=tensor.shape , name=lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(lowercase ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=lowercase , name=lowercase , session=lowercase ) tf.keras.backend.set_value(lowercase , lowercase ) UpperCamelCase = session.run(lowercase ) print(f'''Successfully created {tf_name}: {np.allclose(lowercase , lowercase )}''' ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase , os.path.join(lowercase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def A ( lowercase=None ) -> List[str]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowercase , required=lowercase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=lowercase , default=lowercase , required=lowercase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=lowercase , required=lowercase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=lowercase , required=lowercase , help='Directory in which to save tensorflow model' ) UpperCamelCase = parser.parse_args(lowercase ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
3
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase : str = "scheduler_config.json" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : List[Any] = 3 __lowercase : str = 4 __lowercase : Optional[Any] = 5 @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : jnp.ndarray class lowercase : __lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = ["dtype"] __lowercase : List[Any] = [] __lowercase : Dict = True @classmethod def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> int: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def A ( lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' assert len(lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase ) def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(lowercase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) ) return jnp.array(lowercase , dtype=lowercase ) @flax.struct.dataclass class lowercase : __lowercase : jnp.ndarray __lowercase : jnp.ndarray __lowercase : jnp.ndarray @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = scheduler.config if config.trained_betas is not None: UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase = 1.0 - betas UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = state.alphas_cumprod UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
3
1
"""simple docstring""" def snake_case ( A__ ): return "".join(chr(ord(A__ ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
95
"""simple docstring""" from collections.abc import Generator def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
277
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : int = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = 'sew' def __init__( self :Optional[Any] ,_UpperCamelCase :int=3_2 ,_UpperCamelCase :Tuple=7_6_8 ,_UpperCamelCase :Any=1_2 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :Union[str, Any]=3_0_7_2 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :List[str]="gelu" ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :List[Any]=0.1 ,_UpperCamelCase :Union[str, Any]=0.1 ,_UpperCamelCase :List[Any]=0.0 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :Union[str, Any]=0.1 ,_UpperCamelCase :Any=0.02 ,_UpperCamelCase :str=1E-5 ,_UpperCamelCase :Optional[int]="group" ,_UpperCamelCase :List[str]="gelu" ,_UpperCamelCase :List[str]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,_UpperCamelCase :Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,_UpperCamelCase :Optional[int]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Dict=1_2_8 ,_UpperCamelCase :Optional[int]=1_6 ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :int=0.05 ,_UpperCamelCase :str=1_0 ,_UpperCamelCase :Optional[int]=2 ,_UpperCamelCase :Any=0.0 ,_UpperCamelCase :Union[str, Any]=1_0 ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :Optional[int]="mean" ,_UpperCamelCase :Any=False ,_UpperCamelCase :Optional[int]=False ,_UpperCamelCase :Union[str, Any]=2_5_6 ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :Optional[Any]=1 ,_UpperCamelCase :int=2 ,**_UpperCamelCase :Dict ,): super().__init__(**_UpperCamelCase ,pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ) snake_case_ : Optional[int] = hidden_size snake_case_ : Any = feat_extract_norm snake_case_ : Any = feat_extract_activation snake_case_ : Dict = list(_UpperCamelCase ) snake_case_ : Tuple = list(_UpperCamelCase ) snake_case_ : str = list(_UpperCamelCase ) snake_case_ : Dict = conv_bias snake_case_ : Tuple = num_conv_pos_embeddings snake_case_ : List[str] = num_conv_pos_embedding_groups snake_case_ : Any = len(self.conv_dim ) snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : str = intermediate_size snake_case_ : Tuple = squeeze_factor snake_case_ : List[Any] = hidden_act snake_case_ : List[str] = num_attention_heads snake_case_ : Union[str, Any] = hidden_dropout snake_case_ : List[str] = attention_dropout snake_case_ : List[str] = activation_dropout snake_case_ : Optional[int] = feat_proj_dropout snake_case_ : Union[str, Any] = final_dropout snake_case_ : Tuple = layerdrop snake_case_ : List[Any] = layer_norm_eps snake_case_ : List[Any] = initializer_range snake_case_ : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Any = apply_spec_augment snake_case_ : Any = mask_time_prob snake_case_ : List[str] = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : int = mask_feature_prob snake_case_ : Union[str, Any] = mask_feature_length snake_case_ : Union[str, Any] = mask_feature_min_masks # ctc loss snake_case_ : Tuple = ctc_loss_reduction snake_case_ : str = ctc_zero_infinity # sequence classification snake_case_ : Dict = use_weighted_layer_sum snake_case_ : Any = classifier_proj_size @property def a__ ( self :Tuple ): return functools.reduce(operator.mul ,self.conv_stride ,1 )
267
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Dict = TransfoXLTokenizer lowercase : Optional[Any] = False lowercase : Dict = False def a__ ( self :Union[str, Any] ): super().setUp() snake_case_ : Optional[int] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] snake_case_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self :List[Any] ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Any = """<unk> UNwanted , running""" snake_case_ : Optional[int] = """<unk> unwanted, running""" return input_text, output_text def a__ ( self :Dict ): snake_case_ : Dict = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=_UpperCamelCase ) snake_case_ : Dict = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(_UpperCamelCase ,["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,[0, 4, 8, 7] ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def a__ ( self :Any ): snake_case_ : List[Any] = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a__ ( self :List[str] ): snake_case_ : str = TransfoXLTokenizer(lower_case=_UpperCamelCase ) snake_case_ : List[str] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" snake_case_ : Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_UpperCamelCase ) ,_UpperCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCamelCase ) ,_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Dict = len(_UpperCamelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCamelCase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"""new1""" )
267
1
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowercase : Optional[Any] ): '''simple docstring''' if len(__lowercase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) UpperCAmelCase : int = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
595
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
129
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> Union[str, Any]: '''simple docstring''' __A = os.path.abspath(snake_case ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __A = tf.train.list_variables(snake_case ) __A = [] __A = [] __A = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __A = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __A = name[1:] # figure out how many levels deep the name is __A = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(snake_case ) # read data __A = tf.train.load_variable(snake_case , snake_case ) names.append('''/'''.join(snake_case ) ) arrays.append(snake_case ) logger.info(F"Read a total of {len(snake_case ):,} layers" ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(snake_case ) )})" ) __A = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(snake_case , snake_case ): __A = full_name.split('''/''' ) __A = model __A = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __A = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __A = getattr(snake_case , '''embeddings''' ) __A = getattr(snake_case , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __A = getattr(snake_case , '''encoder''' ) __A = getattr(snake_case , '''layer''' ) __A = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __A = getattr(snake_case , '''pooler''' ) __A = getattr(snake_case , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __A = getattr(snake_case , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __A = getattr(snake_case , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __A = getattr(snake_case , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __A = getattr(snake_case , '''token_type_embeddings''' ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __A = getattr(snake_case , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __A = getattr(snake_case , '''attention''' ) __A = getattr(snake_case , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __A = getattr(snake_case , '''attention''' ) __A = getattr(snake_case , '''output''' ) __A = getattr(snake_case , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __A = getattr(snake_case , '''attention''' ) __A = getattr(snake_case , '''output''' ) __A = getattr(snake_case , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __A = getattr(snake_case , '''output''' ) __A = getattr(snake_case , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __A = getattr(snake_case , '''output''' ) __A = getattr(snake_case , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __A = getattr(snake_case , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __A = getattr(snake_case , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __A = getattr(snake_case , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __A = getattr(snake_case , '''intermediate''' ) __A = getattr(snake_case , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __A = getattr(snake_case , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __A = getattr(snake_case , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __A = getattr(snake_case , '''weight''' ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary __A = '''.'''.join(snake_case ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , snake_case ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , snake_case ): __A = array.reshape(pointer.data.shape ) if "kernel" in full_name: __A = array.transpose() if pointer.shape == array.shape: __A = torch.from_numpy(snake_case ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> Tuple: '''simple docstring''' logger.info(F"Loading model based on config from {config_path}..." ) __A = BertConfig.from_json_file(snake_case ) __A = BertModel(snake_case ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) _UpperCamelCase : Any = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
341
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : List[Any] = logging.get_logger() @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = field(default_factory=_a) lowerCamelCase__ = field(default_factory=_a) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> str: __A = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase , nn.Convad ) or isinstance(UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase ) def __call__( self , UpperCAmelCase )-> int: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE__ ( self )-> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 1 lowerCamelCase__ = field(default_factory=_a) lowerCamelCase__ = field(default_factory=_a) lowerCamelCase__ = True def __call__( self , UpperCAmelCase )-> Optional[Any]: __A = Tracker(self.dest )(UpperCAmelCase ).parametrized __A = Tracker(self.src )(UpperCAmelCase ).parametrized __A = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.src_skip , UpperCAmelCase ) ) __A = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.dest_skip , UpperCAmelCase ) ) if len(UpperCAmelCase ) != len(UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(UpperCAmelCase )} operations while" f" destination module has {len(UpperCAmelCase )}." ) for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) class _lowerCAmelCase( nn.Module): """simple docstring""" def __init__( self , UpperCAmelCase )-> Dict: super().__init__() __A = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"Unexpected layer name {k}" __A = len(UpperCAmelCase ) + 1 feature_blocks.append((f"res{block_index}", v) ) __A = nn.ModuleDict(UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> List[Any]: return get_trunk_forward_outputs( UpperCAmelCase , out_feat_keys=UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _lowerCAmelCase( _a): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> str: __A = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , UpperCAmelCase )-> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: __A = self.convert_name_to_timm(UpperCAmelCase ) __A = partial(lambda: (timm.create_model(UpperCAmelCase , pretrained=UpperCAmelCase ).eval(), None) ) else: __A = super().__getitem__(UpperCAmelCase ) return val class _lowerCAmelCase( _a): """simple docstring""" def __getitem__( self , UpperCAmelCase )-> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: __A = RegNetModel else: __A = RegNetForImageClassification return val def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> int: '''simple docstring''' for from_key, to_key in keys: __A = from_state_dict[from_key].clone() print(F"Copied key={from_key} to={to_key}" ) return to_state_dict def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = True , ) -> Optional[int]: '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): __A , __A = from_model_func() __A = our_model_func(snake_case ).eval() __A = ModuleTransfer(src=snake_case , dest=snake_case , raise_if_mismatch=snake_case ) __A = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(snake_case ) if from_state_dict is not None: __A = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __A = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __A = manually_copy_vissl_head(snake_case , our_model.state_dict() , snake_case ) our_model.load_state_dict(snake_case ) __A = our_model(snake_case , output_hidden_states=snake_case ) __A = ( our_outputs.logits if isinstance(snake_case , snake_case ) else our_outputs.last_hidden_state ) __A = from_model(snake_case ) __A = from_output[-1] if type(snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __A = our_outputs.hidden_states[-1] assert torch.allclose(snake_case , snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=snake_case , ) __A = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=snake_case , ) print(F"Pushed {name}" ) def __UpperCamelCase ( snake_case , snake_case = None , snake_case = True ) -> Union[str, Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = (1, num_labels) __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) __A = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } __A = NameToOurModelFuncMap() __A = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(snake_case , snake_case ) -> Tuple[nn.Module, Dict]: __A = torch.hub.load_state_dict_from_url(snake_case , model_dir=str(snake_case ) , map_location='''cpu''' ) __A = model_func() # check if we have a head, if yes add it __A = files['''classy_state_dict''']['''base_model''']['''model'''] __A = model_state_dict['''trunk'''] model.load_state_dict(snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A = partial( snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , snake_case , snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , snake_case , snake_case , snake_case , ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCamelCase : List[str] = parser.parse_args() _UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
341
1