code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A__ : UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __UpperCamelCase ( self : Optional[int] ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE =torch.stack( [ pixel_indices % self.width, torch.div(_a , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE =self.shape _SCREAMING_SNAKE_CASE =int(np.prod(_a ) ) _SCREAMING_SNAKE_CASE =self.get_image_coords() _SCREAMING_SNAKE_CASE =torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE =self.get_camera_rays(_a ) _SCREAMING_SNAKE_CASE =rays.view(_a , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __UpperCamelCase ( self : Optional[int] , _a : torch.Tensor ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE =coords.view(_a , -1 , 2 ) _SCREAMING_SNAKE_CASE =self.resolution() _SCREAMING_SNAKE_CASE =self.fov() _SCREAMING_SNAKE_CASE =(flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE =fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE =fracs.view(_a , -1 , 2 ) _SCREAMING_SNAKE_CASE =( self.z.view(_a , 1 , 3 ) + self.x.view(_a , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_a , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE =directions / directions.norm(dim=-1 , keepdim=_a ) _SCREAMING_SNAKE_CASE =torch.stack( [ torch.broadcast_to(self.origin.view(_a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_a , *_a , 2 , 3 ) def __UpperCamelCase ( self : Tuple , _a : int , _a : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_a , height=_a , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for theta in np.linspace(0 ,2 * np.pi ,num=20): _SCREAMING_SNAKE_CASE =np.array([np.sin(a__), np.cos(a__), -0.5]) z /= np.sqrt(np.sum(z**2)) _SCREAMING_SNAKE_CASE =-z * 4 _SCREAMING_SNAKE_CASE =np.array([np.cos(a__), -np.sin(a__), 0.0]) _SCREAMING_SNAKE_CASE =np.cross(a__ ,a__) origins.append(a__) xs.append(a__) ys.append(a__) zs.append(a__) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(a__ ,axis=0)).float() ,x=torch.from_numpy(np.stack(a__ ,axis=0)).float() ,y=torch.from_numpy(np.stack(a__ ,axis=0)).float() ,z=torch.from_numpy(np.stack(a__ ,axis=0)).float() ,width=a__ ,height=a__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(a__)) ,)
691
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCAmelCase ( UpperCamelCase__ :Callable , UpperCamelCase__ :float , UpperCamelCase__ :float , UpperCamelCase__ :float , UpperCamelCase__ :float ) -> np.array: snake_case__ : Optional[int] = int(np.ceil((x_end - xa) / step_size ) ) snake_case__ : Optional[int] = np.zeros((n + 1,) ) snake_case__ : List[str] = ya snake_case__ : Optional[int] = xa for k in range(UpperCamelCase__ ): snake_case__ : Any = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) snake_case__ : Any = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase__ , y[k] ) + ode_func(x + step_size , UpperCamelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
574
'''simple docstring''' from collections.abc import Generator from math import sin def __UpperCAmelCase ( UpperCamelCase__ :bytes ) -> bytes: if len(UpperCamelCase__ ) != 32: raise ValueError('''Input must be of length 32''' ) snake_case__ : Any = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __UpperCAmelCase ( UpperCamelCase__ :int ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) snake_case__ : Union[str, Any] = format(UpperCamelCase__ , '''08x''' )[-8:] snake_case__ : Dict = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __UpperCAmelCase ( UpperCamelCase__ :bytes ) -> bytes: snake_case__ : Optional[Any] = B'''''' for char in message: bit_string += format(UpperCamelCase__ , '''08b''' ).encode('''utf-8''' ) snake_case__ : List[str] = format(len(UpperCamelCase__ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __UpperCAmelCase ( UpperCamelCase__ :bytes ) -> Generator[list[int], None, None]: if len(UpperCamelCase__ ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCamelCase__ ) , 512 ): snake_case__ : Union[str, Any] = bit_string[pos : pos + 512] snake_case__ : Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __UpperCAmelCase ( UpperCamelCase__ :int ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) snake_case__ : Tuple = format(UpperCamelCase__ , '''032b''' ) snake_case__ : Any = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase__ , 2 ) def __UpperCAmelCase ( UpperCamelCase__ :int , UpperCamelCase__ :int ) -> int: return (a + b) % 2**32 def __UpperCAmelCase ( UpperCamelCase__ :int , UpperCamelCase__ :int ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __UpperCAmelCase ( UpperCamelCase__ :bytes ) -> bytes: snake_case__ : int = preprocess(UpperCamelCase__ ) snake_case__ : str = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states snake_case__ : List[str] = 0x67452301 snake_case__ : Any = 0xefcdab89 snake_case__ : List[Any] = 0x98badcfe snake_case__ : int = 0x10325476 snake_case__ : Any = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase__ ): snake_case__ : Dict = aa snake_case__ : Tuple = ba snake_case__ : Any = ca snake_case__ : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f snake_case__ : Dict = d ^ (b & (c ^ d)) snake_case__ : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f snake_case__ : Optional[Any] = c ^ (d & (b ^ c)) snake_case__ : Tuple = (5 * i + 1) % 16 elif i <= 47: snake_case__ : Union[str, Any] = b ^ c ^ d snake_case__ : List[str] = (3 * i + 5) % 16 else: snake_case__ : int = c ^ (b | not_aa(UpperCamelCase__ )) snake_case__ : Optional[Any] = (7 * i) % 16 snake_case__ : List[Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 snake_case__ : Optional[int] = d snake_case__ : Dict = c snake_case__ : Dict = b snake_case__ : int = sum_aa(UpperCamelCase__ , left_rotate_aa(UpperCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total snake_case__ : Union[str, Any] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Union[str, Any] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Union[str, Any] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : List[Any] = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Optional[int] = reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
574
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( __A ): A_ : List[str] = (DDPMScheduler,) def __UpperCamelCase ( self : Tuple , **__UpperCamelCase : str ) -> Optional[int]: A = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__UpperCamelCase ) return config def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def __UpperCamelCase ( self : int ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCamelCase ) def __UpperCamelCase ( self : Any ) -> Any: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def __UpperCamelCase ( self : Dict ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = len(__UpperCamelCase ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual A = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A = pred_prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __UpperCamelCase ( self : List[str] ) -> Dict: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type='v_prediction' ) A = scheduler_class(**__UpperCamelCase ) A = len(__UpperCamelCase ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(__UpperCamelCase ) ): # 1. predict noise residual A = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A = pred_prev_sample A = torch.sum(torch.abs(__UpperCamelCase ) ) A = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) A = scheduler.timesteps for i, timestep in enumerate(__UpperCamelCase ): if i == len(__UpperCamelCase ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(__UpperCamelCase ) A = prev_t.item() self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Any: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCamelCase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> List[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = [100, 87, 50, 1, 0] A = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__UpperCamelCase ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
106
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCAmelCase_ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : str=None , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' super().__init__(features=UpperCAmelCase ) lowercase : List[Any] =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def A__ ( self : List[str] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase : Any ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase : Tuple ={'''dtype''': torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase : int ={'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): lowercase : List[Any] =np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self : List[Any] , UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , '''__array__''' ) and not isinstance(UpperCAmelCase , torch.Tensor ): lowercase : List[Any] =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : dict ) -> Any: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : pa.Table ) -> Mapping: '''simple docstring''' lowercase : List[str] =self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) lowercase : Any =self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : pa.Table ) -> "torch.Tensor": '''simple docstring''' lowercase : int =self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) lowercase : Tuple =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) lowercase : Optional[Any] =self.recursive_tensorize(UpperCAmelCase ) lowercase : Any =self._consolidate(UpperCAmelCase ) return column def A__ ( self : str , UpperCAmelCase : pa.Table ) -> Mapping: '''simple docstring''' lowercase : Tuple =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) lowercase : List[str] =self.python_features_decoder.decode_batch(UpperCAmelCase ) lowercase : Dict =self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: lowercase : str =self._consolidate(batch[column_name] ) return batch
94
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def snake_case_ (__A : str = "laptop" ) -> DataFrame: __lowerCAmelCase : int = f'''https://www.amazon.in/laptop/s?k={product}''' __lowerCAmelCase : Tuple = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } __lowerCAmelCase : Any = BeautifulSoup(requests.get(__A , headers=__A ).text ) # Initialize a Pandas dataframe with the column titles __lowerCAmelCase : Optional[int] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: __lowerCAmelCase : Tuple = item.ha.text __lowerCAmelCase : int = """https://www.amazon.in/""" + item.ha.a["""href"""] __lowerCAmelCase : Dict = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: __lowerCAmelCase : Union[str, Any] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: __lowerCAmelCase : List[Any] = """Not available""" try: __lowerCAmelCase : Any = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: __lowerCAmelCase : Optional[Any] = """""" try: __lowerCAmelCase : Optional[Any] = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_0_0 ) except ValueError: __lowerCAmelCase : str = float("""nan""" ) except AttributeError: pass __lowerCAmelCase : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __lowerCAmelCase : Tuple = """ """ __lowerCAmelCase : int = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = """headphones""" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
218
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple ="roc_bert" def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]=3_05_22 , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=30_72 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=5_12 , lowerCAmelCase : int=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1e-12 , lowerCAmelCase : Any=True , lowerCAmelCase : int=0 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=True , lowerCAmelCase : Dict=True , lowerCAmelCase : int=7_68 , lowerCAmelCase : Union[str, Any]=9_10 , lowerCAmelCase : Tuple=5_12 , lowerCAmelCase : Tuple=2_48_58 , lowerCAmelCase : Any=True , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : str = initializer_range __lowerCAmelCase : Dict = type_vocab_size __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Union[str, Any] = use_cache __lowerCAmelCase : Dict = enable_pronunciation __lowerCAmelCase : Optional[int] = enable_shape __lowerCAmelCase : Any = pronunciation_embed_dim __lowerCAmelCase : Optional[Any] = pronunciation_vocab_size __lowerCAmelCase : Tuple = shape_embed_dim __lowerCAmelCase : Tuple = shape_vocab_size __lowerCAmelCase : List[Any] = concat_input __lowerCAmelCase : List[Any] = position_embedding_type __lowerCAmelCase : List[Any] = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase )
218
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
91
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCamelCase : @staticmethod def _lowerCAmelCase ( *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :Optional[int] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCAmelCase__ : Optional[Any] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = vqa_pipeline(UpperCamelCase , top_k=1 ) self.assertEqual( UpperCamelCase , [ [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}], [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}], ] , ) @require_torch def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCAmelCase__ : Dict = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase__ : int = """How many cats are there?""" lowerCAmelCase__ : List[Any] = vqa_pipeline(image=UpperCamelCase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( UpperCamelCase , [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}] ) lowerCAmelCase__ : List[str] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( UpperCamelCase , [{"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}, {"""score""": ANY(UpperCamelCase ), """answer""": ANY(UpperCamelCase )}] ) @slow @require_torch def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Any = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) lowerCAmelCase__ : Any = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCAmelCase__ : List[str] = """How many cats are there?""" lowerCAmelCase__ : Any = vqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCAmelCase__ : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCAmelCase__ : Optional[int] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass
507
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _A = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _A = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Union[str, Any] = None # source code of `config_class` lowerCAmelCase__ : List[Any] = inspect.getsource(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = _re_checkpoint.findall(__UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): lowerCAmelCase__ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ : Dict = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ : Optional[Any] = ckpt_name break return checkpoint def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase__ : Dict = get_checkpoint_from_config_class(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ : int = """\n""".join(sorted(__UpperCAmelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
507
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" UpperCAmelCase__ : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) UpperCAmelCase__ : Any = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) UpperCAmelCase__ : Optional[int] = transform(__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) return image def _lowerCamelCase ( __lowerCamelCase ) -> str: '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase__ : Dict = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __lowerCamelCase ) if "blocks" in key: UpperCAmelCase__ : Optional[Any] = re.sub(r"""blocks""" , """layers""" , __lowerCamelCase ) if "attn" in key: UpperCAmelCase__ : List[str] = re.sub(r"""attn""" , """self_attn""" , __lowerCamelCase ) if "norm1" in key: UpperCAmelCase__ : Union[str, Any] = re.sub(r"""norm1""" , """layer_norm1""" , __lowerCamelCase ) if "norm2" in key: UpperCAmelCase__ : Any = re.sub(r"""norm2""" , """layer_norm2""" , __lowerCamelCase ) if "encoder.norm" in key: UpperCAmelCase__ : Dict = re.sub(r"""encoder.norm""" , """post_layernorm""" , __lowerCamelCase ) if "encoder.patch_embed.proj" in key: UpperCAmelCase__ : List[str] = re.sub(r"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __lowerCamelCase ) if "encoder.pos_embed" in key: UpperCAmelCase__ : List[str] = re.sub(r"""encoder.pos_embed""" , """embeddings.position_embedding""" , __lowerCamelCase ) if "encoder.cls_token" in key: UpperCAmelCase__ : List[Any] = re.sub(r"""encoder.cls_token""" , """embeddings.class_embedding""" , __lowerCamelCase ) if "self_attn" in key: UpperCAmelCase__ : List[Any] = re.sub(r"""self_attn.proj""" , """self_attn.projection""" , __lowerCamelCase ) return key @torch.no_grad() def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> Tuple: '''simple docstring''' if config_path is not None: UpperCAmelCase__ : Any = BlipConfig.from_pretrained(__lowerCamelCase ) else: UpperCAmelCase__ : str = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase__ : int = BlipForConditionalGeneration(__lowerCamelCase ).eval() UpperCAmelCase__ : Any = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" UpperCAmelCase__ : List[str] = blip_decoder(pretrained=__lowerCamelCase , image_size=384 , vit="""base""" ) UpperCAmelCase__ : Union[str, Any] = pt_model.eval() UpperCAmelCase__ : Optional[int] = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase__ : Dict = modified_state_dict.pop(__lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = rename_key(__lowerCamelCase ) UpperCAmelCase__ : List[str] = value hf_model.load_state_dict(__lowerCamelCase ) UpperCAmelCase__ : Tuple = 384 UpperCAmelCase__ : str = load_demo_image(image_size=__lowerCamelCase , device="""cpu""" ) UpperCAmelCase__ : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase__ : Dict = tokenizer(["""a picture of"""] ).input_ids UpperCAmelCase__ : int = hf_model.generate(__lowerCamelCase , __lowerCamelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase__ : Any = hf_model.generate(__lowerCamelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase__ : Union[str, Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) UpperCAmelCase__ : List[Any] = blip_vqa(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit="""base""" ) vqa_model.eval() UpperCAmelCase__ : str = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase__ : Dict = modified_state_dict.pop(__lowerCamelCase ) UpperCAmelCase__ : Dict = rename_key(__lowerCamelCase ) UpperCAmelCase__ : int = value UpperCAmelCase__ : List[str] = BlipForQuestionAnswering(__lowerCamelCase ) hf_vqa_model.load_state_dict(__lowerCamelCase ) UpperCAmelCase__ : Tuple = ["""How many dogs are in this image?"""] UpperCAmelCase__ : Union[str, Any] = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids UpperCAmelCase__ : Optional[Any] = hf_vqa_model.generate(__lowerCamelCase , __lowerCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) UpperCAmelCase__ : int = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" UpperCAmelCase__ : Any = blip_itm(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit="""base""" ) itm_model.eval() UpperCAmelCase__ : List[Any] = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase__ : Dict = modified_state_dict.pop(__lowerCamelCase ) UpperCAmelCase__ : int = rename_key(__lowerCamelCase ) UpperCAmelCase__ : Any = value UpperCAmelCase__ : Optional[int] = BlipForImageTextRetrieval(__lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = ["""A picture of a woman with a dog sitting in a beach"""] UpperCAmelCase__ : List[Any] = tokenizer( __lowerCamelCase , return_tensors="""pt""" , padding="""max_length""" , truncation=__lowerCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCamelCase ) hf_itm_model.eval() UpperCAmelCase__ : List[str] = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) UpperCAmelCase__ : List[str] = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
79
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __a : int = HUGGINGFACE_HUB_CACHE __a : int = """config.json""" __a : Optional[Any] = """diffusion_pytorch_model.bin""" __a : Dict = """diffusion_flax_model.msgpack""" __a : str = """model.onnx""" __a : Optional[Any] = """diffusion_pytorch_model.safetensors""" __a : Dict = """weights.pb""" __a : Optional[Any] = """https://huggingface.co""" __a : str = default_cache_path __a : List[str] = """diffusers_modules""" __a : Union[str, Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __a : Any = ["""fp16""", """non-ema"""] __a : Optional[int] = """.self_attn"""
559
from sklearn.metrics import mean_squared_error import datasets __a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ __a : Dict = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ __a : Any = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowercase__ ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]="uniform_average" , __UpperCAmelCase : List[Any]=True ) -> int: """simple docstring""" UpperCamelCase_ = mean_squared_error( __UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase , multioutput=__UpperCAmelCase , squared=__UpperCAmelCase ) return {"mse": mse}
559
1
from math import pi def A__( __lowerCAmelCase , __lowerCAmelCase ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
304
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase__ = 10 def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int ): for i in range(_lowerCamelCase , _lowerCamelCase ): if array[i] == target: return i return -1 def __magic_name__ ( _lowerCamelCase : list[int] , _lowerCamelCase : int ): __a : Optional[int] = 0 __a : Tuple = len(_lowerCamelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Tuple = (left + right) // 3 + 1 __a : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __a : Optional[Any] = one_third - 1 elif array[two_third] < target: __a : List[Any] = two_third + 1 else: __a : Any = one_third + 1 __a : Union[str, Any] = two_third - 1 else: return -1 def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int ): if left < right: if right - left < precision: return lin_search(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Any = (left + right) // 3 + 1 __a : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCamelCase , one_third - 1 , _lowerCamelCase , _lowerCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCamelCase , _lowerCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = input("Enter numbers separated by comma:\n").strip() lowercase__ = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." lowercase__ = int(input("Enter the number to be found in the list:\n").strip()) lowercase__ = ite_ternary_search(collection, target) lowercase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'Iterative search: {target} found at positions: {resulta}') print(f'Recursive search: {target} found at positions: {resulta}') else: print("Not found")
581
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BioGptTokenizer snake_case_ = False def A_ ( self : int ) ->Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE__ : Dict = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE__ : List[str] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(a ) ) def A_ ( self : List[str] , a : Optional[int] ) ->Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] = "lower newer" SCREAMING_SNAKE_CASE__ : str = "lower newer" return input_text, output_text def A_ ( self : Optional[int] ) ->Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ : Optional[int] = "lower" SCREAMING_SNAKE_CASE__ : Tuple = ["low", "er</w>"] SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize(a ) self.assertListEqual(a , a ) SCREAMING_SNAKE_CASE__ : Dict = tokens + ["<unk>"] SCREAMING_SNAKE_CASE__ : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @slow def A_ ( self : Dict ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : str = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=a ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a , a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
709
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __lowercase :List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
26
0
import pytest a_ = '__dummy_dataset1__' a_ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def lowerCamelCase__ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = dataset_loading_script_name SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=_a) SCREAMING_SNAKE_CASE : Union[str, Any] = script_dir / f"{script_name}.py" with open(_a , "w") as f: f.write(_a) return str(_a)
25
def A__ ( _a : int ): '''simple docstring''' snake_case__ : str =generate_pascal_triangle(_a ) for row_idx in range(_a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A__ ( _a : int ): '''simple docstring''' if not isinstance(_a , _a ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case__ : list[list[int]] =[] for current_row_idx in range(_a ): snake_case__ : Optional[Any] =populate_current_row(_a , _a ) triangle.append(_a ) return triangle def A__ ( _a : list[list[int]] , _a : int ): '''simple docstring''' snake_case__ : Any =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case__ , snake_case__ : List[str] =1, 1 for current_col_idx in range(1 , _a ): calculate_current_element( _a , _a , _a , _a ) return current_row def A__ ( _a : list[list[int]] , _a : list[int] , _a : int , _a : int , ): '''simple docstring''' snake_case__ : List[Any] =triangle[current_row_idx - 1][current_col_idx - 1] snake_case__ : Tuple =triangle[current_row_idx - 1][current_col_idx] snake_case__ : Union[str, Any] =above_to_left_elt + above_to_right_elt def A__ ( _a : int ): '''simple docstring''' if not isinstance(_a , _a ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case__ : list[list[int]] =[[1]] for row_index in range(1 , _a ): snake_case__ : Tuple =[0] + result[-1] + [0] snake_case__ : Optional[Any] =row_index + 1 # Calculate the number of distinct elements in a row snake_case__ : int =sum(divmod(_a , 2 ) ) snake_case__ : List[str] =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case__ : List[str] =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case__ : Optional[int] =row_first_half + row_second_half result.append(_a ) return result def A__ ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: snake_case__ : List[str] =f"{func.__name__}({value})" snake_case__ : Tuple =timeit(f"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
385
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCamelCase ( lowerCAmelCase__ : Dict ): __a : List[str] = 3_8_4 __a : Dict = 7 if "tiny" in model_name: __a : int = 9_6 __a : Optional[Any] = (2, 2, 6, 2) __a : Tuple = (3, 6, 1_2, 2_4) elif "small" in model_name: __a : Dict = 9_6 __a : List[Any] = (2, 2, 1_8, 2) __a : Any = (3, 6, 1_2, 2_4) elif "base" in model_name: __a : Optional[int] = 1_2_8 __a : Tuple = (2, 2, 1_8, 2) __a : Optional[int] = (4, 8, 1_6, 3_2) __a : int = 1_2 __a : Dict = 5_1_2 elif "large" in model_name: __a : str = 1_9_2 __a : Tuple = (2, 2, 1_8, 2) __a : Union[str, Any] = (6, 1_2, 2_4, 4_8) __a : List[Any] = 1_2 __a : Tuple = 7_6_8 # set label information __a : Any = 1_5_0 __a : Dict = '''huggingface/label-files''' __a : Any = '''ade20k-id2label.json''' __a : Dict = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __a : Tuple = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a : Optional[Any] = {v: k for k, v in idalabel.items()} __a : str = SwinConfig( embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , window_size=lowerCAmelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __a : Any = UperNetConfig( backbone_config=lowerCAmelCase__ , auxiliary_in_channels=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : List[str] = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): __a : Optional[Any] = dct.pop(lowerCAmelCase__ ) __a : List[Any] = val def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ): __a : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __a : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __a : Optional[int] = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) __a : str = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __a : int = in_proj_weight[:dim, :] __a : List[Any] = in_proj_bias[: dim] __a : str = in_proj_weight[ dim : dim * 2, : ] __a : Any = in_proj_bias[ dim : dim * 2 ] __a : int = in_proj_weight[ -dim :, : ] __a : str = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): __a , __a : Optional[Any] = x.shape __a : Optional[int] = x.reshape(lowerCAmelCase__ , 4 , in_channel // 4 ) __a : Optional[Any] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) return x def __UpperCamelCase ( lowerCAmelCase__ : str ): __a , __a : List[str] = x.shape __a : str = x.reshape(lowerCAmelCase__ , in_channel // 4 , 4 ) __a : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) return x def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Optional[int] = x.shape[0] __a : Any = x.reshape(4 , in_channel // 4 ) __a : Union[str, Any] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCAmelCase__ ) return x def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): __a : Dict = x.shape[0] __a : Optional[int] = x.reshape(in_channel // 4 , 4 ) __a : Optional[int] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCAmelCase__ ) return x def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): __a : Dict = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __a : Any = model_name_to_url[model_name] __a : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' , file_name=lowerCAmelCase__ )[ '''state_dict''' ] for name, param in state_dict.items(): print(lowerCAmelCase__ , param.shape ) __a : List[Any] = get_upernet_config(lowerCAmelCase__ ) __a : Optional[int] = UperNetForSemanticSegmentation(lowerCAmelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __a : Dict = state_dict.pop(lowerCAmelCase__ ) if "bn" in key: __a : str = key.replace('''bn''' , '''batch_norm''' ) __a : Optional[Any] = val # rename keys __a : Optional[Any] = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __a : List[Any] = reverse_correct_unfold_reduction_order(lowerCAmelCase__ ) if "norm" in key: __a : Any = reverse_correct_unfold_norm_order(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # verify on image __a : Optional[Any] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __a : Dict = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('''RGB''' ) __a : List[str] = SegformerImageProcessor() __a : Union[str, Any] = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __a : int = model(lowerCAmelCase__ ) __a : List[str] = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __a : Any = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": __a : List[Any] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": __a : Tuple = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": __a : Optional[Any] = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase__ =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
326
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowercase__ ='src/transformers' lowercase__ ='docs/source/en' lowercase__ ='.' def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Any = f.readlines() # Find the start prompt. __a : List[Any] = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 __a : Any = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowercase__ ='Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. lowercase__ =re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowercase__ =re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase__ =re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. lowercase__ =direct_transformers_import(TRANSFORMERS_PATH) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): __a : Any = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ): __a : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase__ ) __a : List[Any] = (width - text_length) // 2 __a : Tuple = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __UpperCamelCase ( ): __a : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __a : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __a : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __a : Optional[int] = collections.defaultdict(lowerCAmelCase__ ) __a : List[Any] = collections.defaultdict(lowerCAmelCase__ ) __a : Dict = collections.defaultdict(lowerCAmelCase__ ) __a : Tuple = collections.defaultdict(lowerCAmelCase__ ) __a : Union[str, Any] = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): __a : Any = None if attr_name.endswith('''Tokenizer''' ): __a : Union[str, Any] = slow_tokenizers __a : List[str] = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __a : Union[str, Any] = fast_tokenizers __a : List[Any] = attr_name[:-1_3] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: __a : List[str] = tf_models __a : Tuple = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: __a : List[str] = flax_models __a : str = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: __a : Union[str, Any] = pt_models __a : int = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __a : List[str] = True break # Try again after removing the last word in the name __a : str = ''''''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! __a : Optional[int] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __a : Optional[int] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __a : Any = [len(lowerCAmelCase__ ) + 2 for c in columns] __a : Union[str, Any] = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se __a : List[str] = '''|''' + '''|'''.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __a : Union[str, Any] = {True: '''✅''', False: '''❌'''} for name in model_names: __a : str = model_name_to_prefix[name] __a : str = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def __UpperCamelCase ( lowerCAmelCase__ : Optional[int]=False ): __a , __a , __a , __a : Optional[int] = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __a : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ =parser.parse_args() check_model_table(args.fix_and_overwrite)
326
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __UpperCamelCase( _A : List[str] , _A : Optional[int] , _A : Dict=8 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase__ : Tuple = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowercase ( lowerCAmelCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,movq=lowerCamelCase_ ,) UpperCAmelCase__ : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: '''simple docstring''' if latents is None: UpperCAmelCase__ : Dict = randn_tensor(lowerCamelCase_ ,generator=lowerCamelCase_ ,device=lowerCamelCase_ ,dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase__ : Optional[Any] = latents.to(lowerCamelCase_ ) UpperCAmelCase__ : Dict = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=None ,) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : int = len(lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else 1 # get prompt text embeddings UpperCAmelCase__ : Tuple = self.tokenizer( lowerCamelCase_ ,padding='''max_length''' ,truncation=lowerCamelCase_ ,max_length=77 ,return_attention_mask=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,return_tensors='''pt''' ,) UpperCAmelCase__ : List[Any] = text_inputs.input_ids UpperCAmelCase__ : List[str] = self.tokenizer(lowerCamelCase_ ,padding='''longest''' ,return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase__ : Tuple = text_input_ids.to(lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = text_inputs.attention_mask.to(lowerCamelCase_ ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.text_encoder( input_ids=lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = prompt_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) UpperCAmelCase__ : List[str] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase_ ,dim=0 ) UpperCAmelCase__ : str = text_mask.repeat_interleave(lowerCamelCase_ ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : List[str] if negative_prompt is None: UpperCAmelCase__ : List[Any] = [''''''] * batch_size elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !=''' f''' {type(lowerCamelCase_ )}.''' ) elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : Dict = [negative_prompt] elif batch_size != len(lowerCamelCase_ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: UpperCAmelCase__ : Dict = negative_prompt UpperCAmelCase__ : Union[str, Any] = self.tokenizer( lowerCamelCase_ ,padding='''max_length''' ,max_length=77 ,truncation=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,return_tensors='''pt''' ,) UpperCAmelCase__ : Optional[Any] = uncond_input.input_ids.to(lowerCamelCase_ ) UpperCAmelCase__ : List[str] = uncond_input.attention_mask.to(lowerCamelCase_ ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.text_encoder( input_ids=lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ : Optional[int] = negative_prompt_embeds.shape[1] UpperCAmelCase__ : List[Any] = negative_prompt_embeds.repeat(1 ,lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,lowerCamelCase_ ) UpperCAmelCase__ : int = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase__ : int = uncond_text_encoder_hidden_states.repeat(1 ,lowerCamelCase_ ,1 ) UpperCAmelCase__ : List[str] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,lowerCamelCase_ ,-1 ) UpperCAmelCase__ : Union[str, Any] = uncond_text_mask.repeat_interleave(lowerCamelCase_ ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase__ : List[str] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase__ : Dict = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase__ : List[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_=0 ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' ,'''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase__ : str = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' ,silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ : Optional[Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ : Dict = cpu_offload_with_hook(lowerCamelCase_ ,lowerCamelCase_ ,prev_module_hook=lowerCamelCase_ ) if self.safety_checker is not None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cpu_offload_with_hook(self.safety_checker ,lowerCamelCase_ ,prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. UpperCAmelCase__ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if not hasattr(self.unet ,'''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ ,'''_hf_hook''' ) and hasattr(module._hf_hook ,'''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = 512 ,lowerCamelCase_ = 512 ,lowerCamelCase_ = 100 ,lowerCamelCase_ = 4.0 ,lowerCamelCase_ = 1 ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = "pil" ,lowerCamelCase_ = True ,) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = 1 elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = len(lowerCamelCase_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}''' ) UpperCAmelCase__ : Union[str, Any] = self._execution_device UpperCAmelCase__ : Optional[int] = batch_size * num_images_per_prompt UpperCAmelCase__ : Dict = guidance_scale > 1.0 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._encode_prompt( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : List[str] = torch.cat(lowerCamelCase_ ,dim=0 ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase__ : int = torch.cat(lowerCamelCase_ ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : Optional[Any] = image_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) UpperCAmelCase__ : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) UpperCAmelCase__ : Any = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ,device=lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.scheduler.timesteps UpperCAmelCase__ : List[Any] = self.unet.config.in_channels UpperCAmelCase__ , UpperCAmelCase__ : Tuple = get_new_h_w(lowerCamelCase_ ,lowerCamelCase_ ,self.movq_scale_factor ) # create initial latent UpperCAmelCase__ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : Tuple = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} UpperCAmelCase__ : int = self.unet( sample=lowerCamelCase_ ,timestep=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,added_cond_kwargs=lowerCamelCase_ ,return_dict=lowerCamelCase_ ,)[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = noise_pred.split(latents.shape[1] ,dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ : Any = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = variance_pred.chunk(2 ) UpperCAmelCase__ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ : List[str] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : Tuple = self.scheduler.step( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ,).prev_sample # post-processing UpperCAmelCase__ : Optional[int] = self.movq.decode(lowerCamelCase_ ,force_not_quantize=lowerCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase__ : Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase__ : Any = image.clamp(0 ,1 ) UpperCAmelCase__ : str = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ : List[Any] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
614
'''simple docstring''' def __UpperCamelCase( _A : float , _A : list[float] ): '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) UpperCAmelCase__ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_A ) ) return round(_A , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
614
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): __A : Tuple = torch.nn.Linear(10 , 10 ) __A : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) __A : List[str] = Accelerator() __A : Union[str, Any] = accelerator.prepare(__UpperCAmelCase ) try: pickle.loads(pickle.dumps(__UpperCAmelCase ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
387
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } UpperCamelCase = '▁' class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase=True , **__UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __A : Dict = [F"<extra_id_{i}>" for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __A : Any = len(set(filter(lambda __UpperCAmelCase : bool("extra_id" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __A : Tuple = legacy __A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=__UpperCAmelCase , **__UpperCAmelCase , ) __A : Optional[Any] = vocab_file __A : List[str] = extra_ids __A : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __A : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , __UpperCAmelCase , ) return max_model_length @property def __UpperCAmelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def __UpperCAmelCase( self ): __A : List[str] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + [1] return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def __UpperCAmelCase( self ): return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"<extra_id_\d+>" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __UpperCAmelCase( self ): return [self._convert_token_to_id(__UpperCAmelCase ) for token in self.get_sentinel_tokens()] def __UpperCAmelCase( self , __UpperCAmelCase ): if len(__UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[Any] = self._add_eos_if_not_present(__UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: __A : str = self._add_eos_if_not_present(__UpperCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ): __A : Any = self.__dict__.copy() __A : List[str] = None return state def __setstate__( self , __UpperCAmelCase ): __A : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __A : Optional[int] = {} __A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __A : List[str] = SPIECE_UNDERLINE + text.replace(__UpperCAmelCase , " " ) return super().tokenize(__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): if not self.legacy: __A : Tuple = text.startswith(__UpperCAmelCase ) if is_first: __A : Optional[int] = text[1:] __A : Optional[Any] = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(__UpperCAmelCase ): __A : Tuple = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __UpperCAmelCase( self , __UpperCAmelCase ): if token.startswith("<extra_id_" ): __A : Optional[Any] = re.match(r"<extra_id_(\d+)>" , __UpperCAmelCase ) __A : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): if index < self.sp_model.get_piece_size(): __A : Union[str, Any] = self.sp_model.IdToPiece(__UpperCAmelCase ) else: __A : List[Any] = F"<extra_id_{self.vocab_size - 1 - index}>" return token def __UpperCAmelCase( self , __UpperCAmelCase ): __A : int = [] __A : List[Any] = "" __A : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token __A : Tuple = True __A : Any = [] else: current_sub_tokens.append(__UpperCAmelCase ) __A : Optional[int] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __A : Union[str, Any] = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
387
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: # Construct model if openai_config_file == "": UpperCamelCase__ : Union[str, Any] = OpenAIGPTConfig() else: UpperCamelCase__ : Tuple = OpenAIGPTConfig.from_json_file(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = OpenAIGPTModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_openai_gpt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCamelCase__ : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase__ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCAmelCase__ : Any = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
410
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self , UpperCamelCase , UpperCamelCase=2 , UpperCamelCase=32 , UpperCamelCase=16 , UpperCamelCase=3 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=32 , UpperCamelCase=4 , UpperCamelCase=[0, 1, 2, 3] , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=[1, 3_84, 24, 24] , UpperCamelCase=True , UpperCamelCase=None , ) -> str: UpperCamelCase__ : Union[str, Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Tuple = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Any = use_labels UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : List[str] = backbone_out_indices UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : List[Any] = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : List[str] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : str = num_labels UpperCamelCase__ : str = backbone_featmap_shape UpperCamelCase__ : Dict = scope UpperCamelCase__ : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : int = (image_size // patch_size) ** 2 UpperCamelCase__ : Optional[int] = num_patches + 1 def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : int = None if self.use_labels: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) UpperCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 1_92, 3_84, 7_68], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase) -> Union[str, Any]: UpperCamelCase__ : List[str] = DPTModel(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() UpperCamelCase__ : Any = model(UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase) -> List[Any]: UpperCamelCase__ : str = self.num_labels UpperCamelCase__ : List[str] = DPTForDepthEstimation(UpperCamelCase) model.to(UpperCamelCase) model.eval() UpperCamelCase__ : Optional[Any] = model(UpperCamelCase) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase) -> Optional[int]: UpperCamelCase__ : Optional[int] = self.num_labels UpperCamelCase__ : List[Any] = DPTForSemanticSegmentation(UpperCamelCase) model.to(UpperCamelCase) model.eval() UpperCamelCase__ : Dict = model(UpperCamelCase , labels=UpperCamelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[int] = config_and_inputs UpperCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def lowerCAmelCase__ ( self) -> Optional[int]: UpperCamelCase__ : Any = DPTModelTester(self) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37) def lowerCAmelCase__ ( self) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds') def lowerCAmelCase__ ( self) -> List[str]: pass def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(UpperCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear)) def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(UpperCamelCase) UpperCamelCase__ : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[Any] = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase) def lowerCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase) def lowerCAmelCase__ ( self) -> List[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Any = True if model_class in get_values(UpperCamelCase): continue UpperCamelCase__ : Any = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() UpperCamelCase__ : str = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase) UpperCamelCase__ : Optional[Any] = model(**UpperCamelCase).loss loss.backward() def lowerCAmelCase__ ( self) -> Dict: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ , UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : str = True if model_class in get_values(UpperCamelCase) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase__ : List[str] = model_class(UpperCamelCase) model.to(UpperCamelCase) model.gradient_checkpointing_enable() model.train() UpperCamelCase__ : Union[str, Any] = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase) UpperCamelCase__ : Tuple = model(**UpperCamelCase).loss loss.backward() def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ , UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] = _config_zero_init(UpperCamelCase) for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(config=UpperCamelCase) # Skip the check for the backbone UpperCamelCase__ : int = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase__ : Optional[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase__ ( self) -> Dict: pass @slow def lowerCAmelCase__ ( self) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase__ : Dict = DPTModel.from_pretrained(UpperCamelCase) self.assertIsNotNone(UpperCamelCase) def lowerCAmelCase__ ( self) -> Optional[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] = 'add' with self.assertRaises(UpperCamelCase): UpperCamelCase__ : Union[str, Any] = DPTForDepthEstimation(UpperCamelCase) def _lowercase ( ) -> Dict: UpperCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ : Union[str, Any] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas') UpperCamelCase__ : Dict = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas').to(UpperCamelCase) UpperCamelCase__ : Any = prepare_img() UpperCamelCase__ : Tuple = image_processor(images=UpperCamelCase , return_tensors='pt').to(UpperCamelCase) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCamelCase) UpperCamelCase__ : Optional[Any] = outputs.predicted_depth # verify the predicted depth UpperCamelCase__ : Dict = torch.Size((1, 3_84, 3_84)) self.assertEqual(predicted_depth.shape , UpperCamelCase) UpperCamelCase__ : int = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , UpperCamelCase , atol=1E-4))
410
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase__ ( __a ): """simple docstring""" __UpperCAmelCase : Any = ["image_processor", "tokenizer"] __UpperCAmelCase : Optional[Any] = "OwlViTImageProcessor" __UpperCAmelCase : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple ,_a : List[Any]=None ,_a : List[Any]=None ,**_a : List[str] ): '''simple docstring''' _a : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,lowerCAmelCase_ ,) _a : Dict = kwargs.pop('feature_extractor' ) _a : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ ,lowerCAmelCase_ ) def __call__( self : Dict ,_a : Optional[int]=None ,_a : Any=None ,_a : Any=None ,_a : Optional[int]="max_length" ,_a : Optional[Any]="np" ,**_a : str ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and not isinstance(text[0] ,lowerCAmelCase_ )): _a : Any = [self.tokenizer(lowerCAmelCase_ ,padding=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) and isinstance(text[0] ,lowerCAmelCase_ ): _a : Any = [] # Maximum number of queries across batch _a : Any = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: _a : int = t + [' '] * (max_num_queries - len(lowerCAmelCase_ )) _a : List[Any] = self.tokenizer(lowerCAmelCase_ ,padding=lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": _a : Optional[int] = np.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) _a : Optional[int] = np.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a : Optional[Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] ,axis=0 ) _a : Optional[int] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a : str = torch.cat([encoding['input_ids'] for encoding in encodings] ,dim=0 ) _a : List[str] = torch.cat([encoding['attention_mask'] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a : Union[str, Any] = tf.stack([encoding['input_ids'] for encoding in encodings] ,axis=0 ) _a : Optional[Any] = tf.stack([encoding['attention_mask'] for encoding in encodings] ,axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) _a : Union[str, Any] = BatchEncoding() _a : Tuple = input_ids _a : int = attention_mask if query_images is not None: _a : str = BatchEncoding() _a : Union[str, Any] = self.image_processor( lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ ).pixel_values _a : Optional[int] = query_pixel_values if images is not None: _a : Union[str, Any] = self.image_processor(lowerCAmelCase_ ,return_tensors=lowerCAmelCase_ ,**lowerCAmelCase_ ) if text is not None and images is not None: _a : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a : Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) ,tensor_type=lowerCAmelCase_ ) def __lowercase ( self : List[str] ,*_a : str ,**_a : List[str] ): '''simple docstring''' return self.image_processor.post_process(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __lowercase ( self : List[str] ,*_a : int ,**_a : List[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __lowercase ( self : Tuple ,*_a : Dict ,**_a : int ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __lowercase ( self : Dict ,*_a : int ,**_a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) def __lowercase ( self : int ,*_a : Union[str, Any] ,**_a : str ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ ,**lowerCAmelCase_ ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,lowerCAmelCase_ ,) return self.image_processor_class @property def __lowercase ( self : Tuple ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,lowerCAmelCase_ ,) return self.image_processor
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : int = [] if len(A_ ) == 1: return [nums.copy()] for _ in range(len(A_ ) ): _a : Optional[int] = nums.pop(0 ) _a : List[str] = permute(A_ ) for perm in permutations: perm.append(A_ ) result.extend(A_ ) nums.append(A_ ) return result def __lowerCamelCase ( lowerCAmelCase_ ) -> str: def backtrack(lowerCAmelCase_ ): if start == len(A_ ) - 1: output.append(nums[:] ) else: for i in range(A_ , len(A_ ) ): _a : int = nums[i], nums[start] backtrack(start + 1 ) _a : int = nums[i], nums[start] # backtrack _a : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __lowerCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
358
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case: Dict = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __snake_case: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
577
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder a : int = datasets.utils.logging.get_logger(__name__) class a ( folder_based_builder.FolderBasedBuilderConfig ): snake_case_ = None snake_case_ = None class a ( folder_based_builder.FolderBasedBuilder ): snake_case_ = datasets.Audio() snake_case_ = "audio" snake_case_ = AudioFolderConfig snake_case_ = 42 # definition at the bottom of the script snake_case_ = AudioClassification(audio_column="audio" , label_column="label" ) a : Union[str, Any] = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] a : Tuple = AUDIO_EXTENSIONS
707
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
0
_lowerCamelCase : Union[str, Any] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _a ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE__ : Tuple = queue.pop(0 ) # get the last node from the path SCREAMING_SNAKE_CASE__ : Optional[int] = path[-1] if node not in explored: SCREAMING_SNAKE_CASE__ : Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE__ : List[Any] = list(SCREAMING_SNAKE_CASE__ ) new_path.append(SCREAMING_SNAKE_CASE__ ) queue.append(SCREAMING_SNAKE_CASE__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE__ ) # in case there's no path between the 2 nodes return [] def _a ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = [start] SCREAMING_SNAKE_CASE__ : str = set(SCREAMING_SNAKE_CASE__ ) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE__ : int = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE__ : Tuple = queue.pop(0 ) if node == target: SCREAMING_SNAKE_CASE__ : Optional[int] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE__ ) queue.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
663
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = GPTaTokenizer UpperCAmelCase_ = GPTaTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = {"add_prefix_space": True} UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE__ : int = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE__ : Any = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def A_ ( self : Tuple, **_UpperCAmelCase : str ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : int, **_UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : Tuple, _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "lower newer" SCREAMING_SNAKE_CASE__ : List[Any] = "lower newer" return input_text, output_text def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : Tuple = "lower newer" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : Dict ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ : Tuple = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing the unknown token SCREAMING_SNAKE_CASE__ : Dict = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : Tuple, *_UpperCAmelCase : List[Any], **_UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A_ ( self : Optional[Any], _UpperCAmelCase : int=1_5 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Any = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) # Simple input SCREAMING_SNAKE_CASE__ : Optional[Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : List[str] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : Any = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) def A_ ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE__ : Union[str, Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : Dict = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE__ : List[str] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : int = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding="max_length", max_length=3_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(*_UpperCAmelCase, padding="max_length", max_length=6_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A_ ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "$$$" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=_UpperCAmelCase, add_bos_token=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_UpperCAmelCase ) self.assertEqual(out_s.input_ids[0], _UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], _UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def A_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def A_ ( self : Dict ) -> str: """simple docstring""" # TODO: change to self.get_tokenizers() when the fast version is implemented SCREAMING_SNAKE_CASE__ : Any = [self.get_tokenizer(do_lower_case=_UpperCAmelCase, add_bos_token=_UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : List[Any] = "Encode this." SCREAMING_SNAKE_CASE__ : Optional[Any] = "This one too please." SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) encoded_sequence += tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode_plus( _UpperCAmelCase, _UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_special_tokens_mask=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Any = encoded_sequence_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Any = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase ) ] SCREAMING_SNAKE_CASE__ : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) @require_tokenizers class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : Optional[Any] ) -> int: """simple docstring""" # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("./test_opt" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = "A photo of a cat" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode( _UpperCAmelCase, ) # Same as above self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def A_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = "bos" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.get_vocab()["bos"] SCREAMING_SNAKE_CASE__ : Tuple = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode( _UpperCAmelCase, ) # We changed the bos token self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
663
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case__ : Tuple = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
592
def lowerCamelCase__ ( _lowerCamelCase = 1000 ) ->int: _UpperCAmelCase =2**power _UpperCAmelCase =str(_lowerCamelCase ) _UpperCAmelCase =list(_lowerCamelCase ) _UpperCAmelCase =0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": snake_case__ : List[str] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case__ : Union[str, Any] = solution(power) print('Sum of the digits is: ', result)
592
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def A__ ( __A : Optional[Any] , __A : Dict , __A : Optional[Any] ) ->Optional[Any]: # Initialise PyTorch model __A =AlbertConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __A =AlbertForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
184
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
172
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase : List[Any] = logging.getLogger(__name__) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) lowercase : List[str] = parser.parse_args() logger.info(f"Loading data from {args.data_file}") with open(args.data_file, 'rb') as fp: lowercase : Any = pickle.load(fp) logger.info('Counting occurrences for MLM.') lowercase : Any = Counter() for tk_ids in data: counter.update(tk_ids) lowercase : Union[str, Any] = [0] * args.vocab_size for k, v in counter.items(): lowercase : Optional[Any] = v logger.info(f"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
94
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : List[str] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : List[Any] = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Optional[int]: '''simple docstring''' __UpperCamelCase : str = numpy.dtype(numpy.uintaa).newbyteorder(">") return numpy.frombuffer(bytestream.read(4) , dtype=_lowerCamelCase)[0] @deprecated(_lowerCamelCase , "Please use tf.data to implement this functionality.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Any: '''simple docstring''' print("Extracting" , f.name) with gzip.GzipFile(fileobj=_lowerCamelCase) as bytestream: __UpperCamelCase : str = _readaa(_lowerCamelCase) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name)) __UpperCamelCase : List[str] = _readaa(_lowerCamelCase) __UpperCamelCase : Dict = _readaa(_lowerCamelCase) __UpperCamelCase : Optional[int] = _readaa(_lowerCamelCase) __UpperCamelCase : Dict = bytestream.read(rows * cols * num_images) __UpperCamelCase : Optional[int] = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta) __UpperCamelCase : Dict = data.reshape(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 1) return data @deprecated(_lowerCamelCase , "Please use tf.one_hot on tensors.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str]) -> str: '''simple docstring''' __UpperCamelCase : str = labels_dense.shape[0] __UpperCamelCase : str = numpy.arange(_lowerCamelCase) * num_classes __UpperCamelCase : str = numpy.zeros((num_labels, num_classes)) __UpperCamelCase : Tuple = 1 return labels_one_hot @deprecated(_lowerCamelCase , "Please use tf.data to implement this functionality.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[int]=10) -> Dict: '''simple docstring''' print("Extracting" , f.name) with gzip.GzipFile(fileobj=_lowerCamelCase) as bytestream: __UpperCamelCase : int = _readaa(_lowerCamelCase) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name)) __UpperCamelCase : Any = _readaa(_lowerCamelCase) __UpperCamelCase : List[Any] = bytestream.read(_lowerCamelCase) __UpperCamelCase : Dict = numpy.frombuffer(_lowerCamelCase , dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(_lowerCamelCase , _lowerCamelCase) return labels class lowerCamelCase__ : '''simple docstring''' @deprecated( a , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self :int , a :Any , a :List[str] , a :Union[str, Any]=False , a :List[Any]=False , a :Dict=dtypes.floataa , a :int=True , a :Optional[int]=None , ) -> List[str]: __UpperCamelCase , __UpperCamelCase : Optional[int] = random_seed.get_seed(a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCamelCase : Optional[Any] = dtypes.as_dtype(a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: __UpperCamelCase : str = 1_0_0_0_0 __UpperCamelCase : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __UpperCamelCase : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCamelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCamelCase : List[Any] = images.astype(numpy.floataa ) __UpperCamelCase : Optional[Any] = numpy.multiply(a , 1.0 / 255.0 ) __UpperCamelCase : Optional[Any] = images __UpperCamelCase : List[Any] = labels __UpperCamelCase : str = 0 __UpperCamelCase : Union[str, Any] = 0 @property def _lowerCamelCase ( self :Any ) -> Any: return self._images @property def _lowerCamelCase ( self :Any ) -> Dict: return self._labels @property def _lowerCamelCase ( self :List[str] ) -> str: return self._num_examples @property def _lowerCamelCase ( self :Tuple ) -> Dict: return self._epochs_completed def _lowerCamelCase ( self :Any , a :Optional[int] , a :Optional[int]=False , a :int=True ) -> Optional[int]: if fake_data: __UpperCamelCase : Any = [1] * 7_8_4 __UpperCamelCase : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(a )], [fake_label for _ in range(a )], ) __UpperCamelCase : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCamelCase : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) __UpperCamelCase : int = self.images[perma] __UpperCamelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCamelCase : Optional[int] = self._num_examples - start __UpperCamelCase : Optional[int] = self._images[start : self._num_examples] __UpperCamelCase : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCamelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(a ) __UpperCamelCase : Optional[Any] = self.images[perm] __UpperCamelCase : Tuple = self.labels[perm] # Start next epoch __UpperCamelCase : Tuple = 0 __UpperCamelCase : Union[str, Any] = batch_size - rest_num_examples __UpperCamelCase : List[str] = self._index_in_epoch __UpperCamelCase : Dict = self._images[start:end] __UpperCamelCase : str = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCamelCase : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCamelCase , "Please write your own downloading logic.") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]) -> Tuple: '''simple docstring''' if not gfile.Exists(_lowerCamelCase): gfile.MakeDirs(_lowerCamelCase) __UpperCamelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase) if not gfile.Exists(_lowerCamelCase): urllib.request.urlretrieve(_lowerCamelCase , _lowerCamelCase) # noqa: S310 with gfile.GFile(_lowerCamelCase) as f: __UpperCamelCase : Any = f.size() print("Successfully downloaded" , _lowerCamelCase , _lowerCamelCase , "bytes.") return filepath @deprecated( _lowerCamelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : List[Any]=False , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=dtypes.floataa , _lowerCamelCase : Any=True , _lowerCamelCase : Union[str, Any]=5_000 , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=DEFAULT_SOURCE_URL , ) -> List[Any]: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_lowerCamelCase , one_hot=_lowerCamelCase , dtype=_lowerCamelCase , seed=_lowerCamelCase) __UpperCamelCase : Optional[int] = fake() __UpperCamelCase : Tuple = fake() __UpperCamelCase : List[str] = fake() return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase) if not source_url: # empty string check __UpperCamelCase : str = DEFAULT_SOURCE_URL __UpperCamelCase : Optional[int] = "train-images-idx3-ubyte.gz" __UpperCamelCase : Dict = "train-labels-idx1-ubyte.gz" __UpperCamelCase : List[str] = "t10k-images-idx3-ubyte.gz" __UpperCamelCase : List[str] = "t10k-labels-idx1-ubyte.gz" __UpperCamelCase : Optional[int] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_images_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : int = _extract_images(_lowerCamelCase) __UpperCamelCase : Optional[Any] = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + train_labels_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : int = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase) __UpperCamelCase : int = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_images_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : Optional[int] = _extract_images(_lowerCamelCase) __UpperCamelCase : str = _maybe_download( _lowerCamelCase , _lowerCamelCase , source_url + test_labels_file) with gfile.Open(_lowerCamelCase , "rb") as f: __UpperCamelCase : List[str] = _extract_labels(_lowerCamelCase , one_hot=_lowerCamelCase) if not 0 <= validation_size <= len(_lowerCamelCase): __UpperCamelCase : str = ( "Validation size should be between 0 and " F'{len(_lowerCamelCase)}. Received: {validation_size}.' ) raise ValueError(_lowerCamelCase) __UpperCamelCase : Any = train_images[:validation_size] __UpperCamelCase : Optional[Any] = train_labels[:validation_size] __UpperCamelCase : Optional[int] = train_images[validation_size:] __UpperCamelCase : Tuple = train_labels[validation_size:] __UpperCamelCase : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} __UpperCamelCase : Union[str, Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) __UpperCamelCase : str = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) __UpperCamelCase : Optional[Any] = _DataSet(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) return _Datasets(train=_lowerCamelCase , validation=_lowerCamelCase , test=_lowerCamelCase)
94
1
import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = [10, 20, 30, 40, 50, 60] lowerCAmelCase__ : List[str] = [2, 4, 6, 8, 10, 12] lowerCAmelCase__ : Tuple = 1_00 self.assertEqual(kp.calc_profit(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ,2_10 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" self.assertRaisesRegex(__lowerCamelCase ,'''max_weight must greater than zero.''' ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" self.assertRaisesRegex(__lowerCamelCase ,'''Weight can not be negative.''' ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" self.assertRaisesRegex(__lowerCamelCase ,'''Profit can not be negative.''' ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" self.assertRaisesRegex(__lowerCamelCase ,'''max_weight must greater than zero.''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" self.assertRaisesRegex( __lowerCamelCase ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
647
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : List[str]=False): '''simple docstring''' lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""")) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""")) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""")) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""")) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""")) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) return rename_keys def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[Any]=False): '''simple docstring''' for i in range(config.num_hidden_layers): if base_model: lowerCAmelCase__ : List[str] = '''''' else: lowerCAmelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : List[str] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""") lowerCAmelCase__ : List[Any] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Any = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Dict = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : int ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : str = dct.pop(lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = val def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ViTMSNConfig() lowerCAmelCase__ : int = 1000 lowerCAmelCase__ : List[Any] = '''datasets/huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : Any = json.load(open(hf_hub_download(lowerCamelCase_ ,lowerCamelCase_) ,'''r''')) lowerCAmelCase__ : Any = {int(lowerCamelCase_): v for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = idalabel lowerCAmelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ : str = 384 lowerCAmelCase__ : Any = 1536 lowerCAmelCase__ : List[str] = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : int = 4096 lowerCAmelCase__ : Dict = 24 lowerCAmelCase__ : List[str] = 16 lowerCAmelCase__ : List[str] = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ : List[Any] = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ : Any = 7 lowerCAmelCase__ : Optional[int] = 1024 lowerCAmelCase__ : Optional[int] = 4096 lowerCAmelCase__ : Dict = 24 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Optional[Any] = 0.1 lowerCAmelCase__ : List[str] = ViTMSNModel(lowerCamelCase_) lowerCAmelCase__ : int = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''target_encoder'''] lowerCAmelCase__ : List[str] = ViTImageProcessor(size=config.image_size) remove_projection_head(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = create_rename_keys(lowerCamelCase_ ,base_model=lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ ,lowerCamelCase_ ,base_model=lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() lowerCAmelCase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) lowerCAmelCase__ : Tuple = ViTImageProcessor( size=config.image_size ,image_mean=lowerCamelCase_ ,image_std=lowerCamelCase_) lowerCAmelCase__ : int = image_processor(images=lowerCamelCase_ ,return_tensors='''pt''') # forward pass torch.manual_seed(2) lowerCAmelCase__ : Optional[int] = model(**lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor([[-1.0915, -1.4876, -1.1809]]) elif "b16" in checkpoint_url: lowerCAmelCase__ : List[str] = torch.tensor([[14.2889, -18.9045, 11.7281]]) elif "l16" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = torch.tensor([[41.5028, -22.8681, 45.6475]]) elif "b4" in checkpoint_url: lowerCAmelCase__ : Dict = torch.tensor([[-4.3868, 5.2932, -0.4137]]) else: lowerCAmelCase__ : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,lowerCamelCase_ ,atol=1E-4) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase_) print(f"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : List[str] =parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase : Any = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __lowerCamelCase : Any = { "gpt-neox-20b": 2_048, } class __magic_name__ ( A__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP lowercase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str =['''input_ids''', '''attention_mask'''] def __init__( self : str , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]="<|endoftext|>" , UpperCamelCase__ : Any="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: UpperCAmelCase = getattr(UpperCamelCase__ , pre_tok_state.pop("type" ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**UpperCamelCase__ ) UpperCAmelCase = add_prefix_space def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCamelCase__ : "Conversation" ) -> List[int]: '''simple docstring''' UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
457
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __magic_name__ : def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : str=1_00 , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Optional[int]=30 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Any=4 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Tuple=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=[0, 1, 2, 3] , ) -> str: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 1_00 UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = out_indices UpperCAmelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = BeitModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = BeitForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: '''simple docstring''' UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = BeitForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( A__, A__, unittest.TestCase ): lowercase : Optional[Any] =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase : Optional[Any] =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : Dict =False lowercase : int =False lowercase : Union[str, Any] =False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase = BeitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(UpperCamelCase__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() UpperCAmelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) UpperCAmelCase = model(**UpperCamelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase = False UpperCAmelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() UpperCAmelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) UpperCAmelCase = model(**UpperCamelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BeitModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_() -> str: UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCamelCase__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).pixel_values.to(UpperCamelCase__ ) # prepare bool_masked_pos UpperCAmelCase = torch.ones((1, 1_96) , dtype=torch.bool ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCamelCase__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase__ ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) UpperCAmelCase = 2_81 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( UpperCamelCase__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase__ ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) UpperCAmelCase = 23_96 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase = model.to(UpperCamelCase__ ) UpperCAmelCase = BeitImageProcessor(do_resize=UpperCamelCase__ , size=6_40 , do_center_crop=UpperCamelCase__ ) UpperCAmelCase = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase = Image.open(ds[0]["file"] ) UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase__ ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , UpperCamelCase__ ) UpperCAmelCase = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=UpperCamelCase__ , ) else: UpperCAmelCase = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase = model.to(UpperCamelCase__ ) UpperCAmelCase = BeitImageProcessor(do_resize=UpperCamelCase__ , size=6_40 , do_center_crop=UpperCamelCase__ ) UpperCAmelCase = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase = Image.open(ds[0]["file"] ) UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase__ ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(5_00, 3_00)] ) UpperCAmelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) UpperCAmelCase = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
457
1
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=0 ) -> Dict: lowerCamelCase_ = np.random.RandomState(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : Dict ) -> Union[str, Any]: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : List[str] ) -> Any: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : Tuple ) -> Dict: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : str ) -> Union[str, Any]: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : Any ) -> Any: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : int ) -> List[str]: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : Tuple ) -> int: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = 3 * [inputs['prompt']] # forward lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = 3 * [inputs.pop('prompt' )] lowerCamelCase_ = pipe.tokenizer( __SCREAMING_SNAKE_CASE , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=__SCREAMING_SNAKE_CASE , return_tensors='np' , ) lowerCamelCase_ = text_inputs['input_ids'] lowerCamelCase_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase_ = prompt_embeds # forward lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase ( self : str ) -> Tuple: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = 3 * ['this is a negative prompt'] lowerCamelCase_ = negative_prompt lowerCamelCase_ = 3 * [inputs['prompt']] # forward lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] lowerCamelCase_ = self.get_dummy_inputs() lowerCamelCase_ = 3 * [inputs.pop('prompt' )] lowerCamelCase_ = [] for p in [prompt, negative_prompt]: lowerCamelCase_ = pipe.tokenizer( __SCREAMING_SNAKE_CASE , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=__SCREAMING_SNAKE_CASE , return_tensors='np' , ) lowerCamelCase_ = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase_ , lowerCamelCase_ = embeds # forward lowerCamelCase_ = pipe(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def UpperCamelCase ( self : Union[str, Any] ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self : str ) -> Tuple: lowerCamelCase_ = ort.SessionOptions() lowerCamelCase_ = False return options def UpperCamelCase ( self : Tuple ) -> Dict: # using the PNDM scheduler by default lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'A painting of a squirrel eating a burger' np.random.seed(0 ) lowerCamelCase_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : Tuple ) -> List[str]: lowerCamelCase_ = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'open neural network exchange' lowerCamelCase_ = np.random.RandomState(0 ) lowerCamelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type='np' ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : List[Any] ) -> Any: lowerCamelCase_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'open neural network exchange' lowerCamelCase_ = np.random.RandomState(0 ) lowerCamelCase_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type='np' ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowerCamelCase_ = 0 def test_callback_fn(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : np.ndarray ) -> None: lowerCamelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowerCamelCase_ = False lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'Andromeda galaxy in a bottle' lowerCamelCase_ = np.random.RandomState(0 ) pipe( prompt=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , guidance_scale=7.5 , generator=__SCREAMING_SNAKE_CASE , callback=__SCREAMING_SNAKE_CASE , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self : List[str] ) -> int: lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None lowerCamelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = OnnxStableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase_ = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
549
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) @dataclass class a : SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class a : SCREAMING_SNAKE_CASE : str = field( default=__snake_case , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) SCREAMING_SNAKE_CASE : str = field( default=__snake_case , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__snake_case , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) SCREAMING_SNAKE_CASE : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__snake_case , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase__ ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features['label'].names if training_args.do_eval: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features['label'].names if training_args.do_predict: lowerCamelCase_ = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features['label'].names # Labels lowerCamelCase_ = len(_lowerCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel={str(_lowerCamelCase ): label for i, label in enumerate(_lowerCamelCase )} , labelaid={label: i for i, label in enumerate(_lowerCamelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(_lowerCamelCase : Any ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=_lowerCamelCase , max_length=data_args.max_seq_length , truncation=_lowerCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase_ = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCamelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase_ = eval_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(_lowerCamelCase ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): lowerCamelCase_ = predict_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function lowerCamelCase_ = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase : EvalPrediction ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , _lowerCamelCase ) else p.predictions lowerCamelCase_ = np.argmax(_lowerCamelCase , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=_lowerCamelCase ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _lowerCamelCase ) trainer.save_metrics('train' , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=_lowerCamelCase ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(_lowerCamelCase , metric_key_prefix='predict' ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCamelCase ) ) lowerCamelCase_ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('predict' , _lowerCamelCase ) trainer.save_metrics('predict' , _lowerCamelCase ) lowerCamelCase_ = np.argmax(_lowerCamelCase , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(_lowerCamelCase ): lowerCamelCase_ = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
549
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __snake_case (__UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = math.inf , __UpperCAmelCase = -math.inf , __UpperCAmelCase = math.inf , __UpperCAmelCase = -math.inf , __UpperCAmelCase = False , __UpperCAmelCase = 100 , __UpperCAmelCase = 0.01 , __UpperCAmelCase = 1 , ): """simple docstring""" lowerCamelCase_ : List[str] = False lowerCamelCase_ : Any = search_prob lowerCamelCase_ : Optional[int] = start_temperate lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Dict = None while not search_end: lowerCamelCase_ : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ : str = current_state scores.append(__UpperCAmelCase ) iterations += 1 lowerCamelCase_ : List[str] = None lowerCamelCase_ : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ : int = random.randint(0 , len(__UpperCAmelCase ) - 1 ) # picking a random neighbor lowerCamelCase_ : List[str] = neighbors.pop(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ : Optional[Any] = picked_neighbor else: lowerCamelCase_ : Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ : Tuple = picked_neighbor lowerCamelCase_ : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ : Tuple = True else: lowerCamelCase_ : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__UpperCAmelCase ) , __UpperCAmelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __lowerCamelCase : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return (3 * x**2) - (6 * y) __lowerCamelCase : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : int = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" ) __lowerCamelCase : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowerCamelCase : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" )
703
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __lowerCamelCase : Any = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowerCamelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(UpperCamelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Tuple = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase_ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ : List[str] = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) lowerCamelCase_ : Any = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(UpperCamelCase_ , '''w''' , newline='''\n''' ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , '''r''' ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , ) # Copy consistency with a really long name lowerCamelCase_ : Optional[int] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , UpperCamelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , UpperCamelCase_ ) , )
418
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): """simple docstring""" a__ : Any = parent a__ : Union[str, Any] = batch_size a__ : Any = image_size a__ : Optional[Any] = num_channels a__ : List[str] = embeddings_size a__ : Any = hidden_sizes a__ : Union[str, Any] = depths a__ : List[Any] = is_training a__ : Optional[Any] = use_labels a__ : Dict = hidden_act a__ : Tuple = num_labels a__ : int = scope a__ : Any = len(__UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : List[str] = None if self.use_labels: a__ : Any = ids_tensor([self.batch_size] , self.num_labels ) a__ : List[Any] = self.get_config() return config, pixel_values, labels def _A ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Dict = RegNetModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : str = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Optional[Any] = self.num_labels a__ : List[str] = RegNetForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : Dict = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self ): """simple docstring""" a__ : str = self.prepare_config_and_inputs() a__ : Dict = config_and_inputs a__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () A :Union[str, Any] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) A :Optional[int] = False A :int = False A :str = False A :Dict = False def _A ( self ): """simple docstring""" a__ : Optional[int] = RegNetModelTester(self ) a__ : int = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def _A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _A ( self ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _A ( self ): """simple docstring""" pass def _A ( self ): """simple docstring""" a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] = model_class(__UpperCAmelCase ) a__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _A ( self ): """simple docstring""" def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): a__ : Optional[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a__ : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Union[str, Any] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: a__ : int = layer_type a__ : Optional[int] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[Any] = RegNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE( ) -> int: a__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A ( self ): """simple docstring""" a__ : Tuple = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) a__ : Optional[Any] = self.default_image_processor a__ : Optional[int] = prepare_img() a__ : Tuple = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : str = model(**__UpperCAmelCase ) # verify the logits a__ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a__ : str = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
191
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ ) -> float: return 1_0 - x * x def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowercase__ ) * equation(lowercase__ ) >= 0: raise ValueError("Wrong space!" ) lowerCAmelCase__ : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase__ : int = (a + b) / 2 # Check if middle point is root if equation(lowercase__ ) == 0.0: break # Decide the side to repeat the steps if equation(lowercase__ ) * equation(lowercase__ ) < 0: lowerCAmelCase__ : str = c else: lowerCAmelCase__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
453
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> float: UpperCAmelCase_ : List[Any] = sorted(numsa + numsa ) UpperCAmelCase_ , UpperCAmelCase_ : int = divmod(len(UpperCamelCase ) ,2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [float(x) for x in input("Enter the elements of first array: ").split()] lowerCAmelCase__ = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
471
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: # load base model UpperCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCamelCase ,torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase_ : Union[str, Any] = load_file(UpperCamelCase ) UpperCAmelCase_ : Any = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase_ : Optional[Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) UpperCAmelCase_ : str = pipeline.text_encoder else: UpperCAmelCase_ : List[str] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) UpperCAmelCase_ : List[str] = pipeline.unet # find the target layer UpperCAmelCase_ : Dict = layer_infos.pop(0 ) while len(UpperCamelCase ) > -1: try: UpperCAmelCase_ : List[str] = curr_layer.__getattr__(UpperCamelCase ) if len(UpperCamelCase ) > 0: UpperCAmelCase_ : Tuple = layer_infos.pop(0 ) elif len(UpperCamelCase ) == 0: break except Exception: if len(UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase_ : List[Any] = layer_infos.pop(0 ) UpperCAmelCase_ : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' ,'lora_up' ) ) pair_keys.append(UpperCamelCase ) else: pair_keys.append(UpperCamelCase ) pair_keys.append(key.replace('lora_up' ,'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase_ : Dict = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase_ : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase ,UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase_ : Optional[int] = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase_ : Tuple = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase ,UpperCamelCase ) # update visited list for item in pair_keys: visited.append(UpperCamelCase ) return pipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.base_model_path lowerCAmelCase__ = args.checkpoint_path lowerCAmelCase__ = args.dump_path lowerCAmelCase__ = args.lora_prefix_unet lowerCAmelCase__ = args.lora_prefix_text_encoder lowerCAmelCase__ = args.alpha lowerCAmelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
471
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __A ( unittest.TestCase ): def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase__ : Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__ : Any = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def _snake_case (self , **__magic_name__ ): return BertTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def _snake_case (self , **__magic_name__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def _snake_case (self , **__magic_name__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : Any = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : Optional[Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Dict = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) lowerCamelCase__ : List[str] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __magic_name__ ) self.assertIsInstance(processor_fast.tokenizer , __magic_name__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __magic_name__ ) self.assertIsInstance(processor_fast.image_processor , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase__ : Union[str, Any] = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) lowerCamelCase__ : Tuple = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : int = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCamelCase__ : List[str] = self.prepare_image_inputs() lowerCamelCase__ : Dict = image_processor(__magic_name__ , return_tensors="""np""" ) lowerCamelCase__ : Optional[int] = processor(images=__magic_name__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = self.get_image_processor() lowerCamelCase__ : str = self.get_tokenizer() lowerCamelCase__ : Union[str, Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCamelCase__ : Dict = """lower newer""" lowerCamelCase__ : int = processor(text=__magic_name__ ) lowerCamelCase__ : Any = tokenizer(__magic_name__ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): lowerCamelCase__ : List[str] = self.get_image_processor() lowerCamelCase__ : int = self.get_tokenizer() lowerCamelCase__ : List[str] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCamelCase__ : List[Any] = """lower newer""" lowerCamelCase__ : Tuple = self.prepare_image_inputs() lowerCamelCase__ : str = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def _snake_case (self ): lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : Any = processor.batch_decode(__magic_name__ ) lowerCamelCase__ : Dict = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.get_image_processor() lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Optional[int] = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) lowerCamelCase__ : str = """lower newer""" lowerCamelCase__ : List[Any] = self.prepare_image_inputs() lowerCamelCase__ : Any = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
157
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = [10, 20, 30, 40, 50, 60] lowerCAmelCase = [2, 4, 6, 8, 10, 12] lowerCAmelCase = 1_00 self.assertEqual(kp.calc_profit(A_ , A_ , A_ ) , 2_10 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertRaisesRegex(A_ , 'max_weight must greater than zero.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertRaisesRegex(A_ , 'Weight can not be negative.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertRaisesRegex(A_ , 'Profit can not be negative.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertRaisesRegex(A_ , 'max_weight must greater than zero.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertRaisesRegex( A_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
700
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=a_ ): SCREAMING_SNAKE_CASE : List[str] = ['''torch''', '''torchsde'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
514
0
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 while i * i <= n: __SCREAMING_SNAKE_CASE : List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase_ ) > 500: break return t_num if __name__ == "__main__": print(solution())
74
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Dict=1_8 , _lowerCAmelCase : Tuple=3_0 , _lowerCAmelCase : Optional[int]=4_0_0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[Any]=True , ) -> Dict: """simple docstring""" snake_case_ = size if size is not None else {"height": 1_8, "width": 1_8} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) def lowerCAmelCase__ ( self : int ) -> Any: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(_lowerCAmelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCAmelCase ) snake_case_ = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) snake_case_ = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def lowerCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" pass def _lowerCAmelCase ( )->Optional[Any]: '''simple docstring''' snake_case_ = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) snake_case_ = Image.open(dataset[4]["file"] ) snake_case_ = Image.open(dataset[5]["file"] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) snake_case_ = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched snake_case_ = image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) snake_case_ = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
283
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def snake_case_ ( self ): super().setUp() def snake_case_ ( self , **__A ): return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__A ) def snake_case_ ( self , **__A ): return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__A ) def snake_case_ ( self ): __a = """永和服装饰品有限公司,今天天气非常好""" __a = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def snake_case_ ( self ): __a = self.get_tokenizer() __a , __a = self.get_chinese_input_output_texts() __a = tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) __a = tokens + [tokenizer.unk_token] __a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def snake_case_ ( self ): __a = self.get_rust_tokenizer() __a , __a = self.get_chinese_input_output_texts() __a = tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) __a = tokens + [tokenizer.unk_token] __a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): pass
209
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a (): raise RuntimeError("""CUDA out of memory.""" ) class __UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ): super().__init__() __a = nn.Linear(3 , 4 ) __a = nn.BatchNormad(4 ) __a = nn.Linear(4 , 5 ) def snake_case_ ( self , __A ): return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__A ): nonlocal batch_sizes batch_sizes.append(__A ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__A , [128, 64, 32, 16, 8] ) def snake_case_ ( self ): __a = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__A , __A ): nonlocal batch_sizes batch_sizes.append(__A ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __a , __a = mock_training_loop_function("""hello""" ) self.assertListEqual(__A , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def snake_case_ ( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__A ): pass with self.assertRaises(__A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def snake_case_ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__A ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def snake_case_ ( self ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__A , __A , __A ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__A ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def snake_case_ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__A ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(__A ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def snake_case_ ( self ): __a = torch.cuda.memory_allocated() __a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __A ) __a = release_memory(__A ) self.assertEqual(torch.cuda.memory_allocated() , __A )
209
1
"""simple docstring""" def UpperCAmelCase ( snake_case : int = 2000000 ): _lowerCAmelCase:int = [0 for i in range(n + 1 )] _lowerCAmelCase:List[Any] = 1 _lowerCAmelCase:Dict = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case ): _lowerCAmelCase:str = 1 _lowerCAmelCase:Union[str, Any] = 0 for i in range(snake_case ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
227
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase ( snake_case : str ): if not sentence: return "" _lowerCAmelCase:Tuple = dict(zip(snake_case , snake_case ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
227
1
from __future__ import annotations import math class lowerCAmelCase_ : '''simple docstring''' def __init__( self , lowerCamelCase ): '''simple docstring''' a__ = size # approximate the overall size of segment tree with given value a__ = [0 for i in range(0 , 4 * size )] # create array to store lazy update a__ = [0 for i in range(0 , 4 * size )] a__ = [0 for i in range(0 , 4 * size )] # flag for lazy update def _A ( self , lowerCamelCase ): '''simple docstring''' return idx * 2 def _A ( self , lowerCamelCase ): '''simple docstring''' return idx * 2 + 1 def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if left_element == right_element: a__ = a[left_element - 1] else: a__ = (left_element + right_element) // 2 self.build(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.build(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase ) a__ = max( self.segment_tree[self.left(lowerCamelCase )] , self.segment_tree[self.right(lowerCamelCase )] ) def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.flag[idx] is True: a__ = self.lazy[idx] a__ = False if left_element != right_element: a__ = self.lazy[idx] a__ = self.lazy[idx] a__ = True a__ = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a__ = val if left_element != right_element: a__ = val a__ = val a__ = True a__ = True return True a__ = (left_element + right_element) // 2 self.update(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.update(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) a__ = max( self.segment_tree[self.left(lowerCamelCase )] , self.segment_tree[self.right(lowerCamelCase )] ) return True def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if self.flag[idx] is True: a__ = self.lazy[idx] a__ = False if left_element != right_element: a__ = self.lazy[idx] a__ = self.lazy[idx] a__ = True a__ = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a__ = (left_element + right_element) // 2 a__ = self.query(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) a__ = self.query(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return max(lowerCamelCase , lowerCamelCase ) def __str__( self ): '''simple docstring''' return str([self.query(1 , 1 , self.size , lowerCamelCase , lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowercase : List[Any] =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowercase : Optional[Any] =15 _lowercase : Tuple =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
710
def UpperCAmelCase ( lowercase__ : str , lowercase__ : str ): '''simple docstring''' def get_matched_characters(lowercase__ : str , lowercase__ : str ) -> str: a__ = [] a__ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a__ = int(max(0 , i - limit ) ) a__ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase__ ) a__ = f'{_stra[0:_stra.index(lowercase__ )]} {_stra[_stra.index(lowercase__ ) + 1:]}' return "".join(lowercase__ ) # matching characters a__ = get_matched_characters(lowercase__ , lowercase__ ) a__ = get_matched_characters(lowercase__ , lowercase__ ) a__ = len(lowercase__ ) # transposition a__ = ( len([(ca, ca) for ca, ca in zip(lowercase__ , lowercase__ ) if ca != ca] ) // 2 ) if not match_count: a__ = 0.0 else: a__ = ( 1 / 3 * ( match_count / len(lowercase__ ) + match_count / len(lowercase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a__ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
412
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
'''simple docstring''' from collections import namedtuple snake_case : Optional[int] = namedtuple('from_to', 'from_ to') snake_case : Any = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def lowercase__ ( __UpperCamelCase : float , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(__UpperCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(__UpperCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
566
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : int = logging.get_logger(__name__) _a : int = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } _a : Optional[Any] = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } _a : Union[str, Any] = """▁""" class _UpperCAmelCase ( _snake_case): __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_ = None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it _snake_case : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _snake_case : Optional[Any] = vocab_file _snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) _snake_case : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _snake_case : Any = len(self.sp_model ) - 1 _snake_case : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCamelCase__ ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] _snake_case : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCamelCase__ ( self , snake_case_ , snake_case_ = None ): _snake_case : Dict = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): return len(self.sp_model ) def lowerCamelCase__ ( self ): _snake_case : List[str] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Optional[int] = self.sp_model.PieceToId(snake_case_ ) return spm_id if spm_id else self.unk_token_id def lowerCamelCase__ ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): _snake_case : Optional[Any] = [] _snake_case : List[Any] = "" _snake_case : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _snake_case : Tuple = True _snake_case : int = [] else: current_sub_tokens.append(snake_case_ ) _snake_case : Dict = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __getstate__( self ): _snake_case : Dict = self.__dict__.copy() _snake_case : int = None return state def __setstate__( self , snake_case_ ): _snake_case : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _snake_case : List[str] = {} _snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _snake_case : Any = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
87
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a__ ( a : List[str] , a : Any ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case : Any = flax_key_tuple[:-1] + ("weight",) _snake_case : str = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer _snake_case : Optional[int] = flax_key_tuple[:-1] + ("weight",) _snake_case : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def a__ ( a : List[Any] , a : Union[str, Any] , a : List[str] ): """simple docstring""" if "metadata" in layer: _snake_case : Optional[int] = layer.split("metadata" ) _snake_case : Optional[int] = "".join(split_layer[0] )[:-1] _snake_case : int = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _snake_case : Any = layer.split("kvstore" ) _snake_case : str = "".join(split_layer[0] )[:-1] _snake_case : Any = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _snake_case : List[Any] = layer.split("/" ) _snake_case : Tuple = "/".join(split_layer[:-1] ) _snake_case : int = (split_layer[-1],) if "kvstore/path" in layer: _snake_case : Optional[Any] = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _snake_case : Tuple = "file" else: _snake_case : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a__ ( a : List[Any] , a : List[Any] ): """simple docstring""" _snake_case : Union[str, Any] = rename_keys(a ) _snake_case : int = {} for k, v in current_block.items(): _snake_case : Optional[int] = v _snake_case : Optional[int] = new_current_block torch.save(a , a ) def a__ ( a : Dict , a : Tuple , a : List[str] , a : int , a : str = WEIGHTS_NAME ): """simple docstring""" _snake_case : Any = convert_file_size_to_int(a ) _snake_case : Tuple = [] _snake_case : Optional[int] = {} _snake_case : Tuple = 0 _snake_case : Optional[Any] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _snake_case : Any = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _snake_case : Optional[Any] = flatten_dict(a , sep="/" ) _snake_case : Optional[Any] = {} for layer in checkpoint_info.keys(): _snake_case , _snake_case , _snake_case : int = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: _snake_case : Dict = content else: _snake_case : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case : Dict = torch.tensor(a ) _snake_case : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case , _snake_case : Optional[int] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) _snake_case : Optional[Any] = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case : Any = os.path.join( a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case : List[Any] = {} _snake_case : str = 0 _snake_case : List[str] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case : int = os.path.join(a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case : str = {} _snake_case : Any = {} for idx, shard in enumerate(a ): _snake_case : Optional[int] = weights_name.replace( ".bin" , f'-{idx+1:05d}-of-{len(a ):05d}.bin' ) # len(sharded_state_dicts):05d} _snake_case : Dict = os.path.join(a , weights_name.replace(".bin" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(a , os.path.join(a , a ) ) _snake_case : Dict = shard for key in shard: _snake_case : int = shard_file # Add the metadata _snake_case : List[Any] = {"total_size": total_size} _snake_case : Any = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: _snake_case : Union[str, Any] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _a : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a__ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case : List[str] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _snake_case : str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _snake_case : List[Any] = TaTokenizer.from_pretrained("t5-small" ) _snake_case : Optional[Any] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _snake_case : Dict = tokenizer(a , return_tensors="pt" ).input_ids _snake_case : List[Any] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
87
1
from maths.prime_factors import prime_factors def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not isinstance(a_ , a_ ): __A = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = ort.SessionOptions() lowercase_ : Optional[int] = False return options def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default lowercase_ : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase_ : List[str] = "A red cat sitting on a park bench" lowercase_ : int = np.random.RandomState(0 ) lowercase_ : int = pipe( prompt=a , image=a , mask_image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=a , output_type="np" , ) lowercase_ : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
620
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = LxmertTokenizer UpperCAmelCase_ = LxmertTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True def UpperCAmelCase_ ( self :Union[str, Any] ) -> Any: super().setUp() UpperCAmelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Tuple ) -> Optional[int]: UpperCAmelCase__ = "UNwant\u00E9d,running" UpperCAmelCase__ = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self :Tuple ) -> Any: UpperCAmelCase__ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[int]: if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase )
707
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCAmelCase : int = "facebook/wmt19-en-de" _lowerCAmelCase : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCAmelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCAmelCase : List[Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCAmelCase : Optional[Any] = tokenizer(["Making tiny model"], return_tensors="pt") _lowerCAmelCase : Optional[Any] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save _lowerCAmelCase : Optional[Any] = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
364
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowercase__ : Tuple = 'facebook/wmt19-en-de' lowercase__ : Tuple = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowercase__ : List[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowercase__ : List[str] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test lowercase__ : Union[str, Any] = tokenizer(['Making tiny model'], return_tensors='pt') lowercase__ : List[str] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save lowercase__ : Dict = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
98
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase = '\\n\n' _lowerCamelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' _lowerCamelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __snake_case ( self): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string'''), }) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __snake_case ( self , a__ , a__ , a__ = 16 , a__ = True , a__=None): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _lowerCamelCase : List[Any] = '''cuda''' else: _lowerCamelCase : Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase : List[str] = AutoModelForCausalLM.from_pretrained(a__) _lowerCamelCase : Union[str, Any] = model.to(a__) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(a__) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _lowerCamelCase : Any = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(a__) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _lowerCamelCase : Optional[int] = model.config.max_length - 1 else: _lowerCamelCase : Optional[int] = model.config.max_length _lowerCamelCase : Union[str, Any] = tokenizer( a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors='''pt''' , return_attention_mask=a__ , ).to(a__) _lowerCamelCase : Any = encodings['''input_ids'''] _lowerCamelCase : Dict = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _lowerCamelCase : Dict = [] _lowerCamelCase : Union[str, Any] = CrossEntropyLoss(reduction='''none''') for start_index in logging.tqdm(range(0 , len(a__) , a__)): _lowerCamelCase : Any = min(start_index + batch_size , len(a__)) _lowerCamelCase : List[Any] = encoded_texts[start_index:end_index] _lowerCamelCase : Optional[int] = attn_masks[start_index:end_index] if add_start_token: _lowerCamelCase : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(a__) _lowerCamelCase : str = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) _lowerCamelCase : str = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(a__), attn_mask] , dim=1) _lowerCamelCase : Dict = encoded_batch with torch.no_grad(): _lowerCamelCase : List[str] = model(a__ , attention_mask=a__).logits _lowerCamelCase : List[str] = out_logits[..., :-1, :].contiguous() _lowerCamelCase : Dict = labels[..., 1:].contiguous() _lowerCamelCase : List[Any] = attn_mask[..., 1:].contiguous() _lowerCamelCase : str = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , a__) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a__)}
114
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ", __lowercase, ) class a__ ( __lowercase ): __magic_name__ : str = RobertaConfig __magic_name__ : Dict = 'roberta' def __init__(self : Optional[int], __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE : Dict = RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ", __lowercase, ) class a__ ( __lowercase ): __magic_name__ : int = RobertaConfig __magic_name__ : Tuple = 'roberta' def __init__(self : Any, __UpperCAmelCase : str ) -> Dict: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE : Union[str, Any] = config.num_labels SCREAMING_SNAKE_CASE : List[str] = config.num_hidden_layers SCREAMING_SNAKE_CASE : str = DeeRobertaModel(__A ) SCREAMING_SNAKE_CASE : Any = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(config.hidden_size, self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def lowercase__ (self : int, __UpperCAmelCase : Dict=None, __UpperCAmelCase : List[str]=None, __UpperCAmelCase : List[str]=None, __UpperCAmelCase : Optional[Any]=None, __UpperCAmelCase : int=None, __UpperCAmelCase : str=None, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : int=-1, __UpperCAmelCase : Optional[int]=False, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.num_layers try: SCREAMING_SNAKE_CASE : Any = self.roberta( __A, attention_mask=__A, token_type_ids=__A, position_ids=__A, head_mask=__A, inputs_embeds=__A, ) SCREAMING_SNAKE_CASE : int = outputs[1] SCREAMING_SNAKE_CASE : Any = self.dropout(__A ) SCREAMING_SNAKE_CASE : Any = self.classifier(__A ) SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE : Union[str, Any] = e.message SCREAMING_SNAKE_CASE : List[Any] = e.exit_layer SCREAMING_SNAKE_CASE : int = outputs[0] if not self.training: SCREAMING_SNAKE_CASE : Any = entropy(__A ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Optional[Any] = MSELoss() SCREAMING_SNAKE_CASE : Any = loss_fct(logits.view(-1 ), labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE : Optional[Any] = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE : Any = highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Tuple = MSELoss() SCREAMING_SNAKE_CASE : List[str] = loss_fct(highway_logits.view(-1 ), labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Dict = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Tuple = loss_fct(highway_logits.view(-1, self.num_labels ), labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: SCREAMING_SNAKE_CASE : Optional[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE : Optional[Any] = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE : Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
714
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class a__ : def __init__(self : Any, __UpperCAmelCase : int, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : List[Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : int, __UpperCAmelCase : List[str]=0.2, __UpperCAmelCase : Dict=0.2 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = bp_numa SCREAMING_SNAKE_CASE : Optional[Any] = bp_numa SCREAMING_SNAKE_CASE : str = bp_numa SCREAMING_SNAKE_CASE : Dict = conva_get[:2] SCREAMING_SNAKE_CASE : Union[str, Any] = conva_get[2] SCREAMING_SNAKE_CASE : int = size_pa SCREAMING_SNAKE_CASE : int = rate_w SCREAMING_SNAKE_CASE : int = rate_t SCREAMING_SNAKE_CASE : int = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Dict = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(__UpperCAmelCase, '''wb''' ) as f: pickle.dump(__UpperCAmelCase, __UpperCAmelCase ) print(F'''Model saved: {save_path}''' ) @classmethod def lowercase__ (cls : str, __UpperCAmelCase : List[str] ) -> int: """simple docstring""" with open(__UpperCAmelCase, '''rb''' ) as f: SCREAMING_SNAKE_CASE : int = pickle.load(__UpperCAmelCase ) # noqa: S301 SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE : Dict = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE : List[Any] = CNN(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # modify model parameter SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE : Any = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def lowercase__ (self : Optional[Any], __UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def lowercase__ (self : Optional[int], __UpperCAmelCase : List[str] ) -> str: """simple docstring""" return round(__UpperCAmelCase, 3 ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Any, __UpperCAmelCase : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = convs[0] SCREAMING_SNAKE_CASE : int = convs[1] SCREAMING_SNAKE_CASE : List[str] = np.shape(__UpperCAmelCase )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i_focus in range(0, size_data - size_conv + 1, __UpperCAmelCase ): for j_focus in range(0, size_data - size_conv + 1, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : Optional[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : Optional[int] = [] for i_focus in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Any = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Dict = np.asmatrix(__UpperCAmelCase ).reshape( __UpperCAmelCase, __UpperCAmelCase ) data_featuremap.append(__UpperCAmelCase ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(__UpperCAmelCase ) return focus_list, data_featuremap def lowercase__ (self : Any, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Tuple, __UpperCAmelCase : List[str]="average_pool" ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE : str = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE : Tuple = [] for i_map in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : str = featuremaps[i_map] SCREAMING_SNAKE_CASE : Any = [] for i_focus in range(0, __UpperCAmelCase, __UpperCAmelCase ): for j_focus in range(0, __UpperCAmelCase, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Tuple = np.asmatrix(__UpperCAmelCase ).reshape(__UpperCAmelCase, __UpperCAmelCase ) featuremap_pooled.append(__UpperCAmelCase ) return featuremap_pooled def lowercase__ (self : Any, __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = np.shape(data[i] ) SCREAMING_SNAKE_CASE : str = data[i].reshape(1, shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE : int = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(__UpperCAmelCase ) return data_expanded def lowercase__ (self : Any, __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.asarray(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def lowercase__ (self : Tuple, __UpperCAmelCase : List[Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Any, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = 0 for i_map in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : Dict = np.ones((size_map, size_map) ) for i in range(0, __UpperCAmelCase, __UpperCAmelCase ): for j in range(0, __UpperCAmelCase, __UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE : Dict = i_pool + 1 SCREAMING_SNAKE_CASE : List[Any] = np.multiply( __UpperCAmelCase, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(__UpperCAmelCase ) return pd_all def lowercase__ (self : Optional[int], __UpperCAmelCase : Optional[int], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : List[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : Optional[int]=bool ) -> List[Any]: """simple docstring""" print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(__UpperCAmelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(__UpperCAmelCase )) ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Any = 10000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE : int = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE : Tuple = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : Dict = self.pooling(__UpperCAmelCase, self.size_poolinga ) SCREAMING_SNAKE_CASE : Dict = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = self._expand(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_bp_input SCREAMING_SNAKE_CASE : Tuple = np.dot(__UpperCAmelCase, self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : List[Any] = self.sig(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.dot(__UpperCAmelCase, self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(__UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE : Union[str, Any] = np.multiply( (data_teach - bp_outa), np.multiply(__UpperCAmelCase, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.multiply( np.dot(__UpperCAmelCase, self.wkj ), np.multiply(__UpperCAmelCase, (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Dict = np.dot(__UpperCAmelCase, self.vji ) SCREAMING_SNAKE_CASE : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE : Optional[Any] = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE : Optional[Any] = self._calculate_gradient_from_pool( __UpperCAmelCase, __UpperCAmelCase, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE : Any = self.rate_weight * np.dot(__UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE : int = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE : Union[str, Any] = rp + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = error_count / patterns all_mse.append(__UpperCAmelCase ) def draw_error(): SCREAMING_SNAKE_CASE : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCAmelCase, '''+-''' ) plt.plot(__UpperCAmelCase, '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(__UpperCAmelCase, alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def lowercase__ (self : List[str], __UpperCAmelCase : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(__UpperCAmelCase )) ) for p in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : List[Any] = self.pooling(__UpperCAmelCase, self.size_poolinga ) SCREAMING_SNAKE_CASE : str = self._expand(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = data_bp_input SCREAMING_SNAKE_CASE : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE : Dict = self.sig(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(__UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE : List[str] = [list(map(self.do_round, __UpperCAmelCase ) ) for each in produce_out] return np.asarray(__UpperCAmelCase ) def lowercase__ (self : Optional[Any], __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.asmatrix(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.convolute( __UpperCAmelCase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) SCREAMING_SNAKE_CASE : List[Any] = self.pooling(__UpperCAmelCase, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
355
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowercase: '''simple docstring''' lowercase__ = field( metadata={"help": "The output directory where the model will be written."} , ) lowercase__ = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) lowercase__ = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) lowercase__ = field( default=__a , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) lowercase__ = field( default=__a , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = HfArgumentParser((ModelArguments,) ) ((_snake_case) , ) : Any = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _snake_case : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _snake_case : List[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _snake_case : List[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _snake_case : Union[str, Any] = True _snake_case : Any = True _snake_case : Optional[Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=snake_case__ , decoder_config=snake_case__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _snake_case : List[str] = decoder_config.decoder_start_token_id _snake_case : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _snake_case : Optional[int] = decoder_config.bos_token_id if pad_token_id is None: _snake_case : List[str] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _snake_case : str = decoder_config.eos_token_id _snake_case : Tuple = decoder_start_token_id _snake_case : List[str] = pad_token_id _snake_case : str = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _snake_case : List[str] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _snake_case : List[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
609
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A_ = logging.get_logger(__name__) A_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class lowercase( __a ): '''simple docstring''' def __init__( self: List[str], a_: Dict=None, a_: int=None, *a_: List[Any], **a_: Union[str, Any] ): '''simple docstring''' super().__init__(*a_, **a_ ) if config is None: assert isinstance(self.model, a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _snake_case : Any = self.model.config else: _snake_case : int = config _snake_case : Union[str, Any] = data_args _snake_case : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config, a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" """ padding..""" ) if self.args.label_smoothing == 0: _snake_case : Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _snake_case : Dict = label_smoothed_nll_loss def UpperCamelCase_ ( self: int, a_: int ): '''simple docstring''' if self.optimizer is None: _snake_case : Optional[Any] = ["""bias""", """LayerNorm.weight"""] _snake_case : Optional[Any] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _snake_case : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _snake_case : str = Adafactor _snake_case : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: _snake_case : Any = AdamW _snake_case : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _snake_case : List[Any] = self.args.learning_rate if self.sharded_ddp: _snake_case : Dict = OSS( params=a_, optim=a_, **a_, ) else: _snake_case : Union[str, Any] = optimizer_cls(a_, **a_ ) if self.lr_scheduler is None: _snake_case : Optional[int] = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCamelCase_ ( self: Dict, a_: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _snake_case : Union[str, Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _snake_case : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: _snake_case : Tuple = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=a_ ) return scheduler def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase_ ( self: List[str], a_: int, a_: Optional[int], a_: str ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _snake_case : int = model(**a_, use_cache=a_ )[0] _snake_case : Union[str, Any] = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models _snake_case , _snake_case : Optional[Any] = model(**a_, labels=a_, use_cache=a_ )[:2] else: # compute label smoothed loss _snake_case : Union[str, Any] = model(**a_, use_cache=a_ )[0] _snake_case : Optional[Any] = torch.nn.functional.log_softmax(a_, dim=-1 ) _snake_case , _snake_case : List[Any] = self.loss_fn(a_, a_, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = inputs.pop("""labels""" ) _snake_case , _snake_case : str = self._compute_loss(a_, a_, a_ ) return loss def UpperCamelCase_ ( self: Optional[int], a_: nn.Module, a_: Dict[str, Union[torch.Tensor, Any]], a_: bool, a_: Optional[List[str]] = None, ): '''simple docstring''' _snake_case : str = self._prepare_inputs(a_ ) _snake_case : List[str] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _snake_case : List[str] = self.model.generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], **a_, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _snake_case : Union[str, Any] = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) _snake_case : Tuple = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _snake_case , _snake_case : Dict = self._compute_loss(a_, a_, a_ ) _snake_case : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _snake_case : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _snake_case : Tuple = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f" padded to `max_length`={max_length}" ) _snake_case : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) _snake_case : Tuple = tensor return padded_tensor
609
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowerCAmelCase = """src/diffusers""" # Matches is_xxx_available() __lowerCAmelCase = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla __lowerCAmelCase = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") __lowerCAmelCase = """ {0} = None """ __lowerCAmelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ __lowerCAmelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def _lowercase ( a__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = _re_backend.findall(a__ ) if len(a__ ) == 0: return None return "_and_".join(a__ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(a__ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking _UpperCamelCase = 0 _UpperCamelCase = {} # Go through the end of the file while line_index < len(a__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 _UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(a__ ) and len(lines[line_index] ) > 1: _UpperCamelCase = lines[line_index] _UpperCamelCase = _re_single_line_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(a__ ) > 0: _UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _lowercase ( a__ : List[str] , a__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(a__ ) elif name.islower(): return DUMMY_FUNCTION.format(a__ , a__ ) else: return DUMMY_CLASS.format(a__ , a__ ) def _lowercase ( a__ : List[str]=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: _UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): _UpperCamelCase = "[" + ", ".join(f'''"{b}"''' for b in backend.split("_and_" ) ) + "]" _UpperCamelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(a__ , a__ ) for o in objects] ) _UpperCamelCase = dummy_file return dummy_files def _lowercase ( a__ : Dict=False ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCamelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. _UpperCamelCase = os.path.join(a__ , "utils" ) _UpperCamelCase = { backend: os.path.join(a__ , f'''dummy_{short_names.get(a__ , a__ )}_objects.py''' ) for backend in dummy_files.keys() } _UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(a__ ): with open(a__ , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCamelCase = f.read() else: _UpperCamelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(a__ , a__ )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f'''diffusers.utils.dummy_{short_names.get(a__ , a__ )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCAmelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
589
from ...configuration_utils import PretrainedConfig class lowerCamelCase_ ( lowercase ): __lowercase : Dict = "bert-generation" def __init__( self , lowerCamelCase_=5_03_58 , lowerCamelCase_=10_24 , lowerCamelCase_=24 , lowerCamelCase_=16 , lowerCamelCase_=40_96 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-12 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_="absolute" , lowerCamelCase_=True , **lowerCamelCase_ , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache
589
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase_ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCAmelCase_ = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
82
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) lowerCamelCase = None def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=lowerCAmelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=lowerCAmelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ = bool(qa["answers"]["text"] ) return qid_to_has_ans def a__ ( lowerCAmelCase__ ): def remove_articles(lowerCAmelCase__ ): return ARTICLES_REGEX.sub(" " , lowerCAmelCase__ ) def white_space_fix(lowerCAmelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase__ ): UpperCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def a__ ( lowerCAmelCase__ ): if not s: return [] return normalize_answer(lowerCAmelCase__ ).split() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return int(normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = get_tokens(lowerCAmelCase__ ) UpperCAmelCase_ = get_tokens(lowerCAmelCase__ ) UpperCAmelCase_ = collections.Counter(lowerCAmelCase__ ) & collections.Counter(lowerCAmelCase__ ) UpperCAmelCase_ = sum(common.values() ) if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase_ = 1.0 * num_same / len(lowerCAmelCase__ ) UpperCAmelCase_ = 1.0 * num_same / len(lowerCAmelCase__ ) UpperCAmelCase_ = (2 * precision * recall) / (precision + recall) return fa def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ = qa["id"] UpperCAmelCase_ = [t for t in qa["answers"]["text"] if normalize_answer(lowerCAmelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase_ = [""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue UpperCAmelCase_ = preds[qid] # Take max over all gold answers UpperCAmelCase_ = max(compute_exact(lowerCAmelCase__ , lowerCAmelCase__ ) for a in gold_answers ) UpperCAmelCase_ = max(compute_fa(lowerCAmelCase__ , lowerCAmelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} for qid, s in scores.items(): UpperCAmelCase_ = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase_ = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase_ = s return new_scores def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): if not qid_list: UpperCAmelCase_ = len(lowerCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCAmelCase_ = len(lowerCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for k in new_eval: UpperCAmelCase_ = new_eval[k] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): plt.step(lowerCAmelCase__ , lowerCAmelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(lowerCAmelCase__ , lowerCAmelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCAmelCase__ ) plt.savefig(lowerCAmelCase__ ) plt.clf() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): UpperCAmelCase_ = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : na_probs[k] ) UpperCAmelCase_ = 0.0 UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = [1.0] UpperCAmelCase_ = [0.0] UpperCAmelCase_ = 0.0 for i, qid in enumerate(lowerCAmelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase_ = true_pos / float(i + 1 ) UpperCAmelCase_ = true_pos / float(lowerCAmelCase__ ) if i == len(lowerCAmelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCAmelCase__ ) recalls.append(lowerCAmelCase__ ) if out_image: plot_pr_curve(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return {"ap": 100.0 * avg_prec} def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if out_image_dir and not os.path.exists(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) UpperCAmelCase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCAmelCase_ = {k: float(lowerCAmelCase__ ) for k, v in qid_to_has_ans.items()} UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_exact" ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_f1" ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_oracle" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not qid_list: return UpperCAmelCase_ = [na_probs[k] for k in qid_list] UpperCAmelCase_ = np.ones_like(lowerCAmelCase__ ) / float(len(lowerCAmelCase__ ) ) plt.hist(lowerCAmelCase__ , weights=lowerCAmelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowerCAmelCase__ , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase_ = num_no_ans UpperCAmelCase_ = cur_score UpperCAmelCase_ = 0.0 UpperCAmelCase_ = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : na_probs[k] ) for i, qid in enumerate(lowerCAmelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase_ = scores[qid] else: if preds[qid]: UpperCAmelCase_ = -1 else: UpperCAmelCase_ = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase_ = cur_score UpperCAmelCase_ = na_probs[qid] return 100.0 * best_score / len(lowerCAmelCase__ ), best_thresh def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = find_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = find_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = best_exact UpperCAmelCase_ = exact_thresh UpperCAmelCase_ = best_fa UpperCAmelCase_ = fa_thresh def a__ ( ): with open(OPTS.data_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) UpperCAmelCase_ = dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) else: UpperCAmelCase_ = {k: 0.0 for k in preds} UpperCAmelCase_ = make_qid_to_has_ans(lowerCAmelCase__ ) # maps qid to True/False UpperCAmelCase_ = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase_ = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase_ , UpperCAmelCase_ = get_raw_scores(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = apply_no_ans_threshold(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.na_prob_thresh ) UpperCAmelCase_ = apply_no_ans_threshold(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.na_prob_thresh ) UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ ) if has_ans_qids: UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ , qid_list=lowerCAmelCase__ ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "HasAns" ) if no_ans_qids: UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ , qid_list=lowerCAmelCase__ ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir ) histogram_na_prob(lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) else: print(json.dumps(lowerCAmelCase__ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
82
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): '''simple docstring''' _lowercase = VQModel _lowercase = 'sample' @property def __lowerCamelCase ( self , __UpperCAmelCase=(32, 32) ): SCREAMING_SNAKE_CASE_ : int =4 SCREAMING_SNAKE_CASE_ : List[str] =3 SCREAMING_SNAKE_CASE_ : List[str] =floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) return {"sample": image} @property def __lowerCamelCase ( self ): return (3, 32, 32) @property def __lowerCamelCase ( self ): return (3, 32, 32) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Any ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } SCREAMING_SNAKE_CASE_ : Optional[Any] =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] =VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(__UpperCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) SCREAMING_SNAKE_CASE_ : Any =image.to(__UpperCAmelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any =model(__UpperCAmelCase ).sample SCREAMING_SNAKE_CASE_ : Tuple =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ : int =torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
153
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['DPTFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
153
1
from math import pi, sqrt def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if num <= 0: raise ValueError('math domain error' ) if num > 1_71.5: raise OverflowError('math range error' ) elif num - int(__snake_case ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(__snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __lowerCamelCase ( ): '''simple docstring''' assert gamma(0.5 ) == sqrt(__snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : List[str] = 1.0 while num: _UpperCAmelCase : str = float(input("""Gamma of: """)) print(F'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase : List[str] = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer lowerCamelCase : Dict = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : int = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : Optional[int] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class _UpperCamelCase : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __lowerCAmelCase = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" __lowerCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , )-> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class _UpperCamelCase (a_ , a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = DPRReaderTokenizer
367
0
"""simple docstring""" class UpperCAmelCase : def __init__( self : Optional[int] ): """simple docstring""" _snake_case = '''''' _snake_case = '''''' _snake_case = [] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _snake_case = self.__min_dist_top_down_dp(__lowerCamelCase , n - 1 ) _snake_case = self.__min_dist_top_down_dp(m - 1 , __lowerCamelCase ) _snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _snake_case = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" _snake_case = worda _snake_case = worda _snake_case = [[-1 for _ in range(len(__lowerCamelCase ) )] for _ in range(len(__lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(__lowerCamelCase ) - 1 , len(__lowerCamelCase ) - 1 ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" _snake_case = worda _snake_case = worda _snake_case = len(__lowerCamelCase ) _snake_case = len(__lowerCamelCase ) _snake_case = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _snake_case = j elif j == 0: # second string is empty _snake_case = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _snake_case = self.dp[i - 1][j - 1] else: _snake_case = self.dp[i][j - 1] _snake_case = self.dp[i - 1][j] _snake_case = self.dp[i - 1][j - 1] _snake_case = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": snake_case = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() snake_case = input('''Enter the first string: ''').strip() snake_case = input('''Enter the second string: ''').strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
709
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = '''time_series_transformer''' A__ : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : int = 6_4 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_0_0 , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : List[Any] , ): """simple docstring""" # time series specific configuration _snake_case = prediction_length _snake_case = context_length or prediction_length _snake_case = distribution_output _snake_case = loss _snake_case = input_size _snake_case = num_time_features _snake_case = lags_sequence _snake_case = scaling _snake_case = num_dynamic_real_features _snake_case = num_static_real_features _snake_case = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = cardinality else: _snake_case = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _snake_case = embedding_dimension else: _snake_case = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _snake_case = num_parallel_samples # Transformer architecture configuration _snake_case = input_size * len(__lowerCamelCase ) + self._number_of_features _snake_case = d_model _snake_case = encoder_attention_heads _snake_case = decoder_attention_heads _snake_case = encoder_ffn_dim _snake_case = decoder_ffn_dim _snake_case = encoder_layers _snake_case = decoder_layers _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = activation_function _snake_case = init_std _snake_case = use_cache super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
404
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __lowerCAmelCase = "tiny-wmt19-en-ru" # Build # borrowed from a test __lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] __lowerCAmelCase = dict(zip(vocab, range(len(vocab)))) __lowerCAmelCase = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(tmpdirname) __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) __lowerCAmelCase = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __lowerCAmelCase = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __lowerCAmelCase = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __lowerCAmelCase = tokenizer(['Making tiny model'], return_tensors='pt') __lowerCAmelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
201
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( A , A , A=None , A=None ): '''simple docstring''' if attention_mask is None: _a : List[Any] = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a : '''simple docstring''' __lowerCAmelCase : List[str] = OPTConfig __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Any = """gelu""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=9_9 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=2_0 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=1_6 , lowerCamelCase_=1_6 , ) -> List[Any]: _a : Tuple = parent _a : List[str] = batch_size _a : str = seq_length _a : Optional[Any] = is_training _a : List[str] = use_labels _a : Optional[int] = vocab_size _a : int = hidden_size _a : List[Any] = num_hidden_layers _a : Optional[int] = num_attention_heads _a : int = intermediate_size _a : Union[str, Any] = hidden_act _a : Any = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : int = max_position_embeddings _a : Optional[Any] = eos_token_id _a : int = pad_token_id _a : Optional[int] = bos_token_id _a : Dict = embed_dim _a : Union[str, Any] = word_embed_proj_dim _a : str = False def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _a : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _a : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _a : Optional[int] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCamelCase_ , **self.config_updates , ) _a : Any = prepare_opt_inputs_dict(lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> str: _a : List[str] = TFOPTModel(config=lowerCamelCase_ ) _a : Any = inputs_dict['input_ids'] _a : Union[str, Any] = input_ids[:1, :] _a : Any = inputs_dict['attention_mask'][:1, :] _a : str = 1 # first forward pass _a : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ ) _a , _a : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _a : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _a : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _a : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] _a : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _a : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _a : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _a : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , rtol=1e-3 ) @require_tf class a ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowerCAmelCase : int = (TFOPTForCausalLM,) if is_tf_available() else () __lowerCAmelCase : str = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = 10 def __UpperCamelCase ( self ) -> str: _a : str = TFOPTModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> List[str]: _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Any: _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase_ , lowerCamelCase_ ): if hasattr(lowerCamelCase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings _a : Union[str, Any] = model_class(config=lowerCamelCase_ ) _a : Optional[int] = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings() ) _a : Optional[int] = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase_ ) _a : str = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings() ) _a : Union[str, Any] = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _a : Optional[int] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCamelCase_ ) # check that weights remain the same after resizing _a : Optional[int] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a : List[str] = False self.assertTrue(lowerCamelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCamelCase_ ) _a : Optional[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a : Optional[Any] = False self.assertTrue(lowerCamelCase_ ) def UpperCAmelCase_ ( A ): '''simple docstring''' return tf.constant(A , dtype=tf.intaa ) @require_tf class a ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Optional[Any] = 99 def __UpperCamelCase ( self ) -> List[str]: _a : List[str] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _a : Any = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _a : Tuple = input_ids.shape[0] _a : Any = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Any = TFOPTModel.from_pretrained('facebook/opt-350m' ) _a : Union[str, Any] = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _a : Any = tf.not_equal(lowerCamelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _a : Dict = model(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ).last_hidden_state _a : List[Any] = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCamelCase_ ) _a : int = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-3 ) ) _a : Union[str, Any] = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_ ) _a : List[str] = xla_generate(lowerCamelCase_ , lowerCamelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-2 ) ) @require_tf @slow class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> Any: super().setUp() _a : Any = 'facebook/opt-350m' def __UpperCamelCase ( self ) -> str: _a : List[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) _a : List[str] = GPTaTokenizer.from_pretrained(self.path_model ) _a : Dict = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _a : Union[str, Any] = tokenizer(lowerCamelCase_ , return_tensors='tf' , padding=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _a : List[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _a : int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4 ) ) _a : Any = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_ ) _a : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4 ) ) @require_tf @slow class a ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self ) -> Optional[int]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCamelCase ( self ) -> List[Any]: _a : Any = 'facebook/opt-125m' _a : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _a : str = [] _a : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) _a : Tuple = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: _a : Tuple = tokenizer(lowerCamelCase_ , return_tensors='tf' ).input_ids _a : Union[str, Any] = model.generate(lowerCamelCase_ , max_length=1_0 ) _a : Any = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Tuple: _a : int = 'facebook/opt-350m' _a : Dict = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) _a : Any = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) _a : Any = 'left' # use different length sentences to test batching _a : Optional[Any] = [ 'Hello, my dog is a little', 'Today, I', ] _a : List[Any] = tokenizer(lowerCamelCase_ , return_tensors='tf' , padding=lowerCamelCase_ ) _a : Dict = inputs['input_ids'] _a : Tuple = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs['attention_mask'] ) _a : Dict = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _a : Union[str, Any] = model.generate(input_ids=lowerCamelCase_ ) _a : Any = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _a : Union[str, Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _a : str = model.generate(input_ids=lowerCamelCase_ , max_length=model.config.max_length - num_paddings ) _a : str = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) _a : Optional[int] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) _a : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) _a : Tuple = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] ) def __UpperCamelCase ( self ) -> Union[str, Any]: _a : str = 'facebook/opt-350m' _a : List[str] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _a : List[str] = [] _a : Union[str, Any] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) _a : int = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: _a : List[str] = tokenizer(lowerCamelCase_ , return_tensors='tf' ).input_ids _a : List[Any] = model.generate(lowerCamelCase_ , max_length=1_0 ) _a : Any = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
120
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = LongformerTokenizer _lowerCamelCase = True _lowerCamelCase = LongformerTokenizerFast _lowerCamelCase = True def __UpperCamelCase ( self : Optional[Any]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase__ : Optional[int] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ : List[str] = {'unk_token': '<unk>'} UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def __UpperCamelCase ( self : int , **UpperCAmelCase_ : int): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Dict): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : str = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ : int = tokenizer.tokenize(UpperCAmelCase_) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokens + [tokenizer.unk_token] UpperCamelCase__ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096') UpperCamelCase__ : str = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Union[str, Any] = 'Encode this sequence.' UpperCamelCase__ : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8')[0]] # Testing encoder arguments UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) tokenizer.add_special_tokens({'bos_token': '<s>'}) UpperCamelCase__ : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) # Testing spaces after special tokens UpperCamelCase__ : Tuple = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_)}) # mask token has a left space UpperCamelCase__ : Any = tokenizer.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'Encode <mask> sequence' UpperCamelCase__ : Optional[Any] = 'Encode <mask>sequence' UpperCamelCase__ : List[str] = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = encoded.index(UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Any = encoded.index(UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): pass def __UpperCamelCase ( self : Optional[int]): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'A, <mask> AllenNLP sentence.' UpperCamelCase__ : Any = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) UpperCamelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) UpperCamelCase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) def __UpperCamelCase ( self : Tuple): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) UpperCamelCase__ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['trim_offsets'] , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ : str = F'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : str = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ : int = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_) + 1, 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , )
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=3, A=4, A=[10, 20, 30, 40], A=[2, 2, 3, 2], A=True, A=True, A=37, A="gelu", A=10, A=0.02, A=["stage2", "stage3", "stage4"], A=3, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = out_features SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Any = num_stages def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=A, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=A, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = UperNetForSemanticSegmentation(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Any = model(A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () A : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} A : List[Any] = False A : Tuple = False A : Optional[Any] = False A : str = False A : List[str] = False A : int = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(A ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_stages self.assertEqual(len(A ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = _config_zero_init(A ) SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(config=A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason='UperNet does not have tied weights' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' ,repo_type='dataset' ,filename='ADE_val_00000001.jpg' ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open(__UpperCamelCase ).convert('RGB' ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(A ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : str = processor(images=A, return_tensors='pt' ).to(A ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**A ) SCREAMING_SNAKE_CASE : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], A, atol=1E-4 ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) SCREAMING_SNAKE_CASE : Dict = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(A ) SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : int = processor(images=A, return_tensors='pt' ).to(A ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**A ) SCREAMING_SNAKE_CASE : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], A, atol=1E-4 ) )
28
lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCamelCase( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: # Return True if there is node that has not iterated. __snake_case = [False] * len(__snake_case ) __snake_case = [s] __snake_case = True while queue: __snake_case = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__snake_case ) __snake_case = True __snake_case = u return visited[t] def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: __snake_case = [-1] * (len(__snake_case )) __snake_case = 0 __snake_case = [] __snake_case = [i[:] for i in graph] # Record original cut, copy. while bfs(__snake_case , __snake_case , __snake_case , __snake_case ): __snake_case = float("Inf" ) __snake_case = sink while s != source: # Find the minimum value in select path __snake_case = min(__snake_case , graph[parent[s]][s] ) __snake_case = parent[s] max_flow += path_flow __snake_case = sink while v != source: __snake_case = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __snake_case = parent[v] for i in range(len(__snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
524
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCamelCase = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) UpperCamelCase = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) UpperCamelCase = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) UpperCamelCase = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) UpperCamelCase = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) UpperCamelCase = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) UpperCamelCase = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) UpperCamelCase = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) UpperCamelCase = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) UpperCamelCase = key.replace('image_encoder.module' , 'flava.image_model' ) UpperCamelCase = key.replace('text_encoder.module' , 'flava.text_model' ) UpperCamelCase = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) UpperCamelCase = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) UpperCamelCase = key.replace('text_projection' , 'flava.text_projection' ) UpperCamelCase = key.replace('image_projection' , 'flava.image_projection' ) UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): UpperCamelCase = value return upgrade @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__=None ) -> Union[str, Any]: """simple docstring""" if config_path is not None: UpperCamelCase = FlavaConfig.from_pretrained(A__ ) else: UpperCamelCase = FlavaConfig() UpperCamelCase = FlavaForPreTraining(A__ ).eval() UpperCamelCase = convert_dalle_checkpoint(A__ , A__ , save_checkpoint=A__ ) if os.path.exists(A__ ): UpperCamelCase = torch.load(A__ , map_location='cpu' ) else: UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' ) UpperCamelCase = upgrade_state_dict(A__ , A__ ) hf_model.load_state_dict(A__ ) UpperCamelCase = hf_model.state_dict() UpperCamelCase = count_parameters(A__ ) UpperCamelCase = count_parameters(A__ ) + count_parameters(A__ ) assert torch.allclose(A__ , A__ , atol=1e-3 ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowerCamelCase : Any = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
705
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE ( _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : List[Any] , UpperCamelCase__ : str=2_0_0_0 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=2_0 , UpperCamelCase__ : Union[str, Any]=1E-3 ): """simple docstring""" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase__ , device=UpperCamelCase__ ) def A ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCamelCase = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): UpperCamelCase = std.unsqueeze(-1 ) UpperCamelCase = -score / std # compute UpperCamelCase = -1.0 / len(self.timesteps ) UpperCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCamelCase = beta_t.unsqueeze(-1 ) UpperCamelCase = -0.5 * beta_t * x UpperCamelCase = torch.sqrt(UpperCamelCase__ ) UpperCamelCase = drift - diffusion**2 * score UpperCamelCase = x + drift * dt # add noise UpperCamelCase = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase__ , device=x.device , dtype=x.dtype ) UpperCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
324
0
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 1000 ): lowercase__ , lowercase__ = 1, 1 lowercase__ = 2 while True: lowercase__ = 0 lowercase__ = fa + fa lowercase__ , lowercase__ = fa, f index += 1 for _ in str(SCREAMING_SNAKE_CASE_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
413
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def constraint_to_multiple_of(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else output_size lowercase__ , lowercase__ = get_image_size(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE_ ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE_ ) return (new_height, new_width) class _snake_case ( lowercase__): UpperCamelCase__ : Tuple =["""pixel_values"""] def __init__( self : Any, __lowercase : bool = True, __lowercase : Dict[str, int] = None, __lowercase : PILImageResampling = PILImageResampling.BILINEAR, __lowercase : bool = False, __lowercase : int = 1, __lowercase : bool = True, __lowercase : Union[int, float] = 1 / 255, __lowercase : bool = True, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[float, List[float]]] = None, **__lowercase : List[Any], ): super().__init__(**__lowercase ) lowercase__ = size if size is not None else {"height": 384, "width": 384} lowercase__ = get_size_dict(__lowercase ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self : List[Any], __lowercase : np.ndarray, __lowercase : Dict[str, int], __lowercase : bool = False, __lowercase : int = 1, __lowercase : PILImageResampling = PILImageResampling.BICUBIC, __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : Union[str, Any], ): lowercase__ = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size( __lowercase, output_size=(size["height"], size["width"]), keep_aspect_ratio=__lowercase, multiple=__lowercase, ) return resize(__lowercase, size=__lowercase, resample=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : str, __lowercase : np.ndarray, __lowercase : Union[int, float], __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : List[Any], ): return rescale(__lowercase, scale=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : Any, __lowercase : np.ndarray, __lowercase : Union[float, List[float]], __lowercase : Union[float, List[float]], __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : Optional[Any], ): return normalize(__lowercase, mean=__lowercase, std=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : List[str], __lowercase : ImageInput, __lowercase : bool = None, __lowercase : int = None, __lowercase : bool = None, __lowercase : int = None, __lowercase : PILImageResampling = None, __lowercase : bool = None, __lowercase : float = None, __lowercase : bool = None, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[str, TensorType]] = None, __lowercase : ChannelDimension = ChannelDimension.FIRST, **__lowercase : Tuple, ): lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(__lowercase ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(__lowercase ) for image in images] if do_resize: lowercase__ = [self.resize(image=__lowercase, size=__lowercase, resample=__lowercase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=__lowercase, scale=__lowercase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=__lowercase, mean=__lowercase, std=__lowercase ) for image in images] lowercase__ = [to_channel_dimension_format(__lowercase, __lowercase ) for image in images] lowercase__ = {"pixel_values": images} return BatchFeature(data=__lowercase, tensor_type=__lowercase ) def A__ ( self : int, __lowercase : Optional[Any], __lowercase : List[Tuple] = None ): lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__lowercase ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(__lowercase ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="bilinear", align_corners=__lowercase ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
413
1
"""simple docstring""" a__ : List[Any] = '''Input must be a string of 8 numbers plus letter''' a__ : Dict = '''TRWAGMYFPDXBNJZSQVHLCKE''' def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE = f"""Expected string as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = spanish_id.replace("-" , "" ).upper() if len(SCREAMING_SNAKE_CASE_ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE_ ) try: __SCREAMING_SNAKE_CASE = int(spanish_id_clean[0:8] ) __SCREAMING_SNAKE_CASE = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE_ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" snake_case__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> str: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __SCREAMING_SNAKE_CASE = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> Any: __SCREAMING_SNAKE_CASE = vqa_pipeline(UpperCAmelCase__ , top_k=1 ) self.assertEqual( UpperCAmelCase__ , [ [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}], [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}], ] , ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" __SCREAMING_SNAKE_CASE = "How many cats are there?" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=UpperCAmelCase__ , question="How many cats are there?" , top_k=2 ) self.assertEqual( UpperCAmelCase__ , [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( UpperCAmelCase__ , [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}] ) @slow @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) __SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" __SCREAMING_SNAKE_CASE = "How many cats are there?" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: pass
553
0
'''simple docstring''' def snake_case ( a_ : list[int] ) -> list[list[int]]: """simple docstring""" UpperCamelCase_ : int = [] if len(a_ ) == 1: return [nums.copy()] for _ in range(len(a_ ) ): UpperCamelCase_ : Any = nums.pop(0 ) UpperCamelCase_ : Dict = permute(a_ ) for perm in permutations: perm.append(a_ ) result.extend(a_ ) nums.append(a_ ) return result def snake_case ( a_ : Any ) -> Any: """simple docstring""" def backtrack(a_ : int ): if start == len(a_ ) - 1: output.append(nums[:] ) else: for i in range(a_ , len(a_ ) ): UpperCamelCase_ , UpperCamelCase_ : Any = nums[i], nums[start] backtrack(start + 1 ) UpperCamelCase_ , UpperCamelCase_ : str = nums[i], nums[start] # backtrack UpperCamelCase_ : Tuple = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCamelCase =permutea([1, 2, 3]) print(res) doctest.testmod()
208
'''simple docstring''' def snake_case ( a_ : list ) -> list: """simple docstring""" UpperCamelCase_ : List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase_ : Tuple = True for i in range(0 , len(a_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ : Any = False for i in range(1 , len(a_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ : List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ : Dict = False return input_list if __name__ == "__main__": print("Enter list to be sorted") UpperCamelCase =[int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase =odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
208
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def _a ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : List[Any] = 1_60_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = int(round(sample_rate * max_length ) ) if len(__snake_case ) <= sample_length: return wav SCREAMING_SNAKE_CASE__ : Optional[int] = randint(0 , len(__snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class snake_case : lowercase_ = field(default=UpperCamelCase_ , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'A file containing the training audio paths and labels.'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) lowercase_ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase_ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase_ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowercase_ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) lowercase_ = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase_ = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase_ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class snake_case : lowercase_ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) lowercase_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase_ = field( default=UpperCamelCase_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowercase( self : Tuple )-> Union[str, Any]: """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , __lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. SCREAMING_SNAKE_CASE__ : List[Any] = DatasetDict() SCREAMING_SNAKE_CASE__ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy SCREAMING_SNAKE_CASE__ : List[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. SCREAMING_SNAKE_CASE__ : Optional[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) SCREAMING_SNAKE_CASE__ : int = feature_extractor.model_input_names[0] def train_transforms(lowercase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Dict = [] for audio in batch[data_args.audio_column_name]: SCREAMING_SNAKE_CASE__ : Any = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feature_extractor(__snake_case , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE__ : Dict = {model_input_name: inputs.get(__snake_case )} SCREAMING_SNAKE_CASE__ : str = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Tuple = [audio['array'] for audio in batch[data_args.audio_column_name]] SCREAMING_SNAKE_CASE__ : List[Any] = feature_extractor(__snake_case , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE__ : int = {model_input_name: inputs.get(__snake_case )} SCREAMING_SNAKE_CASE__ : str = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE__ : Optional[int] = raw_datasets['train'].features[data_args.label_column_name].names SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = {}, {} for i, label in enumerate(__snake_case ): SCREAMING_SNAKE_CASE__ : str = str(__snake_case ) SCREAMING_SNAKE_CASE__ : Dict = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE__ : Dict = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase__ : Any ): SCREAMING_SNAKE_CASE__ : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__snake_case , references=eval_pred.label_ids ) SCREAMING_SNAKE_CASE__ : List[str] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__snake_case ) , labelaid=__snake_case , idalabel=__snake_case , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : Any = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__snake_case , output_all_columns=__snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__ : List[str] = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__snake_case , output_all_columns=__snake_case ) # Initialize our trainer SCREAMING_SNAKE_CASE__ : int = Trainer( model=__snake_case , args=__snake_case , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__ : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__ : int = last_checkpoint SCREAMING_SNAKE_CASE__ : int = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE__ : Optional[int] = trainer.evaluate() trainer.log_metrics('eval' , __snake_case ) trainer.save_metrics('eval' , __snake_case ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE__ : str = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
707
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self : List[Any] , a_ : Dict , a_ : Any=13 , a_ : Any=7 , a_ : Tuple=True , a_ : Tuple=True , a_ : Optional[int]=False , a_ : Dict=True , a_ : Optional[Any]=99 , a_ : Any=32 , a_ : Dict=5 , a_ : Tuple=4 , a_ : List[str]=37 , a_ : Union[str, Any]="gelu" , a_ : Dict=0.1 , a_ : Tuple=0.1 , a_ : List[str]=512 , a_ : List[str]=16 , a_ : List[str]=2 , a_ : Optional[int]=0.02 , a_ : List[str]=3 , a_ : Union[str, Any]=4 , a_ : Optional[Any]=None , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Dict = batch_size SCREAMING_SNAKE_CASE__ : Dict = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : int = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : str = scope def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase( self : Dict )-> Tuple: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def __lowercase( self : Any , a_ : str , a_ : Tuple , a_ : Dict , a_ : Optional[int] , a_ : List[Any] , a_ : Union[str, Any] , a_ : Tuple )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = BioGptModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ , attention_mask=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase( self : List[Any] , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Tuple , a_ : Optional[Any] , a_ : int , a_ : Optional[int] , a_ : int , a_ : str , a_ : Optional[Any] , )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = BioGptForCausalLM(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase( self : Tuple , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : Any , a_ : Optional[int] , *a_ : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BioGptModel(config=a_ ) model.to(a_ ) model.eval() # create attention mask SCREAMING_SNAKE_CASE__ : Any = torch.ones(input_ids.shape , dtype=torch.long , device=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.seq_length // 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 # first forward pass SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ , attention_mask=a_ ).to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids SCREAMING_SNAKE_CASE__ : str = ids_tensor((1,) , a_ ).item() + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = random_other_next_tokens # append to next input_ids and attn_mask SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=a_ )] , dim=1 , ) # get two different outputs SCREAMING_SNAKE_CASE__ : str = model(a_ , attention_mask=a_ )['last_hidden_state'] SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , past_key_values=a_ , attention_mask=a_ )['last_hidden_state'] # select random slice SCREAMING_SNAKE_CASE__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : str , a_ : List[Any] , a_ : str , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Optional[Any] , *a_ : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = BioGptModel(config=a_ ).to(a_ ).eval() SCREAMING_SNAKE_CASE__ : Dict = torch.ones(input_ids.shape , dtype=torch.long , device=a_ ) # first forward pass SCREAMING_SNAKE_CASE__ : Any = model(a_ , attention_mask=a_ , use_cache=a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ : int = model(a_ , attention_mask=a_ )['last_hidden_state'] SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , attention_mask=a_ , past_key_values=a_ )[ 'last_hidden_state' ] # select random slice SCREAMING_SNAKE_CASE__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : Any , a_ : List[str] , a_ : Optional[int] , a_ : Any , a_ : Tuple , a_ : Any , *a_ : List[Any] , a_ : Union[str, Any]=False )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = BioGptForCausalLM(a_ ) model.to(a_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() SCREAMING_SNAKE_CASE__ : Tuple = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowercase( self : Union[str, Any] , a_ : List[str] , *a_ : Optional[int] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BioGptModel(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __lowercase( self : Dict , a_ : Tuple , a_ : Tuple , a_ : List[str] , a_ : Any , a_ : str , *a_ : str )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.num_labels SCREAMING_SNAKE_CASE__ : str = BioGptForTokenClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase( self : Any )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase_ = (BioGptForCausalLM,) if is_torch_available() else () lowercase_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = BioGptModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def __lowercase( self : Tuple )-> int: """simple docstring""" self.config_tester.run_common_tests() def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def __lowercase( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : List[str] = type self.model_tester.create_and_check_model(*a_ ) def __lowercase( self : int )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*a_ ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*a_ , gradient_checkpointing=a_ ) def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*a_ ) def __lowercase( self : Any )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*a_ ) def __lowercase( self : str )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*a_ ) @slow def __lowercase( self : List[str] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) SCREAMING_SNAKE_CASE__ : List[str] = 'left' # Define PAD Token = EOS Token = 50256 SCREAMING_SNAKE_CASE__ : Any = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : Tuple = model.config.eos_token_id # use different length sentences to test batching SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ 'Hello, my dog is a little', 'Today, I', ] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(a_ , return_tensors='pt' , padding=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = inputs['input_ids'].to(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = model.generate( input_ids=a_ , attention_mask=inputs['attention_mask'].to(a_ ) , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(input_ids=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() SCREAMING_SNAKE_CASE__ : Dict = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids=a_ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(a_ , a_ ) self.assertListEqual(a_ , [non_padded_sentence, padded_sentence] ) @slow def __lowercase( self : Any )-> List[Any]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = BioGptModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __lowercase( self : Optional[int] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = 3 SCREAMING_SNAKE_CASE__ : List[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.ne(1 ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = BioGptForSequenceClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : str = 3 SCREAMING_SNAKE_CASE__ : Any = 'multi_label_classification' SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE__ : Any = input_ids.ne(1 ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ : Dict = BioGptForSequenceClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[2, 4805, 9, 656, 21]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ )[0] SCREAMING_SNAKE_CASE__ : List[str] = 4_2384 SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , a_ ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) ) @slow def __lowercase( self : Union[str, Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) SCREAMING_SNAKE_CASE__ : Dict = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(a_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer('COVID-19 is' , return_tensors='pt' ).to(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate( **a_ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=a_ , ) SCREAMING_SNAKE_CASE__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(a_ , a_ )
636
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "markuplm" def __init__( self: Union[str, Any] , _lowerCamelCase: Tuple=3_05_22 , _lowerCamelCase: Union[str, Any]=7_68 , _lowerCamelCase: List[str]=12 , _lowerCamelCase: Tuple=12 , _lowerCamelCase: Any=30_72 , _lowerCamelCase: Tuple="gelu" , _lowerCamelCase: int=0.1 , _lowerCamelCase: str=0.1 , _lowerCamelCase: int=5_12 , _lowerCamelCase: Dict=2 , _lowerCamelCase: str=0.02 , _lowerCamelCase: Tuple=1E-12 , _lowerCamelCase: List[Any]=0 , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: List[str]=2 , _lowerCamelCase: int=2_56 , _lowerCamelCase: str=10_24 , _lowerCamelCase: List[Any]=2_16 , _lowerCamelCase: Optional[Any]=10_01 , _lowerCamelCase: Any=32 , _lowerCamelCase: Any=50 , _lowerCamelCase: Union[str, Any]="absolute" , _lowerCamelCase: Any=True , _lowerCamelCase: List[str]=None , **_lowerCamelCase: List[Any] , ): super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout # additional properties SCREAMING_SNAKE_CASE_ = max_depth SCREAMING_SNAKE_CASE_ = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE_ = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE_ = tag_pad_id SCREAMING_SNAKE_CASE_ = subs_pad_id SCREAMING_SNAKE_CASE_ = xpath_unit_hidden_size
234
class __magic_name__ : '''simple docstring''' def __init__( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = {} def _A ( self: Optional[Any] ): print(self.vertex ) for i in self.vertex: print(_lowerCamelCase , ''' -> ''' , ''' -> '''.join([str(_lowerCamelCase ) for j in self.vertex[i]] ) ) def _A ( self: Optional[int] , _lowerCamelCase: int , _lowerCamelCase: int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCamelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def _A ( self: int ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) def _A ( self: Dict , _lowerCamelCase: int , _lowerCamelCase: list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
234
1
'''simple docstring''' import os import platform import sys UpperCamelCase_ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
703
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = None lowerCamelCase_ = BloomTokenizerFast lowerCamelCase_ = BloomTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = 'tokenizer_file' lowerCamelCase_ = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() lowercase : Union[str, Any] =BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Union[str, Any] , **UpperCAmelCase__ : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : str =self.get_rust_tokenizer() lowercase : List[str] =['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase : Any =[[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : Any =tokenizer.batch_encode_plus(UpperCAmelCase__ )['''input_ids'''] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : int =tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Any=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Optional[int] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : Tuple ='''This is a simple input''' lowercase : int =['''This is a simple input 1''', '''This is a simple input 2'''] lowercase : Optional[Any] =('''This is a simple input''', '''This is a pair''') lowercase : int =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase : Optional[int] =None # Hotfixing padding = None self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =self.get_rust_tokenizer() lowercase : Dict =load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCAmelCase__ ) lowercase : Union[str, Any] =next(iter(UpperCAmelCase__ ) )['''premise'''] # pick up one data lowercase : int =list(sample_data.values() ) lowercase : Any =list(map(tokenizer.encode , UpperCAmelCase__ ) ) lowercase : List[str] =[tokenizer.decode(UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) for x in output_tokens] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
88
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> Dict: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def _UpperCamelCase (_lowerCamelCase : int )-> List[Any]: '''simple docstring''' __snake_case = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) __snake_case = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class lowerCAmelCase ( __lowerCAmelCase): __lowercase : int = '''sigmoid''' __lowercase : str = '''softmax''' __lowercase : int = '''none''' @add_end_docstrings( __lowerCAmelCase , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class lowerCAmelCase ( __lowerCAmelCase): __lowercase : Optional[int] = False __lowercase : Dict = ClassificationFunction.NONE def __init__( self , **__SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="" , **__SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __snake_case = tokenizer_kwargs __snake_case = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: __snake_case = self.model.config.return_all_scores if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or top_k is None: __snake_case = top_k __snake_case = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , __SCREAMING_SNAKE_CASE , ) if return_all_scores: __snake_case = None else: __snake_case = 1 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __snake_case = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __snake_case = super().__call__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __snake_case = '''top_k''' not in kwargs if isinstance(args[0] , __SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: '''simple docstring''' __snake_case = self.framework if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return self.tokenizer(**__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , __SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __snake_case = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __snake_case = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: __snake_case = self.model.config.function_to_apply else: __snake_case = ClassificationFunction.NONE __snake_case = model_outputs['''logits'''][0] __snake_case = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __snake_case = sigmoid(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: __snake_case = softmax(__SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: __snake_case = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __snake_case = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(__SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda __SCREAMING_SNAKE_CASE : x["score"] , reverse=__SCREAMING_SNAKE_CASE ) if top_k is not None: __snake_case = dict_scores[:top_k] return dict_scores
24
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' __snake_case = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __snake_case = 1 for n in range(m + 1 ): for k in range(1 , _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ : List[str] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: UpperCAmelCase_ : Union[str, Any] = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ : Optional[int] = 16 lowerCAmelCase_ : List[Any] = 32 def _lowerCamelCase (__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] = 16 , __lowerCamelCase : Dict = "bert-base-cased" ) -> int: a__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) a__ = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowerCamelCase : Dict ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCamelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) a__ = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def _lowerCamelCase (__lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> List[str]: # Initialize accelerator a__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config["""lr"""] a__ = int(config["num_epochs"] ) a__ = int(config["seed"] ) a__ = int(config["batch_size"] ) a__ = args.model_name_or_path set_seed(__lowerCamelCase ) a__ = get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) # Instantiate optimizer a__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ = optimizer_cls(params=model.parameters() , lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: a__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ = 1 a__ = (len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: a__ = DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over a__ = 0 # We also need to keep track of the stating epoch so files are named properly a__ = 0 # Now we train the model a__ = evaluate.load("glue" , "mrpc" ) a__ = 0 a__ = {} for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): a__ = model(**__lowerCamelCase ) a__ = outputs.loss a__ = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**__lowerCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: a__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] a__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowerCamelCase ) a__ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase () -> List[str]: a__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__lowerCamelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCamelCase , ) parser.add_argument( "--output_dir" , type=__lowerCamelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=__lowerCamelCase , default=__lowerCamelCase , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=__lowerCamelCase , default=3 , help="Number of train epochs." , ) a__ = parser.parse_args() a__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
714
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : str ) -> bool: a__ = 0 for ch in input_str: a__ = ord(__lowerCamelCase ) a__ = pow(2 , __lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
289
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCamelCase_ : """simple docstring""" a_ =42 a_ =None a_ =None def a_ ( ) -> Node | None: __lowerCamelCase : Optional[Any] = Node(1 ) __lowerCamelCase : List[str] = Node(2 ) __lowerCamelCase : Optional[int] = Node(3 ) __lowerCamelCase : int = Node(4 ) __lowerCamelCase : Optional[int] = Node(5 ) return tree def a_ ( _lowerCAmelCase ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a_ ( _lowerCAmelCase ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a_ ( _lowerCAmelCase ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a_ ( _lowerCAmelCase ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def a_ ( _lowerCAmelCase ) -> Sequence[Node | None]: __lowerCamelCase : list[Any] = [] if root is None: return output __lowerCamelCase : Dict = deque([root] ) while process_queue: __lowerCamelCase : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Sequence[Node | None]: __lowerCamelCase : list[Any] = [] def populate_output(_lowerCAmelCase ,_lowerCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCAmelCase ,_lowerCAmelCase ) return output def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Sequence[Node | None]: __lowerCamelCase : list[Any] = [] def populate_output(_lowerCAmelCase ,_lowerCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCAmelCase ,_lowerCAmelCase ) return output def a_ ( _lowerCAmelCase ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __lowerCamelCase : list[Sequence[Node | None]] = [] __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Dict = height(_lowerCAmelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCAmelCase ,_lowerCAmelCase ) ) __lowerCamelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCAmelCase ,_lowerCAmelCase ) ) __lowerCamelCase : Union[str, Any] = 0 return output def a_ ( ) -> None: # Main function for testing. __lowerCamelCase : str = make_tree() print(F'In-order Traversal: {inorder(_lowerCAmelCase )}' ) print(F'Pre-order Traversal: {preorder(_lowerCAmelCase )}' ) print(F'Post-order Traversal: {postorder(_lowerCAmelCase )}' ,'\n' ) print(F'Height of Tree: {height(_lowerCAmelCase )}' ,'\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_lowerCAmelCase ) ,'\n' ) print('Level-wise order Traversal: ' ) for level in range(1 ,height(_lowerCAmelCase ) + 1 ): print(F'Level {level}:' ,get_nodes_from_left_to_right(_lowerCAmelCase ,level=_lowerCAmelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
459
'''simple docstring''' # Algorithm for the pigeonhole sorting def a_ ( _lowerCAmelCase ) -> List[str]: __lowerCamelCase : int = min(_lowerCAmelCase ) # min() finds the minimum value __lowerCamelCase : List[Any] = max(_lowerCAmelCase ) # max() finds the maximum value __lowerCamelCase : List[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowerCamelCase : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowerCamelCase : Tuple = 0 for count in range(_lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 __lowerCamelCase : List[Any] = count + min_val i += 1 def a_ ( ) -> str: __lowerCamelCase : Optional[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCAmelCase ) print('Sorted order is:' ,' '.join(_lowerCAmelCase ) ) if __name__ == "__main__": main()
459
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def snake_case__ ( _A: Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase = DPTConfig() if "large" in checkpoint_url: lowerCAmelCase = 1024 lowerCAmelCase = 4096 lowerCAmelCase = 24 lowerCAmelCase = 16 lowerCAmelCase = [5, 11, 17, 23] lowerCAmelCase = [256, 512, 1024, 1024] lowerCAmelCase = (1, 384, 384) if "ade" in checkpoint_url: lowerCAmelCase = True lowerCAmelCase = 150 lowerCAmelCase = """huggingface/label-files""" lowerCAmelCase = """ade20k-id2label.json""" lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = [1, 150, 480, 480] return config, expected_shape def snake_case__ ( _A: Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_A , _A ) def snake_case__ ( _A: Optional[Any] ) -> Tuple: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCAmelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: lowerCAmelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCAmelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCAmelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCAmelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCAmelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCAmelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCAmelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCAmelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCAmelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCAmelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCAmelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCAmelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCAmelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCAmelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCAmelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCAmelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCAmelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCAmelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCAmelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def snake_case__ ( _A: Tuple , _A: Optional[int] ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[: config.hidden_size, :] lowerCAmelCase = in_proj_bias[: config.hidden_size] lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase = in_proj_bias[-config.hidden_size :] def snake_case__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def snake_case__ ( _A: Optional[int] , _A: Tuple , _A: str , _A: List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase = get_dpt_config(_A ) # load original state_dict from URL lowerCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase = state_dict.pop(_A ) lowerCAmelCase = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model lowerCAmelCase = DPTForSemanticSegmentation(_A ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image lowerCAmelCase = 480 if """ade""" in checkpoint_url else 384 lowerCAmelCase = DPTImageProcessor(size=_A ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(_A , return_tensors="""pt""" ) # forward pass lowerCAmelCase = model(**_A ).logits if """ade""" in checkpoint_url else model(**_A ).predicted_depth # Assert logits lowerCAmelCase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: lowerCAmelCase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(_A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _A , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _A ) ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_A , ) image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_A , ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) __lowercase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
705
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def snake_case__ ( _A: Optional[Any] , _A: List[Any]=0.999 , _A: str="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A: Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A: List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase = [] for i in range(_A ): lowerCAmelCase = i / num_diffusion_timesteps lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class a__( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase_ : Union[str, Any] = 2 @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = 0.00085 , __lowerCAmelCase = 0.012 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "linspace" , __lowerCAmelCase = 0 , ): """simple docstring""" if trained_betas is not None: lowerCAmelCase = torch.tensor(__lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "linear": lowerCAmelCase = torch.linspace(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCAmelCase , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase = betas_for_alpha_bar(__lowerCAmelCase) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") lowerCAmelCase = 1.0 - self.betas lowerCAmelCase = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" if schedule_timesteps is None: lowerCAmelCase = self.timesteps lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: lowerCAmelCase = 1 if len(__lowerCAmelCase) > 1 else 0 else: lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(__lowerCAmelCase) else timestep lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def a_ ( self): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = self.index_for_timestep(__lowerCAmelCase) if self.state_in_first_order: lowerCAmelCase = self.sigmas[step_index] else: lowerCAmelCase = self.sigmas_interpol[step_index] lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = num_inference_steps lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , __lowerCAmelCase , dtype=__lowerCAmelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase = (np.arange(0 , __lowerCAmelCase) * step_ratio).round()[::-1].copy().astype(__lowerCAmelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase = (np.arange(__lowerCAmelCase , 0 , -step_ratio)).round().copy().astype(__lowerCAmelCase) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) lowerCAmelCase = torch.from_numpy(np.log(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = np.interp(__lowerCAmelCase , np.arange(0 , len(__lowerCAmelCase)) , __lowerCAmelCase) lowerCAmelCase = np.concatenate([sigmas, [0.0]]).astype(np.floataa) lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(device=__lowerCAmelCase) # interpolate sigmas lowerCAmelCase = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) lowerCAmelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(__lowerCAmelCase).startswith("""mps"""): # mps does not support float64 lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(__lowerCAmelCase , dtype=torch.floataa) else: lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(__lowerCAmelCase) # interpolate timesteps lowerCAmelCase = self.sigma_to_t(__lowerCAmelCase).to(__lowerCAmelCase , dtype=timesteps.dtype) lowerCAmelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() lowerCAmelCase = torch.cat([timesteps[:1], interleaved_timesteps]) lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase = defaultdict(__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = sigma.log() # get distribution lowerCAmelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCAmelCase = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) lowerCAmelCase = low_idx + 1 lowerCAmelCase = self.log_sigmas[low_idx] lowerCAmelCase = self.log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase = (low - log_sigma) / (low - high) lowerCAmelCase = w.clamp(0 , 1) # transform interpolation to time range lowerCAmelCase = (1 - w) * low_idx + w * high_idx lowerCAmelCase = t.view(sigma.shape) return t @property def a_ ( self): """simple docstring""" return self.sample is None def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" lowerCAmelCase = self.index_for_timestep(__lowerCAmelCase) # advance index counter by 1 lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(__lowerCAmelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase = self.sigmas[step_index] lowerCAmelCase = self.sigmas_interpol[step_index + 1] lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCAmelCase = self.sigmas[step_index - 1] lowerCAmelCase = self.sigmas_interpol[step_index] lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase = 0 lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""") else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase = sigma_interpol - sigma_hat # store for 2nd order step lowerCAmelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCAmelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCAmelCase = sigma_next - sigma_hat lowerCAmelCase = self.sample lowerCAmelCase = None lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCAmelCase): # mps does not support float64 lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa) lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa) else: lowerCAmelCase = self.timesteps.to(original_samples.device) lowerCAmelCase = timesteps.to(original_samples.device) lowerCAmelCase = [self.index_for_timestep(__lowerCAmelCase , __lowerCAmelCase) for t in timesteps] lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): lowerCAmelCase = sigma.unsqueeze(-1) lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self): """simple docstring""" return self.config.num_train_timesteps
605
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
from __future__ import annotations import math def _A (UpperCamelCase : list , UpperCamelCase : list ) ->list: '''simple docstring''' if len(UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) lowerCamelCase__ : Union[str, Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _A (UpperCamelCase : list , UpperCamelCase : list ) ->int: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(UpperCamelCase ) ) ] def _A (UpperCamelCase : list , UpperCamelCase : list ) ->Tuple: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(UpperCamelCase ) ) ] def _A (UpperCamelCase : list ) ->tuple[list, list, list, list]: '''simple docstring''' if len(UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) lowerCamelCase__ : List[Any] = len(UpperCamelCase ) lowerCamelCase__ : Tuple = matrix_length // 2 lowerCamelCase__ : Tuple = [[a[i][j] for j in range(UpperCamelCase , UpperCamelCase )] for i in range(UpperCamelCase )] lowerCamelCase__ : Optional[int] = [ [a[i][j] for j in range(UpperCamelCase , UpperCamelCase )] for i in range(UpperCamelCase , UpperCamelCase ) ] lowerCamelCase__ : Union[str, Any] = [[a[i][j] for j in range(UpperCamelCase )] for i in range(UpperCamelCase )] lowerCamelCase__ : int = [[a[i][j] for j in range(UpperCamelCase )] for i in range(UpperCamelCase , UpperCamelCase )] return top_left, top_right, bot_left, bot_right def _A (UpperCamelCase : list ) ->tuple[int, int]: '''simple docstring''' return len(UpperCamelCase ), len(matrix[0] ) def _A (UpperCamelCase : list ) ->None: '''simple docstring''' print("""\n""".join(str(UpperCamelCase ) for line in matrix ) ) def _A (UpperCamelCase : list , UpperCamelCase : list ) ->list: '''simple docstring''' if matrix_dimensions(UpperCamelCase ) == (2, 2): return default_matrix_multiplication(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = split_matrix(UpperCamelCase ) lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Tuple = split_matrix(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = actual_strassen(UpperCamelCase , matrix_subtraction(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : Any = actual_strassen(matrix_addition(UpperCamelCase , UpperCamelCase ) , UpperCamelCase ) lowerCamelCase__ : Tuple = actual_strassen(matrix_addition(UpperCamelCase , UpperCamelCase ) , UpperCamelCase ) lowerCamelCase__ : Optional[Any] = actual_strassen(UpperCamelCase , matrix_subtraction(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : List[str] = actual_strassen(matrix_addition(UpperCamelCase , UpperCamelCase ) , matrix_addition(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : Dict = actual_strassen(matrix_subtraction(UpperCamelCase , UpperCamelCase ) , matrix_addition(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : Tuple = actual_strassen(matrix_subtraction(UpperCamelCase , UpperCamelCase ) , matrix_addition(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase__ : Dict = matrix_addition(matrix_subtraction(matrix_addition(UpperCamelCase , UpperCamelCase ) , UpperCamelCase ) , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = matrix_addition(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = matrix_addition(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : str = matrix_subtraction(matrix_subtraction(matrix_addition(UpperCamelCase , UpperCamelCase ) , UpperCamelCase ) , UpperCamelCase ) # construct the new matrix from our 4 quadrants lowerCamelCase__ : int = [] for i in range(len(UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _A (UpperCamelCase : list , UpperCamelCase : list ) ->list: '''simple docstring''' if matrix_dimensions(UpperCamelCase )[1] != matrix_dimensions(UpperCamelCase )[0]: lowerCamelCase__ : List[str] = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(UpperCamelCase ) lowerCamelCase__ : Optional[int] = matrix_dimensions(UpperCamelCase ) lowerCamelCase__ : List[str] = matrix_dimensions(UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase__ : Optional[int] = max(*UpperCamelCase , *UpperCamelCase ) lowerCamelCase__ : str = int(math.pow(2 , math.ceil(math.loga(UpperCamelCase ) ) ) ) lowerCamelCase__ : Optional[Any] = matrixa lowerCamelCase__ : List[str] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase__ : str = actual_strassen(UpperCamelCase , UpperCamelCase ) # Removing the additional zeros for i in range(0 , UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowercase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowercase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
157
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _A : Union[str, Any] =logging.get_logger(__name__) _A : int ={ '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowercase ( _lowercase ): a = """trajectory_transformer""" a = ["""past_key_values"""] a = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: Optional[Any] , UpperCamelCase__: Dict=100 , UpperCamelCase__: str=5 , UpperCamelCase__: Optional[Any]=1 , UpperCamelCase__: Union[str, Any]=1 , UpperCamelCase__: int=249 , UpperCamelCase__: int=6 , UpperCamelCase__: Any=17 , UpperCamelCase__: str=25 , UpperCamelCase__: Tuple=4 , UpperCamelCase__: Any=4 , UpperCamelCase__: Optional[int]=128 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: str=0.1 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: str=0.0_006 , UpperCamelCase__: Tuple=512 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: Optional[int]=1e-12 , UpperCamelCase__: Tuple=1 , UpperCamelCase__: str=True , UpperCamelCase__: Optional[int]=1 , UpperCamelCase__: str=50_256 , UpperCamelCase__: str=50_256 , **UpperCamelCase__: Any , ): lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Dict = action_weight lowerCamelCase__ : Optional[Any] = reward_weight lowerCamelCase__ : Dict = value_weight lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Optional[int] = block_size lowerCamelCase__ : List[str] = action_dim lowerCamelCase__ : Dict = observation_dim lowerCamelCase__ : Union[str, Any] = transition_dim lowerCamelCase__ : Tuple = learning_rate lowerCamelCase__ : Tuple = n_layer lowerCamelCase__ : str = n_head lowerCamelCase__ : int = n_embd lowerCamelCase__ : Dict = embd_pdrop lowerCamelCase__ : Tuple = attn_pdrop lowerCamelCase__ : List[str] = resid_pdrop lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = kaiming_initializer_range lowerCamelCase__ : Dict = use_cache super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
631
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str]=13 , UpperCamelCase__: Optional[int]=30 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: List[str]=3 , UpperCamelCase__: List[str]=True , UpperCamelCase__: Any=True , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Any=5 , UpperCamelCase__: Optional[Any]=4 , UpperCamelCase__: Dict=37 , UpperCamelCase__: List[Any]="gelu" , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: List[Any]=10 , UpperCamelCase__: Tuple=0.02 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: Dict=0.6 , UpperCamelCase__: int=None , ): lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Optional[Any] = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Any = is_training lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : List[str] = mask_ratio lowerCamelCase__ : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ : str = (image_size // patch_size) ** 2 lowerCamelCase__ : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: str ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Tuple = ViTMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): lowerCamelCase__ : int = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ ) lowerCamelCase__ : Any = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Optional[int] = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a = False a = False a = False a = False def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = ViTMAEModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Dict ): pass def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(UpperCamelCase__ ) lowerCamelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Any = [*signature.parameters.keys()] lowerCamelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCamelCase__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ : Tuple = torch.from_numpy(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ : Tuple = pt_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = outputs[0].cpu().numpy() lowerCamelCase__ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[str] = model_class.from_pretrained(UpperCamelCase__ ) model.to(UpperCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) # Make sure we don't have nans lowerCamelCase__ : Dict = after_outputs[0].cpu().numpy() lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: Any ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @slow def lowerCamelCase_ ( self: List[str] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: List[str] ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: Tuple ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ : str = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ : List[str] = ViTMAEConfig() lowerCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**UpperCamelCase__ , noise=torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ ) ) # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase__ ) , atol=1e-4 ) )
631
1
class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :dict[str, TrieNode] = {} # Mapping from char to TrieNode lowercase_ :Union[str, Any] = False def UpperCamelCase ( self , UpperCamelCase_ ): for word in words: self.insert(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :str = self for char in word: if char not in curr.nodes: lowercase_ :int = TrieNode() lowercase_ :Union[str, Any] = curr.nodes[char] lowercase_ :str = True def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :str = self for char in word: if char not in curr.nodes: return False lowercase_ :Optional[int] = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCamelCase_ ): def _delete(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: if index == len(UpperCamelCase_ ): # If word does not exist if not curr.is_leaf: return False lowercase_ :Dict = False return len(curr.nodes ) == 0 lowercase_ :Any = word[index] lowercase_ :Dict = curr.nodes.get(UpperCamelCase_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowercase_ :int = _delete(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase_ , 0 ) def UpperCamelCase ( _a , _a ) -> None: '''simple docstring''' if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def UpperCamelCase ( ) -> bool: '''simple docstring''' lowercase_ :str = '''banana bananas bandana band apple all beast'''.split() lowercase_ :Any = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def UpperCamelCase ( _a , _a ) -> None: '''simple docstring''' print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def UpperCamelCase ( ) -> None: '''simple docstring''' assert test_trie() def UpperCamelCase ( ) -> None: '''simple docstring''' print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
257
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE : Any = False try: SCREAMING_SNAKE_CASE : List[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = [] ): lowercase_ :str = 0 lowercase_ :str = choices lowercase_ :List[str] = prompt if sys.platform == "win32": lowercase_ :List[Any] = '''*''' else: lowercase_ :str = '''➔ ''' def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(UpperCamelCase_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = 1 ): lowercase_ :Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def UpperCamelCase ( self ): lowercase_ :int = int(chr(self.current_selection ) ) lowercase_ :Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def UpperCamelCase ( self , UpperCamelCase_ = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowercase_ :str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowercase_ :Optional[Any] = int(builtins.input() ) except ValueError: lowercase_ :List[Any] = default_choice else: lowercase_ :List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
257
1
from math import sqrt def __lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) -> int: lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCAmelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
103
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A: def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : Any=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Union[str, Any]=0 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRContextEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDPRReader(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCamelCase_ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(__UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
1
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ): lowercase__ : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) lowercase__ : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase__ : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) lowercase__ : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase__ : Any = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) lowercase__ : Optional[int] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase__ : List[str] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) lowercase__ : List[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ): if split_mlp_wi: lowercase__ : Any = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] lowercase__ : List[Any] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] lowercase__ : Optional[Any] = (wi_a, wi_a) else: lowercase__ : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] lowercase__ : List[Any] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCamelCase ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ): lowercase__ : Union[str, Any] = traverse_util.flatten_dict(variables['''target'''] ) lowercase__ : str = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase__ : Any = "encoder/encoder/mlp/wi_0/kernel" in old print('''Split MLP:''' , __lowerCamelCase ) lowercase__ : Tuple = collections.OrderedDict() # Shared embeddings. lowercase__ : Optional[int] = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase__ : Union[str, Any] = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , '''encoder''' , '''pre_attention_layer_norm''' ) lowercase__ : List[str] = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , '''encoder''' , '''attention''' ) lowercase__ : List[str] = layer_norm lowercase__ : Union[str, Any] = k.T lowercase__ : List[str] = o.T lowercase__ : List[str] = q.T lowercase__ : Union[str, Any] = v.T # Block i, layer 1 (MLP). lowercase__ : str = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) lowercase__ : Any = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , '''encoder''' , __lowerCamelCase ) lowercase__ : str = layer_norm if split_mlp_wi: lowercase__ : Optional[int] = wi[0].T lowercase__ : List[Any] = wi[1].T else: lowercase__ : Any = wi.T lowercase__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ : List[Any] = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , '''encoder''' ).T lowercase__ : int = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase__ : Optional[int] = tax_relpos_bias_lookup( __lowerCamelCase , 0 , '''encoder''' ).T lowercase__ : Union[str, Any] = tax_relpos_bias_lookup( __lowerCamelCase , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase__ : Tuple = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowercase__ : Tuple = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , '''self_attention''' ) lowercase__ : int = layer_norm lowercase__ : Tuple = k.T lowercase__ : List[Any] = o.T lowercase__ : str = q.T lowercase__ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). lowercase__ : Optional[Any] = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowercase__ : List[Any] = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , '''encoder_decoder_attention''' ) lowercase__ : Optional[int] = layer_norm lowercase__ : int = k.T lowercase__ : Optional[Any] = o.T lowercase__ : Dict = q.T lowercase__ : List[Any] = v.T # Block i, layer 2 (MLP). lowercase__ : Dict = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) lowercase__ : Dict = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' , __lowerCamelCase ) lowercase__ : Dict = layer_norm if split_mlp_wi: lowercase__ : List[Any] = wi[0].T lowercase__ : int = wi[1].T else: lowercase__ : Dict = wi.T lowercase__ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase__ : Any = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , '''decoder''' ).T lowercase__ : Dict = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase__ : List[Any] = old["decoder/logits_dense/kernel"].T return new def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase__ : int = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase__ : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowercase__ : int = state_dict["shared.weight"] return state_dict def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase__ : int = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase__ : List[str] = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , ): lowercase__ : str = MTaConfig.from_json_file(__lowerCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase__ : Optional[int] = UMTaEncoderModel(__lowerCamelCase ) else: lowercase__ : int = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print('''Done''' ) if __name__ == "__main__": __a: Optional[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __a: Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
152
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _snake_case : int = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , *lowerCamelCase : List[Any] , **lowerCamelCase : int ) -> None: warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : str = logging.get_logger(__name__) class __magic_name__ ( __lowercase): A: str = ['pixel_values'] def __init__( self : Optional[Any] , lowerCamelCase__ : str = True , lowerCamelCase__ : Union[str, Any] = None , lowerCamelCase__ : Any = PILImageResampling.BICUBIC , lowerCamelCase__ : Tuple = True , lowerCamelCase__ : Union[str, Any] = True , lowerCamelCase__ : Tuple = 1 / 255 , lowerCamelCase__ : Union[str, Any] = None , lowerCamelCase__ : str = True , lowerCamelCase__ : Any = None , lowerCamelCase__ : Tuple = None , **lowerCamelCase__ : str , ) -> None: '''simple docstring''' super().__init__(**__A ) UpperCamelCase__ : List[str] = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ : List[Any] = get_size_dict(__A ) UpperCamelCase__ : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ : List[Any] = get_size_dict(__A , default_to_square=__A , param_name='''crop_size''' ) UpperCamelCase__ : List[str] = do_resize UpperCamelCase__ : Optional[Any] = do_rescale UpperCamelCase__ : Optional[int] = do_normalize UpperCamelCase__ : Any = do_center_crop UpperCamelCase__ : List[str] = crop_size UpperCamelCase__ : Tuple = size UpperCamelCase__ : Tuple = resample UpperCamelCase__ : Optional[int] = rescale_factor UpperCamelCase__ : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase__ : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] = PILImageResampling.BILINEAR , lowerCamelCase__ : Dict = None , **lowerCamelCase__ : Dict , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : List[str] = get_size_dict(__A ) if "shortest_edge" in size: UpperCamelCase__ : Optional[int] = get_resize_output_image_size(__A , size=size['''shortest_edge'''] , default_to_square=__A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(F"Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}" ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Any = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__A , size=(size['''height'''], size['''width''']) , data_format=__A , **__A ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] = None , **lowerCamelCase__ : Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(__A , scale=__A , data_format=__A , **__A ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] = None , **lowerCamelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int = None , lowerCamelCase__ : int = None , lowerCamelCase__ : Any = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : Dict = None , lowerCamelCase__ : Optional[Any] = None , lowerCamelCase__ : Union[str, Any] = None , lowerCamelCase__ : int = None , lowerCamelCase__ : Tuple = ChannelDimension.FIRST , **lowerCamelCase__ : List[str] , ) -> BatchFeature: '''simple docstring''' UpperCamelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : str = get_size_dict(__A , param_name='''crop_size''' , default_to_square=__A ) UpperCamelCase__ : Any = resample if resample is not None else self.resample UpperCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCamelCase__ : Union[str, Any] = size if size is not None else self.size UpperCamelCase__ : List[Any] = get_size_dict(__A ) if not is_batched(__A ): UpperCamelCase__ : Optional[Any] = [images] if not valid_images(__A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : List[str] = [to_numpy_array(__A ) for image in images] if do_resize: UpperCamelCase__ : List[str] = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: UpperCamelCase__ : List[str] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: UpperCamelCase__ : Optional[Any] = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] UpperCamelCase__ : Dict = [to_channel_dimension_format(__A , __A ) for image in images] UpperCamelCase__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__A , tensor_type=__A )
714
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : int = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
106
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A_ : List[str] = logging.getLogger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case__ : List[str] = label_idx def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = mode.value snake_case__ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , f"{mode}.txt" ) snake_case__ : List[str] = 1 snake_case__ : str = [] with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: snake_case__ : Any = [] snake_case__ : Optional[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) ) guid_index += 1 snake_case__ : Any = [] snake_case__ : int = [] else: snake_case__ : Any = line.split(""" """ ) words.append(splits[0] ) if len(__SCREAMING_SNAKE_CASE ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) ) return examples def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(__SCREAMING_SNAKE_CASE ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case__ : Any = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(__SCREAMING_SNAKE_CASE ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if path: with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: snake_case__ : List[Any] = f.read().splitlines() if "O" not in labels: snake_case__ : Any = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if path: with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: snake_case__ : Optional[int] = f.read().splitlines() if "O" not in labels: snake_case__ : List[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = mode.value snake_case__ : int = os.path.join(__SCREAMING_SNAKE_CASE , f"{mode}.txt" ) snake_case__ : Union[str, Any] = 1 snake_case__ : Any = [] with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: for sentence in parse_incr(__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = [] snake_case__ : Optional[Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) ) guid_index += 1 return examples def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = 0 for sentence in parse_incr(__SCREAMING_SNAKE_CASE ): snake_case__ : int = preds_list[example_id] snake_case__ : Any = """""" for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(__SCREAMING_SNAKE_CASE ) example_id += 1 def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if path: with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
38
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : List[str] = PhobertTokenizer lowerCamelCase__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : int ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] SCREAMING_SNAKE_CASE__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """l à</w>"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : int ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = """Tôi là VinAI Research""" SCREAMING_SNAKE_CASE__ = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = """Tôi là VinAI Research""" SCREAMING_SNAKE_CASE__ = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__UpperCAmelCase ) print(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
196
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase : Optional[Any] = [ "good first issue", "feature request", "wip", ] def lowerCamelCase ( ) -> List[str]: lowercase_ : List[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) lowercase_ : Optional[Any] = g.get_repo("""huggingface/accelerate""" ) lowercase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowercase_ : str = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCAmelCase__ : i.created_at , reverse=UpperCAmelCase__ ) lowercase_ : Optional[int] = comments[0] if len(UpperCAmelCase__ ) > 0 else None lowercase_ : Any = dt.utcnow() lowercase_ : List[str] = (current_time - issue.updated_at).days lowercase_ : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
30
'''simple docstring''' _lowercase : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowerCamelCase ( UpperCAmelCase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Union[str, Any] = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCAmelCase__ ) lowercase_ : Dict = """""".join(bin(UpperCAmelCase__ )[2:].zfill(8 ) for byte in data ) lowercase_ : Union[str, Any] = len(UpperCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ : List[Any] = b"""=""" * ((6 - len(UpperCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase__ ) % 6) else: lowercase_ : Union[str, Any] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase__ ) , 6 ) ).encode() + padding ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[str] = ( """argument should be a bytes-like object or ASCII string, """ F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: lowercase_ : Optional[int] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) lowercase_ : Any = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ : Optional[int] = encoded_data[:-padding] lowercase_ : Any = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ : int = """""".join( bin(B64_CHARSET.index(UpperCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ : Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase__ ) , 8 ) ] return bytes(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
30
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : int = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = 'lxmert' __snake_case :Union[str, Any] = {} def __init__( self : List[str] , _lowerCAmelCase : Dict=3_0522 , _lowerCAmelCase : List[str]=768 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : Union[str, Any]=9500 , _lowerCAmelCase : Union[str, Any]=1600 , _lowerCAmelCase : Optional[Any]=400 , _lowerCAmelCase : Tuple=3072 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : Any=9 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : Dict=2048 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[Any]=6.67 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : int=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : int=True , _lowerCAmelCase : int=True , **_lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = num_qa_labels __lowercase = num_object_labels __lowercase = num_attr_labels __lowercase = l_layers __lowercase = x_layers __lowercase = r_layers __lowercase = visual_feat_dim __lowercase = visual_pos_dim __lowercase = visual_loss_normalizer __lowercase = task_matched __lowercase = task_mask_lm __lowercase = task_obj_predict __lowercase = task_qa __lowercase = visual_obj_loss __lowercase = visual_attr_loss __lowercase = visual_feat_loss __lowercase = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**_lowerCAmelCase )
80
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( lowercase_ ): def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=False , snake_case=True , snake_case="None" , snake_case=3 , snake_case=4 , snake_case=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = relative_attention snake_case_ = position_biased_input snake_case_ = pos_att_type snake_case_ = scope def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a ( self , snake_case ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = DebertaVaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )[0] snake_case_ = model(snake_case , token_type_ids=snake_case )[0] snake_case_ = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = DebertaVaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = DebertaVaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = DebertaVaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = DebertaVaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = DebertaVaForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self ): snake_case_ = DebertaVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case ) @slow def a ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = DebertaVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def a ( self ): pass @slow def a ( self ): snake_case_ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) snake_case_ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) snake_case_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case_ = model(snake_case , attention_mask=snake_case )[0] # compare the actual values for a slice. snake_case_ = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) , F'''{output[:, 1:4, 1:4]}''' )
706
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase : __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Node(1 ) snake_case_ = Node(2 ) snake_case_ = Node(3 ) snake_case_ = Node(4 ) snake_case_ = Node(5 ) return tree def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] if root is None: return output snake_case_ = deque([root] ) while process_queue: snake_case_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] def populate_output(UpperCamelCase__ , UpperCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] def populate_output(UpperCamelCase__ , UpperCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if root is None: return [] snake_case_ = [] snake_case_ = 0 snake_case_ = height(UpperCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case_ = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case_ = 0 return output def __lowerCamelCase ( ): # Main function for testing. '''simple docstring''' snake_case_ = make_tree() print(F'''In-order Traversal: {inorder(UpperCamelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCamelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCamelCase__ )}''' , '\n' ) print(F'''Height of Tree: {height(UpperCamelCase__ )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(UpperCamelCase__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(UpperCamelCase__ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
108
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = """▁""" lowerCamelCase_ : Any = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } lowerCamelCase_ : List[Any] = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } lowerCamelCase_ : List[str] = { """facebook/s2t-small-librispeech-asr""": 1_024, } lowerCamelCase_ : Any = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] lowerCamelCase_ : Optional[Any] = {"""mustc""": MUSTC_LANGS} class a__ ( __snake_case ): A__ : int = VOCAB_FILES_NAMES A__ : int = PRETRAINED_VOCAB_FILES_MAP A__ : Union[str, Any] = MAX_MODEL_INPUT_SIZES A__ : Union[str, Any] = ['input_ids', 'attention_mask'] A__ : List[int] = [] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<unk>" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , do_upper_case=UpperCAmelCase , do_lower_case=UpperCAmelCase , tgt_lang=UpperCAmelCase , lang_codes=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __a = do_upper_case __a = do_lower_case __a = load_json(UpperCAmelCase ) __a = {v: k for k, v in self.encoder.items()} __a = spm_file __a = load_spm(UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __a = lang_codes __a = LANGUAGES[lang_codes] __a = [f'''<lang:{lang}>''' for lang in self.langs] __a = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} __a = self.lang_tokens __a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __a = {} @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return len(self.encoder ) @property def __SCREAMING_SNAKE_CASE ( self ) -> str: return self._tgt_lang @tgt_lang.setter def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: __a = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: __a = self.lang_code_to_id[tgt_lang] __a = [lang_code_id] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: return self.encoder.get(UpperCAmelCase , self.encoder[self.unk_token] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: return self.decoder.get(UpperCAmelCase , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: __a = [] __a = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __a = self.sp_model.decode(UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __a = [] else: current_sub_tokens.append(UpperCAmelCase ) __a = self.sp_model.decode(UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) __a = [1] * len(self.prefix_tokens ) __a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase )) + ([0] * len(UpperCAmelCase )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __a = self.__dict__.copy() __a = None return state def __setstate__( self , UpperCAmelCase ) -> None: __a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a = {} __a = load_spm(self.spm_file , self.sp_model_kwargs ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: __a = Path(UpperCAmelCase ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' __a = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __a = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(UpperCAmelCase , 'wb' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (str(UpperCAmelCase ), str(UpperCAmelCase )) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def lowerCAmelCase( __lowerCamelCase ): with open(__lowerCamelCase , 'r' ) as f: return json.load(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): with open(__lowerCamelCase , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
559
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def lowerCAmelCase( __lowerCamelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCamelCase_ : str = parser.parse_args() lowerCamelCase_ : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
559
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='FlavaImageProcessor' lowerCamelCase__ =('BertTokenizer', 'BertTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) __snake_case : Union[str, Any] = self.image_processor def __call__(self , a_ = None , a_ = None , a_ = True , a_ = False , a_ = False , a_ = None , a_ = 0 , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = None , **a_ , ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( a_ , return_image_mask=a_ , return_codebook_pixels=a_ , return_tensors=a_ , **a_ , ) if text is not None and images is not None: encoding.update(a_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a_ , ) return self.image_processor
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True ) -> List[str]: '''simple docstring''' model.train() SCREAMING_SNAKE_CASE__ = model(a__ ) SCREAMING_SNAKE_CASE__ = F.mse_loss(a__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(a__ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=False ) -> int: '''simple docstring''' set_seed(42 ) SCREAMING_SNAKE_CASE__ = RegressionModel() SCREAMING_SNAKE_CASE__ = deepcopy(a__ ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(a__ , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE__ = LambdaLR(a__ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) SCREAMING_SNAKE_CASE__ = LambdaLR(a__ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE__ = accelerator.prepare(a__ , a__ , a__ , a__ ) else: SCREAMING_SNAKE_CASE__ = accelerator.prepare(a__ , a__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_training_setup(a__ ) # Use a single batch SCREAMING_SNAKE_CASE__ = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__ , a__ , a__ , a__ ) else: # Sync grads step_model(a__ , a__ , a__ , a__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(a__ , a__ , a__ , a__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(a__ ) )] def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_training_setup(a__ ) # Use a single batch SCREAMING_SNAKE_CASE__ = next(iter(a__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a__ ): step_model(a__ , a__ , a__ , a__ ) else: # Sync grads step_model(a__ , a__ , a__ , a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(a__ ) )] def _lowercase ( UpperCamelCase_=False , UpperCamelCase_=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=a__ , dispatch_batches=a__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ = get_training_setup(a__ ) for iteration, batch in enumerate(a__ ): SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a__ , a__ , a__ , a__ , a__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(a__ ): step_model(a__ , a__ , a__ , a__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(a__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(a__ ) )] GradientState._reset_state() def _lowercase ( UpperCamelCase_=False , UpperCamelCase_=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator( split_batches=a__ , dispatch_batches=a__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE__ = get_training_setup(a__ , a__ ) for iteration, batch in enumerate(a__ ): SCREAMING_SNAKE_CASE__ = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(a__ , a__ , a__ , a__ , a__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(a__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(a__ ): step_model(a__ , a__ , a__ , a__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(a__ )) if accelerator.num_processes > 1: check_model_parameters(a__ , a__ , a__ , a__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _lowercase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE__ = DataLoader(a__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE__ = DataLoader(a__ , batch_size=16 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(a__ , a__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if iteration < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(a__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(a__ ) if batch_num < len(a__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowercase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(a__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(a__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(a__ , a__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(a__ , a__ ) def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
472
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase ) class __UpperCamelCase ( UpperCamelCase ): def __init__( self : Union[str, Any] , **UpperCAmelCase : List[Any] ) -> int: super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(UpperCAmelCase ) def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase : Union[str, List[str]] = None , **UpperCAmelCase : Dict , ) -> Any: if "text_queries" in kwargs: lowerCAmelCase :Dict = kwargs.pop('text_queries' ) if isinstance(UpperCAmelCase , (str, Image.Image) ): lowerCAmelCase :List[str] = {'image': image, 'candidate_labels': candidate_labels} else: lowerCAmelCase :Union[str, Any] = image lowerCAmelCase :Optional[int] = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def UpperCAmelCase__ ( self : List[Any] , **UpperCAmelCase : Tuple ) -> Optional[int]: lowerCAmelCase :Any = {} if "threshold" in kwargs: lowerCAmelCase :int = kwargs['threshold'] if "top_k" in kwargs: lowerCAmelCase :str = kwargs['top_k'] return {}, {}, postprocess_params def UpperCAmelCase__ ( self : Any , UpperCAmelCase : Union[str, Any] ) -> str: lowerCAmelCase :Dict = load_image(inputs['image'] ) lowerCAmelCase :Dict = inputs['candidate_labels'] if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase :str = candidate_labels.split(',' ) lowerCAmelCase :str = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): lowerCAmelCase :Any = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) lowerCAmelCase :Optional[Any] = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : str ) -> List[Any]: lowerCAmelCase :Union[str, Any] = model_inputs.pop('target_size' ) lowerCAmelCase :List[str] = model_inputs.pop('candidate_label' ) lowerCAmelCase :Union[str, Any] = model_inputs.pop('is_last' ) lowerCAmelCase :int = self.model(**UpperCAmelCase ) lowerCAmelCase :Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]=None ) -> str: lowerCAmelCase :int = [] for model_output in model_outputs: lowerCAmelCase :int = model_output['candidate_label'] lowerCAmelCase :List[Any] = BaseModelOutput(UpperCAmelCase ) lowerCAmelCase :Dict = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase :Tuple = outputs['scores'][index].item() lowerCAmelCase :int = self._get_bounding_box(outputs['boxes'][index][0] ) lowerCAmelCase :Optional[int] = {'score': score, 'label': label, 'box': box} results.append(UpperCAmelCase ) lowerCAmelCase :Tuple = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: lowerCAmelCase :Dict = results[:top_k] return results def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase : "torch.Tensor" ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Optional[int] = box.int().tolist() lowerCAmelCase :Union[str, Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
553
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=32, __a=16, __a=3, __a=True, __a=True, __a=32, __a=4, __a=[0, 1, 2, 3], __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=0.02, __a=3, __a=[1, 384, 24, 24], __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : int = backbone_out_indices _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Union[str, Any] = backbone_featmap_shape _lowerCAmelCase : List[str] = scope _lowerCAmelCase : str = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[int] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__a, backbone_featmap_shape=self.backbone_featmap_shape, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = DPTModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Tuple = DPTForDepthEstimation(__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : str = DPTForSemanticSegmentation(__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model(__a, labels=__a) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = DPTModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(__a) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = True if model_class in get_values(__a): continue _lowerCAmelCase : Any = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : int = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = False _lowerCAmelCase : Any = True if model_class in get_values(__a) or not model_class.supports_gradient_checkpointing: continue _lowerCAmelCase : Optional[Any] = model_class(__a) model.to(__a) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : List[str] = self._prepare_for_class(__a, __a, return_labels=__a) _lowerCAmelCase : List[Any] = model(**__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = _config_zero_init(__a) for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(config=__a) # Skip the check for the backbone _lowerCAmelCase : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowerCAmelCase : Dict = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowerCAmelCase : List[Any] = DPTModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = "add" with self.assertRaises(__a): _lowerCAmelCase : Dict = DPTForDepthEstimation(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") _lowerCAmelCase : Optional[int] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(__a) _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) _lowerCAmelCase : Optional[Any] = outputs.predicted_depth # verify the predicted depth _lowerCAmelCase : List[str] = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, __a) _lowerCAmelCase : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(__a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, __a, atol=1E-4))
658
import requests from bsa import BeautifulSoup def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" ) _lowerCAmelCase : str = soup.findAll("h1" ) _lowerCAmelCase : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
658
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase : Any , lowerCamelCase : str=7 , lowerCamelCase : List[str]=3 , lowerCamelCase : int=18 , lowerCamelCase : List[str]=30 , lowerCamelCase : Any=400 , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[Any]=None , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=True , ) -> str: __snake_case : Dict = size if size is not None else {"shortest_edge": 20} __snake_case : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __snake_case : Optional[Any] = parent __snake_case : Optional[int] = batch_size __snake_case : Optional[Any] = num_channels __snake_case : List[str] = image_size __snake_case : Optional[int] = min_resolution __snake_case : Optional[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : List[Any] = size __snake_case : Optional[int] = do_center_crop __snake_case : int = crop_size __snake_case : List[str] = do_flip_channel_order def __snake_case ( self : Tuple ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = MobileViTImageProcessor if is_vision_available() else None def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : int = MobileViTImageProcessingTester(self ) @property def __snake_case ( self : Optional[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Tuple ) -> Any: __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_flip_channel_order" ) ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: pass def __snake_case ( self : Union[str, Any] ) -> int: # Initialize image_processing __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __snake_case ( self : Tuple ) -> List[Any]: # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : Tuple = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __snake_case ( self : Dict ) -> int: # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : Any = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
81
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(UpperCamelCase__ , x % y ) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return (x * y) // greatest_common_divisor(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : int = 20 ): """simple docstring""" __lowercase = 1 for i in range(1 , n + 1 ): __lowercase = lcm(UpperCamelCase__ , UpperCamelCase__ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
616
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: Dict = tau * frequency / samplerate lowercase__: List[str] = sin(snake_case_ ) lowercase__: Union[str, Any] = cos(snake_case_ ) lowercase__: Optional[Any] = _sin / (2 * q_factor) lowercase__: int = (1 - _cos) / 2 lowercase__: Tuple = 1 - _cos lowercase__: List[Any] = 1 + alpha lowercase__: Any = -2 * _cos lowercase__: Dict = 1 - alpha lowercase__: Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: str = tau * frequency / samplerate lowercase__: Dict = sin(snake_case_ ) lowercase__: Dict = cos(snake_case_ ) lowercase__: Tuple = _sin / (2 * q_factor) lowercase__: Any = (1 + _cos) / 2 lowercase__: str = -1 - _cos lowercase__: Any = 1 + alpha lowercase__: List[str] = -2 * _cos lowercase__: Optional[Any] = 1 - alpha lowercase__: Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: List[Any] = tau * frequency / samplerate lowercase__: Optional[int] = sin(snake_case_ ) lowercase__: List[Any] = cos(snake_case_ ) lowercase__: Any = _sin / (2 * q_factor) lowercase__: Any = _sin / 2 lowercase__: Optional[Any] = 0 lowercase__: Any = -ba lowercase__: Optional[int] = 1 + alpha lowercase__: Any = -2 * _cos lowercase__: Any = 1 - alpha lowercase__: Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: List[str] = tau * frequency / samplerate lowercase__: Tuple = sin(snake_case_ ) lowercase__: List[str] = cos(snake_case_ ) lowercase__: Union[str, Any] = _sin / (2 * q_factor) lowercase__: List[str] = 1 - alpha lowercase__: Optional[Any] = -2 * _cos lowercase__: str = 1 + alpha lowercase__: List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: Tuple = tau * frequency / samplerate lowercase__: Tuple = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: str = _sin / (2 * q_factor) lowercase__: Optional[Any] = 10 ** (gain_db / 40) lowercase__: Union[str, Any] = 1 + alpha * big_a lowercase__: str = -2 * _cos lowercase__: Tuple = 1 - alpha * big_a lowercase__: Union[str, Any] = 1 + alpha / big_a lowercase__: Dict = -2 * _cos lowercase__: Optional[Any] = 1 - alpha / big_a lowercase__: Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: Optional[Any] = tau * frequency / samplerate lowercase__: Union[str, Any] = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: Optional[int] = _sin / (2 * q_factor) lowercase__: Optional[int] = 10 ** (gain_db / 40) lowercase__: List[Any] = (big_a + 1) - (big_a - 1) * _cos lowercase__: Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos lowercase__: Any = (big_a - 1) - (big_a + 1) * _cos lowercase__: str = (big_a - 1) + (big_a + 1) * _cos lowercase__: int = 2 * sqrt(snake_case_ ) * alpha lowercase__: Union[str, Any] = big_a * (pmc + aaa) lowercase__: List[Any] = 2 * big_a * mpc lowercase__: Dict = big_a * (pmc - aaa) lowercase__: Dict = ppmc + aaa lowercase__: List[str] = -2 * pmpc lowercase__: int = ppmc - aaa lowercase__: Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: List[str] = tau * frequency / samplerate lowercase__: Dict = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: Tuple = _sin / (2 * q_factor) lowercase__: int = 10 ** (gain_db / 40) lowercase__: Dict = (big_a + 1) - (big_a - 1) * _cos lowercase__: Optional[int] = (big_a + 1) + (big_a - 1) * _cos lowercase__: Tuple = (big_a - 1) - (big_a + 1) * _cos lowercase__: Dict = (big_a - 1) + (big_a + 1) * _cos lowercase__: Dict = 2 * sqrt(snake_case_ ) * alpha lowercase__: Optional[int] = big_a * (ppmc + aaa) lowercase__: Dict = -2 * big_a * pmpc lowercase__: Dict = big_a * (ppmc - aaa) lowercase__: Tuple = pmc + aaa lowercase__: Optional[int] = 2 * mpc lowercase__: Union[str, Any] = pmc - aaa lowercase__: Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
0
'''simple docstring''' import math def snake_case__ ( UpperCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( UpperCamelCase = 0.1 ) -> int: _UpperCamelCase : List[str] = 3 _UpperCamelCase : Union[str, Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1 ): primes += is_prime(UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
683
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ) -> Dict: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def _lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def _lowercase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _UpperCamelCase : int = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Tuple = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase : int = DDPMScheduler() _UpperCamelCase : Optional[int] = AudioDiffusionPipeline(vqvae=_snake_case , unet=self.dummy_unet , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case , steps=4 ) _UpperCamelCase : Union[str, Any] = output.audios[0] _UpperCamelCase : Union[str, Any] = output.images[0] _UpperCamelCase : str = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : int = pipe(generator=_snake_case , steps=4 , return_dict=_snake_case ) _UpperCamelCase : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase : List[str] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : List[str] = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : int = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase : Dict = DDIMScheduler() _UpperCamelCase : str = self.dummy_vqvae_and_unet _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Tuple = pipe(raw_audio=_snake_case , generator=_snake_case , start_step=5 , steps=10 ) _UpperCamelCase : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase : Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Tuple = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : Any = self.dummy_unet_condition _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_snake_case , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : int = torch.rand((1, 1, 10) ) _UpperCamelCase : Optional[Any] = pipe(generator=_snake_case , encoding=_snake_case ) _UpperCamelCase : Dict = output.images[0] _UpperCamelCase : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = torch_device _UpperCamelCase : int = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _UpperCamelCase : str = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case ) _UpperCamelCase : List[Any] = output.audios[0] _UpperCamelCase : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
683
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' with open(UpperCamelCase__ ) as metadata_file: SCREAMING_SNAKE_CASE__ : Optional[int] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =LukeConfig(use_entity_aware_attention=UpperCamelCase__, **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.load(UpperCamelCase__, map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE__ : List[str] =load_original_entity_vocab(UpperCamelCase__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE__ : Optional[int] =max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE__ : Optional[int] =XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ : List[Any] =AddedToken('''<ent>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =AddedToken('''<ent2>''', lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''r''' ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] =json.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ='''MLukeTokenizer''' with open(os.path.join(UpperCamelCase__, '''tokenizer_config.json''' ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__, MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ), '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ : str =tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE__ : Dict =state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : List[str] =word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Tuple =word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[bias_name] SCREAMING_SNAKE_CASE__ : List[Any] =decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str =decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] =torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ : Tuple =f"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[Any] =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ : Any =state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE__ : Any =entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE__ : Optional[int] =state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE__ : Tuple =entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any =torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE__ : int =LukeForMaskedLM(config=UpperCamelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE__ : Tuple =OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE__ : Optional[Any] =state_dict[key] else: SCREAMING_SNAKE_CASE__ : Any =state_dict[key] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =model.load_state_dict(UpperCamelCase__, strict=UpperCamelCase__ ) if set(UpperCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(UpperCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE__ : Any =MLukeTokenizer.from_pretrained(UpperCamelCase__, task='''entity_classification''' ) SCREAMING_SNAKE_CASE__ : str ='''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =(0, 9) SCREAMING_SNAKE_CASE__ : str =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[Any] =model(**UpperCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : str =torch.Size((1, 3_3, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : Any =torch.Size((1, 1, 7_6_8) ) SCREAMING_SNAKE_CASE__ : int =torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE__ : str =MLukeTokenizer.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE__ : Dict =(2_4, 3_0) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer(UpperCamelCase__, entity_spans=[span], return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : List[str] =model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE__ : Any =input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE__ : Dict =[ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(UpperCamelCase__ ) ) model.save_pretrained(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE__ : List[str] =[json.loads(UpperCamelCase__ ) for line in open(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Optional[int] ={} for entry in data: SCREAMING_SNAKE_CASE__ : Tuple =entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE__ : str =entity_id break SCREAMING_SNAKE_CASE__ : Union[str, Any] =f"{language}:{entity_name}" SCREAMING_SNAKE_CASE__ : Union[str, Any] =entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
665
'''simple docstring''' from math import isqrt def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Any =False return [i for i in range(2, UpperCamelCase__ ) if is_prime[i]] def _a( UpperCamelCase__ : int = 1_0**8 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
665
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : Any = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( __lowerCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : int = KandinskyVaaControlnetPipeline lowerCAmelCase__ : Union[str, Any] = ["image_embeds", "negative_image_embeds", "hint"] lowerCAmelCase__ : Any = ["image_embeds", "negative_image_embeds", "hint"] lowerCAmelCase__ : Dict = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase__ : Optional[int] = False @property def __a ( self : Dict ): '''simple docstring''' return 3_2 @property def __a ( self : Tuple ): '''simple docstring''' return 3_2 @property def __a ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def __a ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self : Optional[int] ): '''simple docstring''' return 1_0_0 @property def __a ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) a__ = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } a__ = UNetaDConditionModel(**lowerCamelCase ) return model @property def __a ( self : Optional[Any] ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) a__ = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : str ): '''simple docstring''' a__ = self.dummy_unet a__ = self.dummy_movq a__ = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCamelCase , ) a__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __a ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 ): '''simple docstring''' a__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) a__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create hint a__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith("mps" ): a__ = torch.manual_seed(lowerCamelCase ) else: a__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) a__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __a ( self : Any ): '''simple docstring''' a__ = "cpu" a__ = self.get_dummy_components() a__ = self.pipeline_class(**lowerCamelCase ) a__ = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) a__ = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) a__ = output.images a__ = pipe( **self.get_dummy_inputs(lowerCamelCase ) , return_dict=lowerCamelCase , )[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a__ = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' a__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) a__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) a__ = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0 a__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) a__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) a__ = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) a__ = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) a__ = "A robot, 4k photo" a__ = torch.Generator(device="cuda" ).manual_seed(0 ) a__ , a__ = pipe_prior( lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() a__ = torch.Generator(device="cuda" ).manual_seed(0 ) a__ = pipeline( image_embeds=lowerCamelCase , negative_image_embeds=lowerCamelCase , hint=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=1_0_0 , output_type="np" , ) a__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
489
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( _lowercase ): A : Tuple = ['''pixel_values'''] def __init__( self : Union[str, Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_55 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Optional[Any] , ): super().__init__(**A_ ) __snake_case : Dict = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : int = get_size_dict(A_ , default_to_square=A_ ) __snake_case : Any = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Optional[int] = get_size_dict(A_ , default_to_square=A_ , param_name="""crop_size""" ) __snake_case : Optional[int] = do_resize __snake_case : Tuple = size __snake_case : List[Any] = resample __snake_case : Dict = do_center_crop __snake_case : str = crop_size __snake_case : Any = do_rescale __snake_case : int = rescale_factor __snake_case : Optional[Any] = do_normalize __snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : str = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : int = do_convert_rgb def snake_case__ ( self : List[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ): __snake_case : Dict = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : Union[str, Any] = get_resize_output_image_size(A_ , size=size["""shortest_edge"""] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def snake_case__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : str , ): __snake_case : int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A_ , size=(size["""height"""], size["""width"""]) , data_format=A_ , **A_ ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ): return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def snake_case__ ( self : List[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ): return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def snake_case__ ( self : Dict , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Dict , ): __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : Dict = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(A_ , param_name="""size""" , default_to_square=A_ ) __snake_case : int = resample if resample is not None else self.resample __snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __snake_case : int = get_size_dict(A_ , param_name="""crop_size""" , default_to_square=A_ ) __snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : int = do_normalize if do_normalize is not None else self.do_normalize __snake_case : int = image_mean if image_mean is not None else self.image_mean __snake_case : str = image_std if image_std is not None else self.image_std __snake_case : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Optional[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : List[str] = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. __snake_case : List[Any] = [to_numpy_array(A_ ) for image in images] if do_resize: __snake_case : Optional[int] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __snake_case : Union[str, Any] = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __snake_case : Optional[Any] = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __snake_case : Optional[int] = [to_channel_dimension_format(A_ , A_ ) for image in images] __snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A_ , tensor_type=A_ )
700
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase_ = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowercase_ = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowercase_ = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def snake_case__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def snake_case__ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="auto" , _lowerCAmelCase : str=-1 , _lowerCAmelCase : Union[str, Any]=0.9 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : Any=5_00 , _lowerCAmelCase : Optional[Any]="gpt2-large" , _lowerCAmelCase : Any=-1 , _lowerCAmelCase : Optional[Any]=10_24 , _lowerCAmelCase : Tuple=25 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=25 , ): __snake_case : Optional[int] = compute_mauve( p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , ) return out
390
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ =parser.parse_args() if args.model_type == "bert": UpperCamelCase__ =BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ ='bert' else: raise ValueError('args.model_type should be "bert".') UpperCamelCase__ =model.state_dict() UpperCamelCase__ ={} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ =state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCamelCase__ =0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCamelCase__ =state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCamelCase__ =state_dict['cls.predictions.decoder.weight'] UpperCamelCase__ =state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ =state_dict[f"cls.predictions.transform.dense.{w}"] UpperCamelCase__ =state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
249
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = XLNetTokenizer __snake_case = XLNetTokenizerFast __snake_case = True __snake_case = True def UpperCamelCase_ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE : List[Any] = XLNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = "<s>" _SCREAMING_SNAKE_CASE : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(__lowerCamelCase ) , 1_0_0_6 ) def UpperCamelCase_ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = XLNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) _SCREAMING_SNAKE_CASE : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) _SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = XLNetTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = XLNetTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase_ ( self ) -> int: # fmt: off _SCREAMING_SNAKE_CASE : List[Any] = {"input_ids": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
249
1
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = list[tuple[int, int]] lowerCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : Node | None , ) -> List[Any]: '''simple docstring''' _lowercase : Dict = pos_x _lowercase : List[str] = pos_y _lowercase : int = (pos_y, pos_x) _lowercase : Tuple = goal_x _lowercase : List[str] = goal_y _lowercase : str = g_cost _lowercase : Optional[int] = parent _lowercase : List[str] = self.calculate_heuristic() def __lowercase ( self : Optional[int] ) -> float: '''simple docstring''' _lowercase : Tuple = abs(self.pos_x - self.goal_x ) _lowercase : str = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : int , UpperCamelCase_ : Dict ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ ) _lowercase : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , UpperCamelCase_ ) _lowercase : Optional[Any] = [self.start] _lowercase : list[Node] = [] _lowercase : Union[str, Any] = False def __lowercase ( self : str ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowercase : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowercase : Optional[int] = True return self.retrace_path(UpperCamelCase_ ) self.closed_nodes.append(UpperCamelCase_ ) _lowercase : Any = self.get_successors(UpperCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase_ ) else: # retrieve the best current path _lowercase : List[Any] = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase_ ) else: self.open_nodes.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def __lowercase ( self : List[Any] , UpperCamelCase_ : Node ) -> list[Node]: '''simple docstring''' _lowercase : Any = [] for action in delta: _lowercase : Optional[Any] = parent.pos_x + action[1] _lowercase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) ) return successors def __lowercase ( self : Optional[int] , UpperCamelCase_ : Node | None ) -> Path: '''simple docstring''' _lowercase : Any = node _lowercase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowercase : Union[str, Any] = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCamelCase__ = (0, 0) lowerCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowerCamelCase__ = GreedyBestFirst(init, goal) lowerCamelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCamelCase__ = 2 for elem in grid: print(elem)
411
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : Optional[int] = model_type_to_module_name(snake_case_ ) _lowercase : Optional[Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : int = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : int , ) ->Union[str, Any]: '''simple docstring''' _lowercase : Dict = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : int ) -> Tuple: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __lowercase ( cls : str , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : int = kwargs.pop('''config''' , UpperCamelCase_ ) _lowercase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) _lowercase : str = True _lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = config_dict.get('''image_processor_type''' , UpperCamelCase_ ) _lowercase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase : str = config_dict.pop('''feature_extractor_type''' , UpperCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowercase : Any = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _lowercase : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.image_processor_type`` _lowercase : Optional[int] = getattr(UpperCamelCase_ , '''image_processor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowercase : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _lowercase : int = image_processor_class_from_name(UpperCamelCase_ ) _lowercase : str = image_processor_auto_map is not None _lowercase : List[str] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING _lowercase : Tuple = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : Dict = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: _lowercase : List[str] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )] return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowercase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
411
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = IFInpaintingPipeline lowerCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCamelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase_ ( self ): '''simple docstring''' return self._get_dummy_components() def lowercase_ ( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase_ ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_local() def lowercase_ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
100
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType a_, a_, a_ = False, False, False @dataclass class lowercase__ : a_ =None a_ =True a_ =True a_ =None # Automatically constructed a_ ="dict" a_ =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) a_ =field(default="""Audio""", init=_UpperCAmelCase, repr=_UpperCAmelCase ) def __call__( self )-> Optional[int]: '''simple docstring''' return self.pa_type def UpperCAmelCase ( self , __UpperCAmelCase )-> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase__ = BytesIO() sf.write(__UpperCAmelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase__ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowerCAmelCase__ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 lowerCAmelCase__ = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> dict: '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) lowerCAmelCase__ , lowerCAmelCase__ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err lowerCAmelCase__ = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: lowerCAmelCase__ = token_per_repo_id or {} lowerCAmelCase__ = path.split("::" )[-1] try: lowerCAmelCase__ = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )["repo_id"] lowerCAmelCase__ = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase__ = None with xopen(__UpperCAmelCase , "rb" , use_auth_token=__UpperCAmelCase ) as f: lowerCAmelCase__ , lowerCAmelCase__ = sf.read(__UpperCAmelCase ) else: lowerCAmelCase__ , lowerCAmelCase__ = sf.read(__UpperCAmelCase ) lowerCAmelCase__ = array.T if self.mono: lowerCAmelCase__ = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase__ = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) lowerCAmelCase__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def UpperCAmelCase ( self , __UpperCAmelCase )-> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): lowerCAmelCase__ = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowerCAmelCase__ = storage.field("bytes" ) else: lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowerCAmelCase__ = storage.field("path" ) else: lowerCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def UpperCAmelCase ( self , __UpperCAmelCase )-> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase ): with xopen(__UpperCAmelCase , "rb" ) as f: lowerCAmelCase__ = f.read() return bytes_ lowerCAmelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase__ = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowerCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
115
1
def UpperCamelCase ( __magic_name__ : int = 10**9 ) -> int: """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase__ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
15
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=400 , a_=True , a_=None , a_=True , ): lowerCamelCase_ : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase_ : str = parent lowerCamelCase_ : str = batch_size lowerCamelCase_ : Tuple = num_channels lowerCamelCase_ : Optional[int] = image_size lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : Tuple = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : List[str] = apply_ocr def _UpperCamelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = LayoutLMvaImageProcessingTester(self ) @property def _UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "apply_ocr" ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input lowerCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched lowerCamelCase_ : int = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Any = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Union[str, Any] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # with apply_OCR = True lowerCamelCase_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase_ : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCamelCase_ : Optional[Any] = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCamelCase_ : List[Any] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase_ : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase_ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False lowerCamelCase_ : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) lowerCamelCase_ : List[str] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
73
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : List[str] = '''cvt''' def __init__( self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 192, 384] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Optional[Any] = num_channels lowerCamelCase_ : str = patch_sizes lowerCamelCase_ : List[Any] = patch_stride lowerCamelCase_ : str = patch_padding lowerCamelCase_ : str = embed_dim lowerCamelCase_ : Union[str, Any] = num_heads lowerCamelCase_ : Optional[Any] = depth lowerCamelCase_ : int = mlp_ratio lowerCamelCase_ : Union[str, Any] = attention_drop_rate lowerCamelCase_ : Optional[Any] = drop_rate lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : Union[str, Any] = qkv_bias lowerCamelCase_ : int = cls_token lowerCamelCase_ : int = qkv_projection_method lowerCamelCase_ : int = kernel_qkv lowerCamelCase_ : Optional[Any] = padding_kv lowerCamelCase_ : Optional[int] = stride_kv lowerCamelCase_ : Optional[int] = padding_q lowerCamelCase_ : List[Any] = stride_q lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : int = layer_norm_eps
73
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple ) -> Optional[int]: '''simple docstring''' lowercase =StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase =load_file(lowercase_ ) lowercase =[] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase =key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) lowercase =pipeline.text_encoder else: lowercase =key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) lowercase =pipeline.unet # find the target layer lowercase =layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: lowercase =curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: lowercase =layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase =layer_infos.pop(0 ) lowercase =[] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase =state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase =state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase =state_dict[pair_keys[0]].to(torch.floataa ) lowercase =state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : Any = args.base_model_path _UpperCAmelCase : Any = args.checkpoint_path _UpperCAmelCase : Optional[int] = args.dump_path _UpperCAmelCase : Optional[int] = args.lora_prefix_unet _UpperCAmelCase : Dict = args.lora_prefix_text_encoder _UpperCAmelCase : str = args.alpha _UpperCAmelCase : Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _UpperCAmelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
72
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Tuple ) -> List[Any]: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): lowercase =np.full((len(lowercase_ ), sequence_length, 2) , lowercase_ ) else: lowercase =np.full((len(lowercase_ ), sequence_length) , lowercase_ ) for i, tensor in enumerate(lowercase_ ): if padding_side == "right": if isinstance(lowercase_ , lowercase_ ): lowercase =tensor[:sequence_length] else: lowercase =tensor[:sequence_length] else: if isinstance(lowercase_ , lowercase_ ): lowercase =tensor[:sequence_length] else: lowercase =tensor[:sequence_length] return out_tensor.tolist() def UpperCamelCase ( lowercase_ : Optional[Any] ) -> str: '''simple docstring''' lowercase =ord(lowercase_ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True lowercase =unicodedata.category(lowercase_ ) if cat.startswith('''P''' ): return True return False @dataclass class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 42 UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = -1_00 UpperCamelCase__ = "pt" def _A( self , snake_case_ ): import torch lowercase ='''label''' if '''label''' in features[0].keys() else '''labels''' lowercase =[feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase =self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase =torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase =self.tokenizer.padding_side if padding_side == "right": lowercase =[ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: lowercase =[ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] lowercase =[feature['''ner_tags'''] for feature in features] lowercase =padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) lowercase =[feature['''original_entity_spans'''] for feature in features] lowercase =padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) lowercase ={k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
72
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple=13 , UpperCamelCase__: Optional[Any]=32 , UpperCamelCase__: int=2 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: Tuple=16 , UpperCamelCase__: str=[1, 2, 1] , UpperCamelCase__: int=[2, 2, 4] , UpperCamelCase__: Union[str, Any]=2 , UpperCamelCase__: Optional[Any]=2.0 , UpperCamelCase__: List[Any]=True , UpperCamelCase__: List[Any]=0.0 , UpperCamelCase__: Dict=0.0 , UpperCamelCase__: str=0.1 , UpperCamelCase__: int="gelu" , UpperCamelCase__: List[str]=False , UpperCamelCase__: int=True , UpperCamelCase__: str=0.02 , UpperCamelCase__: List[str]=1e-5 , UpperCamelCase__: Any=True , UpperCamelCase__: Any=None , UpperCamelCase__: List[Any]=True , UpperCamelCase__: Union[str, Any]=10 , UpperCamelCase__: Union[str, Any]=8 , ): lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Optional[int] = embed_dim lowerCamelCase__ : int = depths lowerCamelCase__ : Union[str, Any] = num_heads lowerCamelCase__ : Optional[Any] = window_size lowerCamelCase__ : List[str] = mlp_ratio lowerCamelCase__ : Dict = qkv_bias lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Dict = drop_path_rate lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Any = use_absolute_embeddings lowerCamelCase__ : Tuple = patch_norm lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Dict = scope lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : List[str] = encoder_stride def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Optional[Any] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: Dict ): lowerCamelCase__ : List[str] = SwinvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Any = model(UpperCamelCase__ ) lowerCamelCase__ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict , UpperCamelCase__: Any ): lowerCamelCase__ : Dict = SwinvaForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : List[Any] = SwinvaForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: List[str] ): lowerCamelCase__ : List[str] = self.type_sequence_label_size lowerCamelCase__ : List[Any] = SwinvaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Dict = SwinvaModelTester(self ) lowerCamelCase__ : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 ) def lowerCamelCase_ ( self: List[Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: int ): pass def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(UpperCamelCase__ ) lowerCamelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True for model_class in self.all_model_classes: lowerCamelCase__ : int = True lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = outputs.attentions lowerCamelCase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = config.window_size**2 lowerCamelCase__ : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCamelCase__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine lowerCamelCase__ : Dict = True lowerCamelCase__ : int = True lowerCamelCase__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): lowerCamelCase__ : List[str] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCamelCase__ : Tuple = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) lowerCamelCase__ : str = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[int] , UpperCamelCase__: str ): lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : List[Any] = outputs.hidden_states lowerCamelCase__ : Optional[int] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # Swinv2 has a different seq_length lowerCamelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = reshaped_hidden_states[0].shape lowerCamelCase__ : Optional[Any] = ( reshaped_hidden_states[0].view(UpperCamelCase__ , UpperCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[int] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase__ : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Tuple = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Tuple ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Tuple = SwinvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Dict = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: List[Any] ): return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[Any] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( UpperCamelCase__ ) lowerCamelCase__ : List[str] = self.default_image_processor lowerCamelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase__ : Union[str, Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Any = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Tuple = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
631
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _lowercase ( _lowercase ): a = """rwkv""" a = {"""max_position_embeddings""": """context_length"""} def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=50_277 , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Tuple=4_096 , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Dict=None , UpperCamelCase__: Dict=None , UpperCamelCase__: int=1e-5 , UpperCamelCase__: Any=0 , UpperCamelCase__: str=0 , UpperCamelCase__: Union[str, Any]=6 , UpperCamelCase__: Optional[int]=False , UpperCamelCase__: Dict=True , **UpperCamelCase__: Dict , ): lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Optional[Any] = context_length lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : int = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase__ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase__ : List[str] = layer_norm_epsilon lowerCamelCase__ : int = rescale_every lowerCamelCase__ : Optional[int] = use_cache lowerCamelCase__ : Dict = bos_token_id lowerCamelCase__ : Any = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
631
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : Union[str, Any] ,__A : Optional[Any]=768 ) -> Optional[int]: super().__init__(__A ) _lowercase = proj_size _lowercase = CLIPVisionModel(__A ) _lowercase = PaintByExampleMapper(__A ) _lowercase = nn.LayerNorm(config.hidden_size ) _lowercase = nn.Linear(config.hidden_size ,self.proj_size ) # uncondition for scaling _lowercase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __UpperCAmelCase ( self : str ,__A : Optional[int] ,__A : Optional[int]=False ) -> Union[str, Any]: _lowercase = self.model(pixel_values=__A ) _lowercase = clip_output.pooler_output _lowercase = self.mapper(latent_states[:, None] ) _lowercase = self.final_layer_norm(__A ) _lowercase = self.proj_out(__A ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class A_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,__A : Dict ) -> str: super().__init__() _lowercase = (config.num_hidden_layers + 1) // 5 _lowercase = config.hidden_size _lowercase = 1 _lowercase = nn.ModuleList( [ BasicTransformerBlock(__A ,__A ,__A ,activation_fn='gelu' ,attention_bias=__A ) for _ in range(__A ) ] ) def __UpperCAmelCase ( self : Tuple ,__A : Optional[Any] ) -> Dict: for block in self.blocks: _lowercase = block(__A ) return hidden_states
67
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : str = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "dpr" def __init__( self : Union[str, Any] , __a : Optional[Any]=30_522 , __a : List[Any]=768 , __a : List[Any]=12 , __a : Dict=12 , __a : Union[str, Any]=3_072 , __a : Any="gelu" , __a : Any=0.1 , __a : Any=0.1 , __a : Tuple=512 , __a : int=2 , __a : Optional[Any]=0.02 , __a : List[Any]=1e-12 , __a : int=0 , __a : int="absolute" , __a : int = 0 , **__a : Optional[int] , ) ->Tuple: super().__init__(pad_token_id=__a , **__a ) lowerCamelCase_ : str = vocab_size lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Optional[int] = num_hidden_layers lowerCamelCase_ : Optional[Any] = num_attention_heads lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : List[Any] = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Tuple = type_vocab_size lowerCamelCase_ : Dict = initializer_range lowerCamelCase_ : List[Any] = layer_norm_eps lowerCamelCase_ : List[str] = projection_dim lowerCamelCase_ : Optional[int] = position_embedding_type
278
0
from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase ( _A : Optional[Any] )-> int: """simple docstring""" for param in module.parameters(): A__ = False def UpperCamelCase ( )-> str: """simple docstring""" A__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): A__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def UpperCamelCase ( _A : Optional[int] )-> int: """simple docstring""" A__ = plt.imshow(lowerCamelCase__ ) fig.axes.get_xaxis().set_visible(lowerCamelCase__ ) fig.axes.get_yaxis().set_visible(lowerCamelCase__ ) plt.show() def UpperCamelCase ( )-> Dict: """simple docstring""" A__ = datetime.now() A__ = current_time.strftime("%H:%M:%S" ) return timestamp
710
import requests def UpperCamelCase ( _A : str , _A : str )-> None: """simple docstring""" A__ = {"Content-Type": "application/json"} A__ = requests.post(_A , json={"text": message_body} , headers=_A ) if response.status_code != 200: A__ = ( "Request to slack returned an error " f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_A ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
232
0
from __future__ import annotations import requests def snake_case_ (__A : str ) -> dict: __lowerCAmelCase : Tuple = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(__A ).json() def snake_case_ (__A : int = 1_0 ) -> list[dict]: __lowerCAmelCase : List[Any] = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" __lowerCAmelCase : Union[str, Any] = requests.get(__A ).json()[:max_stories] return [get_hackernews_story(__A ) for story_id in story_ids] def snake_case_ (__A : int = 1_0 ) -> str: __lowerCAmelCase : Optional[Any] = hackernews_top_stories(__A ) return "\n".join("""* [{title}]({url})""".format(**__A ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
651
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCamelCase_ ( lowerCAmelCase__ : List[DatasetType] , lowerCAmelCase__ : Optional[List[float]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[DatasetInfo] = None , lowerCAmelCase__ : Optional[NamedSplit] = None , lowerCAmelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase__ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase__ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase__ ).__name__}." ) if i == 0: lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , stopping_strategy=lowerCAmelCase__ ) else: return _interleave_iterable_datasets( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , stopping_strategy=lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : List[DatasetType] , lowerCAmelCase__ : Optional[DatasetInfo] = None , lowerCAmelCase__ : Optional[NamedSplit] = None , lowerCAmelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase__ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase__ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase__ ).__name__}." ) if i == 0: lowerCAmelCase_ ,lowerCAmelCase_ : int = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: return _concatenate_iterable_datasets(lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , axis=lowerCAmelCase__ )
317
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Optional[int] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase (SCREAMING_SNAKE_CASE = 8 ): UpperCamelCase : Union[str, Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(SCREAMING_SNAKE_CASE ) UpperCamelCase : int = i // 3 UpperCamelCase : Any = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCamelCase : str = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Tuple = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): pass # Put your code here... def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): pass # Put your code here... def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): pass # Put your code here... def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 8 ): if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False UpperCamelCase : str = any(char in ascii_uppercase for char in password ) UpperCamelCase : Tuple = any(char in ascii_lowercase for char in password ) UpperCamelCase : Union[str, Any] = any(char in digits for char in password ) UpperCamelCase : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase (): UpperCamelCase : Union[str, Any] = int(input("""Please indicate the max length of your password: """ ).strip() ) UpperCamelCase : Optional[int] = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
102
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(a_, id=a_ )
494
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False ) -> Tuple: UpperCAmelCase = scheduler UpperCAmelCase = optimizers if isinstance(lowerCAmelCase__ , (list, tuple) ) else [optimizers] UpperCAmelCase = split_batches UpperCAmelCase = step_with_optimizer UpperCAmelCase = GradientState() def _UpperCamelCase ( self : int , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase = AcceleratorState().num_processes for _ in range(lowerCAmelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> List[Any]: return self.scheduler.get_last_lr() def _UpperCamelCase ( self : Optional[int] ) -> str: return self.scheduler.state_dict() def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : str ) -> Union[str, Any]: self.scheduler.load_state_dict(lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> str: return self.scheduler.get_lr() def _UpperCamelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> List[Any]: return self.scheduler.print_lr(*lowerCAmelCase__ , **lowerCAmelCase__ )
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Union[str, Any] ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
148
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : int ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''data2vec-audio''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=16 , _A=19 , _A=5 , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A="sum" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1_500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=False , _A=3 , _A=2 , _A=3 , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = conv_pos_kernel_size __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter __SCREAMING_SNAKE_CASE = add_adapter __SCREAMING_SNAKE_CASE = adapter_kernel_size __SCREAMING_SNAKE_CASE = adapter_stride __SCREAMING_SNAKE_CASE = num_adapter_layers __SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def _A ( self ): '''simple docstring''' return math.prod(self.conv_stride )
148
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ , a__ = emb.weight.shape a__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) a__ = emb.weight.data return lin_layer def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = torch.load(__lowerCAmelCase , map_location="cpu" ) a__ = mam_aaa["args"] or mam_aaa["cfg"]["model"] a__ = mam_aaa["model"] remove_ignore_keys_(__lowerCAmelCase ) a__ = state_dict["encoder.embed_tokens.weight"].shape[0] a__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) a__ = state_dict["decoder.embed_tokens.weight"] a__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) a__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase_ : Tuple = parser.parse_args() UpperCamelCase_ : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
709
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase_ : str = """scheduler_config.json""" class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 1 UpperCamelCase__ = 2 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 5 @dataclass class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 42 class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = SCHEDULER_CONFIG_NAME UpperCamelCase__ = ['''dtype'''] UpperCamelCase__ = [] UpperCamelCase__ = True @classmethod def lowerCAmelCase_ ( cls : Optional[Any] ,a__ : Dict[str, Any] = None ,a__ : Optional[str] = None ,a__ : Union[str, Any]=False ,**a__ : Tuple ,): a__ , a__ = cls.load_config( pretrained_model_name_or_path=a__ ,subfolder=a__ ,return_unused_kwargs=a__ ,**a__ ,) a__ , a__ = cls.from_config(a__ ,return_unused_kwargs=a__ ,**a__ ) if hasattr(a__ ,"create_state" ) and getattr(a__ ,"has_state" ,a__ ): a__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase_ ( self : Any ,a__ : Union[str, os.PathLike] ,a__ : bool = False ,**a__ : Optional[int] ): self.save_config(save_directory=a__ ,push_to_hub=a__ ,**a__ ) @property def lowerCAmelCase_ ( self : List[str] ): return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls : str ): a__ = list(set([cls.__name__] + cls._compatibles ) ) a__ = importlib.import_module(__name__.split("." )[0] ) a__ = [ getattr(a__ ,a__ ) for c in compatible_classes_str if hasattr(a__ ,a__ ) ] return compatible_classes def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" assert len(_lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowercase ) - x.ndim) ) , _lowercase ) def _lowerCAmelCase (_lowercase , _lowercase=0.999 , _lowercase=jnp.floataa ): """simple docstring""" def alpha_bar(_lowercase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 a__ = [] for i in range(_lowercase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowercase ) / alpha_bar(_lowercase ) , _lowercase ) ) return jnp.array(_lowercase , dtype=_lowercase ) @flax.struct.dataclass class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @classmethod def lowerCAmelCase_ ( cls : Tuple ,a__ : List[Any] ): a__ = scheduler.config if config.trained_betas is not None: a__ = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a__ = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) a__ = 1.0 - betas a__ = jnp.cumprod(a__ ,axis=0 ) return cls( alphas=a__ ,betas=a__ ,alphas_cumprod=a__ ,) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = state.alphas_cumprod a__ = alphas_cumprod[timesteps] ** 0.5 a__ = sqrt_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) a__ = (1 - alphas_cumprod[timesteps]) ** 0.5 a__ = sqrt_one_minus_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
394
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : int=10 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : List[str]=0.9 , UpperCAmelCase__ : Any=None , ): """simple docstring""" snake_case : List[str] = parent snake_case : List[str] = batch_size snake_case : str = image_size snake_case : Optional[int] = num_channels snake_case : Any = patch_size snake_case : Optional[Any] = tubelet_size snake_case : int = num_frames snake_case : Any = is_training snake_case : Optional[Any] = use_labels snake_case : int = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[str] = intermediate_size snake_case : List[str] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : Union[str, Any] = type_sequence_label_size snake_case : Union[str, Any] = initializer_range snake_case : List[Any] = mask_ratio snake_case : List[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Optional[int] = (image_size // patch_size) ** 2 snake_case : Any = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : Any = int(mask_ratio * self.seq_length ) def lowerCAmelCase( self : str ): """simple docstring""" snake_case : str = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase( self : int ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ): """simple docstring""" snake_case : Optional[Any] = VideoMAEModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case : Optional[int] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ): """simple docstring""" snake_case : int = VideoMAEForPreTraining(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Optional[Any] = torch.ones((self.num_masks,) ) snake_case : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : List[Any] = mask.expand(self.batch_size , -1 ).bool() snake_case : int = model(UpperCAmelCase__ , UpperCAmelCase__ ) # model only returns predictions for masked patches snake_case : Tuple = mask.sum().item() snake_case : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase( self : List[Any] ): """simple docstring""" snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : int = config_and_inputs snake_case : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a , a , unittest.TestCase ): A__ : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) A__ : Union[str, Any] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) A__ : Tuple = False A__ : Any = False A__ : Dict = False A__ : int = False def lowerCAmelCase( self : Any ): """simple docstring""" snake_case : List[str] = VideoMAEModelTester(self ) snake_case : int = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=False ): """simple docstring""" snake_case : List[str] = copy.deepcopy(UpperCAmelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : str = torch.ones((self.model_tester.num_masks,) ) snake_case : Union[str, Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Any = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : Union[str, Any] = bool_masked_pos.to(UpperCAmelCase__ ) if return_labels: if model_class in [ *get_values(UpperCAmelCase__ ), ]: snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def lowerCAmelCase( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" pass def lowerCAmelCase( self : Any ): """simple docstring""" snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def lowerCAmelCase( self : Any ): """simple docstring""" snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCAmelCase__ ) snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Any = [*signature.parameters.keys()] snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCAmelCase( self : Dict ): """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) @slow def lowerCAmelCase( self : Any ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[Any] = VideoMAEModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase( self : Any ): """simple docstring""" if not self.has_attentions: pass else: snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Union[str, Any] = True for model_class in self.all_model_classes: snake_case : str = self.model_tester.seq_length - self.model_tester.num_masks snake_case : Tuple = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : int = False snake_case : Optional[Any] = True snake_case : int = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) snake_case : Optional[int] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Optional[Any] = True snake_case : str = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) snake_case : Optional[int] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : Union[str, Any] = len(UpperCAmelCase__ ) # Check attention is always last and order is fine snake_case : Optional[int] = True snake_case : List[Any] = True snake_case : Any = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCAmelCase__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase( self : List[Any] ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ): snake_case : int = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): snake_case : List[str] = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) snake_case : Optional[Any] = outputs.hidden_states snake_case : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) snake_case : Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : int = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase( self : List[str] ): """simple docstring""" pass def a_ ( ) -> List[Any]: """simple docstring""" snake_case : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case : Tuple = np.load(__magic_name__ ) return list(__magic_name__ ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase( self : Any ): """simple docstring""" snake_case : Dict = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCAmelCase__ ) snake_case : Optional[Any] = self.default_image_processor snake_case : int = prepare_video() snake_case : Dict = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): snake_case : int = model(**UpperCAmelCase__ ) # verify the logits snake_case : str = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) snake_case : List[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Tuple = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCAmelCase__ ) snake_case : Optional[Any] = self.default_image_processor snake_case : Union[str, Any] = prepare_video() snake_case : Optional[int] = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # add boolean mask, indicating which patches to mask snake_case : List[Any] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case : int = torch.load(UpperCAmelCase__ ) # forward pass with torch.no_grad(): snake_case : List[Any] = model(**UpperCAmelCase__ ) # verify the logits snake_case : Dict = torch.Size([1, 1_408, 1_536] ) snake_case : int = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=UpperCAmelCase__ ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Optional[int] = torch.tensor([0.5142] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCAmelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : Optional[int] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCAmelCase__ ).to( UpperCAmelCase__ ) with torch.no_grad(): snake_case : Optional[Any] = model(**UpperCAmelCase__ ) snake_case : Tuple = torch.tensor(torch.tensor([0.6469] ) , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCAmelCase__ , atol=1e-4 ) )
598
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): def lowerCAmelCase( self : List[str] ): """simple docstring""" snake_case : Tuple = tempfile.mkdtemp() snake_case : Optional[int] = BlipImageProcessor() snake_case : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) snake_case : Tuple = BlipaProcessor(UpperCAmelCase__ , UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase( self : List[Any] , **UpperCAmelCase__ : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).tokenizer def lowerCAmelCase( self : List[str] , **UpperCAmelCase__ : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : str = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) snake_case : Optional[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : str = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : int = BlipaProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) snake_case : int = self.prepare_image_inputs() snake_case : Optional[int] = image_processor(UpperCAmelCase__ , return_tensors='''np''' ) snake_case : str = processor(images=UpperCAmelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase( self : Optional[int] ): """simple docstring""" snake_case : Optional[Any] = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : List[Any] = BlipaProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) snake_case : Any = '''lower newer''' snake_case : List[Any] = processor(text=UpperCAmelCase__ ) snake_case : Optional[int] = tokenizer(UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase( self : Any ): """simple docstring""" snake_case : List[Any] = self.get_image_processor() snake_case : Any = self.get_tokenizer() snake_case : Any = BlipaProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) snake_case : List[Any] = '''lower newer''' snake_case : str = self.prepare_image_inputs() snake_case : Optional[int] = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : str = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Any = BlipaProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Tuple = processor.batch_decode(UpperCAmelCase__ ) snake_case : str = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase( self : int ): """simple docstring""" snake_case : List[Any] = self.get_image_processor() snake_case : Any = self.get_tokenizer() snake_case : Optional[Any] = BlipaProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) snake_case : Any = '''lower newer''' snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : str = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
598
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> list: UpperCamelCase__ : Tuple = len(lowerCamelCase_) UpperCamelCase__ : int = [[0] * n for i in range(lowerCamelCase_)] for i in range(lowerCamelCase_): UpperCamelCase__ : Dict = y_points[i] for i in range(2 , lowerCamelCase_): for j in range(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' from __future__ import annotations __snake_case ="""Muhammad Umer Farooq""" __snake_case ="""MIT""" __snake_case ="""1.0.0""" __snake_case ="""Muhammad Umer Farooq""" __snake_case ="""contact@muhammadumerfarooq.me""" __snake_case ="""Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class UpperCAmelCase_ ( __lowercase ): def __init__( self : Optional[int] , UpperCAmelCase__ : str ) -> None: super().__init__() lowerCAmelCase = [] lowerCAmelCase = domain def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCAmelCase = parse.urljoin(self.domain , UpperCAmelCase__ ) self.urls.append(UpperCAmelCase__ ) def a_ ( lowerCamelCase : str ): return ".".join(get_sub_domain_name(lowerCamelCase ).split('.' )[-2:] ) def a_ ( lowerCamelCase : str ): return parse.urlparse(lowerCamelCase ).netloc def a_ ( lowerCamelCase : str = "https://github.com" ): lowerCAmelCase = get_domain_name(lowerCamelCase ) # Initialize the parser lowerCAmelCase = Parser(lowerCamelCase ) try: # Open URL lowerCAmelCase = requests.get(lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCAmelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCAmelCase = requests.get(lowerCamelCase ) # Get the valid email. lowerCAmelCase = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCamelCase ) if __name__ == "__main__": __snake_case =emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
133
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] lowerCamelCase : Dict = '''BlipImageProcessor''' lowerCamelCase : List[str] = '''AutoTokenizer''' def __init__( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: lowerCAmelCase = False super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = self.image_processor def __call__( self : Union[str, Any] , UpperCAmelCase__ : ImageInput = None , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Optional[int] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) return text_encoding # add pixel_values lowerCAmelCase = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) if text is not None: lowerCAmelCase = self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase__ ) return encoding_image_processor def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple ) -> int: return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Dict ) -> Optional[int]: return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCAmelCase ( self : int ) -> str: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
133
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase = 1_3 , UpperCAmelCase = 6_4 , UpperCAmelCase = 2 , UpperCAmelCase = 3 , UpperCAmelCase = 3 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 1_2_8 , UpperCAmelCase=[1_6, 3_2, 6_4, 1_2_8] , UpperCAmelCase = 7 , UpperCAmelCase = 4 , UpperCAmelCase = 3_7 , UpperCAmelCase = "gelu" , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 1_0 , UpperCAmelCase = 0.02 , UpperCAmelCase = 2 , UpperCAmelCase = 1 , UpperCAmelCase = 1_2_8 , UpperCAmelCase = [2, 2, 2, 2] , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ) -> Optional[Any]: __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = encoder_stride __a = num_attention_outputs __a = embed_dim __a = embed_dim + 1 __a = resolution __a = depths __a = hidden_sizes __a = dim __a = mlp_expansion_ratio def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: __a = TFEfficientFormerModel(config=UpperCAmelCase ) __a = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: __a = self.type_sequence_label_size __a = TFEfficientFormerForImageClassification(UpperCAmelCase ) __a = model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = TFEfficientFormerForImageClassification(UpperCAmelCase ) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : Tuple = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) A__ : Tuple = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : Any = False A__ : Optional[Any] = False A__ : int = False A__ : Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = TFEfficientFormerModelTester(self ) __a = ConfigTester( self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(UpperCAmelCase ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __a = model_class(UpperCAmelCase ) __a = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) if hasattr(self.model_tester , 'encoder_seq_length' ): __a = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: __a = seq_length * self.model_tester.chunk_length else: __a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __a = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) __a = getattr(self.model_tester , 'seq_length' , UpperCAmelCase ) __a = getattr(self.model_tester , 'decoder_seq_length' , UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> str: __a = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFEfficientFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = getattr(self.model_tester , 'seq_length' , UpperCAmelCase ) __a = getattr(self.model_tester , 'encoder_seq_length' , UpperCAmelCase ) __a = getattr(self.model_tester , 'key_length' , UpperCAmelCase ) __a = getattr(self.model_tester , 'chunk_length' , UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): __a = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(UpperCAmelCase ) __a = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) __a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(UpperCAmelCase ) __a = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) __a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __a = model_class(UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __a = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __a = model(UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase( ): __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Any: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass __a = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __a = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __a = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass __a = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __a = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __a = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
246
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase( __lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase , __lowerCamelCase ) -> bool: __a = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __a = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __a = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = 0.0 , __lowerCamelCase = 1.0 ): def identity_function(__lowerCamelCase ) -> float: return x __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __a = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def lowerCAmelCase( __lowerCamelCase ): def function_to_integrate(__lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __a = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
246
1