code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__UpperCAmelCase ): """simple docstring""" __A : int = ['''onnx'''] def __init__( self , *lowercase , **lowercase) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['onnx']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> str: '''simple docstring''' requires_backends(cls , ['onnx']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> Dict: '''simple docstring''' requires_backends(cls , ['onnx'])
302
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase : Any = logging.get_logger(__name__) lowercase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : List[Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowercase : Union[str, Any] = { """roberta-base""": 5_1_2, """roberta-large""": 5_1_2, """roberta-large-mnli""": 5_1_2, """distilroberta-base""": 5_1_2, """roberta-base-openai-detector""": 5_1_2, """roberta-large-openai-detector""": 5_1_2, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[Any] = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = ['''input_ids''', '''attention_mask'''] __A : Tuple = RobertaTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> int: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Dict = getattr(lowercase , pre_tok_state.pop('type')) a__ : Optional[int] = add_prefix_space a__ : Optional[int] = pre_tok_class(**lowercase) a__ : List[Any] = add_prefix_space a__ : Dict = 'post_processor' a__ : Union[str, Any] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : List[str] = tuple(state['sep']) if "cls" in state: a__ : Any = tuple(state['cls']) a__ : Union[str, Any] = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : int = add_prefix_space a__ : Dict = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : List[str] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : Any = getattr(lowercase , state.pop('type')) a__ : str = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : List[str] = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Any = kwargs.get('is_split_into_words' , lowercase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Dict = kwargs.get('is_split_into_words' , lowercase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> Optional[Any]: '''simple docstring''' a__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : Union[str, Any] = [self.sep_token_id] a__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
302
1
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , __a : List[Any]="sayef/fsner-bert-base-uncased" ) -> List[Any]: super(__a , self ).__init__() _UpperCamelCase : Union[str, Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : Optional[Any] = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : Optional[Any] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__a : Optional[int] ) -> Optional[int]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Any ) -> Union[str, Any]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : int=1 ) -> str: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , __a : Dict ) -> Optional[int]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Union[str, Any] = W_supports["start_token_id"].item() _UpperCamelCase : Tuple = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : List[str] = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : Dict = None _UpperCamelCase : int = None _UpperCamelCase : Tuple = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[Any] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : str = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : str = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : List[str] = p_start _UpperCamelCase : Dict = p_end return p_starts, p_ends
51
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" if "emb" in name: _UpperCamelCase : List[str] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : Optional[int] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Optional[int] = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : Optional[Any] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Union[str, Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : Optional[Any] = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Dict = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Union[str, Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Union[str, Any] = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : str = list(state_dict.keys() ) _UpperCamelCase : Optional[Any] = {} for key in keys: _UpperCamelCase : Optional[int] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : Tuple = val[:hidden_size, :] _UpperCamelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : List[str] = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : List[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Any = 16 elif checkpoint == "medium": _UpperCamelCase : Tuple = 1_536 _UpperCamelCase : Dict = 48 _UpperCamelCase : Tuple = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Optional[int] = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : str = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> List[str]: """simple docstring""" _UpperCamelCase : str = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : Union[str, Any] = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Optional[Any] = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : str = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : str = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : str = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : List[str] = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : Dict = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : Tuple = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Optional[int] = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : str = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[Any] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : List[str] = True _UpperCamelCase : int = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( a_ ): '''simple docstring''' lowerCAmelCase__ : Dict = "luke" def __init__( self : Tuple ,UpperCamelCase : Optional[Any]=5_0267 ,UpperCamelCase : Optional[Any]=50_0000 ,UpperCamelCase : str=768 ,UpperCamelCase : Tuple=256 ,UpperCamelCase : Dict=12 ,UpperCamelCase : Tuple=12 ,UpperCamelCase : Optional[Any]=3072 ,UpperCamelCase : Optional[Any]="gelu" ,UpperCamelCase : List[str]=0.1 ,UpperCamelCase : Any=0.1 ,UpperCamelCase : int=512 ,UpperCamelCase : int=2 ,UpperCamelCase : List[Any]=0.0_2 ,UpperCamelCase : List[Any]=1e-12 ,UpperCamelCase : List[Any]=True ,UpperCamelCase : Any=None ,UpperCamelCase : Tuple=1 ,UpperCamelCase : int=0 ,UpperCamelCase : int=2 ,**UpperCamelCase : int ,) -> Union[str, Any]: super().__init__(pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,**UpperCamelCase ) _lowercase : str = vocab_size _lowercase : List[Any] = entity_vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Tuple = entity_emb_size _lowercase : Dict = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : int = hidden_act _lowercase : Optional[int] = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : int = initializer_range _lowercase : Any = layer_norm_eps _lowercase : str = use_entity_aware_attention _lowercase : Optional[int] = classifier_dropout
125
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
328
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase : Tuple = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase : Optional[Any] = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE: Optional[int] = bs[:] __SCREAMING_SNAKE_CASE: Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE: str = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = set() __SCREAMING_SNAKE_CASE: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE: Union[str, Any] = char return pairs class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token __SCREAMING_SNAKE_CASE: Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token __SCREAMING_SNAKE_CASE: Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token __SCREAMING_SNAKE_CASE: List[str] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token __SCREAMING_SNAKE_CASE: str = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token __SCREAMING_SNAKE_CASE: Optional[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE: int = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE: Optional[int] = json.load(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE: Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE: int = bytes_to_unicode() __SCREAMING_SNAKE_CASE: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE: List[str] = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE: Any = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE: Optional[Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE: str = {} __SCREAMING_SNAKE_CASE: List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE: Optional[int] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case_ ( self ): """simple docstring""" return len(self.encoder ) def snake_case_ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE: Union[str, Any] = tuple(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE: Tuple = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = bigram __SCREAMING_SNAKE_CASE: Dict = [] __SCREAMING_SNAKE_CASE: Dict = 0 while i < len(_lowerCAmelCase ): try: __SCREAMING_SNAKE_CASE: Optional[int] = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE: List[Any] = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE: Optional[int] = tuple(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = new_word if len(_lowerCAmelCase ) == 1: break else: __SCREAMING_SNAKE_CASE: str = get_pairs(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = ''' '''.join(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = word return word def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = [] for token in re.findall(self.pat , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(''' ''' ) ) return bpe_tokens def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" return self.decoder.get(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = ''''''.join(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE: Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE: Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '''\n''' ) __SCREAMING_SNAKE_CASE: List[str] = 0 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE: Optional[int] = token_index writer.write(''' '''.join(_lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = [self.sep_token_id] __SCREAMING_SNAKE_CASE: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE: List[str] = ''' ''' + text return (text, kwargs) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = ''' '''.join(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = self.encode(_lowerCAmelCase ) if len(_lowerCAmelCase ) > self.model_max_length: __SCREAMING_SNAKE_CASE: List[str] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
146
from math import ceil def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = list(range(0 , UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __SCREAMING_SNAKE_CASE: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks __SCREAMING_SNAKE_CASE: Any = [i for i in blocks if i not in device_map_blocks] __SCREAMING_SNAKE_CASE: List[str] = [i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: int = list(range(UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: Optional[int] = int(ceil(n_layers / len(UpperCamelCase__ ) ) ) __SCREAMING_SNAKE_CASE: str = [layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
146
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) UpperCamelCase = BeautifulSoup(res.text, 'html.parser') UpperCamelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
"""simple docstring""" import re from filelock import FileLock try: import nltk _a : List[Any] = True except (ImportError, ModuleNotFoundError): _a : Any = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def a__ ( a : str ): """simple docstring""" re.sub("<n>" , "" , a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a ) )
87
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _a : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def a__ ( a : List[str] , a : int , a : int ): """simple docstring""" _snake_case : Union[str, Any] = state_dict.pop(a ) _snake_case : Union[str, Any] = val def a__ ( a : Tuple ): """simple docstring""" _snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _snake_case : Dict = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _snake_case : Tuple = value else: _snake_case : Dict = value return new_state_dict def a__ ( a : int ): """simple docstring""" _snake_case : Any = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _snake_case : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case : int = in_proj_weight[:256, :] _snake_case : List[str] = in_proj_bias[:256] _snake_case : Optional[Any] = in_proj_weight[256:512, :] _snake_case : List[str] = in_proj_bias[256:512] _snake_case : Dict = in_proj_weight[-256:, :] _snake_case : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _snake_case : List[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _snake_case : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case : Union[str, Any] = in_proj_weight[:256, :] _snake_case : Tuple = in_proj_bias[:256] _snake_case : int = in_proj_weight[256:512, :] _snake_case : int = in_proj_bias[256:512] _snake_case : Dict = in_proj_weight[-256:, :] _snake_case : str = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _snake_case : Dict = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _snake_case : Optional[int] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _snake_case : Dict = in_proj_weight_cross_attn[:256, :] _snake_case : Any = in_proj_bias_cross_attn[:256] _snake_case : Union[str, Any] = in_proj_weight_cross_attn[256:512, :] _snake_case : Optional[int] = in_proj_bias_cross_attn[256:512] _snake_case : Any = in_proj_weight_cross_attn[-256:, :] _snake_case : str = in_proj_bias_cross_attn[-256:] def a__ ( a : str , a : int ): """simple docstring""" _snake_case , _snake_case : List[str] = image.size _snake_case : Dict = max(a , a ) _snake_case : Union[str, Any] = 800 if "detection" in checkpoint_url else 1_000 _snake_case : Any = target_max_size / current_max_size _snake_case : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a__ ( a : str ): """simple docstring""" _snake_case : str = F.to_tensor(a ) _snake_case : Union[str, Any] = F.normalize(a , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a__ ( a : Optional[Any] , a : Any , a : Union[str, Any] ): """simple docstring""" logger.info("Converting model..." ) # load original state dict _snake_case : Tuple = torch.hub.load_state_dict_from_url(a , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(a , a , a ) _snake_case : Union[str, Any] = rename_backbone_keys(a ) # query, key and value matrices need special treatment read_in_q_k_v(a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _snake_case : int = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _snake_case : Optional[int] = state_dict.pop(a ) _snake_case : Any = val # create HuggingFace model and load state dict _snake_case : Tuple = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _snake_case : Any = 15 _snake_case : int = 2 _snake_case : Optional[Any] = {0: "table", 1: "table rotated"} _snake_case : Union[str, Any] = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _snake_case : Any = 125 _snake_case : Union[str, Any] = 6 _snake_case : List[str] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } _snake_case : Any = idalabel _snake_case : Optional[int] = {v: k for k, v in idalabel.items()} _snake_case : Union[str, Any] = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1_000 ) _snake_case : str = TableTransformerForObjectDetection(a ) model.load_state_dict(a ) model.eval() # verify our conversion _snake_case : Optional[int] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" _snake_case : Optional[Any] = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=a ) _snake_case : Dict = Image.open(a ).convert("RGB" ) _snake_case : Union[str, Any] = normalize(resize(a , a ) ).unsqueeze(0 ) _snake_case : str = model(a ) if "detection" in checkpoint_url: _snake_case : int = (1, 15, 3) _snake_case : List[str] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _snake_case : List[str] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _snake_case : Union[str, Any] = (1, 125, 7) _snake_case : str = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _snake_case : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _snake_case : int = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(a ) image_processor.push_to_hub(a ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
87
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[str] = TypeVar("T") class lowerCAmelCase__ ( Generic[T] ): a__ : deque[T] # Cache store of keys a__ : set[T] # References of the keys in cache a__ : int = 10 # Maximum capacity of cache def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = deque() __lowerCamelCase = set() if not n: __lowerCamelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __lowerCamelCase = n def __A ( self : str , SCREAMING_SNAKE_CASE__ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __lowerCamelCase = self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE__ ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE__ ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE__ ) self.key_reference.add(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] ) -> None: for k in self.dq_store: print(SCREAMING_SNAKE_CASE__ ) def __repr__( self : List[str] ) -> str: return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
298
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE__ : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : List[str]=18 , SCREAMING_SNAKE_CASE__ : Optional[int]=30 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_00 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> Dict: __lowerCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = do_convert_rgb __lowerCamelCase = [5_12, 10_24, 20_48, 40_96] __lowerCamelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __A ( self : Union[str, Any] ) -> Optional[int]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : int ) -> Dict: __lowerCamelCase = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __lowerCamelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Any ) -> Tuple: __lowerCamelCase = PixaStructImageProcessingTester(self ) @property def __A ( self : Any ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : List[str] ) -> Tuple: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = 20_48 __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Any ) -> Dict: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches __lowerCamelCase = '''Hello''' __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : int ) -> Union[str, Any]: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Any ) -> int: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def __A ( self : List[str] ) -> Optional[Any]: __lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) __lowerCamelCase = 3 @property def __A ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Optional[int] ) -> Any: __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_convert_rgb''' ) ) def __A ( self : Optional[int] ) -> Any: # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input __lowerCamelCase = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __lowerCamelCase = image_processor( SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _snake_case ( lowercase__ : Callable[[int | float], int | float] , lowercase__ : int | float , lowercase__ : int | float , lowercase__ : int = 1_0_0 , ) -> float: '''simple docstring''' lowerCAmelCase_ :str = x_start lowerCAmelCase_ :List[str] = fnc(lowercase__ ) lowerCAmelCase_ :Tuple = 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCAmelCase_ :List[Any] = (x_end - x_start) / steps + xa lowerCAmelCase_ :Dict = fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCAmelCase_ :Optional[Any] = xa lowerCAmelCase_ :Union[str, Any] = fxa return area if __name__ == "__main__": def _snake_case ( lowercase__ : Any ) -> List[Any]: '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __UpperCAmelCase = 10 while i <= 10_00_00: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
256
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=2 , __A=32 , __A=16 , __A=3 , __A=True , __A=True , __A=32 , __A=4 , __A=[0, 1, 2, 3] , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=3 , __A=[1, 384, 24, 24] , __A=True , __A=None , ) -> Optional[Any]: lowerCAmelCase_ :Optional[Any] = parent lowerCAmelCase_ :Optional[int] = batch_size lowerCAmelCase_ :Dict = image_size lowerCAmelCase_ :Tuple = patch_size lowerCAmelCase_ :Union[str, Any] = num_channels lowerCAmelCase_ :Tuple = is_training lowerCAmelCase_ :Dict = use_labels lowerCAmelCase_ :Union[str, Any] = hidden_size lowerCAmelCase_ :Union[str, Any] = num_hidden_layers lowerCAmelCase_ :List[Any] = backbone_out_indices lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :List[str] = intermediate_size lowerCAmelCase_ :Any = hidden_act lowerCAmelCase_ :str = hidden_dropout_prob lowerCAmelCase_ :Tuple = attention_probs_dropout_prob lowerCAmelCase_ :List[Any] = initializer_range lowerCAmelCase_ :Optional[int] = num_labels lowerCAmelCase_ :List[Any] = backbone_featmap_shape lowerCAmelCase_ :List[Any] = scope lowerCAmelCase_ :Tuple = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ :Optional[int] = (image_size // patch_size) ** 2 lowerCAmelCase_ :Optional[Any] = num_patches + 1 def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ :List[str] = None if self.use_labels: lowerCAmelCase_ :Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase_ :List[str] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__A , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :Dict = DPTModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase_ :List[str] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: lowerCAmelCase_ :Union[str, Any] = self.num_labels lowerCAmelCase_ :Optional[Any] = DPTForDepthEstimation(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Dict = model(__A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :int = self.num_labels lowerCAmelCase_ :Optional[int] = DPTForSemanticSegmentation(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = config_and_inputs lowerCAmelCase_ :str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :str = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCAmelCase_ :Union[str, Any] = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase_ :Optional[Any] = False UpperCAmelCase_ :List[str] = False UpperCAmelCase_ :Dict = False def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :List[str] = DPTModelTester(self ) lowerCAmelCase_ :List[str] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCAmelCase ( self ) -> List[str]: pass def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :Union[str, Any] = model_class(__A ) lowerCAmelCase_ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ :int = [*signature.parameters.keys()] lowerCAmelCase_ :int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) def __lowerCAmelCase ( self ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCAmelCase_ , lowerCAmelCase_ :str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Any = True if model_class in get_values(__A ): continue lowerCAmelCase_ :Union[str, Any] = model_class(__A ) model.to(__A ) model.train() lowerCAmelCase_ :Optional[int] = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCAmelCase_ :Dict = model(**__A ).loss loss.backward() def __lowerCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowerCAmelCase_ , lowerCAmelCase_ :str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Dict = False lowerCAmelCase_ :Optional[Any] = True if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue lowerCAmelCase_ :Optional[Any] = model_class(__A ) model.to(__A ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase_ :Any = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCAmelCase_ :Dict = model(**__A ).loss loss.backward() def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :int = _config_zero_init(__A ) for model_class in self.all_model_classes: lowerCAmelCase_ :str = model_class(config=__A ) # Skip the check for the backbone lowerCAmelCase_ :List[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowerCAmelCase_ :Tuple = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCAmelCase ( self ) -> List[str]: pass @slow def __lowerCAmelCase ( self ) -> List[str]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowerCAmelCase_ :List[Any] = DPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __lowerCAmelCase ( self ) -> int: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :List[Any] = """add""" with self.assertRaises(__A ): lowerCAmelCase_ :Optional[Any] = DPTForDepthEstimation(__A ) def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[str] = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) lowerCAmelCase_ :str = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__A ) lowerCAmelCase_ :Any = prepare_img() lowerCAmelCase_ :str = image_processor(images=__A , return_tensors="""pt""" ).to(__A ) # forward pass with torch.no_grad(): lowerCAmelCase_ :Union[str, Any] = model(**__A ) lowerCAmelCase_ :str = outputs.predicted_depth # verify the predicted depth lowerCAmelCase_ :Tuple = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __A ) lowerCAmelCase_ :int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __A , atol=1E-4 ) )
256
1
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : Union[str, Any]=0.01 , __lowercase : str=10_00 ): """simple docstring""" snake_case_ = p_stop snake_case_ = max_length def __iter__( self : Tuple ): """simple docstring""" snake_case_ = 0 snake_case_ = False while not stop and count < self.max_length: yield count count += 1 snake_case_ = random.random() < self.p_stop class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : str , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Union[str, Any]=False , __lowercase : Dict=True ): """simple docstring""" snake_case_ = [ BatchSamplerShard(__A , 2 , __A , split_batches=__A , even_batches=__A ) for i in range(2 ) ] snake_case_ = [list(__A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__A ) for shard in batch_sampler_shards] , [len(__A ) for e in expected] ) self.assertListEqual(__A , __A ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__A , __A ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__A , __A ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__A , __A ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__A , __A ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) snake_case_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__A , __A ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) snake_case_ = [[], []] self.check_batch_sampler_shards(__A , __A ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) snake_case_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) snake_case_ = [[], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__A ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__A ) snake_case_ = [[], []] self.check_batch_sampler_shards(__A , __A , even_batches=__A ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__A ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__A ) snake_case_ = [[], []] self.check_batch_sampler_shards(__A , __A , split_batches=__A , even_batches=__A ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] snake_case_ = [BatchSamplerShard(__A , 2 , __A , even_batches=__A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def snake_case__ ( self : int , __lowercase : List[str] , __lowercase : int , __lowercase : List[str] , __lowercase : Optional[int]=False , __lowercase : List[str]=2 , __lowercase : Optional[Any]=False ): """simple docstring""" random.seed(__A ) snake_case_ = list(__A ) snake_case_ = [ IterableDatasetShard( __A , batch_size=__A , drop_last=__A , num_processes=__A , process_index=__A , split_batches=__A , ) for i in range(__A ) ] snake_case_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__A ) iterable_dataset_lists.append(list(__A ) ) snake_case_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(len(__A ) % shard_batch_size == 0 ) snake_case_ = [] for idx in range(0 , len(__A ) , __A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__A ) < len(__A ): reference += reference self.assertListEqual(__A , reference[: len(__A )] ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = 42 snake_case_ = RandomIterableDataset() self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) # Edge case with a very small dataset snake_case_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) self.check_iterable_dataset_shards(__A , __A , batch_size=4 , drop_last=__A , split_batches=__A ) def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = BatchSampler(range(16 ) , batch_size=4 , drop_last=__A ) snake_case_ = SkipBatchSampler(__A , 2 ) self.assertListEqual(list(__A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = DataLoader(list(range(16 ) ) , batch_size=4 ) snake_case_ = skip_first_batches(__A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def snake_case__ ( self : Dict ): """simple docstring""" Accelerator() snake_case_ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
711
def lowerCamelCase__ ( _A ): '''simple docstring''' return 10 - x * x def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if equation(_A ) * equation(_A ) >= 0: raise ValueError("Wrong space!" ) snake_case_ = a while (b - a) >= 0.01: # Find middle point snake_case_ = (a + b) / 2 # Check if middle point is root if equation(_A ) == 0.0: break # Decide the side to repeat the steps if equation(_A ) * equation(_A ) < 0: snake_case_ = c else: snake_case_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
139
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Tuple = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] A : Tuple = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCamelCase__ ( ) -> str: _lowercase = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) ) _lowercase = os.path.join(SCREAMING_SNAKE_CASE_ , """words.txt""" ) _lowercase = """""" with open(SCREAMING_SNAKE_CASE_ ) as f: _lowercase = f.readline() _lowercase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _lowercase = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution())
287
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case_ : List[str] = logging.getLogger(__name__) def __UpperCAmelCase ( snake_case_ : str=2 , snake_case_ : Union[str, Any]=3 , snake_case_ : List[str]=1_6 , snake_case_ : int = 1_0 , snake_case_ : int = 2 ): '''simple docstring''' def get_dataset(snake_case_ : Union[str, Any] ): UpperCAmelCase: List[str] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase: List[Any] = get_dataset(snake_case_ ) UpperCAmelCase: int = get_dataset(snake_case_ ) UpperCAmelCase: int = DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) UpperCAmelCase: List[str] = DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Any=None ): '''simple docstring''' UpperCAmelCase: str = [] for epoch in range(snake_case_ ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase , UpperCAmelCase: Tuple = batch UpperCAmelCase: Tuple = model(snake_case_ ) UpperCAmelCase: Optional[int] = torch.nn.functional.mse_loss(snake_case_ , snake_case_ ) accelerator.backward(snake_case_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCamelCase ( nn.Module ): def __init__( self ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase: List[str] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase: List[str] = nn.Parameter(torch.randn(1 ) ) def A__ ( self , __snake_case ) -> List[Any]: """simple docstring""" return x * self.a + self.b class __lowerCamelCase ( unittest.TestCase ): def A__ ( self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase: int = DummyModel() UpperCAmelCase: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase: List[Any] = dummy_dataloaders() UpperCAmelCase: List[str] = ProjectConfiguration(total_limit=1 , project_dir=__snake_case , automatic_checkpoint_naming=__snake_case ) # Train baseline UpperCAmelCase: Optional[int] = Accelerator(project_config=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: List[Any] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase: List[Any] = DummyModel() UpperCAmelCase: Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase: Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase: Optional[Any] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: str = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial UpperCAmelCase: Optional[Any] = os.path.join(__snake_case , "initial" ) accelerator.save_state(__snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase: str = optimizer.state_dict() UpperCAmelCase: str = train(3 , __snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): Dict = model.a.item(), model.b.item() UpperCAmelCase: List[Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase: List[Any] = DummyModel() UpperCAmelCase: Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = dummy_dataloaders() UpperCAmelCase: List[str] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Dict = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) accelerator.load_state(__snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): Dict = model.a.item(), model.b.item() UpperCAmelCase: str = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) UpperCAmelCase: Optional[int] = train(2 , __snake_case , __snake_case , __snake_case , __snake_case ) # Save everything UpperCAmelCase: str = os.path.join(__snake_case , "checkpoint" ) accelerator.save_state(__snake_case ) # Load everything back in and make sure all states work accelerator.load_state(__snake_case ) test_rands += train(1 , __snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): Dict = model.a.item(), model.b.item() UpperCAmelCase: Union[str, Any] = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) def A__ ( self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase: Optional[Any] = DummyModel() UpperCAmelCase: Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase: List[Any] = dummy_dataloaders() UpperCAmelCase: Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline UpperCAmelCase: Union[str, Any] = Accelerator(project_dir=__snake_case , project_config=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Optional[int] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() ((UpperCAmelCase) , (UpperCAmelCase)): Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase: Tuple = optimizer.state_dict() UpperCAmelCase: Any = train(3 , __snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): List[Any] = model.a.item(), model.b.item() UpperCAmelCase: str = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase: Dict = DummyModel() UpperCAmelCase: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = dummy_dataloaders() UpperCAmelCase: List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__snake_case ) UpperCAmelCase: Tuple = Accelerator(project_dir=__snake_case , project_config=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Dict = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) accelerator.load_state(os.path.join(__snake_case , "checkpoints" , "checkpoint_0" ) ) ((UpperCAmelCase) , (UpperCAmelCase)): str = model.a.item(), model.b.item() UpperCAmelCase: int = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) UpperCAmelCase: Optional[Any] = train(2 , __snake_case , __snake_case , __snake_case , __snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase) , (UpperCAmelCase)): Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase: str = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Dict = torch.tensor([1, 2, 3] ) UpperCAmelCase: int = torch.tensor([2, 3, 4] ) UpperCAmelCase: Optional[int] = DummyModel() UpperCAmelCase: Dict = torch.optim.Adam(net.parameters() ) UpperCAmelCase: Tuple = Accelerator() with self.assertRaises(__snake_case ) as ve: accelerator.register_for_checkpointing(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase: int = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def A__ ( self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase: List[str] = DummyModel() UpperCAmelCase: Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase: Union[str, Any] = torch.optim.lr_scheduler.StepLR(__snake_case , step_size=1 , gamma=0.99 ) UpperCAmelCase , UpperCAmelCase: Union[str, Any] = dummy_dataloaders() UpperCAmelCase: int = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline UpperCAmelCase: str = Accelerator(project_dir=__snake_case , project_config=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Dict = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() UpperCAmelCase: Optional[Any] = scheduler.state_dict() train(3 , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.assertNotEqual(__snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__snake_case , scheduler.state_dict() ) def A__ ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase: List[str] = DummyModel() UpperCAmelCase: str = ProjectConfiguration(automatic_checkpoint_naming=__snake_case , total_limit=2 ) # Train baseline UpperCAmelCase: Optional[Any] = Accelerator(project_dir=__snake_case , project_config=__snake_case ) UpperCAmelCase: Any = accelerator.prepare(__snake_case ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__snake_case , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def A__ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase: str = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(__snake_case , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : int = '/tmp/accelerate/state_checkpointing' snake_case_ : Union[str, Any] = DummyModel() snake_case_ : str = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case_ : List[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case_ , snake_case_ : Dict = dummy_dataloaders() snake_case_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case_ : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case_ , snake_case_ : List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case_ : Tuple = group['params'][0].device break assert param_device.type == accelerator.device.type snake_case_ : Tuple = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: snake_case_ : Dict = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: snake_case_ : Tuple = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
166
# Imports import numpy as np class __lowerCamelCase : def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def A__ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> Dict: """simple docstring""" if red is not None: UpperCAmelCase: Optional[Any] = red if green is not None: UpperCAmelCase: List[Any] = green if blue is not None: UpperCAmelCase: Any = blue if red_edge is not None: UpperCAmelCase: Optional[int] = red_edge if nir is not None: UpperCAmelCase: int = nir return True def A__ ( self , __snake_case="" , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> List[str]: """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) UpperCAmelCase: Dict = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def A__ ( self ) -> Any: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def A__ ( self ) -> List[str]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A__ ( self ) -> Dict: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A__ ( self ) -> str: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A__ ( self ) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A__ ( self , __snake_case=0.08 , __snake_case=1.22 , __snake_case=0.03 ) -> Optional[int]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A__ ( self ) -> Dict: """simple docstring""" return (self.nir / self.green) - 1 def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.nir / self.redEdge) - 1 def A__ ( self ) -> str: """simple docstring""" return (self.red - self.blue) / self.red def A__ ( self ) -> Any: """simple docstring""" UpperCAmelCase: Union[str, Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A__ ( self ) -> List[str]: """simple docstring""" return self.nir - self.green def A__ ( self ) -> Dict: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def A__ ( self , __snake_case=0.16 ) -> Tuple: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def A__ ( self , __snake_case=0.5 ) -> Tuple: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A__ ( self ) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def A__ ( self , __snake_case=None , __snake_case=None ) -> int: """simple docstring""" return (self.nir - b) / (a * self.red) def A__ ( self ) -> Union[str, Any]: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A__ ( self ) -> Any: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def A__ ( self ) -> str: """simple docstring""" return self.nir / self.red def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def A__ ( self ) -> str: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A__ ( self ) -> str: """simple docstring""" return self.green / (self.nir + self.red + self.green) def A__ ( self ) -> Optional[int]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def A__ ( self ) -> int: """simple docstring""" return self.red / (self.nir + self.red + self.green) def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def A__ ( self ) -> Dict: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase: int = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase: Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A__ ( self ) -> List[Any]: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A__ ( self ) -> Union[str, Any]: """simple docstring""" return self.nir / self.red def A__ ( self ) -> List[str]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def A__ ( self ) -> Any: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
166
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : int =XLNetTokenizer __lowerCamelCase : str =XLNetTokenizerFast __lowerCamelCase : Dict =True __lowerCamelCase : List[str] =True def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a = XLNetTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = """<s>""" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(__lowercase ) , 1006 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = XLNetTokenizer(__lowercase , keep_accents=__lowercase ) __a = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [285, 46, 10, 170, 382] ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __a = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = XLNetTokenizer(__lowercase , do_lower_case=__lowercase ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = XLNetTokenizer(__lowercase , do_lower_case=__lowercase ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) __a = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) __a = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) __a = tokenizer.build_inputs_with_special_tokens(__lowercase ) __a = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' # fmt: off __a = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
225
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =GPTSanJapaneseTokenizer __lowerCamelCase : List[Any] =False __lowerCamelCase : List[str] ={'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase_ ( self : str ): '''simple docstring''' super().setUp() # fmt: off __a = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __a = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowercase ) ) def UpperCamelCase_ ( self : Dict , **__lowercase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __a = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a , __a = self.get_input_output_texts(__lowercase ) __a = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __a = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、世界。 こんばんは、㔺界。""" __a = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids without special tokens __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids with special tokens __a = tokens + [tokenizer.unk_token] __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __a = """こんにちは、、、、世界。こんばんは、、、、世界。""" __a = tokenizer.encode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = """こんにちは、世界。こんばんは、世界。😀""" __a = tokenizer.encode(prefix_text + input_text ) __a = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __a = tokenizer.encode(__lowercase , prefix_text=__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = [1] + [0] * (len_prefix + len_text + 1) __a = [1] * (len_prefix + len_text + 1) + [0] __a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __a = tokenizer(prefix_text + input_text ).token_type_ids __a = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __a = tokenizer(__lowercase , prefix_text=__lowercase ).token_type_ids self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = tokenizer.encode("""あンいワ""" ) __a = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __a = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertNotEqual(__lowercase , __lowercase ) self.assertNotEqual(__lowercase , __lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __a = tokenizer(__lowercase , padding=__lowercase ) __a = tokenizer.batch_encode_plus(__lowercase , padding=__lowercase ) # fmt: off __a = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowercase ) self.assertListEqual(x_token.token_type_ids , __lowercase ) self.assertListEqual(x_token.attention_mask , __lowercase ) self.assertListEqual(x_token_a.input_ids , __lowercase ) self.assertListEqual(x_token_a.token_type_ids , __lowercase ) self.assertListEqual(x_token_a.attention_mask , __lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # tokenizer has no padding token pass
225
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __magic_name__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = MBartConfig SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : str = """gelu""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=20 , _lowercase=2 , _lowercase=1 , _lowercase=0 , ) -> Optional[Any]: lowercase_ : Union[str, Any] = parent lowercase_ : List[str] = batch_size lowercase_ : Union[str, Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : int = use_labels lowercase_ : Dict = vocab_size lowercase_ : Optional[Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Tuple = eos_token_id lowercase_ : int = pad_token_id lowercase_ : List[str] = bos_token_id def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ : int = prepare_mbart_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self , _lowercase , _lowercase ) -> Any: lowercase_ : Any = TFMBartModel(config=UpperCAmelCase_ ).get_decoder() lowercase_ : Optional[int] = inputs_dict['input_ids'] lowercase_ : Dict = input_ids[:1, :] lowercase_ : Union[str, Any] = inputs_dict['attention_mask'][:1, :] lowercase_ : Optional[Any] = inputs_dict['head_mask'] lowercase_ : int = 1 # first forward pass lowercase_ : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) lowercase_ , lowercase_ : Dict = outputs.to_tuple() lowercase_ : List[str] = past_key_values[1] def _UpperCAmelCase ( a : Tuple , a : Dict , a : Optional[Any] , a : Optional[int]=None , a : Any=None , a : List[str]=None , a : int=None , a : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: lowercase_ : Optional[Any] = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCamelCase__ ( self ) -> int: lowercase_ : Dict = TFMBartModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ ) def lowerCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [ """ UN Chief Says There Is No Military Solution in Syria""", ] SCREAMING_SNAKE_CASE_ : Any = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] SCREAMING_SNAKE_CASE_ : Optional[Any] = """facebook/mbart-large-en-ro""" @cached_property def lowerCamelCase__ ( self ) -> Optional[int]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase__ ( self ) -> str: lowercase_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase__ ( self , **_lowercase ) -> Optional[Any]: lowercase_ : Union[str, Any] = self.translate_src_text(**UpperCAmelCase_ ) self.assertListEqual(self.expected_text , UpperCAmelCase_ ) def lowerCamelCase__ ( self , **_lowercase ) -> List[Any]: lowercase_ : Tuple = self.tokenizer(self.src_text , **UpperCAmelCase_ , return_tensors='tf' ) lowercase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase_ : Dict = self.tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) return generated_words @slow def lowerCamelCase__ ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
710
'''simple docstring''' def _UpperCAmelCase ( a : list ) -> list: """simple docstring""" for i in range(len(a ) - 1 , 0 , -1 ): lowercase_ : Any = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase_ , lowercase_ : Any = unsorted[j - 1], unsorted[j] lowercase_ : int = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: lowercase_ , lowercase_ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowercase_ : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() A: Tuple = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
7
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __lowerCAmelCase ( lowercase : Tuple , lowercase : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = Mock() snake_case : Tuple = conn, Mock() snake_case : Optional[int] = iter([1, None] ) snake_case : Any = lambda lowercase : next(lowercase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
178
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( snake_case_ ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
178
1
'''simple docstring''' import collections import os import re from pathlib import Path lowerCAmelCase : int = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase : int = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase : int = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase : Optional[int] = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase : Dict = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase : Any = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase : str = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase : Tuple = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase : Any = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase : str = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase : Optional[int] = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase : Dict = re.compile(r'''^\s*else:''') def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase ) is None: return None __lowerCAmelCase = [b[0] for b in _re_backend.findall(lowerCamelCase )] backends.sort() return "_and_".join(lowerCamelCase ) def __lowerCAmelCase ( lowerCamelCase : Any ): '''simple docstring''' with open(lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = 0 while line_index < len(lowerCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure __lowerCAmelCase = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __lowerCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase ): __lowerCAmelCase = _re_one_line_import_struct.search(lowerCamelCase ).groups()[0] __lowerCAmelCase = re.findall(r"\[([^\]]+)\]" , lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __lowerCAmelCase = _re_import_struct_key_value.search(lowerCamelCase ) if single_line_import_search is not None: __lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __lowerCAmelCase = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __lowerCAmelCase = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase ) is not None: __lowerCAmelCase = _re_import_struct_add_many.search(lowerCamelCase ).groups()[0].split(", " ) __lowerCAmelCase = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_between_brackets.search(lowerCamelCase ) is not None: __lowerCAmelCase = _re_between_brackets.search(lowerCamelCase ).groups()[0].split(", " ) __lowerCAmelCase = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_quote_object.search(lowerCamelCase ) is not None: objects.append(_re_quote_object.search(lowerCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __lowerCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCAmelCase = [] while ( line_index < len(lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCAmelCase = {"none": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : Dict ): '''simple docstring''' def find_duplicates(lowerCamelCase : Tuple ): return [k for k, v in collections.Counter(lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCAmelCase = [] for key in import_dict_objects.keys(): __lowerCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __lowerCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCAmelCase = "base imports" if key == "none" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = [] for root, _, files in os.walk(lowerCamelCase ): if "__init__.py" in files: __lowerCAmelCase = os.path.join(lowerCamelCase , "__init__.py" ) __lowerCAmelCase = parse_init(lowerCamelCase ) if objects is not None: __lowerCAmelCase = analyze_results(*lowerCamelCase ) if len(lowerCamelCase ) > 0: __lowerCAmelCase = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(lowerCamelCase ) ) if len(lowerCamelCase ) > 0: raise ValueError("\n\n".join(lowerCamelCase ) ) def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = [] for path, directories, files in os.walk(lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue __lowerCAmelCase = str((Path(lowerCamelCase ) / folder).relative_to(lowerCamelCase ) ) __lowerCAmelCase = short_path.replace(os.path.sep , "." ) submodules.append(lowerCamelCase ) for fname in files: if fname == "__init__.py": continue __lowerCAmelCase = str((Path(lowerCamelCase ) / fname).relative_to(lowerCamelCase ) ) __lowerCAmelCase = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(lowerCamelCase ) return submodules lowerCAmelCase : List[str] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __lowerCAmelCase ( ): '''simple docstring''' from transformers.utils import direct_transformers_import __lowerCAmelCase = direct_transformers_import(lowerCamelCase ) __lowerCAmelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase , "__init__.py" ) , "r" ) as f: __lowerCAmelCase = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , lowerCamelCase ) ) ) __lowerCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase ) > 0: __lowerCAmelCase = "\n".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
39
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCAmelCase : Optional[Any] = '''scheduler_config.json''' class UpperCAmelCase__ ( UpperCamelCase__ ): a : str = 1 a : Optional[int] = 2 a : int = 3 a : Union[str, Any] = 4 a : int = 5 a : Optional[int] = 6 a : str = 7 a : List[Any] = 8 a : List[str] = 9 a : List[str] = 1_0 a : int = 1_1 a : Any = 1_2 a : Any = 1_3 a : Tuple = 1_4 @dataclass class UpperCAmelCase__ ( UpperCamelCase__ ): a : torch.FloatTensor class UpperCAmelCase__ : a : Tuple = SCHEDULER_CONFIG_NAME a : Union[str, Any] = [] a : str = True @classmethod def UpperCAmelCase_ ( cls , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase=False , **UpperCamelCase , ) -> int: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = cls.load_config( pretrained_model_name_or_path=UpperCamelCase , subfolder=UpperCamelCase , return_unused_kwargs=UpperCamelCase , return_commit_hash=UpperCamelCase , **UpperCamelCase , ) return cls.from_config(UpperCamelCase , return_unused_kwargs=UpperCamelCase , **UpperCamelCase ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase = False , **UpperCamelCase ) -> Dict: self.save_config(save_directory=UpperCamelCase , push_to_hub=UpperCamelCase , **UpperCamelCase ) @property def UpperCAmelCase_ ( self ) -> str: return self._get_compatibles() @classmethod def UpperCAmelCase_ ( cls ) -> Tuple: __lowerCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase = importlib.import_module(__name__.split("." )[0] ) __lowerCAmelCase = [ getattr(UpperCamelCase , UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase , UpperCamelCase ) ] return compatible_classes
39
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :Tuple , a :float ) -> float: return 0.0 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int) -> tuple[int | float, int | float]: '''simple docstring''' __UpperCamelCase : List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])]) __UpperCamelCase : Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1])]) return lowest, highest def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : List[str] = 512 __UpperCamelCase : List[Any] = [1] + [0] * (size - 1) __UpperCamelCase : List[Any] = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.abs(np.fft.fft(_lowerCamelCase)) __UpperCamelCase : Optional[int] = 20 * np.logaa(_lowerCamelCase) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") # Display within reasonable bounds __UpperCamelCase : Optional[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase) plt.ylim(max([-80, bounds[0]]) , min([80, bounds[1]])) plt.ylabel("Gain (dB)") plt.plot(_lowerCamelCase) plt.show() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : Any = 512 __UpperCamelCase : Dict = [1] + [0] * (size - 1) __UpperCamelCase : Tuple = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Dict = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.angle(np.fft.fft(_lowerCamelCase)) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") plt.ylim(-2 * pi , 2 * pi) plt.ylabel("Phase shift (Radians)") plt.plot(np.unwrap(_lowerCamelCase , -2 * pi)) plt.show()
557
1
def __lowercase( __snake_case : float ,__snake_case : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
345
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __lowercase( __snake_case : Tuple ) -> str: __snake_case = SwinvaConfig() __snake_case = swinva_name.split('_' ) __snake_case = name_split[1] if "to" in name_split[3]: __snake_case = int(name_split[3][-3:] ) else: __snake_case = int(name_split[3] ) if "to" in name_split[2]: __snake_case = int(name_split[2][-2:] ) else: __snake_case = int(name_split[2][6:] ) if model_size == "tiny": __snake_case = 96 __snake_case = (2, 2, 6, 2) __snake_case = (3, 6, 12, 24) elif model_size == "small": __snake_case = 96 __snake_case = (2, 2, 18, 2) __snake_case = (3, 6, 12, 24) elif model_size == "base": __snake_case = 1_28 __snake_case = (2, 2, 18, 2) __snake_case = (4, 8, 16, 32) else: __snake_case = 1_92 __snake_case = (2, 2, 18, 2) __snake_case = (6, 12, 24, 48) if "to" in swinva_name: __snake_case = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __snake_case = 2_18_41 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-22k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} else: __snake_case = 10_00 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-1k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = img_size __snake_case = num_classes __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size return config def __lowercase( __snake_case : List[str] ) -> Any: if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' ,'embeddings.norm' ) if "layers" in name: __snake_case = 'encoder.' + name if "attn.proj" in name: __snake_case = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' ,'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' ,'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' ,'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' ,'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' ,'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' ,'continuous_position_bias_mlp' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "head" in name: __snake_case = name.replace('head' ,'classifier' ) else: __snake_case = 'swinv2.' + name return name def __lowercase( __snake_case : str ,__snake_case : Optional[int] ) -> str: for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(__snake_case ) if "mask" in key: continue elif "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[3] ) __snake_case = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[ dim : dim * 2 ] __snake_case = val[-dim:] else: __snake_case = val return orig_state_dict def __lowercase( __snake_case : Tuple ,__snake_case : Any ) -> Tuple: __snake_case = timm.create_model(__snake_case ,pretrained=__snake_case ) timm_model.eval() __snake_case = get_swinva_config(__snake_case ) __snake_case = SwinvaForImageClassification(__snake_case ) model.eval() __snake_case = convert_state_dict(timm_model.state_dict() ,__snake_case ) model.load_state_dict(__snake_case ) __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' ,'-' ) ) ) __snake_case = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) __snake_case = image_processor(images=__snake_case ,return_tensors='pt' ) __snake_case = timm_model(inputs['pixel_values'] ) __snake_case = model(**__snake_case ).logits assert torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.push_to_hub( repo_path_or_name=Path(__snake_case ,__snake_case ) ,organization='nandwalritik' ,commit_message='Add model' ,) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase_ : Tuple = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
345
1
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Optional[int] = [1] for i in range(2 , _UpperCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case_ : int = [] snake_case_ : Dict = list(range(_UpperCamelCase ) ) # Find permutation while factorials: snake_case_ : int = factorials.pop() snake_case_ , snake_case_ : Tuple = divmod(_UpperCamelCase , _UpperCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
60
def __lowerCAmelCase ( A_ : str ) -> str: __UpperCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __lowerCAmelCase ( A_ : str ) -> dict[str, str]: __UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __UpperCAmelCase = remove_duplicates(key.upper() ) __UpperCAmelCase = len(A_ ) # First fill cipher with key characters __UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(A_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A_ ) , 26 ): __UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __UpperCAmelCase = alphabet[i - offset] __UpperCAmelCase = char return cipher_alphabet def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: return "".join(cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( A_ : str , A_ : dict[str, str] ) -> str: __UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A_ , A_ ) for ch in message.upper() ) def __lowerCAmelCase ( ) -> None: __UpperCAmelCase = input("Enter message to encode or decode: " ).strip() __UpperCAmelCase = input("Enter keyword: " ).strip() __UpperCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __UpperCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __UpperCAmelCase = create_cipher_map(A_ ) print(func(A_ , A_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
221
0
import random class __lowercase : @staticmethod def __magic_name__ ( lowercase__ : str ): a_ = [ord(__UpperCamelCase ) for i in text] a_ = [] a_ = [] for i in plain: a_ = random.randint(1 , 3_0_0 ) a_ = (i + k) * k cipher.append(__UpperCamelCase ) key.append(__UpperCamelCase ) return cipher, key @staticmethod def __magic_name__ ( lowercase__ : list[int] , lowercase__ : list[int] ): a_ = [] for i in range(len(__UpperCamelCase ) ): a_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__UpperCamelCase ) ) return "".join(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
719
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Any=7 , lowercase__ : Any=3 , lowercase__ : str=3_0 , lowercase__ : int=4_0_0 , lowercase__ : Dict=True , lowercase__ : Union[str, Any]=None , lowercase__ : str=True , lowercase__ : Dict=1 / 2_5_5 , lowercase__ : List[Any]=True , lowercase__ : Dict=[0.5, 0.5, 0.5] , lowercase__ : List[str]=[0.5, 0.5, 0.5] , lowercase__ : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a_ = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} a_ = parent a_ = batch_size a_ = num_channels a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = do_rescale a_ = rescale_factor a_ = do_normalize a_ = image_mean a_ = image_std a_ = do_pad def __magic_name__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __magic_name__ ( self : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int]=False ): if not batched: a_ = image_inputs[0] if isinstance(lowercase__ , Image.Image ): a_ , a_ = image.size else: a_ , a_ = image.shape[1], image.shape[2] if w < h: a_ = int(self.size['''shortest_edge'''] * h / w ) a_ = self.size['''shortest_edge'''] elif w > h: a_ = self.size['''shortest_edge'''] a_ = int(self.size['''shortest_edge'''] * w / h ) else: a_ = self.size['''shortest_edge'''] a_ = self.size['''shortest_edge'''] else: a_ = [] for image in image_inputs: a_ , a_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ = max(lowercase__ , key=lambda lowercase__ : item[0] )[0] a_ = max(lowercase__ , key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( a__ , unittest.TestCase ): _lowerCAmelCase = DetrImageProcessor if is_vision_available() else None def __magic_name__ ( self : Dict ): a_ = DetrImageProcessingTester(self ) @property def __magic_name__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Optional[int] ): a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowercase__ , '''rescale_factor''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ , '''size''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_pad''' ) ) def __magic_name__ ( self : Any ): a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowercase__ ) a_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , lowercase__ ) def __magic_name__ ( self : str ): pass def __magic_name__ ( self : List[Any] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self : Optional[int] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self : List[str] ): # Initialize image_processing a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values a_ , a_ = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __magic_name__ ( self : Dict ): # prepare image and target a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a_ = json.loads(f.read() ) a_ = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them a_ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) a_ = image_processing(images=lowercase__ , annotations=lowercase__ , return_tensors='''pt''' ) # verify pixel values a_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase__ ) a_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase__ ) a_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase__ ) ) # verify class_labels a_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase__ ) ) # verify orig_size a_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase__ ) ) # verify size a_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase__ ) ) @slow def __magic_name__ ( self : str ): # prepare image, target and masks_path a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a_ = json.loads(f.read() ) a_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} a_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a_ = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) a_ = image_processing(images=lowercase__ , annotations=lowercase__ , masks_path=lowercase__ , return_tensors='''pt''' ) # verify pixel values a_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , lowercase__ ) a_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase__ ) a_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase__ ) ) # verify class_labels a_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase__ ) ) # verify masks a_ = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowercase__ ) # verify orig_size a_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase__ ) ) # verify size a_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase__ ) )
143
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict=None , snake_case_ : Optional[int]=None ) ->int: if "." in tensor_name: lowerCamelCase__ : Union[str, Any] =tensor_name.split('.' ) for split in splits[:-1]: lowerCamelCase__ : Any =getattr(__snake_case , __snake_case ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCamelCase__ : int =new_module lowerCamelCase__ : Union[str, Any] =splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowerCamelCase__ : Any =tensor_name in module._buffers lowerCamelCase__ : Optional[int] =getattr(__snake_case , __snake_case ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowerCamelCase__ : Any =False lowerCamelCase__ : Optional[int] =False if is_buffer or not is_bitsandbytes_available(): lowerCamelCase__ : Tuple =False lowerCamelCase__ : int =False else: lowerCamelCase__ : Any =hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCamelCase__ : Tuple =isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCamelCase__ : Tuple =module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCamelCase__ : int =old_value.to(__snake_case ) elif isinstance(__snake_case , torch.Tensor ): lowerCamelCase__ : Optional[int] =value.to('cpu' ) if value.dtype == torch.inta: lowerCamelCase__ : List[Any] =version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: lowerCamelCase__ : Optional[Any] =torch.tensor(__snake_case , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __snake_case ) and fpaa_statistics is None: lowerCamelCase__ : Tuple =new_value.T lowerCamelCase__ : int =old_value.__dict__ if is_abit: lowerCamelCase__ : List[str] =bnb.nn.IntaParams(__snake_case , requires_grad=__snake_case , **__snake_case ).to(__snake_case ) elif is_abit: lowerCamelCase__ : Optional[int] =bnb.nn.Paramsabit(__snake_case , requires_grad=__snake_case , **__snake_case ).to(__snake_case ) lowerCamelCase__ : Tuple =new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__snake_case ) ) else: if value is None: lowerCamelCase__ : int =old_value.to(__snake_case ) elif isinstance(__snake_case , torch.Tensor ): lowerCamelCase__ : Optional[int] =value.to(__snake_case ) else: lowerCamelCase__ : Union[str, Any] =torch.tensor(__snake_case , device=__snake_case ) if is_buffer: lowerCamelCase__ : Optional[int] =new_value else: lowerCamelCase__ : Union[str, Any] =nn.Parameter(__snake_case , requires_grad=old_value.requires_grad ) lowerCamelCase__ : Dict =new_value def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : Tuple=False ) ->Dict: for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : List[Any] =[] current_key_name.append(__snake_case ) if (isinstance(__snake_case , nn.Linear ) or isinstance(__snake_case , __snake_case )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__snake_case ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__snake_case , __snake_case ): lowerCamelCase__ : List[str] =module.weight.shape else: lowerCamelCase__ : Optional[Any] =module.in_features lowerCamelCase__ : str =module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCamelCase__ : Tuple =bnb.nn.LinearabitLt( __snake_case , __snake_case , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCamelCase__ : Optional[Any] =True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCamelCase__ : Optional[Any] =bnb.nn.Linearabit( __snake_case , __snake_case , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCamelCase__ : Union[str, Any] =True # Store the module class in case we need to transpose the weight later lowerCamelCase__ : str =type(__snake_case ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__snake_case ) if len(list(module.children() ) ) > 0: lowerCamelCase__ : Dict =_replace_with_bnb_linear( __snake_case , __snake_case , __snake_case , __snake_case , has_been_replaced=__snake_case , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[Any]=None , snake_case_ : List[str]=None , snake_case_ : Optional[Any]=None ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] =["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert lowerCamelCase__ : Dict =_replace_with_bnb_linear( __snake_case , __snake_case , __snake_case , __snake_case ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase_ ( *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ) ->List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __snake_case , ) return replace_with_bnb_linear(*__snake_case , **__snake_case ) def lowerCAmelCase_ ( *snake_case_ : Union[str, Any] , **snake_case_ : Optional[Any] ) ->Dict: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __snake_case , ) return set_module_quantized_tensor_to_device(*__snake_case , **__snake_case ) def lowerCAmelCase_ ( snake_case_ : Dict ) ->Optional[Any]: lowerCamelCase__ : Optional[Any] =deepcopy(__snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCamelCase__ : Optional[int] =find_tied_parameters(__snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(__snake_case , __snake_case ): lowerCamelCase__ : Dict =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Optional[Any] =sum(__snake_case , [] ) lowerCamelCase__ : Any =len(__snake_case ) > 0 # Check if it is a base model lowerCamelCase__ : Union[str, Any] =not hasattr(__snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : int =list(model.named_children() ) lowerCamelCase__ : Dict =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Dict =set(__snake_case ) - set(__snake_case ) lowerCamelCase__ : Dict =list(set(__snake_case ) ) + list(__snake_case ) # remove ".weight" from the keys lowerCamelCase__ : List[Any] =[""".weight""", """.bias"""] lowerCamelCase__ : Tuple =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Dict =name.replace(__snake_case , '' ) filtered_module_names.append(__snake_case ) return filtered_module_names
174
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 10, __snake_case : int = 22 ) -> int: """simple docstring""" A__ : Any =range(1, __snake_case ) A__ : List[str] =range(1, __snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
215
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = ComputeEnvironment.AMAZON_SAGEMAKER __UpperCAmelCase = True __UpperCAmelCase = "ml.p3.2xlarge" __UpperCAmelCase = "accelerate_sagemaker_execution_role" __UpperCAmelCase = "hf-sm" __UpperCAmelCase = "us-east-1" __UpperCAmelCase = 1 __UpperCAmelCase = "accelerate-sagemaker-1" __UpperCAmelCase = "1.6" __UpperCAmelCase = "4.4" __UpperCAmelCase = "train.py" __UpperCAmelCase = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __UpperCAmelCase = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def A ( self ) -> Optional[int]: '''simple docstring''' __lowercase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , snake_case_ ) assert isinstance(converted_args['''do_train'''] , snake_case_ ) assert isinstance(converted_args['''epochs'''] , snake_case_ ) assert isinstance(converted_args['''learning_rate'''] , snake_case_ ) assert isinstance(converted_args['''max_steps'''] , snake_case_ ) with pytest.raises(snake_case_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
716
def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
527
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = '''▁''' lowerCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCamelCase__ = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCamelCase__ = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCamelCase__ = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } lowerCamelCase__ = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class SCREAMING_SNAKE_CASE ( __a ): __lowerCamelCase : List[str] =["input_ids"] __lowerCamelCase : str =VOCAB_FILES_NAMES __lowerCamelCase : Tuple =PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str =RESOURCE_FILES_NAMES def __init__( self : Optional[int] , __lowercase : int , __lowercase : Optional[int]=None , __lowercase : Tuple=False , __lowercase : List[Any]="utf8" , __lowercase : Tuple="[UNK]" , __lowercase : Tuple="[SEP]" , __lowercase : Any="[PAD]" , __lowercase : Optional[Any]="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : Optional[Dict[str, Any]] = None , **__lowercase : Any , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , vocab_file=lowerCAmelCase__ , encoding=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __a = do_lower_case __a = sentencepiece_model_ckpt __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __a = self.load_vocab(filepath=lowerCAmelCase__ ) else: __a = {self.sp_model.id_to_piece(lowerCAmelCase__ ): id for id in range(self.sp_model.get_piece_size() )} __a = {v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self : str , __lowercase : Any ): '''simple docstring''' if text is None: return None __a = self.tokenize(lowerCAmelCase__ ) __a , __a = """""", [] for i, ch in enumerate(lowerCAmelCase__ ): if ch in self.SP_CHAR_MAPPING: __a = self.SP_CHAR_MAPPING.get(lowerCAmelCase__ ) else: __a = unicodedata.normalize("""NFKC""" , lowerCAmelCase__ ) if self.is_whitespace(lowerCAmelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(lowerCAmelCase__ ) ) __a , __a , __a = normalized_text, [], 0 if self.do_lower_case: __a = text.lower() for token in split_tokens: if token[:1] == "▁": __a = token[1:] __a = text[offset:].index(lowerCAmelCase__ ) + offset __a = start + len(lowerCAmelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __a = end return token_mapping @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return len(self.vocab ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Tuple ): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self : List[str] , __lowercase : Union[str, Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(lowerCAmelCase__ , lowerCAmelCase__ ) for c in text) ) def UpperCamelCase_ ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : Optional[Any]=False , __lowercase : List[str]=64 , __lowercase : List[Any]=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __a = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __a = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __a = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __a = self.sp_model.EncodeAsPieces(lowerCAmelCase__ ) else: __a = self.sp_model.SampleEncodeAsPieces(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = [] for pi, piece in enumerate(lowerCAmelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowerCAmelCase__ ) and pi != 0: new_pieces.append(lowerCAmelCase__ ) continue else: continue __a = 0 for i, chunk in enumerate(lowerCAmelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowerCAmelCase__ ) or self.is_punct(lowerCAmelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowerCAmelCase__ ) __a = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __a = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __a = i if len(lowerCAmelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] ): '''simple docstring''' __a = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def UpperCamelCase_ ( self : Tuple , __lowercase : List[Any] ): '''simple docstring''' __a = self.convert_ids_to_tokens(lowerCAmelCase__ ) __a = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict ): '''simple docstring''' return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : List[str] ): '''simple docstring''' return self.reverse_vocab.get(lowerCAmelCase__ , self.unk_token ) def UpperCamelCase_ ( self : List[str] , __lowercase : Dict , __lowercase : Optional[Any]=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self : Dict , __lowercase : Dict , __lowercase : List[str]=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self : Any , __lowercase : Tuple , __lowercase : List[str]=None , __lowercase : Any=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(lowerCAmelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowerCAmelCase__ ) + 1) + [1] * (len(lowerCAmelCase__ ) + 3) def UpperCamelCase_ ( self : List[str] , __lowercase : List[str] ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self : Optional[int] , __lowercase : Dict ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self : Dict , __lowercase : Optional[Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[Any] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowerCAmelCase__ ) == 1: __a = unicodedata.category(lowerCAmelCase__ ) if cat == "Zs": return True return False def UpperCamelCase_ ( self : Any , __lowercase : Dict ): '''simple docstring''' __a = {} with io.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(lowerCAmelCase__ ): __a = line.rstrip("""\n""" ) __a = int(lowerCAmelCase__ ) return token_to_idx def UpperCamelCase_ ( self : List[Any] , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' __a = 0 if os.path.isdir(lowerCAmelCase__ ): __a = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __a = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) __a = token_index writer.write(token + """\n""" ) index += 1 __a = os.path.join(lowerCAmelCase__ , """sentencepiece.bpe.model""" ) with open(lowerCAmelCase__ , """wb""" ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (vocab_file,)
225
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[Any] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
214
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class _UpperCamelCase( __A ): __SCREAMING_SNAKE_CASE : Tuple = """imagegpt""" __SCREAMING_SNAKE_CASE : List[Any] = ["""past_key_values"""] __SCREAMING_SNAKE_CASE : Any = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=5_1_2 + 1 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_2 * 3_2 , SCREAMING_SNAKE_CASE__ : str=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=8 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]="quick_gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : int=False , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' __a : Union[str, Any] = vocab_size __a : str = n_positions __a : Dict = n_embd __a : Tuple = n_layer __a : List[str] = n_head __a : List[Any] = n_inner __a : Union[str, Any] = activation_function __a : List[str] = resid_pdrop __a : Optional[Any] = embd_pdrop __a : Any = attn_pdrop __a : Tuple = layer_norm_epsilon __a : Optional[Any] = initializer_range __a : Union[str, Any] = scale_attn_weights __a : Dict = use_cache __a : Dict = scale_attn_by_inverse_layer_idx __a : Union[str, Any] = reorder_and_upcast_attn __a : List[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class _UpperCamelCase( __A ): @property def __lowerCAmelCase ( self : str ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ] ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple = 1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Any = False , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : Any = 3 , SCREAMING_SNAKE_CASE__ : List[str] = 3_2 , SCREAMING_SNAKE_CASE__ : List[str] = 3_2 , ): '''simple docstring''' __a : Dict = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __a : List[Any] = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return inputs
709
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' return 0.0 def UpperCAmelCase__ ( lowerCamelCase_ : np.ndarray , lowerCamelCase_ : int ): __a : Tuple = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __a : Union[str, Any] = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCAmelCase__ ( lowerCamelCase_ : FilterType , lowerCamelCase_ : int ): __a : Optional[Any] = 5_1_2 __a : Dict = [1] + [0] * (size - 1) __a : List[Any] = [filter_type.process(lowerCamelCase_ ) for item in inputs] __a : str = [0] * (samplerate - size) # zero-padding outputs += filler __a : Any = np.abs(np.fft.fft(lowerCamelCase_ ) ) __a : str = 2_0 * np.logaa(lowerCamelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __a : Any = get_bounds(lowerCamelCase_ , lowerCamelCase_ ) plt.ylim(max([-8_0, bounds[0]] ) , min([8_0, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(lowerCamelCase_ ) plt.show() def UpperCAmelCase__ ( lowerCamelCase_ : FilterType , lowerCamelCase_ : int ): __a : Dict = 5_1_2 __a : Union[str, Any] = [1] + [0] * (size - 1) __a : Any = [filter_type.process(lowerCamelCase_ ) for item in inputs] __a : Union[str, Any] = [0] * (samplerate - size) # zero-padding outputs += filler __a : int = np.angle(np.fft.fft(lowerCamelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(2_4 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(lowerCamelCase_ , -2 * pi ) ) plt.show()
577
0
def _A ( _lowercase = 10_00 ) -> int: """simple docstring""" __UpperCamelCase = 3 __UpperCamelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = '''src/diffusers''' # Matches is_xxx_available() __snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla __snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') __snake_case = ''' {0} = None ''' __snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' __snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _A ( _lowercase ) -> int: """simple docstring""" __UpperCamelCase = _re_backend.findall(_lowercase ) if len(_lowercase ) == 0: return None return "_and_".join(_lowercase ) def _A ( ) -> Tuple: """simple docstring""" with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(_lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_lowercase ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_lowercase ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(_lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(_lowercase , _lowercase ) else: return DUMMY_CLASS.format(_lowercase , _lowercase ) def _A ( _lowercase=None ) -> Optional[Any]: """simple docstring""" if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def _A ( _lowercase=False ) -> List[str]: """simple docstring""" __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'torch': 'pt'} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(_lowercase , 'utils' ) __UpperCamelCase = { backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_lowercase ): with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
1
import os import sys import unittest _a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a : Any = os.path.join(git_repo_path, 'src', 'transformers') _a : str = "\n{0} = None\n" _a : Dict = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" _a : Optional[Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self ): __lowerCamelCase = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(A_ ) __lowerCamelCase = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(A_ , """tokenizers""" ) __lowerCamelCase = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(A_ , """tensorflow_text""" ) __lowerCamelCase = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(A_ , """sentencepiece_and_tokenizers""" ) __lowerCamelCase = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(A_ , """sentencepiece_and_tensorflow_text""" ) __lowerCamelCase = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(A_ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCamelCase_ ( self ): __lowerCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , A_ ) self.assertIn("""tensorflow_text""" , A_ ) self.assertIn("""sentencepiece_and_tokenizers""" , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCamelCase_ ( self ): __lowerCamelCase = create_dummy_object("""CONSTANT""" , """\'torch\'""" ) self.assertEqual(A_ , """\nCONSTANT = None\n""" ) __lowerCamelCase = create_dummy_object("""function""" , """\'torch\'""" ) self.assertEqual( A_ , """\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n""" ) __lowerCamelCase = """ class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') """ __lowerCamelCase = create_dummy_object("""FakeClass""" , """\'torch\'""" ) self.assertEqual(A_ , A_ ) def lowerCamelCase_ ( self ): __lowerCamelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ __lowerCamelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , A_ )
705
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _a : List[str] = datasets.logging.get_logger(__name__) _a : Optional[Any] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _a : Dict = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _a : Dict = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _a : List[Any] = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def lowerCamelCase_ ( self , UpperCAmelCase ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) __lowerCamelCase = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: __lowerCamelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowerCamelCase = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer __lowerCamelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __lowerCamelCase = score.BleurtScorer(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.scorer.score(references=UpperCAmelCase , candidates=UpperCAmelCase ) return {"scores": scores}
571
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Tuple = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False, False, False @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None # Automatically constructed SCREAMING_SNAKE_CASE = '''dict''' SCREAMING_SNAKE_CASE = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) SCREAMING_SNAKE_CASE = field(default='''Audio''' , init=snake_case , repr=snake_case ) def __call__( self ): return self.pa_type def _UpperCamelCase ( self ,A ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(A ,A ): return {"bytes": None, "path": value} elif isinstance(A ,A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase = BytesIO() sf.write(A ,value["""array"""] ,value["""sampling_rate"""] ,format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase = np.frombuffer(value["""bytes"""] ,dtype=np.intaa ).astype(np.floataa ) / 32_767 else: UpperCAmelCase = np.memmap(value["""path"""] ,dtype="""h""" ,mode="""r""" ).astype(np.floataa ) / 32_767 UpperCAmelCase = BytesIO(bytes() ) sf.write(A ,A ,value["""sampling_rate"""] ,format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _UpperCamelCase ( self ,A ,A = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) UpperCAmelCase , UpperCAmelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err UpperCAmelCase = xsplitext(A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: UpperCAmelCase = token_per_repo_id or {} UpperCAmelCase = path.split("""::""" )[-1] try: UpperCAmelCase = string_to_dict(A ,config.HUB_DATASETS_URL )["""repo_id"""] UpperCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase = None with xopen(A ,"""rb""" ,use_auth_token=A ) as f: UpperCAmelCase , UpperCAmelCase = sf.read(A ) else: UpperCAmelCase , UpperCAmelCase = sf.read(A ) UpperCAmelCase = array.T if self.mono: UpperCAmelCase = librosa.to_mono(A ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase = librosa.resample(A ,orig_sr=A ,target_sr=self.sampling_rate ) UpperCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCamelCase ( self ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _UpperCamelCase ( self ,A ): if pa.types.is_string(storage.type ): UpperCAmelCase = pa.array([None] * len(A ) ,type=pa.binary() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase = pa.array([None] * len(A ) ,type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): UpperCAmelCase = pa.array([Audio().encode_example(A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCAmelCase = storage.field("""bytes""" ) else: UpperCAmelCase = pa.array([None] * len(A ) ,type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCAmelCase = storage.field("""path""" ) else: UpperCAmelCase = pa.array([None] * len(A ) ,type=pa.string() ) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=storage.is_null() ) return array_cast(A ,self.pa_type ) def _UpperCamelCase ( self ,A ): @no_op_if_value_is_null def path_to_bytes(A ): with xopen(A ,"""rb""" ) as f: UpperCAmelCase = f.read() return bytes_ UpperCAmelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase = pa.array( [os.path.basename(A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] ,["""bytes""", """path"""] ,mask=bytes_array.is_null() ) return array_cast(A ,self.pa_type )
708
"""simple docstring""" from math import sqrt def _a ( _snake_case = 100_0000 ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
74
0
import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def lowercase ( SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('tpu-config' , description=_description ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments SCREAMING_SNAKE_CASE_ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__a , default=__a , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__a , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__a , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) SCREAMING_SNAKE_CASE_ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__a , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def lowercase ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): SCREAMING_SNAKE_CASE_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE_ = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE_ = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE_ = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE_ = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE_ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE_ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __a ): SCREAMING_SNAKE_CASE_ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: SCREAMING_SNAKE_CASE_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): SCREAMING_SNAKE_CASE_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE_ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command SCREAMING_SNAKE_CASE_ = '; '.join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE_ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(__a )}' ) return subprocess.run(__a ) print('Successfully setup pod.' ) def lowercase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = tpu_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() tpu_command_launcher(__a )
205
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = '''Speech2TextFeatureExtractor''' __UpperCAmelCase : Optional[Any] = '''Speech2TextTokenizer''' def __init__( self : Union[str, Any] ,_a : Optional[int] ,_a : int ): '''simple docstring''' super().__init__(_a ,_a ) _a : List[str] = self.feature_extractor _a : int = False def __call__( self : Tuple ,*_a : str ,**_a : Tuple ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_a ,**_a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _a : Any = kwargs.pop('raw_speech' ) else: _a : Dict = kwargs.pop('audio' ,_a ) _a : Tuple = kwargs.pop('sampling_rate' ,_a ) _a : List[str] = kwargs.pop('text' ,_a ) if len(_a ) > 0: _a : Dict = args[0] _a : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _a : str = self.feature_extractor(_a ,*_a ,sampling_rate=_a ,**_a ) if text is not None: _a : Optional[Any] = self.tokenizer(_a ,**_a ) if text is None: return inputs elif audio is None: return encodings else: _a : Tuple = encodings['input_ids'] return inputs def __lowercase ( self : List[Any] ,*_a : Optional[int] ,**_a : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def __lowercase ( self : Optional[Any] ,*_a : List[str] ,**_a : Dict ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @contextmanager def __lowercase ( self : Any ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _a : Dict = True _a : List[str] = self.tokenizer yield _a : Tuple = self.feature_extractor _a : List[str] = False
229
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : List[str] = 0 if start < end: UpperCAmelCase : Dict = randint(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = a[end] UpperCAmelCase : Dict = a[pivot] UpperCAmelCase : str = temp UpperCAmelCase , UpperCAmelCase : Tuple = _in_place_partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += _in_place_quick_sort(_lowerCAmelCase , _lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(_lowerCAmelCase , p + 1 , _lowerCAmelCase ) return count def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: UpperCAmelCase : int = 0 UpperCAmelCase : List[Any] = randint(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : List[Any] = a[end] UpperCAmelCase : Dict = a[pivot] UpperCAmelCase : List[Any] = temp UpperCAmelCase : Union[str, Any] = start - 1 for index in range(_lowerCAmelCase , _lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase : Optional[Any] = new_pivot_index + 1 UpperCAmelCase : str = a[new_pivot_index] UpperCAmelCase : str = a[index] UpperCAmelCase : Dict = temp UpperCAmelCase : Dict = a[new_pivot_index + 1] UpperCAmelCase : List[Any] = a[end] UpperCAmelCase : Optional[int] = temp return new_pivot_index + 1, count UpperCamelCase__: List[Any] = TemporaryFile() UpperCamelCase__: Dict = 100 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__: List[str] = 0, 1 # mean and standard deviation UpperCamelCase__: str = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCamelCase__: int = np.load(outfile) UpperCamelCase__: Tuple = len(M) - 1 UpperCamelCase__: Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
528
'''simple docstring''' from __future__ import annotations import time import numpy as np UpperCamelCase__: Tuple = [8, 5, 9, 7] UpperCamelCase__: int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] UpperCamelCase__: List[str] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : str , __snake_case : list[int] , __snake_case : list[list[int]] , __snake_case : list[list[int]] , ) -> None: UpperCAmelCase : Union[str, Any] = claim_vector UpperCAmelCase : Tuple = allocated_resources_table UpperCAmelCase : List[str] = maximum_claim_table def A ( self : Optional[Any] ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A ( self : Union[str, Any] ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A ( self : str ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A ( self : List[Any] ) -> dict[int, list[int]]: return {self.__need().index(__snake_case ): i for i in self.__need()} def A ( self : Tuple , **__snake_case : Union[str, Any] ) -> None: UpperCAmelCase : Tuple = self.__need() UpperCAmelCase : Union[str, Any] = self.__allocated_resources_table UpperCAmelCase : int = self.__available_resources() UpperCAmelCase : Tuple = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: UpperCAmelCase : Dict = False for each_need in need_list: UpperCAmelCase : Optional[int] = True for index, need in enumerate(__snake_case ): if need > available_resources[index]: UpperCAmelCase : List[str] = False break if execution: UpperCAmelCase : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCAmelCase : Union[str, Any] = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack UpperCAmelCase : Optional[int] = np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def A ( self : Dict ) -> Optional[Any]: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(__snake_case ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(__snake_case ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__snake_case ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
528
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 1_6_3_8_4, } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = LEDTokenizer _lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __A=None , __A=None , __A=None , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , __A=True , **__A , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: __a = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""" ) ) __a = add_prefix_space __a = pre_tok_class(**lowerCamelCase__ ) __a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a = """post_processor""" __a = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: __a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a = tuple(state["""sep"""] ) if "cls" in state: __a = tuple(state["""cls"""] ) __a = False if state.get("""add_prefix_space""" , lowerCamelCase__ ) != add_prefix_space: __a = add_prefix_space __a = True if state.get("""trim_offsets""" , lowerCamelCase__ ) != trim_offsets: __a = trim_offsets __a = True if changes_to_apply: __a = getattr(lowerCamelCase__ , state.pop("""type""" ) ) __a = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def snake_case_ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self , __A ): __a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value __a = value def snake_case_ ( self , *__A , **__A ): __a = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def snake_case_ ( self , *__A , **__A ): __a = kwargs.get("""is_split_into_words""" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def snake_case_ ( self , __A , __A = None ): __a = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def snake_case_ ( self , __A , __A=None ): __a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self , __A , __A = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , __A , __A = None , __A = PaddingStrategy.DO_NOT_PAD , __A = None , __A = None , ): __a = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: __a = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase__ ) if needs_to_be_padded: __a = len(lowerCamelCase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __a = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
99
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = size if size is not None else {'shortest_edge': 256} __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> np.ndarray: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowerCamelCase = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCamelCase__ ): __lowerCamelCase = target_sizes.numpy() __lowerCamelCase = [] for idx in range(len(lowerCamelCase__ ) ): __lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: __lowerCamelCase = logits.argmax(dim=1 ) __lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
469
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def SCREAMING_SNAKE_CASE ( snake_case_ : int ): random.seed(snake_case_ ) np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : Iterable[torch.nn.Parameter] , __A : float = 0.9_9_9_9 , __A : float = 0.0 , __A : int = 0 , __A : bool = False , __A : Union[float, int] = 1.0 , __A : Union[float, int] = 2 / 3 , __A : Optional[Any] = None , __A : Dict[str, Any] = None , **__A : List[str] , ): if isinstance(__A , torch.nn.Module ): snake_case__ : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , __A , standard_warn=__A , ) snake_case__ : Union[str, Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility snake_case__ : List[str] = True if kwargs.get("max_value" , __A ) is not None: snake_case__ : Any = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , __A , standard_warn=__A ) snake_case__ : str = kwargs["max_value"] if kwargs.get("min_value" , __A ) is not None: snake_case__ : Dict = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , __A , standard_warn=__A ) snake_case__ : Any = kwargs["min_value"] snake_case__ : Tuple = list(__A ) snake_case__ : str = [p.clone().detach() for p in parameters] if kwargs.get("device" , __A ) is not None: snake_case__ : Dict = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , __A , standard_warn=__A ) self.to(device=kwargs["device"] ) snake_case__ : List[str] = None snake_case__ : Tuple = decay snake_case__ : Dict = min_decay snake_case__ : int = update_after_step snake_case__ : Any = use_ema_warmup snake_case__ : Union[str, Any] = inv_gamma snake_case__ : Optional[int] = power snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = None # set in `step()` snake_case__ : List[Any] = model_cls snake_case__ : int = model_config @classmethod def _lowercase ( cls : Dict , __A : Optional[int] , __A : int ): snake_case__, snake_case__ : Any = model_cls.load_config(__A , return_unused_kwargs=__A ) snake_case__ : Tuple = model_cls.from_pretrained(__A ) snake_case__ : List[Any] = cls(model.parameters() , model_cls=__A , model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def _lowercase ( self : int , __A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) snake_case__ : Any = self.model_cls.from_config(self.model_config ) snake_case__ : Union[str, Any] = self.state_dict() state_dict.pop("shadow_params" , __A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def _lowercase ( self : Tuple , __A : int ): snake_case__ : str = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: snake_case__ : int = 1 - (1 + step / self.inv_gamma) ** -self.power else: snake_case__ : Union[str, Any] = (1 + step) / (1_0 + step) snake_case__ : List[Any] = min(__A , self.decay ) # make sure decay is not smaller than min_decay snake_case__ : Union[str, Any] = max(__A , self.min_decay ) return cur_decay_value @torch.no_grad() def _lowercase ( self : Any , __A : Iterable[torch.nn.Parameter] ): if isinstance(__A , torch.nn.Module ): snake_case__ : int = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , __A , standard_warn=__A , ) snake_case__ : str = parameters.parameters() snake_case__ : List[Any] = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. snake_case__ : str = self.get_decay(self.optimization_step ) snake_case__ : Optional[Any] = decay snake_case__ : str = 1 - decay snake_case__ : Tuple = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): snake_case__ : Any = deepspeed.zero.GatheredParameters(__A , modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ): snake_case__ : Union[str, Any] = list(__A ) for s_param, param in zip(self.shadow_params , __A ): param.data.copy_(s_param.to(param.device ).data ) def _lowercase ( self : Optional[int] , __A : Tuple=None , __A : Tuple=None ): snake_case__ : Union[str, Any] = [ p.to(device=__A , dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def _lowercase ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowercase ( self : Tuple , __A : Iterable[torch.nn.Parameter] ): snake_case__ : Any = [param.detach().cpu().clone() for param in parameters] def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , __A ): param.data.copy_(c_param.data ) # Better memory-wise. snake_case__ : Dict = None def _lowercase ( self : List[str] , __A : dict ): snake_case__ : Tuple = copy.deepcopy(__A ) snake_case__ : List[Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) snake_case__ : Optional[Any] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , __A ): raise ValueError("Invalid min_decay" ) snake_case__ : int = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , __A ): raise ValueError("Invalid optimization_step" ) snake_case__ : List[str] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , __A ): raise ValueError("Invalid update_after_step" ) snake_case__ : Dict = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __A ): raise ValueError("Invalid use_ema_warmup" ) snake_case__ : Any = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) snake_case__ : Union[str, Any] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) snake_case__ : List[str] = state_dict.get("shadow_params" , __A ) if shadow_params is not None: snake_case__ : Dict = shadow_params if not isinstance(self.shadow_params , __A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowercase : Any = {'unk_token': '<unk>'} _lowercase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) _lowercase : Optional[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowercase : Optional[int] = os.path.join(self.tmpdirname, lowerCamelCase) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta)] _lowercase : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1)) for x in image_inputs] return image_inputs def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Dict = self.get_rust_tokenizer() _lowercase : Dict = self.get_image_processor() _lowercase : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) processor_slow.save_pretrained(self.tmpdirname) _lowercase : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase) _lowercase : List[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) processor_fast.save_pretrained(self.tmpdirname) _lowercase : str = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowercase : str = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') _lowercase : Union[str, Any] = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0) _lowercase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCamelCase) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = self.get_image_processor() _lowercase : int = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : Optional[int] = self.prepare_image_inputs() _lowercase : str = image_processor(lowerCamelCase, return_tensors='np') _lowercase : Optional[int] = processor(images=lowerCamelCase, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : int = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : str = 'lower newer' _lowercase : Dict = processor(text=lowerCamelCase) _lowercase : Union[str, Any] = tokenizer(lowerCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : int = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : List[Any] = 'lower newer' _lowercase : Any = self.prepare_image_inputs() _lowercase : Any = processor(text=lowerCamelCase, images=lowerCamelCase) self.assertListEqual(list(inputs.keys()), ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCamelCase): processor() def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = self.get_image_processor() _lowercase : Any = self.get_tokenizer() _lowercase : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : str = self.prepare_image_inputs() _lowercase : str = self.prepare_image_inputs() _lowercase : Union[str, Any] = processor(images=lowerCamelCase, visual_prompt=lowerCamelCase) self.assertListEqual(list(inputs.keys()), ['pixel_values', 'conditional_pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCamelCase): processor() def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = self.get_image_processor() _lowercase : Dict = self.get_tokenizer() _lowercase : List[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : Optional[int] = processor.batch_decode(lowerCamelCase) _lowercase : List[str] = tokenizer.batch_decode(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase)
89
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase = """document_qa""" lowercase = AutoProcessor lowercase = VisionEncoderDecoderModel lowercase = ["""image""", """text"""] lowercase = ["""text"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCamelCase = task_prompt.replace("{user_input}" , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids UpperCamelCase = self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE , ).sequences def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE )[0] UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) UpperCamelCase = re.sub(R"<.*?>" , "" , SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCamelCase = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE ) return sequence["answer"]
606
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( lowercase_ ): __a : torch.FloatTensor __a : torch.FloatTensor __a : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( lowercase_ , lowercase_ ): __a : List[Any] = 2 @register_to_config def __init__( self ,snake_case__ = 0.02 ,snake_case__ = 100 ,snake_case__ = 1.007 ,snake_case__ = 80 ,snake_case__ = 0.05 ,snake_case__ = 50 ,): SCREAMING_SNAKE_CASE_ : Tuple = sigma_max # setable values SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None # sigma(t_i) def snake_case ( self ,snake_case__ ,snake_case__ = None ): return sample def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Tuple = num_inference_steps SCREAMING_SNAKE_CASE_ : List[Any] = np.arange(0 ,self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE_ : str = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor(UpperCamelCase__ ,dtype=torch.floataa ,device=UpperCamelCase__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = None ): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE_ : Dict = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE_ : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE_ : Any = self.config.s_noise * randn_tensor(sample.shape ,generator=UpperCamelCase__ ).to(sample.device ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sigma + gamma * sigma SCREAMING_SNAKE_CASE_ : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = True ,): SCREAMING_SNAKE_CASE_ : List[str] = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE_ : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ ,derivative=UpperCamelCase__ ,pred_original_sample=UpperCamelCase__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE_ : int = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ ,derivative=UpperCamelCase__ ,pred_original_sample=UpperCamelCase__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): raise NotImplementedError()
711
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
0
import math def _SCREAMING_SNAKE_CASE ( snake_case ) -> bool: return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def _SCREAMING_SNAKE_CASE ( snake_case ) -> bool: _UpperCAmelCase = 0 _UpperCAmelCase = n while left <= right: _UpperCAmelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
518
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(snake_case , snake_case ) return k def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> PegasusForConditionalGeneration: _UpperCAmelCase = DEFAULTS.copy() cfg_kwargs.update(snake_case ) _UpperCAmelCase = PegasusConfig(**snake_case ) _UpperCAmelCase = PegasusForConditionalGeneration(snake_case ) _UpperCAmelCase = torch_model.model.state_dict() _UpperCAmelCase = {} for k, v in tf_weights.items(): _UpperCAmelCase = rename_state_dict_key(snake_case ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: _UpperCAmelCase = v.T _UpperCAmelCase = torch.tensor(snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected _UpperCAmelCase = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _UpperCAmelCase = mapping["""shared.weight"""] _UpperCAmelCase = mapping["""shared.weight"""] _UpperCAmelCase = {k: torch.zeros_like(snake_case ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = torch_model.model.load_state_dict(snake_case , strict=snake_case ) _UpperCAmelCase = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def _SCREAMING_SNAKE_CASE ( snake_case="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: _UpperCAmelCase = tf.train.list_variables(snake_case ) _UpperCAmelCase = {} _UpperCAmelCase = ["""Adafactor""", """global_step"""] for name, shape in tqdm(snake_case , desc="""converting tf checkpoint to dict""" ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(snake_case , snake_case ) _UpperCAmelCase = array return tf_weights def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[str]: # save tokenizer first _UpperCAmelCase = Path(snake_case ).parent.name _UpperCAmelCase = task_specific_params[f"summarization_{dataset}"]["""max_position_embeddings"""] _UpperCAmelCase = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case ) # convert model _UpperCAmelCase = get_tf_weights_as_numpy(snake_case ) _UpperCAmelCase = task_specific_params[f"summarization_{dataset}"] if dataset == "large": _UpperCAmelCase = task_specific_params _UpperCAmelCase = convert_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) _UpperCAmelCase = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(snake_case , Path(snake_case ) / """pytorch_model.bin""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a = parser.parse_args() if args.save_dir is None: a = Path(args.tf_ckpt_path).parent.name a = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
518
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ = logging.get_logger(__name__) lowercase__ = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): a__ = """dinat""" a__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowercase=4 , lowercase=3 , lowercase=64 , lowercase=[3, 4, 6, 5] , lowercase=[2, 4, 8, 16] , lowercase=7 , lowercase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowercase=3.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=0.02 , lowercase=1e-5 , lowercase=0.0 , lowercase=None , lowercase=None , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__(**lowercase) a__: int = patch_size a__: str = num_channels a__: str = embed_dim a__: Dict = depths a__: int = len(lowercase) a__: str = num_heads a__: List[Any] = kernel_size a__: Union[str, Any] = dilations a__: List[str] = mlp_ratio a__: Tuple = qkv_bias a__: Union[str, Any] = hidden_dropout_prob a__: List[Any] = attention_probs_dropout_prob a__: Dict = drop_path_rate a__: Union[str, Any] = hidden_act a__: Any = layer_norm_eps a__: Any = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__: Any = int(embed_dim * 2 ** (len(lowercase) - 1)) a__: Any = layer_scale_init_value a__: Tuple = ['stem'] + [f'stage{idx}' for idx in range(1 , len(lowercase) + 1)] a__: Tuple = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names)
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __snake_case ( __lowerCAmelCase ): a__ = """deit""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=2_24 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowercase) a__: Optional[int] = hidden_size a__: List[Any] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Union[str, Any] = intermediate_size a__: Optional[Any] = hidden_act a__: Optional[Any] = hidden_dropout_prob a__: List[Any] = attention_probs_dropout_prob a__: List[str] = initializer_range a__: Optional[int] = layer_norm_eps a__: Dict = image_size a__: Dict = patch_size a__: List[Any] = num_channels a__: Optional[Any] = qkv_bias a__: List[Any] = encoder_stride class __snake_case ( __lowerCAmelCase ): a__ = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCamelCase_ ( self) -> float: '''simple docstring''' return 1e-4
217
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __A , __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def snake_case_ ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__A , ) __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) __a = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_zero=__A , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) __a = CLIPTextModel(__A ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case_ ( self , __A , __A=0 ): __a = floats_tensor((1, 16, 16) , rng=random.Random(__A ) ).to(__A ) __a = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self , __A , __A=0 ): __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ) if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self , __A , __A=0 ): __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ) if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): if not hasattr(self.pipeline_class , """_optional_components""" ): return __a = self.get_dummy_components() __a = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__A , __A , __A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __a = self.get_dummy_inputs(__A ) __a = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) __a = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __a = self.get_dummy_inputs(__A ) __a = pipe_loaded(**__A )[0] __a = np.abs(output - output_loaded ).max() self.assertLess(__A , 1E-4 ) def snake_case_ ( self ): __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_mask_inputs(__A ) __a = pipe.generate_mask(**__A ) __a = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __a = np.array([0] * 9 ) __a = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def snake_case_ ( self ): __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_inversion_inputs(__A ) __a = pipe.invert(**__A ).images __a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def snake_case_ ( self ): __a = """cpu""" __a = self.get_dummy_components() __a = {"""beta_start""": 0.00085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} __a = DPMSolverMultistepScheduler(**__A ) __a = DPMSolverMultistepInverseScheduler(**__A ) __a = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_inversion_inputs(__A ) __a = pipe.invert(**__A ).images __a = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def snake_case_ ( cls ): __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) __a = raw_image.convert("""RGB""" ).resize((768, 768) ) __a = raw_image def snake_case_ ( self ): __a = torch.manual_seed(0 ) __a = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=__A , torch_dtype=torch.floataa ) __a = DDIMScheduler.from_config(pipe.scheduler.config ) __a = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__A ) __a = """a bowl of fruit""" __a = """a bowl of pears""" __a = pipe.generate_mask( image=self.raw_image , source_prompt=__A , target_prompt=__A , generator=__A , ) __a = pipe.invert( prompt=__A , image=self.raw_image , inpaint_strength=0.7 , generator=__A ).latents __a = pipe( prompt=__A , mask_image=__A , image_latents=__A , generator=__A , negative_prompt=__A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] __a = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def snake_case_ ( self ): __a = torch.manual_seed(0 ) __a = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=__A , torch_dtype=torch.floataa ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__A ) __a = """a bowl of fruit""" __a = """a bowl of pears""" __a = pipe.generate_mask( image=self.raw_image , source_prompt=__A , target_prompt=__A , generator=__A , ) __a = pipe.invert( prompt=__A , image=self.raw_image , inpaint_strength=0.7 , generator=__A , num_inference_steps=25 , ).latents __a = pipe( prompt=__A , mask_image=__A , image_latents=__A , generator=__A , negative_prompt=__A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] __a = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
99
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger() @dataclass class UpperCAmelCase__ : a : List[Any] = 4_2 a : Optional[int] = field(default_factory=UpperCamelCase__ ) a : Union[str, Any] = field(default_factory=UpperCamelCase__ ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: __lowerCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase__ , nn.Convad ) or isinstance(UpperCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase__ ) def __call__( self , UpperCamelCase ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase__ ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase_ ( self ) -> Any: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase__ : a : str = 4_2 a : List[str] = 4_2 a : Tuple = 1 a : int = field(default_factory=UpperCamelCase__ ) a : List[str] = field(default_factory=UpperCamelCase__ ) a : Union[str, Any] = True def __call__( self , UpperCamelCase ) -> List[Any]: __lowerCAmelCase = Tracker(self.dest )(UpperCAmelCase__ ).parametrized __lowerCAmelCase = Tracker(self.src )(UpperCAmelCase__ ).parametrized __lowerCAmelCase = list(filter(lambda UpperCamelCase : type(UpperCAmelCase__ ) not in self.src_skip , UpperCAmelCase__ ) ) __lowerCAmelCase = list(filter(lambda UpperCamelCase : type(UpperCAmelCase__ ) not in self.dest_skip , UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(UpperCAmelCase__ )} operations while''' F''' destination module has {len(UpperCAmelCase__ )}.''' ) for dest_m, src_m in zip(UpperCAmelCase__ , UpperCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class UpperCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase ) -> List[str]: super().__init__() __lowerCAmelCase = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F'''Unexpected layer name {k}''' __lowerCAmelCase = len(UpperCAmelCase__ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) __lowerCAmelCase = nn.ModuleDict(UpperCAmelCase__ ) def UpperCAmelCase_ ( self , UpperCamelCase ) -> Optional[Any]: return get_trunk_forward_outputs( UpperCAmelCase__ , out_feat_keys=UpperCAmelCase__ , feature_blocks=self._feature_blocks , ) class UpperCAmelCase__ ( UpperCamelCase__ ): def UpperCAmelCase_ ( self , UpperCamelCase ) -> str: __lowerCAmelCase = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , UpperCamelCase ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: __lowerCAmelCase = self.convert_name_to_timm(UpperCAmelCase__ ) __lowerCAmelCase = partial(lambda: (timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ).eval(), None) ) else: __lowerCAmelCase = super().__getitem__(UpperCAmelCase__ ) return val class UpperCAmelCase__ ( UpperCamelCase__ ): def __getitem__( self , UpperCamelCase ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: __lowerCAmelCase = RegNetModel else: __lowerCAmelCase = RegNetForImageClassification return val def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: __lowerCAmelCase = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : Callable[[], nn.Module] , lowerCamelCase : Callable[[], nn.Module] , lowerCamelCase : RegNetConfig , lowerCamelCase : Path , lowerCamelCase : bool = True , ): '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): __lowerCAmelCase , __lowerCAmelCase = from_model_func() __lowerCAmelCase = our_model_func(_UpperCamelCase ).eval() __lowerCAmelCase = ModuleTransfer(src=_UpperCamelCase , dest=_UpperCamelCase , raise_if_mismatch=_UpperCamelCase ) __lowerCAmelCase = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_UpperCamelCase ) if from_state_dict is not None: __lowerCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __lowerCAmelCase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] __lowerCAmelCase = manually_copy_vissl_head(_UpperCamelCase , our_model.state_dict() , _UpperCamelCase ) our_model.load_state_dict(_UpperCamelCase ) __lowerCAmelCase = our_model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) __lowerCAmelCase = ( our_outputs.logits if isinstance(_UpperCamelCase , _UpperCamelCase ) else our_outputs.last_hidden_state ) __lowerCAmelCase = from_model(_UpperCamelCase ) __lowerCAmelCase = from_output[-1] if type(_UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __lowerCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(_UpperCamelCase , _UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=_UpperCamelCase , ) __lowerCAmelCase = 2_24 if "seer" not in name else 3_84 # we can use the convnext one __lowerCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=_UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=_UpperCamelCase , ) print(f'''Pushed {name}''' ) def __lowerCAmelCase ( lowerCamelCase : Path , lowerCamelCase : str = None , lowerCamelCase : bool = True ): '''simple docstring''' __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = 10_00 __lowerCAmelCase = (1, num_labels) __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = num_labels __lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = partial(_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) __lowerCAmelCase = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } __lowerCAmelCase = NameToOurModelFuncMap() __lowerCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCamelCase : str , lowerCamelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase , model_dir=str(_UpperCamelCase ) , map_location="cpu" ) __lowerCAmelCase = model_func() # check if we have a head, if yes add it __lowerCAmelCase = files["classy_state_dict"]["base_model"]["model"] __lowerCAmelCase = model_state_dict["trunk"] model.load_state_dict(_UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowerCAmelCase = partial( _UpperCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _UpperCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _UpperCamelCase , _UpperCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _UpperCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCAmelCase : Union[str, Any] = parser.parse_args() lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
720
'''simple docstring''' def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
39
0
"""simple docstring""" import random def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = a[left_index] UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , A__ ): if a[j] < pivot: UpperCAmelCase = a[i], a[j] i += 1 UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if left < right: UpperCAmelCase = random.randint(A__ , right - 1 ) UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCAmelCase = partition(A__ , A__ , A__ ) quick_sort_random( A__ , A__ , A__ ) # recursive quicksort to the left of the pivot point quick_sort_random( A__ , pivot_index + 1 , A__ ) # recursive quicksort to the right of the pivot point def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCAmelCase = [int(A__ ) for item in user_input.split(""",""" )] quick_sort_random(A__ , 0 , len(A__ ) ) print(A__ ) if __name__ == "__main__": main()
673
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = emb.weight.shape SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(A__, A__, bias=A__ ) SCREAMING_SNAKE_CASE_ : Dict = emb.weight.data return lin_layer def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(A__, map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Tuple = mam_aaa['args'] or mam_aaa['cfg']['model'] SCREAMING_SNAKE_CASE_ : Any = mam_aaa['model'] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE_ : Dict = MaMaaaConfig( vocab_size=A__, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', ) SCREAMING_SNAKE_CASE_ : int = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = MaMaaaForConditionalGeneration(A__ ) model.model.load_state_dict(A__, strict=A__ ) SCREAMING_SNAKE_CASE_ : int = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ : Optional[Any] =parser.parse_args() lowerCAmelCase__ : int =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
101
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowerCamelCase_ : str = tmp_path / 'cache' lowerCamelCase_ : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ : Any = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__ , lowerCamelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: lowerCamelCase_ : int = tmp_path / 'cache' lowerCamelCase_ : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ : Optional[Any] = features.copy() if features else default_expected_features lowerCamelCase_ : str = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_sql_dataset(lowerCamelCase__ , lowerCamelCase__ ) def _a ( lowerCamelCase__ ) -> List[str]: with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: lowerCamelCase_ : Tuple = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowerCamelCase_ : str = tmp_path / 'cache' lowerCamelCase_ : Optional[Any] = os.path.join(lowerCamelCase__ , 'tmp.sql' ) lowerCamelCase_ : List[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() lowerCamelCase_ : Union[str, Any] = iter_sql_file(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] = iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: lowerCamelCase_ : Optional[int] = tmp_path / 'cache' lowerCamelCase_ : Tuple = os.path.join(lowerCamelCase__ , 'tmp.sql' ) lowerCamelCase_ : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=lowerCamelCase__ ).read() SqlDatasetWriter(lowerCamelCase__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() lowerCamelCase_ : Optional[Any] = iter_sql_file(lowerCamelCase__ ) lowerCamelCase_ : Any = iter_sql_file(lowerCamelCase__ ) for rowa, rowa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert rowa == rowa @require_sqlalchemy def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: lowerCamelCase_ : Optional[int] = tmp_path / 'cache' lowerCamelCase_ : int = os.path.join(lowerCamelCase__ , 'tmp.sql' ) lowerCamelCase_ : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=lowerCamelCase__ ).read() with pytest.raises(lowerCamelCase__ ): SqlDatasetWriter(lowerCamelCase__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
144
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''google/realm-cc-news-pretrained-embedder''': 5_1_2, '''google/realm-cc-news-pretrained-encoder''': 5_1_2, '''google/realm-cc-news-pretrained-scorer''': 5_1_2, '''google/realm-cc-news-pretrained-openqa''': 5_1_2, '''google/realm-orqa-nq-openqa''': 5_1_2, '''google/realm-orqa-nq-reader''': 5_1_2, '''google/realm-orqa-wq-openqa''': 5_1_2, '''google/realm-orqa-wq-reader''': 5_1_2, } UpperCamelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : Any = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = RealmTokenizer def __init__(self : Optional[Any] , _snake_case : Optional[Any]=None , _snake_case : List[Any]=None , _snake_case : str=True , _snake_case : List[Any]="[UNK]" , _snake_case : int="[SEP]" , _snake_case : List[Any]="[PAD]" , _snake_case : Dict="[CLS]" , _snake_case : Dict="[MASK]" , _snake_case : Optional[Any]=True , _snake_case : Union[str, Any]=None , **_snake_case : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCamelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCamelCase_ : Optional[int] = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCamelCase_ : Optional[int] = do_lower_case lowerCamelCase_ : Tuple = strip_accents lowerCamelCase_ : List[Any] = tokenize_chinese_chars lowerCamelCase_ : Union[str, Any] = normalizer_class(**_snake_case ) lowerCamelCase_ : Tuple = do_lower_case def UpperCAmelCase_ (self : Union[str, Any] , _snake_case : Optional[Any] , **_snake_case : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase_ : List[Any] = text lowerCamelCase_ : List[Any] = kwargs.pop('text_pair' , _snake_case ) lowerCamelCase_ : Any = kwargs.pop('return_tensors' , _snake_case ) lowerCamelCase_ : str = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_snake_case ): if batch_text_pair is not None: lowerCamelCase_ : Union[str, Any] = batch_text_pair[idx] else: lowerCamelCase_ : List[str] = None lowerCamelCase_ : Any = super().__call__(_snake_case , _snake_case , return_tensors=_snake_case , **_snake_case ) lowerCamelCase_ : Union[str, Any] = encoded_candidates.get('input_ids' ) lowerCamelCase_ : List[Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase_ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_snake_case ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_snake_case ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_snake_case ) lowerCamelCase_ : Dict = {key: item for key, item in output_data.items() if len(_snake_case ) != 0} return BatchEncoding(_snake_case , tensor_type=_snake_case ) def UpperCAmelCase_ (self : Optional[int] , _snake_case : List[Any] , _snake_case : int=None ) -> int: """simple docstring""" lowerCamelCase_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ (self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ : List[Any] = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ (self : str , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
144
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase): __magic_name__ = MODEL_FOR_MASKED_LM_MAPPING __magic_name__ = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowercase ( self : List[str] ) -> Optional[int]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowercase ( self : Dict ) -> Any: snake_case : Optional[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) snake_case : Tuple = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1E-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-05, "token": 25506, "token_str": " accuser"}, ] , ) snake_case : Union[str, Any] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-05, "token": 25506, "token_str": " accuser", }, ] , ) snake_case : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2E-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __lowercase ( self : Dict ) -> Optional[Any]: snake_case : List[str] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) snake_case : Optional[Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2E-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-05, "token": 16416, "token_str": "ELS"}, ] , ) snake_case : List[Any] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-05, "token": 16416, "token_str": "ELS"}, ] , ) snake_case : Optional[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1E-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-05, "token": 13606, "token_str": " Clara"}, ] , ) snake_case : Tuple = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { "score": 2.2E-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def __lowercase ( self : List[Any] ) -> Any: snake_case : Optional[int] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() snake_case : str = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def __lowercase ( self : str ) -> List[str]: snake_case : Union[str, Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(_lowercase ) @slow @require_tf def __lowercase ( self : List[str] ) -> Tuple: snake_case : Dict = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(_lowercase ) def __lowercase ( self : List[str] , _lowercase : str ) -> int: snake_case : Union[str, Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowercase ) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) snake_case : Dict = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowercase ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12790, "token_str": " Lyon", }, ] , ) snake_case : Union[str, Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __lowercase ( self : Tuple ) -> Optional[Any]: snake_case : Optional[int] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) snake_case : Optional[Any] = None snake_case : List[str] = None self.run_pipeline_test(_lowercase , [] ) @require_tf def __lowercase ( self : Tuple ) -> List[Any]: snake_case : Union[str, Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) snake_case : Tuple = None snake_case : str = None self.run_pipeline_test(_lowercase , [] ) def __lowercase ( self : List[Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int] ) -> str: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) snake_case : Union[str, Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) snake_case : str = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __lowercase ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] ) -> Tuple: snake_case : Any = fill_masker.tokenizer snake_case : List[Any] = fill_masker.model snake_case : Union[str, Any] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) snake_case : str = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) snake_case : Dict = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowercase , [ [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ], [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker("This is" ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def __lowercase ( self : Tuple , _lowercase : List[Any] , _lowercase : Optional[Any] ) -> List[Any]: snake_case : Any = tokenizer.get_vocab() snake_case : Optional[int] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case : Any = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) snake_case : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) snake_case : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _lowercase ) snake_case : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_lowercase ) ) # Call argument snake_case : int = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) snake_case : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) snake_case : str = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _lowercase ) snake_case : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_lowercase ) ) # Score equivalence snake_case : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) snake_case : Union[str, Any] = [top_mask["token_str"] for top_mask in outputs] snake_case : Dict = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): snake_case : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) snake_case : Union[str, Any] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): snake_case : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): snake_case : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(_lowercase ): snake_case : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="" ) def __lowercase ( self : Any , _lowercase : Optional[Any] , _lowercase : List[Any] ) -> Any: snake_case : Optional[Any] = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) snake_case : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) snake_case : str = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) snake_case : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def __lowercase ( self : Optional[int] , _lowercase : int , _lowercase : List[Any] ) -> Any: snake_case : Optional[Any] = tokenizer.get_vocab() snake_case : str = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 snake_case : List[Any] = sorted(vocab.keys() )[:3] snake_case : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case : Optional[int] = [el["token_str"] for el in sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): snake_case : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def __lowercase ( self : Tuple , _lowercase : Dict , _lowercase : Union[str, Any] ) -> Optional[int]: snake_case : Dict = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) snake_case : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates snake_case : List[str] = sorted(vocab.keys() )[:3] snake_case : Any = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case : str = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def __lowercase ( self : str , _lowercase : str , _lowercase : List[Any] ) -> Dict: snake_case : int = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) snake_case : Tuple = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ], [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ], [ {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, {"sequence": ANY(_lowercase ), "score": ANY(_lowercase ), "token": ANY(_lowercase ), "token_str": ANY(_lowercase )}, ], ] , )
449
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu A = False class _a ( unittest.TestCase): def __lowercase ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowercase ( self : List[str] ) -> Any: return 12 @property def __lowercase ( self : List[str] ) -> Dict: return 12 @property def __lowercase ( self : Optional[int] ) -> Union[str, Any]: return 32 @property def __lowercase ( self : int ) -> Dict: torch.manual_seed(0 ) snake_case : List[str] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __lowercase ( self : str ) -> List[Any]: snake_case : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __lowercase ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowercase ) @property def __lowercase ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) snake_case : List[Any] = 12 snake_case : Dict = 12 snake_case : Tuple = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } snake_case : Dict = TransformeraDModel(**_lowercase ) return model def __lowercase ( self : Optional[int] ) -> Tuple: snake_case : Optional[Any] = "cpu" snake_case : Optional[int] = self.dummy_vqvae snake_case : Dict = self.dummy_text_encoder snake_case : Tuple = self.dummy_tokenizer snake_case : List[Any] = self.dummy_transformer snake_case : List[Any] = VQDiffusionScheduler(self.num_embed ) snake_case : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case : Dict = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Optional[Any] = "teddy bear playing in the pool" snake_case : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" ) snake_case : Optional[int] = output.images snake_case : int = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : List[str] = pipe( [prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case : List[Any] = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case : str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : Union[str, Any] ) -> Optional[int]: snake_case : List[str] = "cpu" snake_case : Dict = self.dummy_vqvae snake_case : List[Any] = self.dummy_text_encoder snake_case : Optional[Any] = self.dummy_tokenizer snake_case : int = self.dummy_transformer snake_case : str = VQDiffusionScheduler(self.num_embed ) snake_case : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case : List[str] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case : Optional[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Dict = "teddy bear playing in the pool" snake_case : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Union[str, Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" ) snake_case : Optional[Any] = output.images snake_case : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Union[str, Any] = pipe( [prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case : Any = image[0, -3:, -3:, -1] snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case : Optional[Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _a ( unittest.TestCase): def __lowercase ( self : Optional[int] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ) -> Tuple: snake_case : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) snake_case : Tuple = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) snake_case : Union[str, Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Optional[int] = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=_lowercase , output_type="np" , ) snake_case : List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
449
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase__ = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _lowercase ( self ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ): return (3, 32, 32) @property def _lowercase ( self ): return (3, 32, 32) def _lowercase ( self ): snake_case_ = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } snake_case_ = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _lowercase ( self ): snake_case_ = 4 snake_case_ = 4 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ): return (4, 32, 32) @property def _lowercase ( self ): return (4, 32, 32) def _lowercase ( self ): snake_case_ = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } snake_case_ = self.dummy_input return init_dict, inputs_dict def _lowercase ( self ): snake_case_ , snake_case_ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _lowercase ( self ): snake_case_ , snake_case_ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def _lowercase ( self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` snake_case_ , snake_case_ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model_accelerate.to(UpperCAmelCase_ ) model_accelerate.eval() snake_case_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = noise.to(UpperCAmelCase_ ) snake_case_ = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) snake_case_ = model_accelerate(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case_ , snake_case_ = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_ ) model_normal_load.to(UpperCAmelCase_ ) model_normal_load.eval() snake_case_ = model_normal_load(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) def _lowercase ( self ): snake_case_ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase_ ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = noise.to(UpperCAmelCase_ ) snake_case_ = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = UNetaDModel snake_case = """sample""" @property def _lowercase ( self , UpperCAmelCase_=(32, 32) ): snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ): return (3, 32, 32) @property def _lowercase ( self ): return (3, 32, 32) def _lowercase ( self ): snake_case_ = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } snake_case_ = self.dummy_input return init_dict, inputs_dict @slow def _lowercase ( self ): snake_case_ , snake_case_ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = self.dummy_input snake_case_ = floats_tensor((4, 3) + (2_56, 2_56) ).to(UpperCAmelCase_ ) snake_case_ = noise snake_case_ = model(**UpperCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def _lowercase ( self ): snake_case_ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase_ ) snake_case_ = 4 snake_case_ = 3 snake_case_ = (2_56, 2_56) snake_case_ = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample snake_case_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def _lowercase ( self ): snake_case_ = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase_ ) snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) snake_case_ = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample snake_case_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def _lowercase ( self ): # not required for this model pass
420
'''simple docstring''' from manim import * class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def _lowercase ( self ): snake_case_ = Rectangle(height=0.5 , width=0.5 ) snake_case_ = Rectangle(height=0.25 , width=0.25 ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("CPU" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(4 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("GPU" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("Model" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): rect.set_stroke(UpperCAmelCase_ ) snake_case_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCAmelCase_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCAmelCase_ , buff=0.0 ) self.add(UpperCAmelCase_ ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ , *UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("Loaded Checkpoint" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [] snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): snake_case_ = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.7 ) target.move_to(UpperCAmelCase_ ) ckpt_arr.append(UpperCAmelCase_ ) snake_case_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) snake_case_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) snake_case_ = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("Disk" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , Write(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) ) snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): snake_case_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCAmelCase_ , run_time=1.5 ) ) self.play(*UpperCAmelCase_ ) self.play(FadeOut(UpperCAmelCase_ ) ) snake_case_ = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) self.play( FadeOut(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , *UpperCAmelCase_ ) , ) self.wait()
420
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Dict = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
86
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __a :List[Any] = get_logger() __a :Optional[dict] = None class _a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ): super().__init__(features=UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) A_ = device if isinstance(UpperCAmelCase , UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) A_ = str(jax.devices()[0] ) A_ = jnp_array_kwargs @staticmethod def __A ( ): import jax return {str(UpperCAmelCase ): device for device in jax.devices()} def __A ( self : Optional[int] , UpperCAmelCase : int ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase , axis=0 ) return column def __A ( self : List[str] , UpperCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A_ = {"dtype": jnp.intaa} else: A_ = {"dtype": jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = np.asarray(UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def __A ( self : Any , UpperCAmelCase : Dict ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , jax.Array ): A_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : dict ): return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) A_ = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) A_ = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) A_ = self.recursive_tensorize(UpperCAmelCase ) A_ = self._consolidate(UpperCAmelCase ) return column def __A ( self : Dict , UpperCAmelCase : pa.Table ): A_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) A_ = self.python_features_decoder.decode_batch(UpperCAmelCase ) A_ = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: A_ = self._consolidate(batch[column_name] ) return batch
86
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCAmelCase ( __snake_case ): def __init__( self : Any , *a : Union[str, Any] , a : Optional[Any]=None , a : Tuple=None , **a : str ) -> Dict: """simple docstring""" super().__init__(*a , **a ) lowercase = eval_examples lowercase = post_process_function def _lowerCAmelCase ( self : int , a : str=None , a : List[str]=None , a : Union[str, Any]=None , a : str = "eval" ) -> int: """simple docstring""" lowercase = self.eval_dataset if eval_dataset is None else eval_dataset lowercase = self.get_eval_dataloader(a ) lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase = time.time() try: lowercase = eval_loop( a , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , metric_key_prefix=a , ) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a , a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase = self.post_process_function(a , a , output.predictions ) lowercase = self.compute_metrics(a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowercase = metrics.pop(a ) metrics.update(output.metrics ) else: lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase = self.callback_handler.on_evaluate(self.args , self.state , self.control , a ) return metrics def _lowerCAmelCase ( self : Optional[Any] , a : Any , a : int , a : Optional[int]=None , a : str = "test" ) -> Optional[int]: """simple docstring""" lowercase = self.get_test_dataloader(a ) # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase = time.time() try: lowercase = eval_loop( a , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , metric_key_prefix=a , ) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a , a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase = self.post_process_function(a , a , output.predictions , '''predict''' ) lowercase = self.compute_metrics(a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowercase = metrics.pop(a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a )
396
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __lowerCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __lowerCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __lowerCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
396
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase_ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) lowercase_ = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase_ = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state'''] lowercase_ = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. lowercase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
97
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
118
0
def A_ ( __a : list[int] , __a : list[int] , __a : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__a ) ) def A_ ( __a : list[list[int]] , __a : int , __a : list[int] , __a : int ): """simple docstring""" # Base Case if index == len(__a ): return True # Recursive Step for i in range(__a ): if valid_coloring(graph[index] , __a , __a ): # Color current vertex a__ = i # Validate coloring if util_color(__a , __a , __a , index + 1 ): return True # Backtrack a__ = -1 return False def A_ ( __a : list[list[int]] , __a : int ): """simple docstring""" a__ = [-1] * len(__a ) if util_color(__a , __a , __a , 0 ): return colored_vertices return []
713
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): a__ = tempfile.mkdtemp() # fmt: off a__ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a__ = dict(zip(a_ , range(len(a_ ) ) ) ) a__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] a__ = {"""unk_token""": """<unk>"""} a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) a__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } a__ = os.path.join(self.tmpdirname , a_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(a_ , a_ ) def _a ( self , **a_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **a_ ) def _a ( self , **a_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **a_ ) def _a ( self , **a_ ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **a_ ) def _a ( self ): shutil.rmtree(self.tmpdirname ) def _a ( self ): a__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a__ = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ): a__ = self.get_tokenizer() a__ = self.get_rust_tokenizer() a__ = self.get_image_processor() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) processor_slow.save_pretrained(self.tmpdirname ) a__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=a_ ) a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) processor_fast.save_pretrained(self.tmpdirname ) a__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a_ ) self.assertIsInstance(processor_fast.tokenizer , a_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a_ ) self.assertIsInstance(processor_fast.image_processor , a_ ) def _a ( self ): a__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a__ = self.get_image_processor(do_normalize=a_ ) a__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=a_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = self.prepare_image_inputs() a__ = image_processor(a_ , return_tensors="""np""" ) a__ = processor(images=a_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = """lower newer""" a__ = processor(text=a_ , return_tensors="""np""" ) a__ = tokenizer(a_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = """lower newer""" a__ = self.prepare_image_inputs() a__ = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = ["""cat""", """nasa badge"""] a__ = processor(text=a_ ) a__ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = [["""cat""", """nasa badge"""], ["""person"""]] a__ = processor(text=a_ ) a__ = 16 a__ = len(a_ ) a__ = max([len(a_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = ["""cat""", """nasa badge"""] a__ = processor(text=a_ ) a__ = 16 a__ = inputs["""input_ids"""] a__ = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = self.prepare_image_inputs() a__ = self.prepare_image_inputs() a__ = processor(images=a_ , query_images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ = processor.batch_decode(a_ ) a__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ )
351
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __A ( a_ : Optional[Any] , a_ : int , a_ : Tuple=0 )-> Any: '''simple docstring''' if name is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: SCREAMING_SNAKE_CASE : Dict = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' SCREAMING_SNAKE_CASE : List[Any] = fmt.format(a_ ) # Print and recurse (if needed). if isinstance(a_ , a_ ): if msg is not None: print(a_ ) for k in val.keys(): recursive_print(a_ , val[k] , spaces + 2 ) elif isinstance(a_ , torch.Tensor ): print(a_ , ''':''' , val.size() ) else: print(a_ , ''':''' , a_ ) def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : List[Any] , a_ : Dict , a_ : Tuple )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE : Dict = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE : Tuple = param.view(*a_ ) SCREAMING_SNAKE_CASE : str = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE : Any = param.view(*a_ ) SCREAMING_SNAKE_CASE : Tuple = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = param.view(*a_ ) return param def __A ( a_ : Any , a_ : Union[str, Any] , a_ : Optional[int] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {} # old versions did not store training args SCREAMING_SNAKE_CASE : Any = input_state_dict.get('''args''' , a_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE : Dict = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE : List[str] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = ds_args.hidden_size SCREAMING_SNAKE_CASE : List[Any] = ds_args.num_layers SCREAMING_SNAKE_CASE : Any = ds_args.num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE : Union[str, Any] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE : Dict = input_state_dict['''checkpoint_version'''] else: SCREAMING_SNAKE_CASE : List[Any] = 0.0 # The model. SCREAMING_SNAKE_CASE : List[str] = input_state_dict['''model'''] # The language model. SCREAMING_SNAKE_CASE : Optional[int] = model['''language_model'''] # The embeddings. SCREAMING_SNAKE_CASE : Dict = lm['''embedding'''] # The word embeddings. SCREAMING_SNAKE_CASE : Any = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE : List[str] = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE : Optional[Any] = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE : int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. SCREAMING_SNAKE_CASE : List[str] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE : List[Any] = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. SCREAMING_SNAKE_CASE : Dict = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE : Optional[int] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE : Any = layer_re.match(a_ ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE : Dict = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE : Tuple = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE : Tuple = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE : Tuple = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): SCREAMING_SNAKE_CASE : Any = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' SCREAMING_SNAKE_CASE : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE : Dict = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = masked_bias SCREAMING_SNAKE_CASE : Dict = fix_query_key_value_ordering(a_ , a_ , 3 , a_ , a_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE : Optional[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE : List[str] = fix_query_key_value_ordering(a_ , a_ , 3 , a_ , a_ ) # Store. No change of shape. SCREAMING_SNAKE_CASE : Dict = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE : str = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE : List[Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE : Any = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE : Optional[int] = transformer['''final_layernorm.weight'''] SCREAMING_SNAKE_CASE : List[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE : int = word_embeddings # It should be done! return output_state_dict def __A ( )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=a_ , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=a_ , help='''An optional config json file describing the pre-trained model.''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a_ , map_location='''cpu''' ) else: SCREAMING_SNAKE_CASE : Tuple = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Tuple = input_state_dict.get('''args''' , a_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE : int = '''gelu_fast''' elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE : int = '''gelu_new''' else: SCREAMING_SNAKE_CASE : Optional[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE : Any = '''gelu_new''' # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE : Dict = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=a_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=a_ , summary_activation=a_ , summary_proj_to_labels=a_ , summary_first_dropout=0.1 , scale_attn_weights=a_ , use_cache=a_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: SCREAMING_SNAKE_CASE : Dict = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE : Optional[int] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) SCREAMING_SNAKE_CASE : Optional[Any] = convert_megatron_checkpoint(a_ , a_ , a_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(a_ , a_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE : List[str] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE : Any = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: SCREAMING_SNAKE_CASE : str = '''gpt2''' SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = type(a_ ).__name__ SCREAMING_SNAKE_CASE : Tuple = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(a_ ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(a_ ) # Store the state_dict to file. SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(a_ , '''pytorch_model.bin''' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(a_ , a_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self : int , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Any=10 , lowerCAmelCase : str=3 , lowerCAmelCase : Tuple=32 * 8 , lowerCAmelCase : Optional[Any]=32 * 8 , lowerCAmelCase : str=4 , lowerCAmelCase : Tuple=64 , ): '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = num_queries UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_size UpperCAmelCase_ = max_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = hidden_dim def __A ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCAmelCase ) UpperCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase ) UpperCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase ) > 0.5 ).float() UpperCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase ) > 0.5).long() UpperCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCAmelCase_ = self.num_queries UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = [1, 1, 1, 1] UpperCAmelCase_ = self.num_channels UpperCAmelCase_ = 64 UpperCAmelCase_ = 128 UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim UpperCAmelCase_ = self.hidden_dim return config def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def __A ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = output.encoder_hidden_states UpperCAmelCase_ = output.pixel_decoder_hidden_states UpperCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCAmelCase ) , config.decoder_layers ) def __A ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any=False ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ = MaskaFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , output_hidden_states=lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCAmelCase , lowerCAmelCase ) def __A ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() def comm_check_on_output(lowerCAmelCase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase ) comm_check_on_output(lowerCAmelCase ) UpperCAmelCase_ = model( pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase ) comm_check_on_output(lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def __A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase , **lowerCAmelCase , output_hidden_states=lowerCAmelCase ) def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCAmelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def __A ( self : Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Dict ): '''simple docstring''' pass def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) @slow def __A ( self : Any ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_ = MaskaFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def __A ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ = (self.model_tester.min_size,) * 2 UpperCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=lowerCAmelCase ).long(), } UpperCAmelCase_ = self.model_tester.get_config() UpperCAmelCase_ = MaskaFormerForUniversalSegmentation(lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = model(**lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCAmelCase , **lowerCAmelCase , output_hidden_states=lowerCAmelCase ) def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = model(**lowerCAmelCase , output_attentions=lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def __A ( self : Union[str, Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() UpperCAmelCase_ = model(lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase ).loss loss.backward() def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(lowerCAmelCase ).to(lowerCAmelCase ) model.train() UpperCAmelCase_ = model(lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase ) UpperCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _a: Any = 1e-4 def __lowerCAmelCase ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def __A ( self : Dict ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __A ( self : Tuple ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase ) ) def __A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCAmelCase ).eval() UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) UpperCAmelCase_ = inputs["pixel_values"].to(lowerCAmelCase ) UpperCAmelCase_ = [el.to(lowerCAmelCase ) for el in inputs["mask_labels"]] UpperCAmelCase_ = [el.to(lowerCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
715
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a: Dict = logging.get_logger(__name__) class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : List[str]=125 , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ = [F"<extra_id_{i}>" for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase_ = len(set(filter(lambda lowerCAmelCase : bool("extra_id" in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = extra_ids UpperCAmelCase_ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase_ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase_ = len(self.special_tokens_encoder ) UpperCAmelCase_ = len(lowerCAmelCase ) for i, token in enumerate(lowerCAmelCase ): UpperCAmelCase_ = self.vocab_size + i - n UpperCAmelCase_ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self : Optional[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + [1] return ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def __A ( self : Any , lowerCAmelCase : List[int] ): '''simple docstring''' if len(lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self : Optional[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) return token_ids_a + token_ids_a def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = [chr(lowerCAmelCase ) for i in text.encode("utf-8" )] return tokens def __A ( self : Optional[Any] , lowerCAmelCase : List[Any] ): '''simple docstring''' if token in self.special_tokens_encoder: UpperCAmelCase_ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase_ = self.added_tokens_encoder[token] elif len(lowerCAmelCase ) != 1: UpperCAmelCase_ = self.unk_token_id else: UpperCAmelCase_ = ord(lowerCAmelCase ) + self._num_special_tokens return token_id def __A ( self : str , lowerCAmelCase : Any ): '''simple docstring''' if index in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[index] else: UpperCAmelCase_ = chr(index - self._num_special_tokens ) return token def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = b"" for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) else: UpperCAmelCase_ = bytes([ord(lowerCAmelCase )] ) bstring += tok_string UpperCAmelCase_ = bstring.decode("utf-8" , errors="ignore" ) return string def __A ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' return ()
268
0
from __future__ import annotations def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> int: # Checks if the entire collection has been sorted if len(lowerCamelCase_ ) <= 1 or n <= 1: return insert_next(lowerCamelCase_ , n - 1 ) rec_insertion_sort(lowerCamelCase_ , n - 1 ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: # Checks order between adjacent elements if index >= len(lowerCamelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase , UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase_ , index + 1 ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = input("Enter integers separated by spaces: ") __lowerCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
323
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCamelCase : str = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __lowerCamelCase : Optional[Any] = dataset.iloc[:, 1:2].values __lowerCamelCase : Any = dataset.iloc[:, 2].values __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = train_test_split(X, y, test_size=0.2, random_state=0) __lowerCamelCase : List[Any] = PolynomialFeatures(degree=4) __lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X) __lowerCamelCase : Dict = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase_() -> List[str]: plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color="red" ) plt.plot(lowerCamelCase_ , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
323
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCamelCase__ : Any = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCamelCase__ : int = [0, 2_5, 5_0] lowerCamelCase__ : List[str] = [2_5, 5_0, 7_5] lowerCamelCase__ : List[Any] = fuzz.membership.trimf(X, abca) lowerCamelCase__ : List[str] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCamelCase__ : List[Any] = np.ones(7_5) lowerCamelCase__ : List[Any] = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowerCamelCase__ : List[str] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCamelCase__ : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCamelCase__ : Optional[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCamelCase__ : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCamelCase__ : Dict = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCamelCase__ : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCamelCase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCamelCase__ : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
495
lowerCamelCase__ : str = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [False] * len(lowercase_ ) lowercase__ : List[Any] = [s] lowercase__ : int = True while queue: lowercase__ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) lowercase__ : Optional[Any] = True lowercase__ : int = u return visited[t] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[int] = [-1] * (len(lowercase_ )) lowercase__ : Optional[Any] = 0 lowercase__ : List[Any] = [] lowercase__ : Optional[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase__ : Optional[int] = float("""Inf""" ) lowercase__ : Tuple = sink while s != source: # Find the minimum value in select path lowercase__ : List[str] = min(lowercase_ , graph[parent[s]][s] ) lowercase__ : List[str] = parent[s] max_flow += path_flow lowercase__ : str = sink while v != source: lowercase__ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase__ : Union[str, Any] = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
495
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ : def __init__( self : Tuple , snake_case__ : str = None , snake_case__ : uuid.UUID = None , snake_case__ : Optional[int]=None , snake_case__ : Tuple=None ): '''simple docstring''' if not conversation_id: lowercase :List[Any] = uuid.uuida() if past_user_inputs is None: lowercase :Union[str, Any] = [] if generated_responses is None: lowercase :List[str] = [] lowercase :uuid.UUID = conversation_id lowercase :List[str] = past_user_inputs lowercase :List[str] = generated_responses lowercase :Optional[str] = text def __eq__( self : Optional[Any] , snake_case__ : str ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __snake_case ( self : Optional[int] , snake_case__ : str , snake_case__ : bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) lowercase :List[str] = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: lowercase :Optional[int] = text def __snake_case ( self : Any ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase :Tuple = None def __snake_case ( self : Tuple , snake_case__ : str ): '''simple docstring''' self.generated_responses.append(snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict ): '''simple docstring''' lowercase :int = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): lowercase :Dict = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __UpperCAmelCase , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : List[Any] ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) if self.tokenizer.pad_token_id is None: lowercase :Any = self.tokenizer.eos_token def __snake_case ( self : List[Any] , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=None , **snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :str = {} lowercase :List[str] = {} lowercase :Tuple = {} if min_length_for_response is not None: lowercase :Dict = min_length_for_response if minimum_tokens is not None: lowercase :Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: lowercase :List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase :Dict = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , snake_case__ : Union[Conversation, List[Conversation]] , snake_case__ : int=0 , **snake_case__ : int ): '''simple docstring''' lowercase :int = super().__call__(snake_case__ , num_workers=snake_case__ , **snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) == 1: return outputs[0] return outputs def __snake_case ( self : List[Any] , snake_case__ : Conversation , snake_case__ : Any=3_2 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): lowercase :List[str] = self.tokenizer._build_conversation_input_ids(snake_case__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase :List[str] = self._legacy_parse_and_tokenize(snake_case__ ) if self.framework == "pt": lowercase :int = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase :Any = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __snake_case ( self : int , snake_case__ : Union[str, Any] , snake_case__ : Any=1_0 , **snake_case__ : int ): '''simple docstring''' lowercase :Dict = generate_kwargs.get('''max_length''' , self.model.config.max_length ) lowercase :Optional[Any] = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) lowercase :int = max_length - minimum_tokens lowercase :int = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: lowercase :int = model_inputs['''attention_mask'''][:, -trim:] lowercase :int = model_inputs.pop('''conversation''' ) lowercase :Union[str, Any] = max_length lowercase :Dict = self.model.generate(**snake_case__ , **snake_case__ ) if self.model.config.is_encoder_decoder: lowercase :List[Any] = 1 else: lowercase :Optional[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __snake_case ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : Optional[Any]=True ): '''simple docstring''' lowercase :Dict = model_outputs['''output_ids'''] lowercase :Dict = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) lowercase :Optional[int] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(snake_case__ ) return conversation def __snake_case ( self : List[Any] , snake_case__ : Conversation ): '''simple docstring''' lowercase :str = self.tokenizer.eos_token_id lowercase :List[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ) if len(snake_case__ ) > self.tokenizer.model_max_length: lowercase :List[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
677
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
701
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[Any] = 0 while number > 0: lowerCamelCase__ : List[str] = number % 10 sum_of_digits += last_digit lowerCamelCase__ : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase_ ( _lowerCamelCase = 100 ): lowerCamelCase__ : Union[str, Any] = factorial(_lowerCamelCase ) lowerCamelCase__ : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
696
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = torch.permute(_UpperCAmelCase , (0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase): # linear layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if "metadata" in layer: SCREAMING_SNAKE_CASE = layer.split('metadata') SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1] SCREAMING_SNAKE_CASE = [tuple(('metadata' + split_layer[1]).split('/'))] elif "kvstore" in layer: SCREAMING_SNAKE_CASE = layer.split('kvstore') SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1] SCREAMING_SNAKE_CASE = [tuple(('kvstore' + split_layer[1]).split('/'))] else: SCREAMING_SNAKE_CASE = layer.split('/') SCREAMING_SNAKE_CASE = '/'.join(split_layer[:-1]) SCREAMING_SNAKE_CASE = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE = 'file' else: SCREAMING_SNAKE_CASE = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = rename_keys(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE = v SCREAMING_SNAKE_CASE = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME): SCREAMING_SNAKE_CASE = convert_file_size_to_int(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb') as fp: SCREAMING_SNAKE_CASE = serialization.msgpack_restore(fp.read())['optimizer']['target'] SCREAMING_SNAKE_CASE = flatten_dict(_UpperCAmelCase , sep='/') SCREAMING_SNAKE_CASE = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE = content else: SCREAMING_SNAKE_CASE = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE = ts.open(unflatten_dict(all_layers[key])).result().read().result() SCREAMING_SNAKE_CASE = torch.tensor(_UpperCAmelCase) SCREAMING_SNAKE_CASE = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_base_flax_keys(tuple(key.split('/')) , _UpperCAmelCase) SCREAMING_SNAKE_CASE = '/'.join(_UpperCAmelCase) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE = os.path.join( _UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) del current_block SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase)) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(_UpperCAmelCase) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE = weights_name.replace( '.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''') # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) SCREAMING_SNAKE_CASE = shard for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {'total_size': total_size} SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) return metadata, index if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a_ : Any = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase__ (): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained('google/switch-base-8') config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted') SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto') SCREAMING_SNAKE_CASE = TaTokenizer.from_pretrained('t5-small') SCREAMING_SNAKE_CASE = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids SCREAMING_SNAKE_CASE = model.generate(_UpperCAmelCase , decoder_start_token_id=0) print(tokenizer.decode(out[0]))
73
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
83
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _SCREAMING_SNAKE_CASE = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' _SCREAMING_SNAKE_CASE = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' _SCREAMING_SNAKE_CASE = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def snake_case ( snake_case__ :Optional[Any] , snake_case__ :str , snake_case__ :List[str]=False , snake_case__ :Dict=False , snake_case__ :Any=True , snake_case__ :List[str]=False , snake_case__ :Optional[Any]="dummy_doc") -> List[Any]: _A = {doc: key_lines} _A = {doc: sys_lines} _A = {} _A = 0 _A = 0 _A = 0 _A = 0 _A = 0 _A = 0 _A , _A = reader.get_doc_mentions(snake_case__ , key_doc_lines[doc] , snake_case__) key_singletons_num += singletons_num if NP_only or min_span: _A = reader.set_annotated_parse_trees(snake_case__ , key_doc_lines[doc] , snake_case__ , snake_case__) _A , _A = reader.get_doc_mentions(snake_case__ , sys_doc_lines[doc] , snake_case__) sys_singletons_num += singletons_num if NP_only or min_span: _A = reader.set_annotated_parse_trees(snake_case__ , key_doc_lines[doc] , snake_case__ , snake_case__) if remove_nested: _A , _A = reader.remove_nested_coref_mentions(snake_case__ , snake_case__) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _A , _A = reader.remove_nested_coref_mentions(snake_case__ , snake_case__) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _A = reader.get_mention_assignments(snake_case__ , snake_case__) _A = reader.get_mention_assignments(snake_case__ , snake_case__) _A = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''') logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''') if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""") return doc_coref_infos def snake_case ( snake_case__ :Tuple , snake_case__ :Tuple , snake_case__ :Dict , snake_case__ :Dict , snake_case__ :Tuple , snake_case__ :Dict , snake_case__ :Tuple) -> int: _A = get_coref_infos(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) _A = {} _A = 0 _A = 0 for name, metric in metrics: _A , _A , _A = evaluator.evaluate_documents(snake_case__ , snake_case__ , beta=1) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa}) logger.info( name.ljust(10) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: _A = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''') output_scores.update({"""conll_score""": conll}) return output_scores def snake_case ( snake_case__ :Union[str, Any]) -> List[Any]: _A = False for line in key_lines: if not line.startswith("""#"""): if len(line.split()) > 6: _A = line.split()[5] if not parse_col == "-": _A = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False ) -> Union[str, Any]: _A = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _A = util.check_gold_parse_annotation(lowerCAmelCase_ ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _A = evaluate( key_lines=lowerCAmelCase_ , sys_lines=lowerCAmelCase_ , metrics=lowerCAmelCase_ , NP_only=lowerCAmelCase_ , remove_nested=lowerCAmelCase_ , keep_singletons=lowerCAmelCase_ , min_span=lowerCAmelCase_ , ) return score
83
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class A__ : def __init__( self : Optional[int] , _a : Collection[float] | None = None ) -> None: '''simple docstring''' if components is None: _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =list(_a ) def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self : List[Any] ) -> str: '''simple docstring''' return "(" + ",".join(map(_a , self.__components ) ) + ")" def __add__( self : Optional[int] , _a : Vector ) -> Vector: '''simple docstring''' _SCREAMING_SNAKE_CASE =len(self ) if size == len(_a ): _SCREAMING_SNAKE_CASE =[self.__components[i] + other.component(_a ) for i in range(_a )] return Vector(_a ) else: raise Exception('must have the same size' ) def __sub__( self : List[str] , _a : Vector ) -> Vector: '''simple docstring''' _SCREAMING_SNAKE_CASE =len(self ) if size == len(_a ): _SCREAMING_SNAKE_CASE =[self.__components[i] - other.component(_a ) for i in range(_a )] return Vector(_a ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Optional[Any] , _a : float ) -> Vector: '''simple docstring''' ... @overload def __mul__( self : Union[str, Any] , _a : Vector ) -> float: '''simple docstring''' ... def __mul__( self : List[Any] , _a : float | Vector ) -> float | Vector: '''simple docstring''' if isinstance(_a , (float, int) ): _SCREAMING_SNAKE_CASE =[c * other for c in self.__components] return Vector(_a ) elif isinstance(_a , _a ) and len(self ) == len(_a ): _SCREAMING_SNAKE_CASE =len(self ) _SCREAMING_SNAKE_CASE =[self.__components[i] * other.component(_a ) for i in range(_a )] return sum(_a ) else: # error case raise Exception('invalid operand!' ) def A ( self : Optional[int] ) -> Vector: '''simple docstring''' return Vector(self.__components ) def A ( self : List[Any] , _a : int ) -> float: '''simple docstring''' if isinstance(_a , _a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def A ( self : List[str] , _a : int , _a : float ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _SCREAMING_SNAKE_CASE =value def A ( self : Tuple ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) _SCREAMING_SNAKE_CASE =[c**2 for c in self.__components] return math.sqrt(sum(_a ) ) def A ( self : Union[str, Any] , _a : Vector , _a : bool = False ) -> float: '''simple docstring''' _SCREAMING_SNAKE_CASE =self * other _SCREAMING_SNAKE_CASE =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _lowerCAmelCase ( _UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) return Vector([0] * dimension ) def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (isinstance(_UpperCamelCase , _UpperCamelCase )) _SCREAMING_SNAKE_CASE =[0] * dimension _SCREAMING_SNAKE_CASE =1 return Vector(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : Vector , _UpperCamelCase : Vector ) -> Vector: """simple docstring""" assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (isinstance(_UpperCamelCase , (int, float) )) ) return x * scalar + y def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> Vector: """simple docstring""" random.seed(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[random.randint(_UpperCamelCase , _UpperCamelCase ) for _ in range(_UpperCamelCase )] return Vector(_UpperCamelCase ) class A__ : def __init__( self : int , _a : list[list[float]] , _a : int , _a : int ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =matrix _SCREAMING_SNAKE_CASE =w _SCREAMING_SNAKE_CASE =h def __str__( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , _a : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _SCREAMING_SNAKE_CASE =[] for i in range(self.__height ): _SCREAMING_SNAKE_CASE =[ self.__matrix[i][j] + other.component(_a , _a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : str , _a : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _SCREAMING_SNAKE_CASE =[] for i in range(self.__height ): _SCREAMING_SNAKE_CASE =[ self.__matrix[i][j] - other.component(_a , _a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : Any , _a : float ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self : Tuple , _a : Vector ) -> Vector: '''simple docstring''' ... def __mul__( self : int , _a : float | Vector ) -> Vector | Matrix: '''simple docstring''' if isinstance(_a , _a ): # matrix-vector if len(_a ) == self.__width: _SCREAMING_SNAKE_CASE =zero_vector(self.__height ) for i in range(self.__height ): _SCREAMING_SNAKE_CASE =[ self.__matrix[i][j] * other.component(_a ) for j in range(self.__width ) ] ans.change_component(_a , sum(_a ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_a , (int, float) ): # matrix-scalar _SCREAMING_SNAKE_CASE =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_a , self.__width , self.__height ) return None def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.__height def A ( self : int ) -> int: '''simple docstring''' return self.__width def A ( self : List[str] , _a : int , _a : int ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def A ( self : Optional[int] , _a : int , _a : int , _a : float ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _SCREAMING_SNAKE_CASE =value else: raise Exception('change_component: indices out of bounds' ) def A ( self : str , _a : int , _a : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) _SCREAMING_SNAKE_CASE =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =minor[i][:y] + minor[i][y + 1 :] return Matrix(_a , self.__width - 1 , self.__height - 1 ).determinant() def A ( self : Union[str, Any] , _a : int , _a : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_a , _a ) else: raise Exception('Indices out of bounds' ) def A ( self : Optional[Any] ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _SCREAMING_SNAKE_CASE =[ self.__matrix[0][y] * self.cofactor(0 , _a ) for y in range(self.__width ) ] return sum(_a ) def _lowerCAmelCase ( _UpperCamelCase : int ) -> Matrix: """simple docstring""" _SCREAMING_SNAKE_CASE =[[0] * n for _ in range(_UpperCamelCase )] return Matrix(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> Matrix: """simple docstring""" random.seed(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[ [random.randint(_UpperCamelCase , _UpperCamelCase ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase ) ] return Matrix(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
405
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_UpperCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
405
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __UpperCamelCase : Optional[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ): """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" UpperCamelCase__ : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase__ : str = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: UpperCamelCase__ : int = '''cpu''' UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = Path(SCREAMING_SNAKE_CASE ) # TEXT ENCODER UpperCamelCase__ : List[str] = pipeline.text_encoder.config.max_position_embeddings UpperCamelCase__ : Any = pipeline.text_encoder.config.hidden_size UpperCamelCase__ : Tuple = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=SCREAMING_SNAKE_CASE , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.text_encoder # UNET UpperCamelCase__ : Any = pipeline.unet.config.in_channels UpperCamelCase__ : Tuple = pipeline.unet.config.sample_size UpperCamelCase__ : Union[str, Any] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=SCREAMING_SNAKE_CASE , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Any = str(unet_path.absolute().as_posix() ) UpperCamelCase__ : Any = os.path.dirname(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = onnx.load(SCREAMING_SNAKE_CASE ) # clean up existing tensor files shutil.rmtree(SCREAMING_SNAKE_CASE ) os.mkdir(SCREAMING_SNAKE_CASE ) # collate external tensor files into one onnx.save_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , save_as_external_data=SCREAMING_SNAKE_CASE , all_tensors_to_one_file=SCREAMING_SNAKE_CASE , location='''weights.pb''' , convert_attribute=SCREAMING_SNAKE_CASE , ) del pipeline.unet # VAE ENCODER UpperCamelCase__ : Dict = pipeline.vae UpperCamelCase__ : Optional[int] = vae_encoder.config.in_channels UpperCamelCase__ : Union[str, Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder UpperCamelCase__ : List[str] = lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : vae_encoder.encode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0].sample() onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE , ) # VAE DECODER UpperCamelCase__ : List[Any] = pipeline.vae UpperCamelCase__ : Tuple = vae_decoder.config.latent_channels UpperCamelCase__ : List[str] = vae_decoder.config.out_channels # forward only through the decoder part UpperCamelCase__ : Optional[Any] = vae_encoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: UpperCamelCase__ : int = pipeline.safety_checker UpperCamelCase__ : str = safety_checker.config.vision_config.num_channels UpperCamelCase__ : int = safety_checker.config.vision_config.image_size UpperCamelCase__ : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.safety_checker UpperCamelCase__ : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) UpperCamelCase__ : List[str] = pipeline.feature_extractor else: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : int = None UpperCamelCase__ : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) print('''ONNX pipeline saved to''' , SCREAMING_SNAKE_CASE ) del pipeline del onnx_pipeline UpperCamelCase__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __UpperCamelCase : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
717
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __magic_name__ ( __lowerCAmelCase): A: List[Any] = "roberta-prelayernorm" def __init__( self : Tuple , lowerCamelCase__ : List[Any]=50265 , lowerCamelCase__ : Optional[Any]=768 , lowerCamelCase__ : str=12 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Dict=3072 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : List[str]=512 , lowerCamelCase__ : int=2 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : List[Any]=1E-1_2 , lowerCamelCase__ : str=1 , lowerCamelCase__ : int=0 , lowerCamelCase__ : int=2 , lowerCamelCase__ : Union[str, Any]="absolute" , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : List[str] = attention_probs_dropout_prob UpperCamelCase__ : Optional[int] = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Union[str, Any] = position_embedding_type UpperCamelCase__ : Optional[int] = use_cache UpperCamelCase__ : int = classifier_dropout class __magic_name__ ( __lowerCAmelCase): @property def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
106
0
import functools from typing import Any def __lowerCAmelCase ( _A ,_A ): """simple docstring""" if not isinstance(_A ,_A ) or len(_A ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_A ,_A ) or not all( isinstance(_A ,_A ) and len(_A ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie _lowercase = {} _lowercase = """WORD_KEEPER""" for word in words: _lowercase = trie for c in word: if c not in trie_node: _lowercase = {} _lowercase = trie_node[c] _lowercase = True _lowercase = len(_A ) # Dynamic programming method @functools.cache def is_breakable(_A ) -> bool: if index == len_string: return True _lowercase = trie for i in range(_A ,_A ): _lowercase = trie_node.get(string[i] ,_A ) if trie_node is None: return False if trie_node.get(_A ,_A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
398
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A_: Tuple = logging.get_logger(__name__) A_: Optional[Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = 'gpt_neo' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , UpperCAmelCase=50257 , UpperCAmelCase=2048 , UpperCAmelCase=2048 , UpperCAmelCase=24 , UpperCAmelCase=[[["global", "local"], 12]] , UpperCAmelCase=16 , UpperCAmelCase=None , UpperCAmelCase=256 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=50256 , UpperCAmelCase=50256 , **UpperCAmelCase , ): '''simple docstring''' _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = num_layers _lowercase = num_heads _lowercase = intermediate_size _lowercase = window_size _lowercase = activation_function _lowercase = resid_dropout _lowercase = embed_dropout _lowercase = attention_dropout _lowercase = classifier_dropout _lowercase = layer_norm_epsilon _lowercase = initializer_range _lowercase = use_cache _lowercase = bos_token_id _lowercase = eos_token_id _lowercase = attention_types _lowercase = self.expand_attention_types_params(UpperCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __lowerCAmelCase ( _A ,_A ,_A ,_A ): """simple docstring""" import torch _lowercase = input.size() _lowercase = len(_A ) _lowercase = shape[dimension] _lowercase = torch.arange(0 ,_A ,_A ) _lowercase = torch.div(sizedim - size ,_A ,rounding_mode="""floor""" ) + 1 _lowercase = torch.arange(_A ) + low_indices[:min_length][:, None] _lowercase = [slice(_A )] * rank _lowercase = indices _lowercase = input[s] _lowercase = list(range(0 ,rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_A ) def __lowerCAmelCase ( _A ,_A ): """simple docstring""" import torch _lowercase = torch.arange(1 ,_A ) _lowercase = torch.remainder(_A ,_A ) _lowercase = remainders == 0 _lowercase = candidates[divisor_indices] _lowercase = torch.max(_A ) return largest_divisor, torch.div(_A ,_A ,rounding_mode="""floor""" ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" @property def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) _lowercase = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowercase = {0: """batch""", 1: """sequence"""} return common_inputs @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._config.num_heads def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ): '''simple docstring''' _lowercase = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _lowercase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowercase , _lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowercase = seqlen + 2 _lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] _lowercase = common_inputs["""attention_mask"""] if self.use_past: _lowercase = ordered_inputs["""attention_mask"""].dtype _lowercase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ): '''simple docstring''' return 13
398
1
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' if point: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for item in point: if not isinstance(__UpperCAmelCase , (int, float) ): __SCREAMING_SNAKE_CASE = ( """Expected a list of numbers as input, found """ f"""{type(__UpperCAmelCase ).__name__}""" ) raise TypeError(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = f"""Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}""" raise TypeError(__UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' from __future__ import annotations import math class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , A__ : int ) -> str: '''simple docstring''' a__ : List[Any] = size # approximate the overall size of segment tree with given value a__ : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update a__ : Optional[Any] = [0 for i in range(0 , 4 * size )] a__ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def __lowerCAmelCase ( self : int , A__ : int ) -> Tuple: '''simple docstring''' return idx * 2 def __lowerCAmelCase ( self : str , A__ : int ) -> Tuple: '''simple docstring''' return idx * 2 + 1 def __lowerCAmelCase ( self : int , A__ : int , A__ : int , A__ : int , A__ : list[int] ) -> Optional[Any]: '''simple docstring''' if left_element == right_element: a__ : Optional[Any] = a[left_element - 1] else: a__ : Union[str, Any] = (left_element + right_element) // 2 self.build(self.left(a__ ) , a__ , a__ , a__ ) self.build(self.right(a__ ) , mid + 1 , a__ , a__ ) a__ : Optional[int] = max( self.segment_tree[self.left(a__ )] , self.segment_tree[self.right(a__ )] ) def __lowerCAmelCase ( self : Any , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int ) -> Optional[Any]: '''simple docstring''' if self.flag[idx] is True: a__ : List[Any] = self.lazy[idx] a__ : List[str] = False if left_element != right_element: a__ : Dict = self.lazy[idx] a__ : int = self.lazy[idx] a__ : Tuple = True a__ : Tuple = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: a__ : Optional[Any] = val if left_element != right_element: a__ : List[Any] = val a__ : Optional[Any] = val a__ : List[str] = True a__ : Tuple = True return True a__ : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(a__ ) , a__ , a__ , a__ , a__ , a__ ) self.update(self.right(a__ ) , mid + 1 , a__ , a__ , a__ , a__ ) a__ : Dict = max( self.segment_tree[self.left(a__ )] , self.segment_tree[self.right(a__ )] ) return True def __lowerCAmelCase ( self : List[Any] , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int ) -> Dict: '''simple docstring''' if self.flag[idx] is True: a__ : Tuple = self.lazy[idx] a__ : int = False if left_element != right_element: a__ : List[Any] = self.lazy[idx] a__ : Any = self.lazy[idx] a__ : List[str] = True a__ : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] a__ : List[Any] = (left_element + right_element) // 2 a__ : str = self.query(self.left(a__ ) , a__ , a__ , a__ , a__ ) a__ : List[Any] = self.query(self.right(a__ ) , mid + 1 , a__ , a__ , a__ ) return max(a__ , a__ ) def __str__( self : Optional[int] ) -> str: '''simple docstring''' return str([self.query(1 , 1 , self.size , a__ , a__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] __SCREAMING_SNAKE_CASE = 1_5 __SCREAMING_SNAKE_CASE = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
688
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[float] , snake_case_ : list[float] ) -> float: __snake_case = sorted(numsa + numsa ) __snake_case , __snake_case = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = [float(x) for x in input('Enter the elements of first array: ').split()] snake_case_ = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
592
0
'''simple docstring''' import functools from typing import Any def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> bool: # Validation if not isinstance(__A , __A ) or len(__A ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(__A , __A ) or not all( isinstance(__A , __A ) and len(__A ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _snake_case = {} _snake_case = 'WORD_KEEPER' for word in words: _snake_case = trie for c in word: if c not in trie_node: _snake_case = {} _snake_case = trie_node[c] _snake_case = True _snake_case = len(__A ) # Dynamic programming method @functools.cache def is_breakable(__A ) -> bool: if index == len_string: return True _snake_case = trie for i in range(__A , __A ): _snake_case = trie_node.get(string[i] , __A ) if trie_node is None: return False if trie_node.get(__A , __A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
542
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
542
1
"""simple docstring""" import os from distutils.util import strtobool def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' for e in env_keys: lowerCamelCase__ =int(os.environ.get(__lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[str]: '''simple docstring''' lowerCamelCase__ =os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return strtobool(__lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase="no" ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ =os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return value
530
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = StableDiffusionLDMaDPipeline A__ : List[str] = TEXT_TO_IMAGE_PARAMS A__ : str = TEXT_TO_IMAGE_BATCH_PARAMS A__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) lowerCamelCase__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCamelCase__ =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase__ =CLIPTextModel(_lowerCamelCase ) lowerCamelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith("mps" ): lowerCamelCase__ =torch.manual_seed(_lowerCamelCase ) else: lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCamelCase__ =np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _a ( self ): lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs["prompt"]] # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs.pop("prompt" )] lowerCamelCase__ =ldmad_pipe.tokenizer( _lowerCamelCase , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors="pt" , ) lowerCamelCase__ =text_inputs["input_ids"].to(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.text_encoder(_lowerCamelCase )[0] lowerCamelCase__ =prompt_embeds # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ ="french fries" lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCamelCase__ =np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1].flatten() lowerCamelCase__ =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCamelCase__ =np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCamelCase__ =np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_9_5_5_8_6 lowerCamelCase__ =0.3_3_7_9_5_5_1_5 lowerCamelCase__ =1_1_2.4_8_5_1_8 lowerCamelCase__ =9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_1_9_4_1_2_7 lowerCamelCase__ =0.3_5_3_7_5_5_8_6 lowerCamelCase__ =0.5_6_3_8_5_0_2 lowerCamelCase__ =0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
530
1
'''simple docstring''' class a_ : def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Tuple ): return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowercase__ ( self : Tuple ): return self.value def lowercase__ ( self : Any ): return self.name def lowercase__ ( self : Any ): return self.weight def lowercase__ ( self : Any ): return self.value / self.weight def lowerCamelCase__ ( a , a , a ): __snake_case = [] for i in range(len(a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( a , a , a ): __snake_case = sorted(a , key=a , reverse=a ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
427
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class a_ ( UpperCAmelCase__ ): lowercase_ : Any = '''poolformer''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Union[str, Any]=1_6 , __lowerCAmelCase : int=3 , __lowerCAmelCase : List[str]=4.0 , __lowerCAmelCase : int=[2, 2, 6, 2] , __lowerCAmelCase : Union[str, Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : int=[7, 3, 3, 3] , __lowerCAmelCase : Any=[4, 2, 2, 2] , __lowerCAmelCase : List[str]=[2, 1, 1, 1] , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=1E-5 , __lowerCAmelCase : Dict=0.02 , **__lowerCAmelCase : Dict , ): __snake_case = num_channels __snake_case = patch_size __snake_case = stride __snake_case = padding __snake_case = pool_size __snake_case = hidden_sizes __snake_case = mlp_ratio __snake_case = depths __snake_case = patch_sizes __snake_case = strides __snake_case = num_encoder_blocks __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_layer_scale __snake_case = layer_scale_init_value __snake_case = initializer_range super().__init__(**__lowerCAmelCase ) class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = version.parse('''1.11''' ) @property def lowercase__ ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase__ ( self : Tuple ): return 2E-3
427
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCamelCase__ = model UpperCamelCase__ = 2 UpperCamelCase__ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self ): '''simple docstring''' pass def UpperCamelCase_( _A :str , _A :str , _A :str )-> Optional[int]: # load longformer model from model identifier UpperCamelCase__ = LongformerModel.from_pretrained(UpperCAmelCase_ ) UpperCamelCase__ = LightningModel(UpperCAmelCase_ ) UpperCamelCase__ = torch.load(UpperCAmelCase_ , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model UpperCamelCase__ = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase_ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
551
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = OpenAIGPTTokenizer _lowerCamelCase = OpenAIGPTTokenizerFast _lowerCamelCase = True _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return "lower newer", "lower newer" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase_ = "lower" lowerCamelCase_ = ["low", "er</w>"] lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = tokens + ["<unk>"] lowerCamelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self , UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input lowerCamelCase_ = "This is a simple input" lowerCamelCase_ = ["This is a simple input 1", "This is a simple input 2"] lowerCamelCase_ = ("This is a simple input", "This is a pair") lowerCamelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="max_length" , ) def snake_case ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class snake_case ( lowercase ): """simple docstring""" pass
675
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def a ( A__ , A__ , A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE__ : Any = load_file(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE__ : int = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) SCREAMING_SNAKE_CASE__ : int = pipeline.text_encoder else: SCREAMING_SNAKE_CASE__ : Optional[int] = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) SCREAMING_SNAKE_CASE__ : Any = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE__ : Optional[Any] = layer_infos.pop(0 ) while len(_UpperCamelCase ) > -1: try: SCREAMING_SNAKE_CASE__ : int = curr_layer.__getattr__(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE__ : int = layer_infos.pop(0 ) elif len(_UpperCamelCase ) == 0: break except Exception: if len(_UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE__ : int = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE__ : List[str] = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(_UpperCamelCase ) else: pair_keys.append(_UpperCamelCase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE__ : str = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE__ : Any = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ) # update visited list for item in pair_keys: visited.append(_UpperCamelCase ) return pipeline if __name__ == "__main__": a_ :Tuple = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.7_5, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') a_ :int = parser.parse_args() a_ :Optional[int] = args.base_model_path a_ :List[Any] = args.checkpoint_path a_ :List[Any] = args.dump_path a_ :Optional[int] = args.lora_prefix_unet a_ :Optional[int] = args.lora_prefix_text_encoder a_ :Any = args.alpha a_ :Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a_ :Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
716
def a ( A__ , A__ , A__ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : List[Any] = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : Union[str, Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [[0 for _ in range(__SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase = 1 for n in range(m + 1 ): for k in range(1 , __SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
84
from itertools import count def a(lowercase__ = 50 ): '''simple docstring''' snake_case_ = [1] * min_block_length for n in count(lowercase__ ): fill_count_functions.append(1 ) for block_length in range(lowercase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
187
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : float ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase__ , lowerCamelCase__ , F"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any]=None , **lowerCamelCase__ : Dict ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Dict = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) UpperCamelCase__ : List[str] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : int=None , **lowerCamelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) UpperCamelCase__ : Dict = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : str = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : Tuple = after_output[0] UpperCamelCase__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any=None , **lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) UpperCamelCase__ : int = model( input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_attentions=lowerCamelCase__ ) UpperCamelCase__ : str = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : List[Any] = to_atuple(vision_model.config.image_size ) UpperCamelCase__ : Tuple = to_atuple(vision_model.config.patch_size ) UpperCamelCase__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase__ : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' pt_model.to(lowerCamelCase__ ) pt_model.eval() # prepare inputs UpperCamelCase__ : int = inputs_dict UpperCamelCase__ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase__ : Optional[int] = pt_model(**lowerCamelCase__ ).to_tuple() UpperCamelCase__ : Optional[Any] = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) UpperCamelCase__ : Tuple = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : List[str] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) pt_model_loaded.to(lowerCamelCase__ ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase__ : int = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output_loaded.numpy() , 4E-2 ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = VisionTextDualEncoderModel(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) UpperCamelCase__ : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) UpperCamelCase__ : Dict = fx_state self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = VisionTextDualEncoderModel(lowerCamelCase__ ) UpperCamelCase__ : Any = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) UpperCamelCase__ : str = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : str = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = self.prepare_config_and_inputs() UpperCamelCase__ : str = config_inputs_dict.pop('''vision_config''' ) UpperCamelCase__ : Any = config_inputs_dict.pop('''text_config''' ) UpperCamelCase__ : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.check_equivalence_flax_to_pt(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_pretrained_model_and_inputs() UpperCamelCase__ : Optional[int] = model_a(**lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : List[str] = model_a(**lowerCamelCase__ ) UpperCamelCase__ : List[str] = after_outputs[0] UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @require_flax class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) UpperCamelCase__ : Dict = 13 UpperCamelCase__ : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase__ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase__ : Dict = random_attention_mask([batch_size, 4] ) UpperCamelCase__ : str = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[str] = FlaxViTModel(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def UpperCAmelCase__ ( self : int ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[str] = FlaxViTModelTester(self ) UpperCamelCase__ : Optional[int] = FlaxBertModelTester(self ) UpperCamelCase__ : str = vit_model_tester.prepare_config_and_inputs() UpperCamelCase__ : Tuple = bert_model_tester.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = vision_config_and_inputs UpperCamelCase__ : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) UpperCamelCase__ : Any = 13 UpperCamelCase__ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase__ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) UpperCamelCase__ : Any = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Any = FlaxCLIPVisionModel(lowerCamelCase__ ) UpperCamelCase__ : Dict = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ : int = FlaxCLIPVisionModelTester(self ) UpperCamelCase__ : Optional[Any] = FlaxBertModelTester(self ) UpperCamelCase__ : List[Any] = clip_model_tester.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() UpperCamelCase__ : List[str] = vision_config_and_inputs UpperCamelCase__ : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) UpperCamelCase__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) UpperCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCamelCase__ : Optional[Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase__ : Optional[Any] = model(**lowerCamelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase__ : Union[str, Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCamelCase__ , atol=1E-3 ) )
700
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = ["image_processor", "tokenizer"] A: Optional[Any] = "LayoutLMv2ImageProcessor" A: List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Dict , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) UpperCamelCase__ : str = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCamelCase__ : Optional[Any] = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ : Optional[int] = features['''words'''] UpperCamelCase__ : Optional[int] = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values UpperCamelCase__ : Optional[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCamelCase__ : Union[str, Any] = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCamelCase__ : Tuple = images return encoded_inputs def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}" ) return images_with_overflow def UpperCAmelCase__ ( self : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , *lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase__ , ) return self.image_processor
106
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=19, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=lowerCAmelCase, esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False}, ) return config def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =EsmForProteinFolding(config=lowerCAmelCase ).float() model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, attention_mask=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Tuple =False lowercase : str =(EsmForProteinFolding,) if is_torch_available() else () lowercase : Optional[Any] =() lowercase : List[str] ={} if is_torch_available() else {} lowercase : Tuple =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =EsmFoldModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip('''Does not support attention outputs''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch class __UpperCamelCase ( lowerCamelCase__ ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() lowerCamelCase_ =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ =model(lowerCAmelCase )['''positions'''] lowerCamelCase_ =torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], lowerCAmelCase, atol=1e-4 ) )
676
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=2, lowerCAmelCase=99, lowerCAmelCase=0, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase="last", lowerCAmelCase=None, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, lengths=lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, langs=lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, p_mask=lowerCAmelCase, ) lowerCamelCase_ =model( lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase, cls_index=lowerCAmelCase, is_impossible=lowerCAmelCase, ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() lowerCamelCase_ =model(lowerCAmelCase, start_positions=lowerCAmelCase, end_positions=lowerCAmelCase ) ((lowerCamelCase_), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =FlaubertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =model(lowerCAmelCase, attention_mask=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowerCamelCase_ =model( lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : List[Any] =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase : Tuple =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =super()._prepare_for_class(lowerCAmelCase, lowerCAmelCase, return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase ) return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=lowerCAmelCase ) lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =torch.jit.trace( lowerCAmelCase, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase, os.path.join(lowerCAmelCase, '''traced_model.pt''' ) ) lowerCamelCase_ =torch.jit.load(os.path.join(lowerCAmelCase, '''traced_model.pt''' ), map_location=lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase ), inputs_dict['''attention_mask'''].to(lowerCAmelCase ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCAmelCase, atol=1e-4 ) )
676
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): debug_launcher(test_script.main ) def lowerCAmelCase_ ( self : Any ): debug_launcher(test_ops.main )
709
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase__ = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def __UpperCAmelCase ( lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowercase ,id=lowercase )
275
0
from collections import defaultdict def _a ( lowerCAmelCase , lowerCAmelCase )-> bool: SCREAMING_SNAKE_CASE_ = first_str.lower().strip() SCREAMING_SNAKE_CASE_ = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ = first_str.replace(' ' , '' ) SCREAMING_SNAKE_CASE_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowerCAmelCase ) != len(lowerCAmelCase ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ = defaultdict(lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE: Dict = input('''Enter the first string ''').strip() SCREAMING_SNAKE_CASE: str = input('''Enter the second string ''').strip() SCREAMING_SNAKE_CASE: Optional[Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
360
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE: Optional[int] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def _a ( lowerCAmelCase )-> str: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ = k.replace(lowerCAmelCase , lowerCAmelCase ) return k def _a ( lowerCAmelCase , lowerCAmelCase )-> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE_ = DEFAULTS.copy() cfg_kwargs.update(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PegasusConfig(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PegasusForConditionalGeneration(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ = rename_state_dict_key(lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ = v.T SCREAMING_SNAKE_CASE_ = torch.tensor(lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ = {k: torch.zeros_like(lowerCAmelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch_model.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _a ( lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" )-> Dict: SCREAMING_SNAKE_CASE_ = tf.train.list_variables(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = ['Adafactor', 'global_step'] for name, shape in tqdm(lowerCAmelCase , desc='converting tf checkpoint to dict' ): SCREAMING_SNAKE_CASE_ = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = array return tf_weights def _a ( lowerCAmelCase , lowerCAmelCase )-> Optional[Any]: # save tokenizer first SCREAMING_SNAKE_CASE_ = Path(lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE_ = task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] SCREAMING_SNAKE_CASE_ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE_ = get_tf_weights_as_numpy(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE_ = task_specific_params SCREAMING_SNAKE_CASE_ = convert_pegasus(lowerCAmelCase , lowerCAmelCase ) torch_model.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(lowerCAmelCase , Path(lowerCAmelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE: int = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE: List[Any] = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE: Tuple = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
360
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=lowercase ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=lowercase ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=lowercase ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Union[str, Any] = parse_args() # Import training_script as a module. snake_case : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case : Union[str, Any] = script_fpath.stem snake_case : Optional[Any] = importlib.import_module(lowercase ) # Patch sys.argv snake_case : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
342
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'convbert' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=768 , __snake_case=2 , __snake_case=9 , __snake_case=1 , __snake_case=None , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =embedding_size __a =head_ratio __a =conv_kernel_size __a =num_groups __a =classifier_dropout class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
242
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : int = {} class _UpperCamelCase ( _UpperCAmelCase): '''simple docstring''' _snake_case = """llama""" _snake_case = ["""past_key_values"""] def __init__( self , a_=3_2_0_0_0 , a_=4_0_9_6 , a_=1_1_0_0_8 , a_=3_2 , a_=3_2 , a_=None , a_="silu" , a_=2_0_4_8 , a_=0.02 , a_=1e-6 , a_=True , a_=0 , a_=1 , a_=2 , a_=1 , a_=False , a_=None , **a_ , ) -> Tuple: lowercase : Tuple = vocab_size lowercase : Dict = max_position_embeddings lowercase : List[Any] = hidden_size lowercase : List[Any] = intermediate_size lowercase : int = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowercase : int = num_attention_heads lowercase : Tuple = num_key_value_heads lowercase : Optional[Any] = hidden_act lowercase : Any = initializer_range lowercase : Any = rms_norm_eps lowercase : Tuple = pretraining_tp lowercase : List[Any] = use_cache lowercase : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def a__ ( self ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) lowercase : int = self.rope_scaling.get("type" , lowercase__ ) lowercase : Optional[Any] = self.rope_scaling.get("factor" , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
704
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = IFImgaImgSuperResolutionPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''}) _snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} def a__ ( self ) -> Optional[int]: return self._get_superresolution_dummy_components() def a__ ( self , a_ , a_=0 ) -> Union[str, Any]: if str(a_ ).startswith("mps" ): lowercase : Dict = torch.manual_seed(a_ ) else: lowercase : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) lowercase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(a_ ) ).to(a_ ) lowercase : str = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(a_ ) ).to(a_ ) lowercase : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a__ ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a__ ( self ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def a__ ( self ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def a__ ( self ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a__ ( self ) -> List[Any]: self._test_save_load_local() def a__ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
425
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[Any], UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(UpperCAmelCase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) A__ = pipeline.text_encoder else: A__ = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(UpperCAmelCase_ ) > -1: try: A__ = curr_layer.__getattr__(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(UpperCAmelCase_ ) == 0: break except Exception: if len(UpperCAmelCase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down", "lora_up" ) ) pair_keys.append(UpperCAmelCase_ ) else: pair_keys.append(UpperCAmelCase_ ) pair_keys.append(key.replace("lora_up", "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_, UpperCAmelCase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_, UpperCAmelCase_ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase_ ) return pipeline if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") UpperCamelCase = parser.parse_args() UpperCamelCase = args.base_model_path UpperCamelCase = args.checkpoint_path UpperCamelCase = args.dump_path UpperCamelCase = args.lora_prefix_unet UpperCamelCase = args.lora_prefix_text_encoder UpperCamelCase = args.alpha UpperCamelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCamelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
104
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : Any = PriorTransformer snake_case_ : List[str] = """hidden_states""" @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' __snake_case = 4 __snake_case = 8 __snake_case = 7 __snake_case = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Optional[Any]=0 ) -> Any: '''simple docstring''' torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = 4 __snake_case = 8 __snake_case = 7 __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' __snake_case = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case , __snake_case = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(SCREAMING_SNAKE_CASE ) __snake_case = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) __snake_case = model.to(SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , "set_default_attn_processor" ): model.set_default_attn_processor() __snake_case = self.get_dummy_seed_input() with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE )[0] __snake_case = output[0, :5].flatten().cpu() print(SCREAMING_SNAKE_CASE ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __snake_case = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rtol=1e-2 ) ) @slow class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : int=1 , SCREAMING_SNAKE_CASE : str=7_6_8 , SCREAMING_SNAKE_CASE : Dict=7_7 , SCREAMING_SNAKE_CASE : int=0 ) -> List[str]: '''simple docstring''' torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = batch_size __snake_case = embedding_dim __snake_case = num_embeddings __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' __snake_case = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(SCREAMING_SNAKE_CASE ) __snake_case = self.get_dummy_seed_input(seed=SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE )[0] assert list(sample.shape ) == [1, 7_6_8] __snake_case = sample[0, :8].flatten().cpu() print(SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor(SCREAMING_SNAKE_CASE ) assert torch_all_close(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 )
371
0
_UpperCamelCase : Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase : Optional[int] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCamelCase : List[str] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> str: '''simple docstring''' assert len(str(snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
341
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case = 1_0_0 , ) -> float: '''simple docstring''' __A = x_start __A = fnc(snake_case ) __A = 0.0 for _ in range(snake_case ): # Approximates curve as a sequence of linear lines and sums their length __A = (x_end - x_start) / steps + xa __A = fnc(snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __A = xa __A = fxa return length if __name__ == "__main__": def __UpperCamelCase ( snake_case ) -> int: '''simple docstring''' return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _UpperCamelCase : Dict = 1_0 while i <= 1_0_0_0_0_0: print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
341
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = ['model.decoder.embed_positions.weights'] def _UpperCAmelCase (UpperCamelCase__ : List[Any] ): if "emb" in name: _A : Dict = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _A : str = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _A : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _A : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: _A : List[Any] = name.replace("linear2" , "fc2" ) if "norm1" in name: _A : Tuple = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _A : Tuple = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _A : str = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _A : List[Any] = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _A : Optional[int] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _A : Tuple = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def _UpperCAmelCase (UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ): _A : Optional[int] = list(state_dict.keys() ) _A : List[str] = {} for key in keys: _A : Tuple = state_dict.pop(UpperCamelCase__ ) _A : List[str] = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj _A : int = val[:hidden_size, :] _A : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _A : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _A : Tuple = val else: _A : Optional[Any] = val return state_dict, enc_dec_proj_state_dict def _UpperCAmelCase (UpperCamelCase__ : str ): if checkpoint == "small": # default config values _A : Tuple = 1024 _A : Dict = 24 _A : Dict = 16 elif checkpoint == "medium": _A : Optional[Any] = 1536 _A : Optional[Any] = 48 _A : Any = 24 elif checkpoint == "large": _A : Optional[int] = 2048 _A : str = 48 _A : List[str] = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) _A : Tuple = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="cpu" ): _A : Dict = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) _A : List[str] = decoder_config_from_checkpoint(UpperCamelCase__ ) _A : Dict = fairseq_model.lm.state_dict() _A , _A : List[Any] = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) _A : int = TaEncoderModel.from_pretrained("t5-base" ) _A : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _A : List[Any] = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _A , _A : Optional[int] = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(UpperCamelCase__ ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _A : Optional[int] = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass _A : int = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _A : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _A : Any = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _A : Any = AutoTokenizer.from_pretrained("t5-base" ) _A : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _A : Tuple = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids _A : Any = 2048 _A : Any = 2048 # set other default generation config params _A : List[Any] = int(30 * audio_encoder.config.frame_rate ) _A : Optional[Any] = True _A : Any = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) lowerCAmelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
503
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = tmp_path / "cache" _A : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : List[str] = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): _A : Dict = tmp_path / "cache" _A : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Optional[Any] = features.copy() if features else default_expected_features _A : Union[str, Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): _A : Any = tmp_path / "cache" _A : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : List[str] = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[int] = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[int] = [parquet_path] _A : Dict = tmp_path / "cache" _A : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Tuple = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: _A : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _A : Tuple = tmp_path / "cache" _A : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : List[str] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): _A : Optional[int] = tmp_path / "cache" _A : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : str = features.copy() if features else default_expected_features _A : Any = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = ParquetDatasetReader({"train": parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if split: _A : Any = {split: parquet_path} else: _A : Optional[Any] = "train" _A : int = {"train": parquet_path, "test": parquet_path} _A : Any = tmp_path / "cache" _A : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Dict = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): _A : Union[str, Any] = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 _A : List[Any] = pq.ParquetFile(tmp_path / "foo.parquet" ) _A : List[str] = pf.read() assert dataset.data.table == output_table def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _A : Any = str(shared_datadir / "test_image_rgb.jpg" ) _A : Dict = {"image": [image_path]} _A : Union[str, Any] = Features({"image": Image()} ) _A : List[Any] = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) _A : Any = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 _A : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _A : Union[str, Any] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): assert get_writer_batch_size(UpperCamelCase__ ) == expected
503
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : List[str] = FileLock(str(tmpdir / 'foo.lock' ) ) __A : Tuple = FileLock(str(tmpdir / 'foo.lock' ) ) __A : Any = 0.01 with locka.acquire(): with pytest.raises(__snake_case ): __A : str = time.time() locka.acquire(__snake_case ) assert time.time() - _start > timeout def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[str]: __A : Optional[int] = 'a' * 10_00 + '.lock' __A : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __A : List[str] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__snake_case ): locka.acquire(0 )
338
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Optional[Any] = batch_size __A : Union[str, Any] = image_size __A : Optional[int] = patch_size __A : int = num_channels __A : int = is_training __A : List[Any] = use_labels __A : Optional[int] = hidden_size __A : Union[str, Any] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = intermediate_size __A : Any = hidden_act __A : Optional[Any] = hidden_dropout_prob __A : List[str] = attention_probs_dropout_prob __A : Union[str, Any] = type_sequence_label_size __A : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : Dict = num_patches + 1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = FlaxViTModel(config=_UpperCAmelCase) __A : Any = model(_UpperCAmelCase) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __A : int = (self.image_size, self.image_size) __A : Any = (self.patch_size, self.patch_size) __A : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.type_sequence_label_size __A : List[Any] = FlaxViTForImageClassification(config=_UpperCAmelCase) __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __A : List[str] = 1 __A : Optional[int] = FlaxViTForImageClassification(_UpperCAmelCase) __A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __A : Optional[int] = model(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = FlaxViTModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(_UpperCAmelCase) __A : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Dict = [*signature.parameters.keys()] __A : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __A : str = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[Any] = model_class(_UpperCAmelCase) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase): return model(pixel_values=_UpperCAmelCase , **_UpperCAmelCase) with self.subTest('JIT Enabled'): __A : Optional[Any] = model_jitted(**_UpperCAmelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): __A : Optional[Any] = model_jitted(**_UpperCAmelCase).to_tuple() self.assertEqual(len(_UpperCAmelCase) , len(_UpperCAmelCase)) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_class_name in self.all_model_classes: __A : Optional[Any] = model_class_name.from_pretrained('google/vit-base-patch16-224') __A : Dict = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(_UpperCAmelCase)
338
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''efficientnet''' def __init__( self , _a = 3 , _a = 600 , _a = 2.0 , _a = 3.1 , _a = 8 , _a = [3, 3, 5, 3, 5, 5, 3] , _a = [32, 16, 24, 40, 80, 112, 192] , _a = [16, 24, 40, 80, 112, 192, 320] , _a = [] , _a = [1, 2, 2, 2, 1, 2, 1] , _a = [1, 2, 2, 3, 3, 4, 1] , _a = [1, 6, 6, 6, 6, 6, 6] , _a = 0.2_5 , _a = "swish" , _a = 2560 , _a = "mean" , _a = 0.0_2 , _a = 0.0_0_1 , _a = 0.9_9 , _a = 0.5 , _a = 0.2 , **_a , ) -> List[str]: super().__init__(**_a ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = width_coefficient lowerCAmelCase_ = depth_coefficient lowerCAmelCase_ = depth_divisor lowerCAmelCase_ = kernel_sizes lowerCAmelCase_ = in_channels lowerCAmelCase_ = out_channels lowerCAmelCase_ = depthwise_padding lowerCAmelCase_ = strides lowerCAmelCase_ = num_block_repeats lowerCAmelCase_ = expand_ratios lowerCAmelCase_ = squeeze_expansion_ratio lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = pooling_type lowerCAmelCase_ = initializer_range lowerCAmelCase_ = batch_norm_eps lowerCAmelCase_ = batch_norm_momentum lowerCAmelCase_ = dropout_rate lowerCAmelCase_ = drop_connect_rate lowerCAmelCase_ = sum(_a ) * 4 class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self ) -> float: return 1E-5
122
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = StableDiffusionLDMaDPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> List[str]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCAmelCase_ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ = ldmad_pipe.tokenizer( _a , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) lowerCAmelCase_ = text_inputs["input_ids"].to(_a ) lowerCAmelCase_ = ldmad_pipe.text_encoder(_a )[0] lowerCAmelCase_ = prompt_embeds # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = "french fries" lowerCAmelCase_ = ldmad_pipe(**_a , negative_prompt=_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCAmelCase_ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Dict: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCAmelCase_ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCAmelCase_ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Union[str, Any]: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> str: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_9_5_5_8_6 lowerCAmelCase_ = 0.3_3_7_9_5_5_1_5 lowerCAmelCase_ = 1_1_2.4_8_5_1_8 lowerCAmelCase_ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def __a ( self ) -> Dict: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_1_9_4_1_2_7 lowerCAmelCase_ = 0.3_5_3_7_5_5_8_6 lowerCAmelCase_ = 0.5_6_3_8_5_0_2 lowerCAmelCase_ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
122
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a__ ( a : Union[str, Any] , a : List[Any] , a : List[Any] ): """simple docstring""" _snake_case : Any = BertConfig.from_json_file(a ) print(f'Building PyTorch model from configuration: {config}' ) _snake_case : Optional[Any] = BertForPreTraining(a ) # Load weights from tf checkpoint load_tf_weights_in_bert(a , a , a ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : str = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["""YolosFeatureExtractor"""] _a : List[Any] = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
0
"""simple docstring""" import os def lowerCamelCase__ ( )-> Union[str, Any]: """simple docstring""" UpperCamelCase = os.path.dirname(os.path.realpath(snake_case__ ) ) UpperCamelCase = os.path.join(snake_case__ , "triangle.txt" ) with open(snake_case__ ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [] for line in triangle: UpperCamelCase = [] for number in line.strip().split(" " ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 , len(snake_case__ ) ): for j in range(len(a[i] ) ): UpperCamelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ , snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
554
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : str = '''luke''' def __init__(self , UpperCAmelCase=5_0_2_6_7 , UpperCAmelCase=5_0_0_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=2_5_6 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) __UpperCAmelCase =vocab_size __UpperCAmelCase =entity_vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =entity_emb_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =use_entity_aware_attention __UpperCAmelCase =classifier_dropout
132
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , ): '''simple docstring''' __UpperCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_pad def UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if not batched: __UpperCamelCase = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): __UpperCamelCase = image.size else: __UpperCamelCase = image.shape[1], image.shape[2] if w < h: __UpperCamelCase = int(self.size['shortest_edge'] * h / w ) __UpperCamelCase = self.size['shortest_edge'] elif w > h: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = int(self.size['shortest_edge'] * w / h ) else: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = self.size['shortest_edge'] else: __UpperCamelCase = [] for image in image_inputs: __UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] __UpperCamelCase = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __A , unittest.TestCase ): lowercase = DetrImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = DetrImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'rescale_factor' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_pad' ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) __UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values __UpperCamelCase = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __UpperCamelCase = json.loads(f.read() ) __UpperCamelCase = {'image_id': 3_9769, 'annotations': target} # encode them __UpperCamelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) __UpperCamelCase = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='pt' ) # verify pixel values __UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCAmelCase ) ) # verify boxes __UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCAmelCase ) ) # verify class_labels __UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCAmelCase ) ) # verify orig_size __UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCAmelCase ) ) # verify size __UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCAmelCase ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __UpperCamelCase = json.loads(f.read() ) __UpperCamelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __UpperCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __UpperCamelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) __UpperCamelCase = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='pt' ) # verify pixel values __UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area __UpperCamelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __UpperCAmelCase ) ) # verify boxes __UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id __UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __UpperCAmelCase ) ) # verify is_crowd __UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __UpperCAmelCase ) ) # verify class_labels __UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __UpperCAmelCase ) ) # verify masks __UpperCamelCase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __UpperCAmelCase ) # verify orig_size __UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __UpperCAmelCase ) ) # verify size __UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __UpperCAmelCase ) )
704
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def A ( snake_case :Optional[int] ) -> str: __UpperCamelCase = torch.exp(snake_case ) __UpperCamelCase = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) __UpperCamelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = config.output_attentions __UpperCamelCase = config.output_hidden_states __UpperCamelCase = nn.ModuleList([BertLayer(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = nn.ModuleList([BertHighway(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if (type(__UpperCAmelCase ) is float) or (type(__UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase = x else: __UpperCamelCase = x def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = () __UpperCamelCase = () __UpperCamelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = layer_module( __UpperCAmelCase , __UpperCAmelCase , head_mask[i] , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = layer_outputs[0] if self.output_attentions: __UpperCamelCase = all_attentions + (layer_outputs[1],) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = current_outputs + (all_attentions,) __UpperCamelCase = self.highway[i](__UpperCAmelCase ) # logits, pooled_output if not self.training: __UpperCamelCase = highway_exit[0] __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__UpperCAmelCase , i + 1 ) else: __UpperCamelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = outputs + (all_attentions,) __UpperCamelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config __UpperCamelCase = BertEmbeddings(__UpperCAmelCase ) __UpperCamelCase = DeeBertEncoder(__UpperCAmelCase ) __UpperCamelCase = BertPooler(__UpperCAmelCase ) self.init_weights() def UpperCAmelCase ( self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase ( self ): '''simple docstring''' return self.embeddings.word_embeddings def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = value def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__UpperCAmelCase ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __UpperCamelCase = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if encoder_attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if token_type_ids is None: __UpperCamelCase = torch.zeros(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase = encoder_attention_mask[:, None, None, :] __UpperCamelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase = self.get_head_mask(__UpperCAmelCase , self.config.num_hidden_layers ) __UpperCamelCase = self.embeddings( input_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase ) __UpperCamelCase = self.encoder( __UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) __UpperCamelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = message __UpperCamelCase = exit_layer # start from 1! class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = BertPooler(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) # "return" pooler_output # BertModel __UpperCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase = bmodel_output[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeBertModel(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=-1 , __UpperCAmelCase=False , ): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.bert( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
293
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''FlavaImageProcessor''' UpperCAmelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] , lowercase__ : Optional[Any]=None , lowercase__ : Optional[int]=None , **lowercase__ : Dict ) ->Any: '''simple docstring''' _UpperCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase__ , ) _UpperCamelCase : List[str] = kwargs.pop("feature_extractor" ) _UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase__ , lowercase__ ) _UpperCamelCase : Optional[Any] = self.image_processor def __call__( self : List[Any] , lowercase__ : Optional[ImageInput] = None , lowercase__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowercase__ : bool = True , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Union[bool, str, TruncationStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : int = 0 , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : bool = True , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Tuple , ) ->str: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCamelCase : Union[str, Any] = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if images is not None: _UpperCamelCase : int = self.image_processor( lowercase__ , return_image_mask=lowercase__ , return_codebook_pixels=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if text is not None and images is not None: encoding.update(lowercase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def snake_case__ ( self : int , *lowercase__ : List[Any] , **lowercase__ : Dict ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def snake_case__ ( self : Dict , *lowercase__ : Optional[int] , **lowercase__ : Any ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def snake_case__ ( self : str ) ->int: '''simple docstring''' _UpperCamelCase : Dict = self.tokenizer.model_input_names _UpperCamelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self : str ) ->Any: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase__ , ) return self.image_processor_class @property def snake_case__ ( self : List[str] ) ->Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase__ , ) return self.image_processor
435
'''simple docstring''' import numpy as np def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = 1E-12 ,UpperCAmelCase = 1_0_0 ,) -> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(UpperCAmelCase )[0] == np.shape(UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase )[0] == np.shape(UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase ) == np.iscomplexobj(UpperCAmelCase ) _UpperCamelCase : int = np.iscomplexobj(UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCamelCase : str = False _UpperCamelCase : Any = 0 _UpperCamelCase : List[Any] = 0 _UpperCamelCase : int = 1E12 while not convergence: # Multiple matrix by the vector. _UpperCamelCase : str = np.dot(UpperCAmelCase ,UpperCAmelCase ) # Normalize the resulting output vector. _UpperCamelCase : int = w / np.linalg.norm(UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCamelCase : Any = vector.conj().T if is_complex else vector.T _UpperCamelCase : Dict = np.dot(UpperCAmelCase ,np.dot(UpperCAmelCase ,UpperCAmelCase ) ) # Check convergence. _UpperCamelCase : Optional[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : int = lambda_ if is_complex: _UpperCamelCase : List[Any] = np.real(lambda_ ) return lambda_, vector def __A ( ) -> None: '''simple docstring''' _UpperCamelCase : Any = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) _UpperCamelCase : str = np.array([4_1, 4, 2_0] ) _UpperCamelCase : Union[str, Any] = real_input_matrix.astype(np.complexaaa ) _UpperCamelCase : List[str] = np.triu(1j * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCamelCase : Optional[int] = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCamelCase : Tuple = real_input_matrix _UpperCamelCase : List[Any] = real_vector elif problem_type == "complex": _UpperCamelCase : Optional[int] = complex_input_matrix _UpperCamelCase : Any = complex_vector # Our implementation. _UpperCamelCase , _UpperCamelCase : Any = power_iteration(UpperCAmelCase ,UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCamelCase , _UpperCamelCase : Any = np.linalg.eigh(UpperCAmelCase ) # Last eigenvalue is the maximum one. _UpperCamelCase : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCamelCase : Optional[int] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase ) - np.abs(UpperCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
435
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = BlipImageProcessor() __lowerCAmelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __lowerCAmelCase = BlipProcessor(__UpperCamelCase , __UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).tokenizer def __UpperCAmelCase ( self , **__UpperCamelCase )-> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor def __UpperCAmelCase ( self )-> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__UpperCamelCase , return_tensors="np" ) __lowerCAmelCase = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self )-> Tuple: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = processor(text=__UpperCamelCase ) __lowerCAmelCase = tokenizer(__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__UpperCamelCase ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
290
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCamelCase (a_ ): snake_case_ = """biogpt""" def __init__( self , __UpperCamelCase=4_2_3_8_4 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=2_4 , __UpperCamelCase=1_6 , __UpperCamelCase=4_0_9_6 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1_0_2_4 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = scale_embedding __lowerCAmelCase = use_cache __lowerCAmelCase = layerdrop __lowerCAmelCase = activation_dropout super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
290
1
def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
488
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
1
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> Tuple: """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): _a : List[str] = F"""Expected string as input, found {type(__UpperCamelCase ).__name__}""" raise TypeError(__UpperCamelCase ) _a : Optional[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
721
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets a__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' a__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __lowercase ( self , _a , _a , _a = CHRF.CHAR_ORDER , _a = CHRF.WORD_ORDER , _a = CHRF.BETA , _a = False , _a = False , _a = False , ) -> Union[str, Any]: _a : int = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a : int = [[refs[i] for refs in references] for i in range(_a )] _a : str = CHRF(_a , _a , _a , _a , _a , _a ) _a : Optional[Any] = sb_chrf.corpus_score(_a , _a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
578
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """audio-spectrogram-transformer""" def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=16 , snake_case=True , snake_case=10 , snake_case=10 , snake_case=1024 , snake_case=128 , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = patch_size lowercase = qkv_bias lowercase = frequency_stride lowercase = time_stride lowercase = max_length lowercase = num_mel_bins
84
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _UpperCamelCase = True except (ImportError, AttributeError): _UpperCamelCase = object def a_ ( *_lowerCAmelCase ,**_lowerCAmelCase ) -> Union[str, Any]: pass _UpperCamelCase = False _UpperCamelCase = logging.get_logger('transformers-cli/serving') def a_ ( _lowerCAmelCase ) -> Optional[int]: __lowerCamelCase : List[Any] = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) return ServeCommand(_lowerCAmelCase ,args.host ,args.port ,args.workers ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =42 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =42 a_ =42 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =42 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =42 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod def _lowercase ( _a : ArgumentParser ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=_a , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=_a , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=_a , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=_a , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=_a , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=_a , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=_a , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=_a , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=_a ) def __init__( self : int , _a : Pipeline , _a : str , _a : int , _a : int ) -> Optional[int]: __lowerCamelCase : int = pipeline __lowerCamelCase : List[Any] = host __lowerCamelCase : int = port __lowerCamelCase : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'Serving model over {host}:{port}' ) __lowerCamelCase : Optional[Any] = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=_a , response_class=_a , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=_a , response_class=_a , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=_a , response_class=_a , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=_a , response_class=_a , methods=['POST'] , ), ] , timeout=600 , ) def _lowercase ( self : Optional[Any] ) -> List[str]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowercase ( self : Tuple ) -> int: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowercase ( self : str , _a : str = Body(_a , embed=_a ) , _a : bool = Body(_a , embed=_a ) ) -> Optional[int]: try: __lowerCamelCase : Dict = self._pipeline.tokenizer.tokenize(_a ) if return_ids: __lowerCamelCase : int = self._pipeline.tokenizer.convert_tokens_to_ids(_a ) return ServeTokenizeResult(tokens=_a , tokens_ids=_a ) else: return ServeTokenizeResult(tokens=_a ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(_a )} ) def _lowercase ( self : Optional[Any] , _a : List[int] = Body(_a , embed=_a ) , _a : bool = Body(_a , embed=_a ) , _a : bool = Body(_a , embed=_a ) , ) -> List[Any]: try: __lowerCamelCase : Dict = self._pipeline.tokenizer.decode(_a , _a , _a ) return ServeDeTokenizeResult(model='' , text=_a ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(_a )} ) async def _lowercase ( self : Dict , _a : Any=Body(_a , embed=_a ) ) -> Optional[int]: # Check we don't have empty string if len(_a ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowerCamelCase : Union[str, Any] = self._pipeline(_a ) return ServeForwardResult(output=_a ) except Exception as e: raise HTTPException(500 , {'error': str(_a )} )
459
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a= {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a= { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure)
287
1
def lowerCAmelCase_ ( lowerCamelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0_0 ) -> int: lowercase__: Dict = sum(i * i for i in range(1 , n + 1 ) ) lowercase__: int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
586
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __SCREAMING_SNAKE_CASE = [] for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __a ( _snake_case, _snake_case ): '''simple docstring''' __UpperCamelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : str = 2 @register_to_config def __init__( self : int ,lowerCamelCase : int = 1000 ,lowerCamelCase : float = 0.00_085 ,lowerCamelCase : float = 0.012 ,lowerCamelCase : str = "linear" ,lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : float = 1.0 ,lowerCamelCase : str = "linspace" ,lowerCamelCase : int = 0 ,): '''simple docstring''' if trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE = torch.linspace(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,lowerCamelCase ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = use_karras_sigmas def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Dict=None ): '''simple docstring''' if schedule_timesteps is None: __SCREAMING_SNAKE_CASE = self.timesteps __SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE = 1 if len(lowerCamelCase ) > 1 else 0 else: __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep __SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Union[float, torch.FloatTensor] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE = np.linspace(0 ,num_train_timesteps - 1 ,lowerCamelCase ,dtype=lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(lowerCamelCase ,0 ,-step_ratio )).round().copy().astype(lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE = np.log(lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.interp(lowerCamelCase ,np.arange(0 ,len(lowerCamelCase ) ) ,lowerCamelCase ) if self.config.use_karras_sigmas: __SCREAMING_SNAKE_CASE = self._convert_to_karras(in_sigmas=lowerCamelCase ,num_inference_steps=self.num_inference_steps ) __SCREAMING_SNAKE_CASE = np.array([self._sigma_to_t(lowerCamelCase ,lowerCamelCase ) for sigma in sigmas] ) __SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCamelCase ).startswith("""mps""" ): # mps does not support float64 __SCREAMING_SNAKE_CASE = timesteps.to(lowerCamelCase ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = timesteps.to(device=lowerCamelCase ) # empty dt and derivative __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE = defaultdict(lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.log(lowerCamelCase ) # get distribution __SCREAMING_SNAKE_CASE = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __SCREAMING_SNAKE_CASE = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE = low_idx + 1 __SCREAMING_SNAKE_CASE = log_sigmas[low_idx] __SCREAMING_SNAKE_CASE = log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE = np.clip(lowerCamelCase ,0 ,1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE = t.reshape(sigma.shape ) return t def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = in_sigmas[-1].item() __SCREAMING_SNAKE_CASE = in_sigmas[0].item() __SCREAMING_SNAKE_CASE = 7.0 # 7.0 is the value used in the paper __SCREAMING_SNAKE_CASE = np.linspace(0 ,1 ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = sigma_min ** (1 / rho) __SCREAMING_SNAKE_CASE = sigma_max ** (1 / rho) __SCREAMING_SNAKE_CASE = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.dt is None def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : Union[float, torch.FloatTensor] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) # advance index counter by 1 __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE = sigma_next - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE = derivative __SCREAMING_SNAKE_CASE = dt __SCREAMING_SNAKE_CASE = sample else: # 2. 2nd order / Heun's method __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_next __SCREAMING_SNAKE_CASE = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __SCREAMING_SNAKE_CASE = self.dt __SCREAMING_SNAKE_CASE = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase ): # mps does not support float64 __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = [self.index_for_timestep(lowerCamelCase ,lowerCamelCase ) for t in timesteps] __SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
from collections import defaultdict class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _A = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) ) ] _A = defaultdict(snake_case_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _A = (1 << len(snake_case_ )) - 1 def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _A = self.count_ways_until(snake_case_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _A = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , snake_case_ ): # Store the list of persons for each task for i in range(len(snake_case_ ) ): for j in task_performed[i]: self.task[j].append(snake_case_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __A : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
27
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : Optional[int] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('tpu-config' , description=_description ) else: _A = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _A = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _A = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): _A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _A = defaults.command_file if not args.command and defaults.commands is not None: _A = defaults.commands if not args.tpu_name: _A = defaults.tpu_name if not args.tpu_zone: _A = defaults.tpu_zone if args.accelerate_version == "dev": _A = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _A = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): _A = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): _A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _A = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command _A = '; '.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _A = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(_SCREAMING_SNAKE_CASE )}" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def __lowerCAmelCase( ) -> Tuple: """simple docstring""" _A = tpu_command_parser() _A = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
27
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCAmelCase__ = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , lowerCAmelCase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open lowerCAmelCase__ = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , lowerCAmelCase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" lowerCAmelCase__ = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , lowerCAmelCase_ ): pass def _A ( ): """simple docstring""" lowerCAmelCase__ = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , lowerCAmelCase_ ) is None with patch_submodule(_test_patching , "len" , lowerCAmelCase_ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" lowerCAmelCase__ = "__test_patch_submodule_start_and_stop_mock__" lowerCAmelCase__ = patch_submodule(_test_patching , "open" , lowerCAmelCase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCAmelCase__ = "__test_patch_submodule_successive_join__" lowerCAmelCase__ = "__test_patch_submodule_successive_dirname__" lowerCAmelCase__ = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , lowerCAmelCase_ ): with patch_submodule(_test_patching , "os.rename" , lowerCAmelCase_ ): with patch_submodule(_test_patching , "os.path.dirname" , lowerCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , lowerCAmelCase_ ): with patch_submodule(_test_patching , "os.path.join" , lowerCAmelCase_ ): with patch_submodule(_test_patching , "os.path.dirname" , lowerCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" lowerCAmelCase__ = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , lowerCAmelCase_ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , lowerCAmelCase_ ): pass
720
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _A ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
125
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self : int , _A : List[Any] , _A : Union[str, Any]=13 , _A : str=32 , _A : int=2 , _A : Optional[int]=3 , _A : List[Any]=16 , _A : int=[32, 64, 1_28] , _A : Union[str, Any]=[1, 2, 1] , _A : int=[2, 2, 4] , _A : Optional[int]=2 , _A : Any=2.0 , _A : Optional[int]=True , _A : List[str]=0.0 , _A : int=0.0 , _A : Union[str, Any]=0.1 , _A : List[Any]="gelu" , _A : Dict=False , _A : Optional[int]=True , _A : Dict=0.02 , _A : int=1e-5 , _A : Any=True , _A : Optional[int]=None , _A : Any=True , _A : Optional[Any]=10 , _A : Dict=8 , _A : List[Any]=["stage1", "stage2"] , _A : List[str]=[1, 2] , ) -> Dict: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Optional[int] = embed_dim UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Dict = window_size UpperCAmelCase_ : Optional[Any] = mlp_ratio UpperCAmelCase_ : Union[str, Any] = qkv_bias UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : str = use_absolute_embeddings UpperCAmelCase_ : str = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Any = scope UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Any = out_features UpperCAmelCase_ : Optional[int] = out_indices def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Any: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A ( self : List[str] , _A : int , _A : Union[str, Any] , _A : List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = FocalNetModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[Any] = model(_A ) UpperCAmelCase_ : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A ( self : List[Any] , _A : Optional[Any] , _A : List[str] , _A : Dict ) -> str: UpperCAmelCase_ : Union[str, Any] = FocalNetBackbone(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = FocalNetBackbone(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Optional[int] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : int , _A : Dict , _A : Tuple , _A : Any ) -> str: UpperCAmelCase_ : Union[str, Any] = FocalNetForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : str = FocalNetForMaskedImageModeling(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A ( self : Any , _A : int , _A : List[str] , _A : int ) -> str: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : Optional[Any] = FocalNetForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Any = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Dict = FocalNetForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : str = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Any ) -> str: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Dict = config_and_inputs UpperCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __A , __A , unittest.TestCase): a_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a_ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : Dict ) -> Any: UpperCAmelCase_ : List[Any] = FocalNetModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=_A , embed_dim=37 , has_text_modality=_A ) def A ( self : str ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[Any] ) -> List[Any]: return def A ( self : Dict ) -> Tuple: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : List[Any] ) -> int: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def A ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def A ( self : int ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def A ( self : List[Any] ) -> Dict: pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Dict = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Union[str, Any] , _A : Union[str, Any] , _A : str , _A : Optional[Any] , _A : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_A ) , _A ) # FocalNet has a different seq_length UpperCAmelCase_ : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase_ : str = outputs.reshaped_hidden_states self.assertEqual(len(_A ) , _A ) UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : int = ( reshaped_hidden_states[0].view(_A , _A , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Tuple = True self.check_hidden_states_output(_A , _A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Any = True self.check_hidden_states_output(_A , _A , _A , _A ) def A ( self : Optional[int] ) -> Dict: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : int = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : int = True self.check_hidden_states_output(_A , _A , _A , (padded_height, padded_width) ) @slow def A ( self : int ) -> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = FocalNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( self : Dict ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(config=_A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase): @cached_property def A ( self : List[Any] ) -> Dict: # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def A ( self : str ) -> Tuple: UpperCAmelCase_ : int = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_A ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase_ : Any = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**_A ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : str = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( __A , unittest.TestCase): a_ = (FocalNetBackbone,) if is_torch_available() else () a_ = FocalNetConfig a_ = False def A ( self : Dict ) -> str: UpperCAmelCase_ : str = FocalNetModelTester(self )
541
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase_ ( A_): UpperCamelCase__: List[Any] = np.inf def set_batch_size(A_) -> None: nonlocal batch_size if isinstance(A_ ,A_): UpperCamelCase__: List[Any] = min(A_ ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS) elif isinstance(A_ ,A_): UpperCamelCase__: Tuple = min(A_ ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS) elif isinstance(A_ ,A_) and feature.dtype == "binary": UpperCamelCase__: Any = min(A_ ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS) _visit(A_ ,A_) return None if batch_size is np.inf else batch_size class _a ( UpperCamelCase__): """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: int , ): '''simple docstring''' super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase__: Any = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} UpperCamelCase__: List[str] = _PACKAGED_DATASETS_MODULES["parquet"][1] UpperCamelCase__: Optional[int] = Parquet( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , hash=__lowerCamelCase , **__lowerCamelCase , ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' if self.streaming: UpperCamelCase__: Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase__: List[str] = None UpperCamelCase__: str = None UpperCamelCase__: List[str] = None UpperCamelCase__: Any = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) UpperCamelCase__: Tuple = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self: int , __lowerCamelCase: Dataset , __lowerCamelCase: Union[PathLike, BinaryIO] , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Dict , ): '''simple docstring''' UpperCamelCase__: Optional[int] = dataset UpperCamelCase__: str = path_or_buf UpperCamelCase__: List[str] = batch_size or get_writer_batch_size(dataset.features ) UpperCamelCase__: Union[str, Any] = parquet_writer_kwargs def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: UpperCamelCase__: List[Any] = self._write(file_obj=__lowerCamelCase , batch_size=__lowerCamelCase , **self.parquet_writer_kwargs ) else: UpperCamelCase__: int = self._write(file_obj=self.path_or_buf , batch_size=__lowerCamelCase , **self.parquet_writer_kwargs ) return written def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: BinaryIO , __lowerCamelCase: int , **__lowerCamelCase: Any ): '''simple docstring''' UpperCamelCase__: str = 0 UpperCamelCase__: Any = parquet_writer_kwargs.pop("path_or_buf" , __lowerCamelCase ) UpperCamelCase__: Dict = self.dataset.features.arrow_schema UpperCamelCase__: Optional[Any] = pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase , **__lowerCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __lowerCamelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): UpperCamelCase__: List[Any] = query_table( table=self.dataset._data , key=slice(__lowerCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__lowerCamelCase ) written += batch.nbytes writer.close() return written
221
def lowerCAmelCase_ ( ): for n in range(1 ,1_00_00_00): yield n * (n + 1) // 2 def lowerCAmelCase_ ( A_): UpperCamelCase__: int = 1 UpperCamelCase__: Dict = 2 while i * i <= n: UpperCamelCase__: Any = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase_ ( ): return next(i for i in triangle_number_generator() if count_divisors(A_) > 5_00) if __name__ == "__main__": print(solution())
221
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __magic_name__ , ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =RobertaConfig SCREAMING_SNAKE_CASE_ : Any ="roberta" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = RobertaEmbeddings(SCREAMING_SNAKE_CASE__ ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __magic_name__ , ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =RobertaConfig SCREAMING_SNAKE_CASE_ : List[Any] ="roberta" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = config.num_labels UpperCamelCase = config.num_hidden_layers UpperCamelCase = DeeRobertaModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=-1 , SCREAMING_SNAKE_CASE__ : str=False , ): """simple docstring""" UpperCamelCase = self.num_layers try: UpperCamelCase = self.roberta( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = outputs[1] UpperCamelCase = self.dropout(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.classifier(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCamelCase = e.message UpperCamelCase = e.exit_layer UpperCamelCase = outputs[0] if not self.training: UpperCamelCase = entropy(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = [] UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCamelCase = MSELoss() UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCamelCase = [] for highway_exit in outputs[-1]: UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(SCREAMING_SNAKE_CASE__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCamelCase = MSELoss() UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(SCREAMING_SNAKE_CASE__ ) if train_highway: UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCamelCase = (loss,) + outputs if not self.training: UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
282
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" # setable values SCREAMING_SNAKE_CASE_ : Optional[int] =None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] =None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] =None # sigma(t_i) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ): """simple docstring""" return cls() @dataclass class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : KarrasVeSchedulerState class _lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Any ): """simple docstring""" return True @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1_00 , SCREAMING_SNAKE_CASE__ : float = 1.007 , SCREAMING_SNAKE_CASE__ : float = 80 , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 50 , ): """simple docstring""" pass def __lowerCAmelCase ( self : int ): """simple docstring""" return KarrasVeSchedulerState.create() def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple = () ): """simple docstring""" UpperCamelCase = jnp.arange(0 , SCREAMING_SNAKE_CASE__ )[::-1].copy() UpperCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE__ , schedule=jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) , timesteps=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase = random.split(SCREAMING_SNAKE_CASE__ , num=1 ) UpperCamelCase = self.config.s_noise * random.normal(key=SCREAMING_SNAKE_CASE__ , shape=sample.shape ) UpperCamelCase = sigma + gamma * sigma UpperCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_hat + sigma_hat * model_output UpperCamelCase = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_prev + sigma_prev * model_output UpperCamelCase = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE__ , derivative=SCREAMING_SNAKE_CASE__ , state=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : KarrasVeSchedulerState , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" raise NotImplementedError()
282
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Union[str, Any] )-> Tuple: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) ) @slow def A ( self : List[Any] )-> Union[str, Any]: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) )
228
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
228
1
'''simple docstring''' from math import sqrt def A__ ( __lowerCAmelCase : int = 100_0000 ): lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'{solution() = }')
50
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger(__name__) def a_ ( __a ): A__ = DPTConfig() if "large" in checkpoint_url: A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 A__ = [5, 11, 17, 23] A__ = [256, 512, 1024, 1024] A__ = (1, 384, 384) if "ade" in checkpoint_url: A__ = True A__ = 150 A__ = '''huggingface/label-files''' A__ = '''ade20k-id2label.json''' A__ = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type='''dataset''' ) ) , '''r''' ) ) A__ = {int(__a ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = [1, 150, 480, 480] return config, expected_shape def a_ ( __a ): A__ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__a , __a ) def a_ ( __a ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: A__ = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: A__ = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: A__ = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: A__ = name.replace('''proj''' , '''projection''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: A__ = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: A__ = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: A__ = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: A__ = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: A__ = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: A__ = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: A__ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: A__ = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: A__ = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: A__ = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: A__ = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: A__ = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: A__ = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: A__ = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: A__ = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: A__ = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: A__ = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: A__ = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: A__ = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: A__ = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: A__ = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: A__ = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: A__ = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: A__ = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: A__ = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: A__ = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def a_ ( __a , __a ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: config.hidden_size, :] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def a_ ( ): A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def a_ ( __a , __a , __a , __a ): A__ , A__ = get_dpt_config(__a ) # load original state_dict from URL A__ = torch.hub.load_state_dict_from_url(__a , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__a ) # rename keys for key in state_dict.copy().keys(): A__ = state_dict.pop(__a ) A__ = val # read in qkv matrices read_in_q_k_v(__a , __a ) # load HuggingFace model A__ = DPTForSemanticSegmentation(__a ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__a ) model.load_state_dict(__a ) model.eval() # Check outputs on an image A__ = 480 if '''ade''' in checkpoint_url else 384 A__ = DPTImageProcessor(size=__a ) A__ = prepare_img() A__ = image_processor(__a , return_tensors='''pt''' ) # forward pass A__ = model(**__a ).logits if '''ade''' in checkpoint_url else model(**__a ).predicted_depth # Assert logits A__ = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: A__ = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__a ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __a , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __a ) ) Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__a , ) image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__a , ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) __snake_case : Dict = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
571
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=0 ): """simple docstring""" if name is None: lowerCAmelCase__ = None else: lowerCAmelCase__ = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" lowerCAmelCase__ = fmt.format(UpperCAmelCase__ ) # Print and recurse (if needed). if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): if msg is not None: print(UpperCAmelCase__ ) for k in val.keys(): recursive_print(UpperCAmelCase__ , val[k] , spaces + 2 ) elif isinstance(UpperCAmelCase__ , torch.Tensor ): print(UpperCAmelCase__ , ":" , val.size() ) else: print(UpperCAmelCase__ , ":" , UpperCAmelCase__ ) def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase__ = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase__ = param.view(*UpperCAmelCase__ ) lowerCAmelCase__ = param.transpose(0 , 2 ) lowerCAmelCase__ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase__ = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase__ = param.view(*UpperCAmelCase__ ) lowerCAmelCase__ = param.transpose(0 , 1 ).contiguous() lowerCAmelCase__ = param.view(*UpperCAmelCase__ ) return param def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ = {} # old versions did not store training args lowerCAmelCase__ = input_state_dict.get("args" , UpperCAmelCase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase__ = ds_args.padded_vocab_size lowerCAmelCase__ = ds_args.max_position_embeddings lowerCAmelCase__ = ds_args.hidden_size lowerCAmelCase__ = ds_args.num_layers lowerCAmelCase__ = ds_args.num_attention_heads lowerCAmelCase__ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase__ = config.n_head # The hidden_size per head. lowerCAmelCase__ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase__ = input_state_dict["checkpoint_version"] else: lowerCAmelCase__ = 0.0 # The model. lowerCAmelCase__ = input_state_dict["model"] # The language model. lowerCAmelCase__ = model["language_model"] # The embeddings. lowerCAmelCase__ = lm["embedding"] # The word embeddings. lowerCAmelCase__ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. lowerCAmelCase__ = word_embeddings[: config.vocab_size, :] lowerCAmelCase__ = word_embeddings # The position embeddings. lowerCAmelCase__ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase__ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. lowerCAmelCase__ = pos_embeddings # The transformer. lowerCAmelCase__ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. lowerCAmelCase__ = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. lowerCAmelCase__ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase__ = layer_re.match(UpperCAmelCase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase__ = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase__ = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase__ = m.group(3 ) # The name of the layer. lowerCAmelCase__ = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): lowerCAmelCase__ = "ln_1" if op_name.startswith("input" ) else "ln_2" lowerCAmelCase__ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase__ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase__ = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase__ = torch.tensor(-1E4 , dtype=torch.floataa ) lowerCAmelCase__ = masked_bias lowerCAmelCase__ = fix_query_key_value_ordering(UpperCAmelCase__ , UpperCAmelCase__ , 3 , UpperCAmelCase__ , UpperCAmelCase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase__ = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase__ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase__ = fix_query_key_value_ordering(UpperCAmelCase__ , UpperCAmelCase__ , 3 , UpperCAmelCase__ , UpperCAmelCase__ ) # Store. No change of shape. lowerCAmelCase__ = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase__ = megatron_to_transformers[op_name] lowerCAmelCase__ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase__ = megatron_to_transformers[op_name] lowerCAmelCase__ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase__ = transformer["final_layernorm.weight"] lowerCAmelCase__ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase__ = word_embeddings # It should be done! return output_state_dict def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=UpperCAmelCase__ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=UpperCAmelCase__ , help="An optional config json file describing the pre-trained model." , ) lowerCAmelCase__ = parser.parse_args() # Extract the basename. lowerCAmelCase__ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: lowerCAmelCase__ = torch.load(UpperCAmelCase__ , map_location="cpu" ) else: lowerCAmelCase__ = torch.load(args.path_to_checkpoint , map_location="cpu" ) lowerCAmelCase__ = input_state_dict.get("args" , UpperCAmelCase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase__ = "gelu_fast" elif ds_args.openai_gelu: lowerCAmelCase__ = "gelu_new" else: lowerCAmelCase__ = "gelu" else: # in the very early days this used to be "gelu_new" lowerCAmelCase__ = "gelu_new" # Spell out all parameters in case the defaults change. lowerCAmelCase__ = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCAmelCase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=UpperCAmelCase__ , summary_activation=UpperCAmelCase__ , summary_proj_to_labels=UpperCAmelCase__ , summary_first_dropout=0.1 , scale_attn_weights=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: lowerCAmelCase__ = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase__ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) lowerCAmelCase__ = convert_megatron_checkpoint(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCAmelCase__ , UpperCAmelCase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase__ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase__ = "gpt2" elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase__ = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: lowerCAmelCase__ = "gpt2" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase__ = type(UpperCAmelCase__ ).__name__ lowerCAmelCase__ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(UpperCAmelCase__ ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(UpperCAmelCase__ ) # Store the state_dict to file. lowerCAmelCase__ = os.path.join(UpperCAmelCase__ , "pytorch_model.bin" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
715
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 5_0),) def a ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: lowerCAmelCase__ = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**SCREAMING_SNAKE_CASE__ ) return config def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=0 , **SCREAMING_SNAKE_CASE__ : int ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : Dict ) -> Any: pass def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : List[str] , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def a ( self : Optional[int] ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): lowerCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a ( self : Tuple ) -> int: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> List[str]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def a ( self : List[str] ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> List[str]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample def a ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def a ( self : Any ) -> Tuple: lowerCAmelCase__ = self.full_loop() lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def a ( self : int ) -> Dict: lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def a ( self : Any ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def a ( self : int ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
125
0
import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase_ ( lowerCamelCase__=None ): lowerCamelCase_ = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser lowerCamelCase_ = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to lowerCamelCase_ = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def lowerCamelCase_ ( ): lowerCamelCase_ = get_config_parser() lowerCamelCase_ = config_parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
463
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __A (__magic_name__ ): @staticmethod def _snake_case ( UpperCamelCase_ ): __UpperCAmelCase : Dict = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase_ , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : int = cache __UpperCAmelCase : Union[str, Any] = force __UpperCAmelCase : Optional[int] = trust_remote_code def _snake_case ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
168
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup snake_case__ : Tuple = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , **_UpperCAmelCase ) -> Dict: requires_backends(self , ['bs4'] ) super().__init__(**_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase_ = parent.find_all(child.name , recursive=_UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_UpperCAmelCase ) else next(i for i, s in enumerate(_UpperCAmelCase , 1 ) if s is child ) ) UpperCamelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = BeautifulSoup(_UpperCAmelCase , 'html.parser' ) UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for element in html_code.descendants: if type(_UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase_ = html.unescape(_UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.xpath_soup(_UpperCAmelCase ) stringaxtag_seq.append(_UpperCAmelCase ) stringaxsubs_seq.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = '' for tagname, subs in zip(_UpperCAmelCase , _UpperCAmelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , _UpperCAmelCase ) -> BatchFeature: UpperCamelCase_ = False # Check that strings has a valid type if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = True elif isinstance(_UpperCAmelCase , (list, tuple) ): if len(_UpperCAmelCase ) == 0 or isinstance(html_strings[0] , _UpperCAmelCase ): UpperCamelCase_ = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"""but is of type {type(_UpperCAmelCase )}.""" ) UpperCamelCase_ = bool(isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , _UpperCAmelCase )) ) if not is_batched: UpperCamelCase_ = [html_strings] # Get nodes + xpaths UpperCamelCase_ = [] UpperCamelCase_ = [] for html_string in html_strings: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.get_three_from_single(_UpperCAmelCase ) nodes.append(_UpperCAmelCase ) UpperCamelCase_ = [] for node, tag_list, sub_list in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = self.construct_xpath(_UpperCAmelCase , _UpperCAmelCase ) xpath_strings.append(_UpperCAmelCase ) xpaths.append(_UpperCAmelCase ) # return as Dict UpperCamelCase_ = {'nodes': nodes, 'xpaths': xpaths} UpperCamelCase_ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) return encoded_inputs
717
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=16 , _UpperCAmelCase=[128, 256, 384] , _UpperCAmelCase=[4, 6, 8] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=[16, 16, 16] , _UpperCAmelCase=0 , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=2 , ) -> int: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = kernel_size UpperCamelCase_ = stride UpperCamelCase_ = padding UpperCamelCase_ = hidden_sizes UpperCamelCase_ = num_attention_heads UpperCamelCase_ = depths UpperCamelCase_ = key_dim UpperCamelCase_ = drop_path_rate UpperCamelCase_ = patch_size UpperCamelCase_ = attention_ratio UpperCamelCase_ = mlp_ratio UpperCamelCase_ = initializer_range UpperCamelCase_ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = num_labels UpperCamelCase_ = initializer_range def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> str: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: UpperCamelCase_ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(_UpperCAmelCase ) UpperCamelCase_ = (self.image_size, self.image_size) UpperCamelCase_ , UpperCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = self.num_labels UpperCamelCase_ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = LevitModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> Any: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='Levit does not output attentions' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCamelCase_ = outputs.hidden_states UpperCamelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCamelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase_ , UpperCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Tuple: UpperCamelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: if not self.model_tester.is_training: return UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase_ = False UpperCamelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase_ = problem_type['title'] UpperCamelCase_ = problem_type['num_labels'] UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: UpperCamelCase_ = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) UpperCamelCase_ = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: UpperCamelCase_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _UpperCAmelCase ( self ) -> List[str]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> str: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCamelCase_ = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
618
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = BioGptTokenizer lowerCamelCase__ : List[Any] = False def lowercase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE__ = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A_ ) ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = '''lower newer''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ = '''lower''' SCREAMING_SNAKE_CASE__ = ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''sequence builders''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
100
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase_ = [0, 25, 50] lowercase_ = [25, 50, 75] lowercase_ = fuzz.membership.trimf(X, abca) lowercase_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase_ = np.ones(75) lowercase_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowercase_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
314
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : List[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } UpperCAmelCase_ : Dict = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } UpperCAmelCase_ : Tuple = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase_ : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase_ : int = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRContextEncoderTokenizer class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRQuestionEncoderTokenizer UpperCAmelCase_ : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) UpperCAmelCase_ : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) UpperCAmelCase_ : List[Any] = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A ) class UpperCAmelCase__ : def __call__( self : str,__A : Dict,__A : Optional[str] = None,__A : Optional[str] = None,__A : Union[bool, str] = False,__A : Union[bool, str] = False,__A : Optional[int] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[bool] = None,**__A : Optional[int],): if titles is None and texts is None: return super().__call__( __A,padding=__A,truncation=__A,max_length=__A,return_tensors=__A,return_attention_mask=__A,**__A,) elif titles is None or texts is None: _lowerCamelCase : str = titles if texts is None else texts return super().__call__( __A,__A,padding=__A,truncation=__A,max_length=__A,return_tensors=__A,return_attention_mask=__A,**__A,) _lowerCamelCase : int = titles if not isinstance(__A,__A ) else [titles] _lowerCamelCase : List[Any] = texts if not isinstance(__A,__A ) else [texts] _lowerCamelCase : Tuple = len(__A ) _lowerCamelCase : str = questions if not isinstance(__A,__A ) else [questions] * n_passages assert len(__A ) == len( __A ), f'There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.' _lowerCamelCase : int = super().__call__(__A,__A,padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : int = super().__call__(__A,add_special_tokens=__A,padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : Optional[int] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A,__A ) ] } if return_attention_mask is not False: _lowerCamelCase : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCamelCase : int = attention_mask return self.pad(__A,padding=__A,max_length=__A,return_tensors=__A ) def lowerCamelCase_ ( self : Optional[int],__A : BatchEncoding,__A : DPRReaderOutput,__A : int = 1_6,__A : int = 6_4,__A : int = 4,): _lowerCamelCase : Optional[Any] = reader_input["input_ids"] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = reader_output[:3] _lowerCamelCase : str = len(__A ) _lowerCamelCase : List[str] = sorted(range(__A ),reverse=__A,key=relevance_logits.__getitem__ ) _lowerCamelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCamelCase : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCamelCase : str = sequence_ids.index(self.sep_token_id,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCamelCase : Optional[int] = sequence_ids.index(self.pad_token_id ) else: _lowerCamelCase : Optional[int] = len(__A ) _lowerCamelCase : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len],end_logits=end_logits[doc_id][passage_offset:sequence_len],max_answer_length=__A,top_spans=__A,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],relevance_score=relevance_logits[doc_id],doc_id=__A,start_index=__A,end_index=__A,text=self.decode(sequence_ids[start_index : end_index + 1] ),) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self : List[str],__A : List[int],__A : List[int],__A : int,__A : int,): _lowerCamelCase : int = [] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCamelCase : List[str] = sorted(__A,key=lambda __A : x[1],reverse=__A ) _lowerCamelCase : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' _lowerCamelCase : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class UpperCAmelCase__ ( A , A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = DPRReaderTokenizer
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1