code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {} lowerCAmelCase_ = {} lowerCAmelCase_ = {} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) snake_case_ = format_type def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: lowerCAmelCase_ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: lowerCAmelCase_ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: lowerCAmelCase_ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = get_format_type_from_alias(SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
39
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _a : List[str] = logging.get_logger(__name__) def a_ ( __magic_name__ , __magic_name__=False ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a_ ( __magic_name__ , __magic_name__ , __magic_name__=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case : List[str] = '''''' else: snake_case : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) snake_case : str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case : int = in_proj_weight[ : config.hidden_size, : ] snake_case : Union[str, Any] = in_proj_bias[: config.hidden_size] snake_case : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case : List[str] = in_proj_bias[-config.hidden_size :] def a_ ( __magic_name__ ) -> int: """simple docstring""" snake_case : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: """simple docstring""" snake_case : Optional[Any] = dct.pop(__magic_name__ ) snake_case : Any = val def a_ ( ) -> Tuple: """simple docstring""" snake_case : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case : Any = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def a_ ( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Tuple: """simple docstring""" snake_case : List[Any] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__magic_name__ , ) snake_case : Union[str, Any] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=384 , num_labels=1_000 ) snake_case : str = False # load original model from timm snake_case : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case : List[str] = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case : Dict = '''huggingface/label-files''' snake_case : Dict = '''imagenet-1k-id2label.json''' snake_case : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : Tuple = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case : Optional[int] = idalabel snake_case : int = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case : Any = ViTHybridModel(__magic_name__ ).eval() else: snake_case : str = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case : str = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case : Optional[int] = transform.transforms snake_case : str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case : Optional[Any] = ViTHybridImageProcessor( do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case : str = prepare_img() snake_case : Optional[Any] = transform(__magic_name__ ).unsqueeze(0 ) snake_case : Optional[int] = processor(__magic_name__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case : Dict = model(__magic_name__ ) snake_case : Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case : Union[str, Any] = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1e-3 ) else: snake_case : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _a : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
598
0
'''simple docstring''' from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = -1 ) -> int: if hi < 0: SCREAMING_SNAKE_CASE : Union[str, Any] = len(snake_case_ ) while lo < hi: SCREAMING_SNAKE_CASE : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: SCREAMING_SNAKE_CASE : Optional[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : List[Any] = mid return lo def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = -1 ) -> int: if hi < 0: SCREAMING_SNAKE_CASE : Tuple = len(snake_case_ ) while lo < hi: SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: SCREAMING_SNAKE_CASE : int = mid + 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = mid return lo def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = -1 ) -> None: sorted_collection.insert(bisect_left(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = -1 ) -> None: sorted_collection.insert(bisect_right(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int ) -> int | None: SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = len(snake_case_ ) - 1 while left <= right: SCREAMING_SNAKE_CASE : Union[str, Any] = left + (right - left) // 2 SCREAMING_SNAKE_CASE : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: SCREAMING_SNAKE_CASE : List[str] = midpoint - 1 else: SCREAMING_SNAKE_CASE : int = midpoint + 1 return None def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int ) -> int | None: SCREAMING_SNAKE_CASE : Optional[int] = bisect.bisect_left(snake_case_ , snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE_ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> int | None: if right < left: return None SCREAMING_SNAKE_CASE : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_ , snake_case_ , snake_case_ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case_ , snake_case_ , midpoint + 1 , snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() __UpperCAmelCase = sorted(int(item) for item in user_input.split(',')) __UpperCAmelCase = int(input('Enter a single number to be found in the list:\n')) __UpperCAmelCase = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
220
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __UpperCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE : int = state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : Any = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] ) -> Any: SCREAMING_SNAKE_CASE : List[str] = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE : Any = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[:256] SCREAMING_SNAKE_CASE : str = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[:256] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : str = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE : str = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) SCREAMING_SNAKE_CASE : Any = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE : Any = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE : List[str] = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE_ ( snake_case_ : Any , snake_case_ : List[str] ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = image.size SCREAMING_SNAKE_CASE : Union[str, Any] = max(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Optional[int] = 800 if 'detection' in checkpoint_url else 1000 SCREAMING_SNAKE_CASE : str = target_max_size / current_max_size SCREAMING_SNAKE_CASE : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE_ ( snake_case_ : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = F.to_tensor(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = F.normalize(snake_case_ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[Any] ) -> Tuple: logger.info('Converting model...' ) # load original state dict SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE : Dict = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : int = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = 15 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Optional[int] = {0: 'table', 1: 'table rotated'} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE : List[str] = 125 SCREAMING_SNAKE_CASE : Dict = 6 SCREAMING_SNAKE_CASE : Optional[Any] = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Any = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE : Tuple = TableTransformerForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE : Optional[Any] = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' SCREAMING_SNAKE_CASE : str = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=snake_case_ ) SCREAMING_SNAKE_CASE : Dict = Image.open(snake_case_ ).convert('RGB' ) SCREAMING_SNAKE_CASE : Optional[int] = normalize(resize(snake_case_ , snake_case_ ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = model(snake_case_ ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = (1, 15, 3) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: SCREAMING_SNAKE_CASE : List[Any] = (1, 125, 7) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) SCREAMING_SNAKE_CASE : int = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(snake_case_ ) image_processor.push_to_hub(snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
220
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[Any] = False if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : List[Any] = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCamelCase__ : str = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCamelCase__ : str = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCamelCase__ : Optional[int] = reader.read() lowerCamelCase__ : Optional[int] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCamelCase__ : Any = UNetaDModel(**config) else: lowerCamelCase__ : Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCamelCase__ : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase__ : Optional[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase__ : List[str] = config[key] del config[key] lowerCamelCase__ : str = [k.replace('UNetRes', '') for k in config['down_block_types']] lowerCamelCase__ : List[str] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCamelCase__ : Dict = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCamelCase__ : int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCamelCase__ : Dict = param_value lowerCamelCase__ : str = True if not has_changed: lowerCamelCase__ : Dict = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase : Any ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : Any ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : Any ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : List[Any] ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } lowerCAmelCase : str ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } lowerCAmelCase : Optional[Any] ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def A__ ( __A ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def A__ ( __A , __A , __A , __A , __A=False ): '''simple docstring''' _lowerCamelCase : Tuple = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] _lowerCamelCase : int = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] _lowerCamelCase : Dict = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] _lowerCamelCase : str = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] _lowerCamelCase : int = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] _lowerCamelCase : List[str] = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] _lowerCamelCase : Tuple = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] _lowerCamelCase : List[Any] = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.skip_connection.weight"""] _lowerCamelCase : List[Any] = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def A__ ( __A , __A , __A , __A , __A=None ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.norm.weight"""] _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.norm.bias"""] _lowerCamelCase : Optional[int] = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Union[str, Any] = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Tuple = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : int = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCamelCase : int = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = torch.load(snake_case__ , map_location="""cpu""" ) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[str] = checkpoint["""time_embed.0.weight"""] _lowerCamelCase : List[str] = checkpoint["""time_embed.0.bias"""] _lowerCamelCase : Any = checkpoint["""time_embed.2.weight"""] _lowerCamelCase : Tuple = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _lowerCamelCase : Dict = checkpoint["""label_emb.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] _lowerCamelCase : Tuple = unet_config["""down_block_types"""] _lowerCamelCase : Tuple = unet_config["""layers_per_block"""] _lowerCamelCase : Dict = unet_config["""attention_head_dim"""] _lowerCamelCase : int = unet_config["""block_out_channels"""] _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[Any] = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _lowerCamelCase : Tuple = channels_list[i] _lowerCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _lowerCamelCase : Optional[int] = F"""down_blocks.{i}.resnets.{j}""" _lowerCamelCase : Union[str, Any] = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : List[Any] = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Tuple = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _lowerCamelCase : List[Any] = F"""down_blocks.{i}.resnets.{j}""" _lowerCamelCase : Optional[int] = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : Optional[int] = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Optional[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _lowerCamelCase : Any = F"""down_blocks.{i}.attentions.{j}""" _lowerCamelCase : Tuple = F"""input_blocks.{current_layer}.1""" _lowerCamelCase : int = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : Any = F"""down_blocks.{i}.downsamplers.0""" _lowerCamelCase : int = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : int = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 _lowerCamelCase : Dict = current_channels # hardcoded the mid-block for now _lowerCamelCase : Any = """mid_block.resnets.0""" _lowerCamelCase : Any = """middle_block.0""" _lowerCamelCase : Dict = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Tuple = """mid_block.attentions.0""" _lowerCamelCase : Dict = """middle_block.1""" _lowerCamelCase : Any = convert_attention(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : int = """mid_block.resnets.1""" _lowerCamelCase : str = """middle_block.2""" _lowerCamelCase : Tuple = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Any = 0 _lowerCamelCase : str = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : List[str] = F"""up_blocks.{i}.resnets.{j}""" _lowerCamelCase : Tuple = F"""output_blocks.{current_layer}.0""" _lowerCamelCase : List[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : List[str] = F"""up_blocks.{i}.upsamplers.0""" _lowerCamelCase : Union[str, Any] = F"""output_blocks.{current_layer-1}.1""" _lowerCamelCase : Any = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : Optional[int] = F"""up_blocks.{i}.resnets.{j}""" _lowerCamelCase : Any = F"""output_blocks.{current_layer}.0""" _lowerCamelCase : List[str] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _lowerCamelCase : int = F"""up_blocks.{i}.attentions.{j}""" _lowerCamelCase : Optional[int] = F"""output_blocks.{current_layer}.1""" _lowerCamelCase : Union[str, Any] = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : Union[str, Any] = F"""up_blocks.{i}.upsamplers.0""" _lowerCamelCase : Any = F"""output_blocks.{current_layer-1}.2""" _lowerCamelCase : Union[str, Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Dict = checkpoint["""out.0.weight"""] _lowerCamelCase : Optional[Any] = checkpoint["""out.0.bias"""] _lowerCamelCase : int = checkpoint["""out.2.weight"""] _lowerCamelCase : int = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") lowerCAmelCase : List[str] =parser.parse_args() lowerCAmelCase : Tuple =strabool(args.class_cond) lowerCAmelCase : Optional[Any] =os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase : List[Any] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase : Dict =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase : List[Any] =TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowerCAmelCase : List[str] =None lowerCAmelCase : Tuple =con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase : Optional[Any] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase : List[Any] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase : List[Any] =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase : List[Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") lowerCAmelCase : List[str] =CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase : int =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Any=13 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Tuple=3 , lowerCamelCase : Any=4 , lowerCamelCase : Optional[int]=[10, 20, 30, 40] , lowerCamelCase : int=[2, 2, 3, 2] , lowerCamelCase : str=True , lowerCamelCase : Any=True , lowerCamelCase : Union[str, Any]=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Optional[int]=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase : Union[str, Any]=[2, 3, 4] , lowerCamelCase : Dict=None , ) -> List[str]: __snake_case : int = parent __snake_case : int = batch_size __snake_case : List[Any] = image_size __snake_case : Any = num_channels __snake_case : Optional[int] = num_stages __snake_case : Union[str, Any] = hidden_sizes __snake_case : List[str] = depths __snake_case : Any = is_training __snake_case : Tuple = use_labels __snake_case : Dict = intermediate_size __snake_case : Any = hidden_act __snake_case : Optional[Any] = num_labels __snake_case : int = initializer_range __snake_case : Any = out_features __snake_case : int = out_indices __snake_case : Optional[Any] = scope def __snake_case ( self : Optional[int] ) -> List[str]: __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : str = self.get_config() return config, pixel_values, labels def __snake_case ( self : str ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str ) -> Any: __snake_case : Any = ConvNextVaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : str ) -> List[str]: __snake_case : Any = ConvNextVaForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : int = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : List[Any] ) -> Dict: __snake_case : Optional[int] = ConvNextVaBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : Union[str, Any] = None __snake_case : Optional[int] = ConvNextVaBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : List[str] ) -> Union[str, Any]: __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def __snake_case ( self : str ) -> Union[str, Any]: __snake_case : str = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : int = config_and_inputs __snake_case : List[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[int] = False def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : Union[str, Any] = ConvNextVaModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : str ) -> Dict: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __snake_case ( self : str ) -> str: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __snake_case ( self : Optional[int] ) -> str: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __snake_case ( self : Tuple ) -> Tuple: pass def __snake_case ( self : Tuple ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Optional[int] = True if model_class.__name__ in [ *get_values(lowerCamelCase ), *get_values(lowerCamelCase ), ]: continue __snake_case : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __snake_case : List[Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __snake_case : List[Any] = model(**lowerCamelCase ).loss loss.backward() def __snake_case ( self : str ) -> Optional[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Tuple = False __snake_case : List[str] = True if ( model_class.__name__ in [*get_values(lowerCamelCase ), *get_values(lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __snake_case : int = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) __snake_case : List[str] = model(**lowerCamelCase ).loss loss.backward() def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(lowerCamelCase ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Dict = [*signature.parameters.keys()] __snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> str: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Dict ) -> Dict: def check_hidden_states_output(lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ): __snake_case : str = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Dict = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : int ) -> str: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def __snake_case ( self : Tuple ) -> str: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = ConvNextVaModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Optional[int] ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __snake_case ( self : int ) -> List[str]: __snake_case : int = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCamelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Optional[Any] = prepare_img() __snake_case : List[Any] = preprocessor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**lowerCamelCase ) # verify the logits __snake_case : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Optional[int] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) )
81
import argparse import os import re import packaging.version _lowerCAmelCase = """examples/""" _lowerCAmelCase = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowerCAmelCase = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowerCAmelCase = """README.md""" def lowercase ( _a ,_a ,_a ) -> List[Any]: with open(_a ,"r" ,encoding="utf-8" ,newline="\n" ) as f: UpperCAmelCase_: List[str] = f.read() UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase_: List[Any] = replace.replace("VERSION" ,_a ) UpperCAmelCase_: str = re_pattern.sub(_a ,_a ) with open(_a ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.write(_a ) def lowercase ( _a ) -> List[str]: for folder, directories, fnames in os.walk(_a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_a ,_a ) ,_a ,pattern="examples" ) def lowercase ( _a ,_a=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_a ,_a ,_a ) if not patch: update_version_in_examples(_a ) def lowercase ( ) -> List[str]: UpperCAmelCase_: int = "🤗 Transformers currently provides the following architectures" UpperCAmelCase_: Dict = "1. Want to contribute a new model?" with open(_a ,"r" ,encoding="utf-8" ,newline="\n" ) as f: UpperCAmelCase_: Tuple = f.readlines() # Find the start of the list. UpperCAmelCase_: Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_: Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCAmelCase_: str = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" ,"https://huggingface.co/docs/transformers/model_doc" ,) index += 1 with open(_a ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(_a ) def lowercase ( ) -> int: with open(REPLACE_FILES["init"] ,"r" ) as f: UpperCAmelCase_: List[str] = f.read() UpperCAmelCase_: List[Any] = REPLACE_PATTERNS["init"][0].search(_a ).groups()[0] return packaging.version.parse(_a ) def lowercase ( _a=False ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCAmelCase_: int = default_version.base_version elif patch: UpperCAmelCase_: Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCAmelCase_: int = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCAmelCase_: Dict = input(f"Which version are you releasing? [{default_version}]" ) if len(_a ) == 0: UpperCAmelCase_: Union[str, Any] = default_version print(f"Updating version to {version}." ) global_version_update(_a ,patch=_a ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def lowercase ( ) -> Union[str, Any]: UpperCAmelCase_: Any = get_version() UpperCAmelCase_: List[Any] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCAmelCase_: int = current_version.base_version # Check with the user we got that right. UpperCAmelCase_: Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(_a ) == 0: UpperCAmelCase_: str = dev_version print(f"Updating version to {version}." ) global_version_update(_a ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowerCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
137
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCamelCase = logging.get_logger(__name__) @dataclass class _snake_case (__SCREAMING_SNAKE_CASE): __A : int =[ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self ,**_snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : List[str] = deprecated_arg[3:] UpperCAmelCase_ : Union[str, Any] = not kwargs.pop(UpperCAmelCase__ ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase_ : Optional[int] = kwargs.pop("tpu_name" ,self.tpu_name ) UpperCAmelCase_ : List[Any] = kwargs.pop("device_idx" ,self.device_idx ) UpperCAmelCase_ : str = kwargs.pop("eager_mode" ,self.eager_mode ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("use_xla" ,self.use_xla ) super().__init__(**UpperCAmelCase__ ) __A : str =field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , ) __A : int =field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) __A : bool =field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."}) __A : bool =field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) UpperCAmelCase_ : List[Any] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase_ : str = None return tpu @cached_property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase_ : Tuple = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"GPU" ) UpperCAmelCase_ : List[Any] = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,"GPU" ) # disable GPU UpperCAmelCase_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) return self._setup_strategy @property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase__ ( self ): requires_backends(self ,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ): return self.n_gpu > 0
718
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase_ , UpperCAmelCase_ : int = array[indexa], array[indexa] def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" if length > 1: UpperCAmelCase_ : List[str] = int(length / 2 ) for i in range(_SCREAMING_SNAKE_CASE , low + middle ): comp_and_swap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + middle , _SCREAMING_SNAKE_CASE ) bitonic_merge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) bitonic_merge(_SCREAMING_SNAKE_CASE , low + middle , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" if length > 1: UpperCAmelCase_ : Tuple = int(length / 2 ) bitonic_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) bitonic_sort(_SCREAMING_SNAKE_CASE , low + middle , _SCREAMING_SNAKE_CASE , 0 ) bitonic_merge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
323
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _A = logging.get_logger(__name__) _A = {"""vocab_file""": """vocab.txt"""} _A = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } _A = { """facebook/esm2_t6_8M_UR50D""": 1024, """facebook/esm2_t12_35M_UR50D""": 1024, } def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" with open(__a , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[Any] =f.read().splitlines() return [l.strip() for l in lines] class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_="<unk>" , snake_case_="<cls>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_="<eos>" , **snake_case_ , ) -> Optional[int]: super().__init__(**snake_case_ ) SCREAMING_SNAKE_CASE : int =load_vocab_file(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE : str ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE : Union[str, Any] =unk_token SCREAMING_SNAKE_CASE : str =cls_token SCREAMING_SNAKE_CASE : List[Any] =pad_token SCREAMING_SNAKE_CASE : Union[str, Any] =mask_token SCREAMING_SNAKE_CASE : Dict =eos_token SCREAMING_SNAKE_CASE : Optional[int] =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , snake_case_ ) -> str: return self._id_to_token.get(snake_case_ , self.unk_token ) def __a ( self , snake_case_ ) -> int: return self._token_to_id.get(snake_case_ , self._token_to_id.get(self.unk_token ) ) def __a ( self , snake_case_ , **snake_case_ ) -> List[Any]: return text.split() def __a ( self , snake_case_=False ) -> List[Any]: return len(self._id_to_token ) def __a ( self ) -> Union[str, Any]: return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , snake_case_ ) -> int: return self._token_to_id.get(snake_case_ , self._token_to_id.get(self.unk_token ) ) def __a ( self , snake_case_ ) -> str: return self._id_to_token.get(snake_case_ , self.unk_token ) def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Optional[int] =[self.cls_token_id] SCREAMING_SNAKE_CASE : Optional[Any] =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE : str =[1] + ([0] * len(snake_case_ )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case_ ) + [1] return mask def __a ( self , snake_case_ , snake_case_ ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple =os.path.join(snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(snake_case_ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ) -> int: return self.get_vocab_size(with_added_tokens=snake_case_ ) def __a ( self , snake_case_ , snake_case_ = False ) -> int: return super()._add_tokens(snake_case_ , special_tokens=snake_case_ )
258
def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if not isinstance(__a , __a ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) SCREAMING_SNAKE_CASE : int =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
258
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A__ = """pt""" elif is_tf_available(): A__ = """tf""" else: A__ = """jax""" class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ByTaTokenizer _UpperCAmelCase = False def snake_case ( self : Dict ): super().setUp() lowerCamelCase :Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self : Dict ): return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def snake_case ( self : Any , **__snake_case : List[Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : int=False , __snake_case : Union[str, Any]=20 , __snake_case : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase :Optional[int] = [] for i in range(len(__snake_case ) ): try: lowerCamelCase :List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase :Optional[int] = list(filter(lambda __snake_case : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __snake_case ) ) lowerCamelCase :List[str] = list(filter(lambda __snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__snake_case ) , __snake_case ) ) if max_length is not None and len(__snake_case ) > max_length: lowerCamelCase :List[Any] = toks[:max_length] if min_length is not None and len(__snake_case ) < min_length and len(__snake_case ) > 0: while len(__snake_case ) < min_length: lowerCamelCase :Optional[int] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase :List[str] = [t[0] for t in toks] # Ensure consistency lowerCamelCase :Any = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) if " " not in output_txt and len(__snake_case ) > 1: lowerCamelCase :List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__snake_case ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__snake_case ) ) if with_prefix_space: lowerCamelCase :List[str] = ''' ''' + output_txt lowerCamelCase :Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) return output_txt, output_ids def snake_case ( self : List[str] ): lowerCamelCase :List[str] = self.ta_base_tokenizer lowerCamelCase :List[str] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) lowerCamelCase :Optional[int] = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = self.ta_base_tokenizer lowerCamelCase :Union[str, Any] = '''Unicode €.''' lowerCamelCase :Optional[Any] = tokenizer(__snake_case ) lowerCamelCase :Union[str, Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , __snake_case ) # decoding lowerCamelCase :Union[str, Any] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , '''Unicode €.</s>''' ) lowerCamelCase :str = tokenizer('''e è é ê ë''' ) lowerCamelCase :Dict = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , __snake_case ) # decoding lowerCamelCase :Optional[Any] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def snake_case ( self : Any ): lowerCamelCase :Tuple = self.ta_base_tokenizer lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCamelCase :Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase :Any = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) if FRAMEWORK != "jax": lowerCamelCase :str = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase :Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.ta_base_tokenizer lowerCamelCase :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :Tuple = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''decoder_input_ids''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :Dict = self.ta_base_tokenizer lowerCamelCase :int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCamelCase :List[str] = tokenizer( text_target=__snake_case , max_length=32 , padding='''max_length''' , truncation=__snake_case , return_tensors=__snake_case ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def snake_case ( self : List[str] ): lowerCamelCase :Union[str, Any] = self.ta_base_tokenizer lowerCamelCase :int = ['''A long paragraph for summarization. </s>'''] lowerCamelCase :Tuple = ['''Summary of the text. </s>'''] # fmt: off lowerCamelCase :Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase :Tuple = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase :Optional[int] = tokenizer(__snake_case , text_target=__snake_case ) self.assertEqual(__snake_case , batch['''input_ids'''][0] ) self.assertEqual(__snake_case , batch['''labels'''][0] ) def snake_case ( self : List[str] ): # safety check on max_len default value so we are sure the test works lowerCamelCase :Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase :List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase :List[Any] = tempfile.mkdtemp() lowerCamelCase :Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase :int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = tokenizer.__class__.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) lowerCamelCase :Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCamelCase :List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase :int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = tokenizer.__class__.from_pretrained(__snake_case ) lowerCamelCase :Any = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase :Optional[int] = tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase :List[Any] = json.load(__snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase :Any = json.load(__snake_case ) lowerCamelCase :Optional[int] = [F"<extra_id_{i}>" for i in range(125 )] lowerCamelCase :Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCamelCase :Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__snake_case , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase :List[Any] = tokenizer_class.from_pretrained( __snake_case , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase :Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__snake_case )] lowerCamelCase :Optional[int] = tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) lowerCamelCase :Tuple = tokenizer_class.from_pretrained(__snake_case ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def snake_case ( self : Tuple ): pass def snake_case ( self : Dict ): pass def snake_case ( self : Optional[Any] ): pass def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : int ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCamelCase :Any = self.get_tokenizers(fast=__snake_case , do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): lowerCamelCase :str = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCamelCase :Tuple = tokenizer.convert_tokens_to_string(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): lowerCamelCase :Union[str, Any] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase :Dict = 0 lowerCamelCase :List[Any] = tokenizer.convert_ids_to_tokens( __snake_case , skip_special_tokens=__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + '''_id''' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '''_id''' ) , __snake_case ) setattr(__snake_case , attr + '''_id''' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '''_id''' ) , __snake_case ) setattr(__snake_case , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens_ids''' ) , [] ) setattr(__snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : complex, UpperCamelCase_ : str = "x", UpperCamelCase_ : float = 10**-10, UpperCamelCase_ : int = 1, ): UpperCAmelCase__ :Union[str, Any] = symbols(_UpperCamelCase ) UpperCAmelCase__ :Dict = lambdify(_UpperCamelCase, _UpperCamelCase ) UpperCAmelCase__ :str = lambdify(_UpperCamelCase, diff(_UpperCamelCase, _UpperCamelCase ) ) UpperCAmelCase__ :Optional[Any] = starting_point while True: if diff_function(_UpperCamelCase ) != 0: UpperCAmelCase__ :str = prev_guess - multiplicity * func(_UpperCamelCase ) / diff_function( _UpperCamelCase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCAmelCase__ :Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F'''{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
467
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __a ( _UpperCamelCase: List[Any] ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _snake_case = k.replace(_UpperCamelCase , _UpperCamelCase ) if k.startswith("encoder" ): _snake_case = k.replace(".attn" , ".self_attn" ) _snake_case = k.replace("norm1" , "self_attn_layer_norm" ) _snake_case = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): _snake_case = k.replace("norm1" , "self_attn_layer_norm" ) _snake_case = k.replace("norm2" , "encoder_attn_layer_norm" ) _snake_case = k.replace("norm3" , "final_layer_norm" ) return k def __a ( _UpperCamelCase: Dict ) -> Optional[int]: """simple docstring""" _snake_case = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: _snake_case = sd.pop(_UpperCamelCase ) _snake_case = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd _snake_case = v UpperCamelCase_ : Union[str, Any] = ['''START'''] @torch.no_grad() def __a ( _UpperCamelCase: Any , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> Optional[int]: """simple docstring""" _snake_case = torch.load(_UpperCamelCase , map_location="cpu" ) _snake_case = model["model"] _snake_case = BlenderbotConfig.from_json_file(_UpperCamelCase ) _snake_case = BlenderbotForConditionalGeneration(_UpperCamelCase ) _snake_case = m.model.state_dict().keys() _snake_case = [] _snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _snake_case = rename_state_dict_key(_UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCamelCase ) m.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) m.half() m.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) UpperCamelCase_ : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
185
0
'''simple docstring''' from statistics import mean, stdev def _A (lowerCAmelCase__ :list , lowerCAmelCase__ :int = 3 ) -> Union[str, Any]: '''simple docstring''' _a = min(_lowerCamelCase ) _a = max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def _A (lowerCAmelCase__ :list , lowerCAmelCase__ :int = 3 ) -> int: '''simple docstring''' _a = mean(_lowerCamelCase ) _a = stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
704
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _A (lowerCAmelCase__ :SplitDict ) -> Any: '''simple docstring''' _a = split_dict._to_yaml_list() assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) _a = SplitDict._from_yaml_list(lowerCAmelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _a = None # the split name of split_dict takes over the name of the split info object _a = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=lowerCAmelCase__ ), SplitInfo(dataset_name='my_dataset' )] ) def _A (lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' _a = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
532
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : str = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class lowercase_ ( __snake_case ): """simple docstring""" UpperCAmelCase_ : List[Any] = """encodec""" def __init__( self , __SCREAMING_SNAKE_CASE=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , __SCREAMING_SNAKE_CASE=24000 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=[8, 5, 4, 2] , __SCREAMING_SNAKE_CASE="weight_norm" , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="reflect" , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) ->Any: lowerCAmelCase = target_bandwidths lowerCAmelCase = sampling_rate lowerCAmelCase = audio_channels lowerCAmelCase = normalize lowerCAmelCase = chunk_length_s lowerCAmelCase = overlap lowerCAmelCase = hidden_size lowerCAmelCase = num_filters lowerCAmelCase = num_residual_layers lowerCAmelCase = upsampling_ratios lowerCAmelCase = norm_type lowerCAmelCase = kernel_size lowerCAmelCase = last_kernel_size lowerCAmelCase = residual_kernel_size lowerCAmelCase = dilation_growth_rate lowerCAmelCase = use_causal_conv lowerCAmelCase = pad_mode lowerCAmelCase = compress lowerCAmelCase = num_lstm_layers lowerCAmelCase = trim_right_ratio lowerCAmelCase = codebook_size lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
312
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowercase ( __snake_case ): UpperCamelCase = '''mobilenet_v1''' def __init__( self : Any , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Dict=2_2_4 , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Optional[int]=8 , __lowerCamelCase : Optional[int]="relu6" , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=0.999 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : str=0.001 , **__lowerCamelCase : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**__lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = depth_multiplier UpperCAmelCase = min_depth UpperCAmelCase = hidden_act UpperCAmelCase = tf_padding UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps class __lowercase ( __snake_case ): UpperCamelCase = version.parse('''1.11''' ) @property def _lowercase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _lowercase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _lowercase ( self : List[Any] ) -> float: """simple docstring""" return 1e-4
377
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCAmelCase_ : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCAmelCase_ : List[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _lowerCAmelCase(a : Union[str, Any] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE =numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=a )[0] @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : str ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(rows * cols * num_images ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) _SCREAMING_SNAKE_CASE =data.reshape(a , a , a , 1 ) return data @deprecated(a , '''Please use tf.one_hot on tensors.''' ) def _lowerCAmelCase(a : Tuple , a : Dict ) -> Dict: _SCREAMING_SNAKE_CASE =labels_dense.shape[0] _SCREAMING_SNAKE_CASE =numpy.arange(a ) * num_classes _SCREAMING_SNAKE_CASE =numpy.zeros((num_labels, num_classes) ) _SCREAMING_SNAKE_CASE =1 return labels_one_hot @deprecated(a , '''Please use tf.data to implement this functionality.''' ) def _lowerCAmelCase(a : Any , a : Any=False , a : Tuple=10 ) -> Optional[int]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=a ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(a ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(a ) _SCREAMING_SNAKE_CASE =bytestream.read(a ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(a , a ) return labels class __UpperCAmelCase : '''simple docstring''' @deprecated( _A , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , _A , _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =random_seed.get_seed(_A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _SCREAMING_SNAKE_CASE =dtypes.as_dtype(_A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: _SCREAMING_SNAKE_CASE =1_0_0_0_0 _SCREAMING_SNAKE_CASE =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" _SCREAMING_SNAKE_CASE =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _SCREAMING_SNAKE_CASE =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _SCREAMING_SNAKE_CASE =images.astype(numpy.floataa ) _SCREAMING_SNAKE_CASE =numpy.multiply(_A , 1.0 / 255.0 ) _SCREAMING_SNAKE_CASE =images _SCREAMING_SNAKE_CASE =labels _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._images @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._labels @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._num_examples @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._epochs_completed def UpperCamelCase_ ( self , _A , _A=False , _A=True ): '''simple docstring''' if fake_data: _SCREAMING_SNAKE_CASE =[1] * 7_8_4 _SCREAMING_SNAKE_CASE =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_A )], [fake_label for _ in range(_A )], ) _SCREAMING_SNAKE_CASE =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perma] _SCREAMING_SNAKE_CASE =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _SCREAMING_SNAKE_CASE =self._num_examples - start _SCREAMING_SNAKE_CASE =self._images[start : self._num_examples] _SCREAMING_SNAKE_CASE =self._labels[start : self._num_examples] # Shuffle the data if shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _SCREAMING_SNAKE_CASE =self.images[perm] _SCREAMING_SNAKE_CASE =self.labels[perm] # Start next epoch _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =batch_size - rest_num_examples _SCREAMING_SNAKE_CASE =self._index_in_epoch _SCREAMING_SNAKE_CASE =self._images[start:end] _SCREAMING_SNAKE_CASE =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _SCREAMING_SNAKE_CASE =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(a , '''Please write your own downloading logic.''' ) def _lowerCAmelCase(a : Any , a : str , a : Optional[int] ) -> Optional[Any]: if not gfile.Exists(a ): gfile.MakeDirs(a ) _SCREAMING_SNAKE_CASE =os.path.join(a , a ) if not gfile.Exists(a ): urllib.request.urlretrieve(a , a ) # noqa: S310 with gfile.GFile(a ) as f: _SCREAMING_SNAKE_CASE =f.size() print('''Successfully downloaded''' , a , a , '''bytes.''' ) return filepath @deprecated( a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def _lowerCAmelCase(a : Optional[int] , a : Tuple=False , a : str=False , a : Union[str, Any]=dtypes.floataa , a : Tuple=True , a : Tuple=5000 , a : Union[str, Any]=None , a : List[str]=DEFAULT_SOURCE_URL , ) -> List[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=a , one_hot=a , dtype=a , seed=a ) _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() return _Datasets(train=a , validation=a , test=a ) if not source_url: # empty string check _SCREAMING_SNAKE_CASE =DEFAULT_SOURCE_URL _SCREAMING_SNAKE_CASE ='''train-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''train-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-images-idx3-ubyte.gz''' _SCREAMING_SNAKE_CASE ='''t10k-labels-idx1-ubyte.gz''' _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + train_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_images_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(a ) _SCREAMING_SNAKE_CASE =_maybe_download( a , a , source_url + test_labels_file ) with gfile.Open(a , '''rb''' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(a , one_hot=a ) if not 0 <= validation_size <= len(a ): _SCREAMING_SNAKE_CASE =( '''Validation size should be between 0 and ''' f"""{len(a )}. Received: {validation_size}.""" ) raise ValueError(a ) _SCREAMING_SNAKE_CASE =train_images[:validation_size] _SCREAMING_SNAKE_CASE =train_labels[:validation_size] _SCREAMING_SNAKE_CASE =train_images[validation_size:] _SCREAMING_SNAKE_CASE =train_labels[validation_size:] _SCREAMING_SNAKE_CASE ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) _SCREAMING_SNAKE_CASE =_DataSet(a , a , **a ) return _Datasets(train=a , validation=a , test=a )
165
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _lowerCAmelCase(a : int ) -> Union[str, Any]: return EnvironmentCommand() def _lowerCAmelCase(a : str ) -> Optional[int]: return EnvironmentCommand(args.accelerate_config_file ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parser.add_parser('''env''' ) download_parser.set_defaults(func=_A ) download_parser.add_argument( '''--accelerate-config_file''' , default=_A , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_A ) def __init__( self , _A , *_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =accelerate_config_file def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''not installed''' if is_safetensors_available(): import safetensors _SCREAMING_SNAKE_CASE =safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors _SCREAMING_SNAKE_CASE =f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE =_SCREAMING_SNAKE_CASE ='''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _SCREAMING_SNAKE_CASE =accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_A ): _SCREAMING_SNAKE_CASE =load_config_from_file(self._accelerate_config_file ).to_dict() _SCREAMING_SNAKE_CASE =( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_A , _A ) else f"""\t{accelerate_config}""" ) _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE ='''NA''' if is_torch_available(): import torch _SCREAMING_SNAKE_CASE =torch.__version__ _SCREAMING_SNAKE_CASE =torch.cuda.is_available() _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE ='''NA''' if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE =tf.__version__ try: # deprecated in v2.1 _SCREAMING_SNAKE_CASE =tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _SCREAMING_SNAKE_CASE =bool(tf.config.list_physical_devices('''GPU''' ) ) _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE ='''not installed''' _SCREAMING_SNAKE_CASE ='''NA''' if is_flax_available(): import flax import jax import jaxlib _SCREAMING_SNAKE_CASE =flax.__version__ _SCREAMING_SNAKE_CASE =jax.__version__ _SCREAMING_SNAKE_CASE =jaxlib.__version__ _SCREAMING_SNAKE_CASE =jax.lib.xla_bridge.get_backend().platform _SCREAMING_SNAKE_CASE ={ '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_A ) ) return info @staticmethod def UpperCamelCase_ ( _A ): '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
165
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=True , ): UpperCamelCase_: Any = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[Any] = image_size UpperCamelCase_: Optional[int] = min_resolution UpperCamelCase_: List[str] = max_resolution UpperCamelCase_: Tuple = do_resize UpperCamelCase_: Union[str, Any] = size_divisor UpperCamelCase_: Optional[int] = do_rescale def _a ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =GLPNImageProcessor if is_vision_available() else None def _a ( self ): UpperCamelCase_: Tuple = GLPNImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size_divisor' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'resample' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_rescale' ) ) def _a ( self ): pass def _a ( self ): # Initialize image_processing UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
57
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> str: pass def snake_case ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = pipeline( "document-question-answering" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) UpperCAmelCase_ : int = INVOICE_URL UpperCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) UpperCAmelCase_ : Optional[Any] = "What is the placebo?" UpperCAmelCase_ : Tuple = [ { "image": load_image(lowerCAmelCase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Tuple = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCAmelCase_ : Dict = INVOICE_URL UpperCAmelCase_ : int = "How many cats are there?" UpperCAmelCase_ : Any = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Dict = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCAmelCase_ : Optional[Any] = INVOICE_URL UpperCAmelCase_ : Dict = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Tuple = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCAmelCase_ : Tuple = INVOICE_URL UpperCAmelCase_ : Any = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , ) UpperCAmelCase_ : Any = INVOICE_URL UpperCAmelCase_ : List[str] = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCAmelCase_ : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : List[str] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , max_seq_len=50 , ) UpperCAmelCase_ : List[Any] = INVOICE_URL UpperCAmelCase_ : Optional[int] = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : Dict = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCAmelCase_ : Optional[int] = INVOICE_URL UpperCAmelCase_ : int = "What is the invoice number?" UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass
95
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase: str = logging.get_logger(__name__) _lowercase: Optional[int] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="camembert" def __init__( self : str , lowercase__ : str=3_05_22 , lowercase__ : Optional[int]=7_68 , lowercase__ : Optional[Any]=12 , lowercase__ : List[str]=12 , lowercase__ : Optional[int]=30_72 , lowercase__ : Any="gelu" , lowercase__ : List[str]=0.1 , lowercase__ : Tuple=0.1 , lowercase__ : Dict=5_12 , lowercase__ : Union[str, Any]=2 , lowercase__ : Optional[int]=0.0_2 , lowercase__ : Tuple=1e-12 , lowercase__ : List[Any]=1 , lowercase__ : Tuple=0 , lowercase__ : Tuple=2 , lowercase__ : Optional[Any]="absolute" , lowercase__ : str=True , lowercase__ : Optional[int]=None , **lowercase__ : str , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
225
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCAmelCase = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], 'do_convert_rgb': True, } _lowerCAmelCase = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : Any ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **lowercase__ : List[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **lowercase__ : Tuple ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase__ ) self.assertIsInstance(processor_fast.tokenizer , lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase__ ) self.assertIsInstance(processor_fast.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase__ ) _lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=lowercase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase__ , return_tensors='np' ) _lowerCAmelCase = processor(images=lowercase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = processor(text=lowercase__ ) _lowerCAmelCase = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowercase__ ) _lowerCAmelCase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = ChineseCLIPProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) _lowerCAmelCase = 'Alexandra,T-shirt的价格是15便士。' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
225
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __UpperCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class a ( datasets.BuilderConfig ): snake_case__ = 1_0_0_0_0 snake_case__ = None snake_case__ = None class a ( datasets.ArrowBasedBuilder ): snake_case__ = ParquetConfig def UpperCamelCase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_snake_case , (str, list, tuple) ): lowerCAmelCase = data_files if isinstance(_snake_case , _snake_case ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(_snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_snake_case , _snake_case ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(_snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_snake_case ): with open(_snake_case , 'rb' ) as f: lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(_snake_case ) ) break splits.append(datasets.SplitGenerator(name=_snake_case , gen_kwargs={'files': files} ) ) return splits def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase = table_cast(_snake_case , self.info.features.arrow_schema ) return pa_table def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case ) ): with open(_snake_case , 'rb' ) as f: lowerCAmelCase = pq.ParquetFile(_snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(_snake_case ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(_snake_case )}: {e}' ) raise
4
from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) SCREAMING_SNAKE_CASE_ : Tuple =nums[0] for i in range(1 , len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ : Any =nums[i] SCREAMING_SNAKE_CASE_ : Optional[int] =max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowercase = int(input("""Enter number of elements : """).strip()) _lowercase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
443
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase :Tuple = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :str = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
278
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase :int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') __lowerCAmelCase :Union[str, Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __lowerCAmelCase :Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a: lowerCamelCase__ :Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) lowerCamelCase__ :Optional[str] = field(default=__A , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ :Optional[str] = field(default=__A , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ :Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ :int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) lowerCamelCase__ :float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) lowerCamelCase__ :Optional[int] = field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ :Optional[int] = field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase ( self ) -> List[Any]: '''simple docstring''' _snake_case : List[Any] = {} if self.train_dir is not None: _snake_case : int = self.train_dir if self.validation_dir is not None: _snake_case : str = self.validation_dir _snake_case : Optional[int] = data_files if data_files else None @dataclass class _a: lowerCamelCase__ :str = field( default=__A , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__A )} , ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) lowerCamelCase__ :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ :str = field(default=__A , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ :bool = field( default=__A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ :Optional[int] = field( default=__A , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) lowerCamelCase__ :Optional[int] = field( default=__A , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) lowerCamelCase__ :Optional[int] = field( default=__A , metadata={'help': 'Stride to use for the encoder.'} , ) class _a: def __init__( self , __snake_case=1_9_2 , __snake_case=3_2 , __snake_case=4 , __snake_case=0.6 ) -> Union[str, Any]: '''simple docstring''' _snake_case : Optional[int] = input_size _snake_case : Optional[int] = mask_patch_size _snake_case : Optional[Any] = model_patch_size _snake_case : Any = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _snake_case : Optional[int] = self.input_size // self.mask_patch_size _snake_case : Optional[int] = self.mask_patch_size // self.model_patch_size _snake_case : List[str] = self.rand_size**2 _snake_case : Any = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> Tuple: '''simple docstring''' _snake_case : Optional[Any] = np.random.permutation(self.token_count )[: self.mask_count] _snake_case : Dict = np.zeros(self.token_count , dtype=__snake_case ) _snake_case : Any = 1 _snake_case : Tuple = mask.reshape((self.rand_size, self.rand_size) ) _snake_case : List[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def A ( UpperCAmelCase ): _snake_case : List[Any] = torch.stack([example["pixel_values"] for example in examples] ) _snake_case : Any = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , UpperCAmelCase , UpperCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Any = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase ) transformers.utils.logging.set_verbosity(UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _snake_case : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case : str = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase ) and data_args.train_val_split > 0.0: _snake_case : Tuple = ds["train"].train_test_split(data_args.train_val_split ) _snake_case : List[str] = split["train"] _snake_case : Optional[Any] = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : Optional[int] = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCAmelCase ) elif model_args.model_name_or_path: _snake_case : int = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: _snake_case : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCAmelCase , "decoder_type" ): _snake_case : Tuple = "simmim" # adapt config _snake_case : List[Any] = model_args.image_size if model_args.image_size is not None else config.image_size _snake_case : Optional[Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size _snake_case : str = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _snake_case : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase ) elif model_args.model_name_or_path: _snake_case : List[str] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: _snake_case : str = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _snake_case : Optional[Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _snake_case : Union[str, Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _snake_case : Any = AutoModelForMaskedImageModeling.from_config(UpperCAmelCase ) if training_args.do_train: _snake_case : Optional[int] = ds["train"].column_names else: _snake_case : List[str] = ds["validation"].column_names if data_args.image_column_name is not None: _snake_case : Dict = data_args.image_column_name elif "image" in column_names: _snake_case : Tuple = "image" elif "img" in column_names: _snake_case : str = "img" else: _snake_case : Dict = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _snake_case : str = Compose( [ Lambda(lambda UpperCAmelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _snake_case : List[str] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCAmelCase ): _snake_case : str = [transforms(UpperCAmelCase ) for image in examples[image_column_name]] _snake_case : List[Any] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _snake_case : Dict = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _snake_case : Union[str, Any] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase ) # Initialize our trainer _snake_case : int = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: _snake_case : Dict = None if training_args.resume_from_checkpoint is not None: _snake_case : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : Optional[int] = last_checkpoint _snake_case : Optional[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case : Optional[Any] = trainer.evaluate() trainer.log_metrics("eval" , UpperCAmelCase ) trainer.save_metrics("eval" , UpperCAmelCase ) # Write model card and (optionally) push to hub _snake_case : Optional[Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase ) else: trainer.create_model_card(**UpperCAmelCase ) if __name__ == "__main__": main()
278
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class __snake_case ( _lowercase): snake_case__ : Tuple = "timm_backbone" def __init__( self : Union[str, Any] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = backbone _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[int] = features_only _lowerCamelCase : List[Any] = use_pretrained_backbone _lowerCamelCase : int = True _lowerCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
83
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _snake_case = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'AutoTokenizer' __lowerCamelCase = ['tokenizer'] __lowerCamelCase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self :Dict , _lowercase :List[str] , _lowercase :List[Any]=None ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = speaker_embeddings @classmethod def UpperCAmelCase ( cls :Any , _lowercase :int , _lowercase :str="speaker_embeddings_path.json" , **_lowercase :List[str] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: lowercase__ = get_file_from_repo( _lowercase , _lowercase , subfolder=kwargs.pop("subfolder" , _lowercase ) , cache_dir=kwargs.pop("cache_dir" , _lowercase ) , force_download=kwargs.pop("force_download" , _lowercase ) , proxies=kwargs.pop("proxies" , _lowercase ) , resume_download=kwargs.pop("resume_download" , _lowercase ) , local_files_only=kwargs.pop("local_files_only" , _lowercase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowercase ) , revision=kwargs.pop("revision" , _lowercase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_lowercase , _lowercase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowercase__ = None else: with open(_lowercase ) as speaker_embeddings_json: lowercase__ = json.load(_lowercase ) else: lowercase__ = None lowercase__ = AutoTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(tokenizer=_lowercase , speaker_embeddings=_lowercase ) def UpperCAmelCase ( self :Any , _lowercase :Any , _lowercase :List[str]="speaker_embeddings_path.json" , _lowercase :Any="speaker_embeddings" , _lowercase :bool = False , **_lowercase :Any , ): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_lowercase , _lowercase , "v2" ) , exist_ok=_lowercase ) lowercase__ = {} lowercase__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase__ = self._load_voice_preset(_lowercase ) lowercase__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , _lowercase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_lowercase , ) lowercase__ = os.path.join(_lowercase , f'''{prompt_key}_{key}.npy''' ) lowercase__ = tmp_dict with open(os.path.join(_lowercase , _lowercase ) , "w" ) as fp: json.dump(_lowercase , _lowercase ) super().save_pretrained(_lowercase , _lowercase , **_lowercase ) def UpperCAmelCase ( self :Optional[int] , _lowercase :str = None , **_lowercase :List[Any] ): '''simple docstring''' lowercase__ = self.speaker_embeddings[voice_preset] lowercase__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowercase__ = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , _lowercase ) , cache_dir=kwargs.pop("cache_dir" , _lowercase ) , force_download=kwargs.pop("force_download" , _lowercase ) , proxies=kwargs.pop("proxies" , _lowercase ) , resume_download=kwargs.pop("resume_download" , _lowercase ) , local_files_only=kwargs.pop("local_files_only" , _lowercase ) , use_auth_token=kwargs.pop("use_auth_token" , _lowercase ) , revision=kwargs.pop("revision" , _lowercase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowercase__ = np.load(_lowercase ) return voice_preset_dict def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self :Optional[Any] , _lowercase :Optional[Any]=None , _lowercase :List[str]=None , _lowercase :List[str]="pt" , _lowercase :List[Any]=2_56 , _lowercase :List[str]=False , _lowercase :Union[str, Any]=True , _lowercase :Dict=False , **_lowercase :Tuple , ): '''simple docstring''' if voice_preset is not None and not isinstance(_lowercase , _lowercase ): if ( isinstance(_lowercase , _lowercase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase__ = self._load_voice_preset(_lowercase ) else: if isinstance(_lowercase , _lowercase ) and not voice_preset.endswith(".npz" ): lowercase__ = voice_preset + ".npz" lowercase__ = np.load(_lowercase ) if voice_preset is not None: self._validate_voice_preset_dict(_lowercase , **_lowercase ) lowercase__ = BatchFeature(data=_lowercase , tensor_type=_lowercase ) lowercase__ = self.tokenizer( _lowercase , return_tensors=_lowercase , padding="max_length" , max_length=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) if voice_preset is not None: lowercase__ = voice_preset return encoded_text
655
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("""foo.json""",)] ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Any = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) snake_case : Optional[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = AutoConfig.from_pretrained("""gpt2""" ) snake_case : Optional[int] = GenerationConfig.from_model_config(A ) snake_case : Dict = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase ( self ) -> Dict: snake_case : List[Any] = GenerationConfig() snake_case : Union[str, Any] = { """max_new_tokens""": 1_0_2_4, """foo""": """bar""", } snake_case : int = copy.deepcopy(A ) snake_case : Optional[Any] = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {"""foo""": """bar"""} ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = GenerationConfig() snake_case : Optional[int] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(A ) snake_case : str = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) snake_case : int = GenerationConfig.from_model_config(A ) assert not hasattr(A , """foo""" ) # no new kwargs should be initialized if from config def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) snake_case : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) snake_case : Any = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> str: snake_case : int = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) snake_case : str = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""test-generation-config""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Optional[int] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A , A , A ) -> Optional[Any]: self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for a, b in zip(lowercase__ , lowercase__ ): self.assertAlmostEqual(lowercase__ , lowercase__ , delta=lowercase__ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowercase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[int] = None ops.enable_eager_execution_internal() _UpperCAmelCase : Optional[Any] = tf.config.list_physical_devices('''CPU''' ) if len(lowercase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _UpperCAmelCase : Dict = tf.config.list_logical_devices(device_type='''CPU''' ) _UpperCAmelCase : Optional[Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _UpperCAmelCase : List[str] = GradientAccumulator() _UpperCAmelCase : List[str] = tf.Variable([4.0, 3.0] ) _UpperCAmelCase , _UpperCAmelCase : Any = create_optimizer(5E-5 , 1_0 , 5 ) _UpperCAmelCase : Optional[int] = tf.Variable([0.0, 0.0] , trainable=lowercase__ ) def accumulate_on_replica(A ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A , A ): with strategy.scope(): _UpperCAmelCase : int = strategy.experimental_local_results(lowercase__ ) local_variables[0].assign(lowercase__ ) local_variables[1].assign(lowercase__ ) strategy.run(lowercase__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowercase__ ) def _check_local_values(A , A ): _UpperCAmelCase : Dict = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowercase__ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , lowercase__ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
506
from __future__ import annotations from random import choice def __a ( SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' return choice(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = random_pivot(SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time __UpperCAmelCase = [e for e in lst if e < pivot] __UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(SCREAMING_SNAKE_CASE , k - len(SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
303
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _SCREAMING_SNAKE_CASE ( *snake_case_ , snake_case_ = None , snake_case_=True , snake_case_=2 ): from .. import __version__ _lowercase = take_from _lowercase = () if not isinstance(args[0] , snake_case_ ): _lowercase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case_ ).base_version ) >= version.parse(snake_case_ ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) _lowercase = None if isinstance(snake_case_ , snake_case_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case_ ),) _lowercase = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(snake_case_ , snake_case_ ): values += (getattr(snake_case_ , snake_case_ ),) _lowercase = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _lowercase = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _lowercase = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , snake_case_ , stacklevel=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) > 0: _lowercase = inspect.getouterframes(inspect.currentframe() )[1] _lowercase = call_frame.filename _lowercase = call_frame.lineno _lowercase = call_frame.function _lowercase , _lowercase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(snake_case_ ) == 0: return elif len(snake_case_ ) == 1: return values[0] return values
704
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ = 100 ): _lowercase = set() _lowercase = 0 _lowercase = n + 1 # maximum limit for a in range(2 , snake_case_ ): for b in range(2 , snake_case_ ): _lowercase = a**b # calculates the current power collect_powers.add(snake_case_ ) # adds the result to the set return len(snake_case_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
572
0
import csv import tweepy # Twitter API credentials SCREAMING_SNAKE_CASE_ : List[str] = '''''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''''' SCREAMING_SNAKE_CASE_ : List[Any] = '''''' def SCREAMING_SNAKE_CASE ( snake_case ) -> None: # authorize twitter, initialize tweepy __lowercase = tweepy.OAuthHandler(__UpperCAmelCase , __UpperCAmelCase ) auth.set_access_token(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tweepy.API(__UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=__UpperCAmelCase , count=200 ) # save most recent tweets alltweets.extend(__UpperCAmelCase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__UpperCAmelCase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=__UpperCAmelCase , count=200 , max_id=__UpperCAmelCase ) # save most recent tweets alltweets.extend(__UpperCAmelCase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"...{len(__UpperCAmelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , 'w' ) as f: __lowercase = csv.writer(__UpperCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(__UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
375
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> list: lowerCAmelCase__ : List[Any] = len(__UpperCAmelCase ) for i in range(1 , __UpperCAmelCase ): lowerCAmelCase__ : List[Any] = collection[i] lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = i - 1 while low <= high: lowerCAmelCase__ : str = (low + high) // 2 if val < collection[mid]: lowerCAmelCase__ : List[Any] = mid - 1 else: lowerCAmelCase__ : Optional[int] = mid + 1 for j in range(__UpperCAmelCase , __UpperCAmelCase , -1 ): lowerCAmelCase__ : Dict = collection[j - 1] lowerCAmelCase__ : Union[str, Any] = val return collection if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() _A = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
299
0
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 13 , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_=[16, 32, 64, 1_28] , SCREAMING_SNAKE_CASE_ = 7 , SCREAMING_SNAKE_CASE_ = 4 , SCREAMING_SNAKE_CASE_ = 37 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_ = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride SCREAMING_SNAKE_CASE_ = num_attention_outputs SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = embed_dim + 1 SCREAMING_SNAKE_CASE_ = resolution SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = dim SCREAMING_SNAKE_CASE_ = mlp_expansion_ratio def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def _lowercase (self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case ( __lowercase , __lowercase , unittest.TestCase ): UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFEfficientFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _lowercase (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def _lowercase (self ): """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def _lowercase (self ): """simple docstring""" pass def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) if hasattr(self.model_tester , '''encoder_seq_length''' ): SCREAMING_SNAKE_CASE_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''' ) and self.model_tester.chunk_length > 1: SCREAMING_SNAKE_CASE_ = seq_length * self.model_tester.chunk_length else: SCREAMING_SNAKE_CASE_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: SCREAMING_SNAKE_CASE_ = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''seq_length''' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''decoder_seq_length''' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''seq_length''' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''encoder_seq_length''' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''key_length''' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , '''chunk_length''' , SCREAMING_SNAKE_CASE_ ) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes''' ): SCREAMING_SNAKE_CASE_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes SCREAMING_SNAKE_CASE_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs_dict is not None ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def _lowercase (self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
628
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = TransfoXLTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase (self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE_ = '''<unk> unwanted, running''' return input_text, output_text def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [0, 4, 8, 7] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE_ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE_ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
628
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' try: _a : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _a : Any = default else: # KEY is set, convert it to True or False. try: _a : int = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value _snake_case = parse_flag_from_env('RUN_SLOW', default=False) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' if test_case is None: return partial(UpperCamelCase__ , version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version(""">=""" , UpperCamelCase__ ) , F"""test requires torch version >= {version}""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(UpperCamelCase__ ) _snake_case = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(UpperCamelCase__ ) class UpperCamelCase ( unittest.TestCase ): UpperCamelCase : Any = True @classmethod def _lowercase ( cls : Union[str, Any] ) -> str: _a : Union[str, Any] = tempfile.mkdtemp() @classmethod def _lowercase ( cls : int ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowercase ( self : Dict ) -> List[str]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[Any] , UpperCAmelCase__ : Union[mock.Mock, List[mock.Mock]] ) -> str: _a : List[Any] = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = AcceleratorState() _a : Union[str, Any] = tensor[None].clone().to(state.device ) _a : Optional[Any] = gather(UpperCamelCase__ ).cpu() _a : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCamelCase__ ): return False return True class UpperCamelCase : def __init__( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) -> Dict: _a : Tuple = returncode _a : Tuple = stdout _a : str = stderr async def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' while True: _a : Optional[int] = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(UpperCamelCase__ ) ) _a : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _a : Dict = [] _a : Tuple = [] def tee(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="" ): _a : Any = line.decode("""utf-8""" ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=1_8_0 , UpperCamelCase__=False , UpperCamelCase__=True ): '''simple docstring''' _a : Tuple = asyncio.get_event_loop() _a : str = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) _a : Optional[Any] = """ """.join(UpperCamelCase__ ) if result.returncode > 0: _a : Optional[int] = """\n""".join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): pass def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' try: _a : Union[str, Any] = subprocess.check_output(UpperCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__ , """decode""" ): _a : Union[str, Any] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
389
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] def __init__( self :Any , UpperCamelCase__ :Tuple="</s>" , UpperCamelCase__ :str="<unk>" , UpperCamelCase__ :List[Any]="<pad>" , UpperCamelCase__ :Optional[int]=125 , UpperCamelCase__ :Union[str, Any]=None , **UpperCamelCase__ :List[Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _a = [f'<extra_id_{i}>' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _a = len(set(filter(lambda UpperCamelCase__ : bool("extra_id" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) _a = extra_ids _a = 2**8 # utf is 8 bits # define special tokens dict _a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _a = len(self.special_tokens_encoder ) _a = len(UpperCamelCase__ ) for i, token in enumerate(UpperCamelCase__ ): _a = self.vocab_size + i - n _a = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self :Any ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None , UpperCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] ): if len(UpperCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = self._add_eos_if_not_present(UpperCamelCase__ ) if token_ids_a is None: return token_ids_a else: _a = self._add_eos_if_not_present(UpperCamelCase__ ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :str ): _a = [chr(UpperCamelCase__ ) for i in text.encode("utf-8" )] return tokens def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[Any] ): if token in self.special_tokens_encoder: _a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _a = self.added_tokens_encoder[token] elif len(UpperCamelCase__ ) != 1: _a = self.unk_token_id else: _a = ord(UpperCamelCase__ ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :List[str] ): if index in self.special_tokens_decoder: _a = self.special_tokens_decoder[index] else: _a = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Any ): _a = B"" for token in tokens: if token in self.special_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _a = token.encode("utf-8" ) elif token in self.added_tokens_encoder: _a = token.encode("utf-8" ) else: _a = bytes([ord(UpperCamelCase__ )] ) bstring += tok_string _a = bstring.decode("utf-8" , errors="ignore" ) return string def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[str] = None ): return ()
388
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : int = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _A : List[str] = logging.get_logger(__name__) _A : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _A : int = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _A : Dict = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase: Optional[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __lowerCamelCase: List[str] = bs[:] __lowerCamelCase: Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 __lowerCamelCase: List[Any] = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def __lowerCAmelCase ( snake_case : List[str] ) -> str: __lowerCamelCase: int = set() __lowerCamelCase: str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase: Any = char return pairs class a ( _UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict="replace" , SCREAMING_SNAKE_CASE_ : Dict="<s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : int=False , **SCREAMING_SNAKE_CASE_ : List[str] , ): __lowerCamelCase: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token __lowerCamelCase: Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token __lowerCamelCase: List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token __lowerCamelCase: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token __lowerCamelCase: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token __lowerCamelCase: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase: List[str] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase: str = json.load(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[Any] = {v: k for k, v in self.encoder.items()} __lowerCamelCase: Any = errors # how to handle errors in decoding __lowerCamelCase: List[Any] = bytes_to_unicode() __lowerCamelCase: Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase: List[Any] = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase: Tuple = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase: str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase: List[str] = {} __lowerCamelCase: Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase: str = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Any ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): if token in self.cache: return self.cache[token] __lowerCamelCase: List[str] = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: __lowerCamelCase: List[str] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase: List[str] = bigram __lowerCamelCase: Optional[int] = [] __lowerCamelCase: Optional[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: __lowerCamelCase: int = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase: Tuple = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase: Optional[int] = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: __lowerCamelCase: Tuple = get_pairs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = """ """.join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Any = word return word def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Any ): __lowerCamelCase: Any = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase: int = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Tuple ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str ): return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCamelCase: Any = """""".join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase: str = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + """\n""" ) __lowerCamelCase: List[str] = 0 with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase: Tuple = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE_ ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase: List[str] = [self.cls_token_id] __lowerCamelCase: int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): __lowerCamelCase: int = [self.sep_token_id] __lowerCamelCase: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCamelCase: Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): __lowerCamelCase: Dict = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[Dict[str, EncodedInput], BatchEncoding] , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ): __lowerCamelCase: Optional[Any] = super()._pad( encoded_inputs=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding_strategy=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) # Load from model defaults if return_attention_mask is None: __lowerCamelCase: Optional[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowerCamelCase: List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowerCamelCase: str = len(encoded_inputs["""global_attention_mask"""] ) != len(SCREAMING_SNAKE_CASE_ ) if needs_to_be_padded: __lowerCamelCase: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowerCamelCase: str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __lowerCamelCase: Optional[int] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
189
0
def a_ ( ) -> Optional[Any]: """simple docstring""" for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def a_ ( UpperCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase = 1 lowerCamelCase = 2 while i * i <= n: lowerCamelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def a_ ( ) -> Any: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase_ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
246
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase : Tuple = 1.0_5457_1817e-34 # unit of ℏ : J * s _lowerCAmelCase : int = 3e8 # unit of c : m * s^-1 def a_ ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
246
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : int ) -> list[int]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = 2 lowerCAmelCase_ :Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase__ ) if n > 1: factors.append(lowercase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
256
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( lowercase__ : str ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(lowercase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[str] = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , **__A , ) -> None: super().__init__(**__A ) lowerCAmelCase_ :Tuple = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase_ :Dict = get_size_dict(__A , default_to_square=__A ) lowerCAmelCase_ :int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase_ :Tuple = get_size_dict(__A , param_name="""crop_size""" ) lowerCAmelCase_ :Union[str, Any] = do_resize lowerCAmelCase_ :Optional[int] = size lowerCAmelCase_ :Union[str, Any] = do_center_crop lowerCAmelCase_ :Union[str, Any] = crop_size lowerCAmelCase_ :Optional[Any] = resample lowerCAmelCase_ :int = do_rescale lowerCAmelCase_ :Dict = rescale_factor lowerCAmelCase_ :List[str] = do_normalize lowerCAmelCase_ :Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ :List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> np.ndarray: lowerCAmelCase_ :List[Any] = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" in size: lowerCAmelCase_ :Optional[Any] = get_resize_output_image_size(__A , size["""shortest_edge"""] , default_to_square=__A ) elif "height" in size and "width" in size: lowerCAmelCase_ :Any = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: lowerCAmelCase_ :Any = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> Optional[int]: return rescale(__A , scale=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def __lowerCAmelCase ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ :List[Any] = to_numpy_array(__A ) if do_resize: lowerCAmelCase_ :List[Any] = self.resize(image=__A , size=__A , resample=__A ) if do_center_crop: lowerCAmelCase_ :List[Any] = self.center_crop(__A , size=__A ) if do_rescale: lowerCAmelCase_ :int = self.rescale(image=__A , scale=__A ) if do_normalize: lowerCAmelCase_ :str = self.normalize(image=__A , mean=__A , std=__A ) lowerCAmelCase_ :Tuple = to_channel_dimension_format(__A , __A ) return image def __lowerCAmelCase ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: lowerCAmelCase_ :Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ :int = resample if resample is not None else self.resample lowerCAmelCase_ :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ :Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ :Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ :Tuple = image_std if image_std is not None else self.image_std lowerCAmelCase_ :Tuple = size if size is not None else self.size lowerCAmelCase_ :str = get_size_dict(__A , default_to_square=__A ) lowerCAmelCase_ :Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ :List[str] = get_size_dict(__A , param_name="""crop_size""" ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase_ :List[Any] = make_batched(__A ) lowerCAmelCase_ :Dict = [ [ self._preprocess_image( image=__A , do_resize=__A , size=__A , resample=__A , do_center_crop=__A , crop_size=__A , do_rescale=__A , rescale_factor=__A , do_normalize=__A , image_mean=__A , image_std=__A , data_format=__A , ) for img in video ] for video in videos ] lowerCAmelCase_ :Optional[Any] = {"""pixel_values""": videos} return BatchFeature(data=__A , tensor_type=__A )
256
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class _snake_case ( SCREAMING_SNAKE_CASE__ ): lowerCamelCase__: Optional[int] = "ctrl" lowerCamelCase__: List[str] = ["past_key_values"] lowerCamelCase__: Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: int , __lowerCamelCase: Dict=24_65_34 , __lowerCamelCase: Dict=2_56 , __lowerCamelCase: List[str]=12_80 , __lowerCamelCase: Tuple=81_92 , __lowerCamelCase: List[str]=48 , __lowerCamelCase: Any=16 , __lowerCamelCase: Any=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Dict=1e-6 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Tuple=True , **__lowerCamelCase: str , ) -> str: __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[str] = n_positions __UpperCAmelCase : Union[str, Any] = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : List[Any] = n_head __UpperCAmelCase : Optional[int] = dff __UpperCAmelCase : str = resid_pdrop __UpperCAmelCase : Optional[Any] = embd_pdrop __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Optional[int] = use_cache super().__init__(**lowerCamelCase__ )
382
from typing import Any import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Any = v.conjugate().T A : List[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __UpperCamelCase ( ) -> None: """simple docstring""" A : Any = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A : str = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) A : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
662
0
from __future__ import annotations lowercase : Optional[int] = tuple[int, int, int] lowercase : Dict = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase : Tuple = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' lowercase : Optional[Any] = '''FOBHMDKEXQNRAULPGSJVTYICZW''' lowercase : Optional[Any] = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- lowercase : Optional[Any] = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- lowercase : Any = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' lowercase : Dict = '''SGLCPQWZHKXAREONTFBVIYJUDM''' lowercase : str = '''HVSICLTYKQUBXDWAJZOMFGPREN''' lowercase : List[Any] = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' lowercase : Tuple = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' lowercase : str = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def lowerCAmelCase__ ( _a : RotorPositionT , _a : RotorSelectionT , _a : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_a ) )) < 3: snake_case_ : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_a ) # Checks if rotor positions are valid snake_case_ : Tuple = rotpos if not 0 < rotorposa <= len(_a ): snake_case_ : int = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_a ) if not 0 < rotorposa <= len(_a ): snake_case_ : Dict = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_a ) if not 0 < rotorposa <= len(_a ): snake_case_ : Any = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_a ) # Validates string and returns dict snake_case_ : Optional[int] = _plugboard(_a ) return rotpos, rotsel, pbdict def lowerCAmelCase__ ( _a : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_a , _a ): snake_case_ : Union[str, Any] = F'''Plugboard setting isn\'t type string ({type(_a )})''' raise TypeError(_a ) elif len(_a ) % 2 != 0: snake_case_ : Optional[Any] = F'''Odd number of symbols ({len(_a )})''' raise Exception(_a ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique snake_case_ : Optional[int] = set() for i in pbstring: if i not in abc: snake_case_ : Optional[Any] = F'''\'{i}\' not in list of symbols''' raise Exception(_a ) elif i in tmppbl: snake_case_ : Optional[int] = F'''Duplicate symbol ({i})''' raise Exception(_a ) else: tmppbl.add(_a ) del tmppbl # Created the dictionary snake_case_ : Optional[int] = {} for j in range(0 , len(_a ) - 1 , 2 ): snake_case_ : Optional[int] = pbstring[j + 1] snake_case_ : int = pbstring[j] return pb def lowerCAmelCase__ ( _a : str , _a : RotorPositionT , _a : RotorSelectionT = (rotora, rotora, rotora) , _a : str = "" , ): snake_case_ : Dict = text.upper() snake_case_ : Union[str, Any] = _validator( _a , _a , plugb.upper() ) snake_case_ : List[str] = rotor_position snake_case_ : Dict = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 snake_case_ : Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: snake_case_ : Tuple = plugboard[symbol] # rotor ra -------------------------- snake_case_ : Dict = abc.index(_a ) + rotorposa snake_case_ : List[str] = rotora[index % len(_a )] # rotor rb -------------------------- snake_case_ : List[Any] = abc.index(_a ) + rotorposa snake_case_ : Tuple = rotora[index % len(_a )] # rotor rc -------------------------- snake_case_ : str = abc.index(_a ) + rotorposa snake_case_ : int = rotora[index % len(_a )] # reflector -------------------------- # this is the reason you don't need another machine to decipher snake_case_ : Any = reflector[symbol] # 2nd rotors snake_case_ : Any = abc[rotora.index(_a ) - rotorposa] snake_case_ : Optional[int] = abc[rotora.index(_a ) - rotorposa] snake_case_ : Any = abc[rotora.index(_a ) - rotorposa] # 2nd plugboard if symbol in plugboard: snake_case_ : int = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_a ): snake_case_ : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(_a ): snake_case_ : int = 0 rotorposa += 1 if rotorposa >= len(_a ): snake_case_ : Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_a ) return "".join(_a ) if __name__ == "__main__": lowercase : List[Any] = '''This is my Python script that emulates the Enigma machine from WWII.''' lowercase : str = (1, 1, 1) lowercase : Union[str, Any] = '''pictures''' lowercase : List[Any] = (rotora, rotora, rotora) lowercase : str = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
704
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['image_processor', 'tokenizer'] A : List[Any] = 'ViltImageProcessor' A : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: snake_case_ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) snake_case_ : str = kwargs.pop("feature_extractor" ) snake_case_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: snake_case_ : List[Any] = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask snake_case_ : str = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.tokenizer.model_input_names snake_case_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _lowerCAmelCase ( self ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor
114
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): _lowerCAmelCase = 'trocr' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__(self , _lowercase=50265 , _lowercase=1024 , _lowercase=12 , _lowercase=16 , _lowercase=4096 , _lowercase="gelu" , _lowercase=512 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=2 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , **_lowercase , ): '''simple docstring''' __a : List[Any] = vocab_size __a : Any = d_model __a : str = decoder_layers __a : Any = decoder_attention_heads __a : Dict = decoder_ffn_dim __a : Optional[Any] = activation_function __a : List[str] = max_position_embeddings __a : List[str] = dropout __a : List[str] = attention_dropout __a : Tuple = activation_dropout __a : int = init_std __a : str = decoder_layerdrop __a : Optional[int] = use_cache __a : List[Any] = scale_embedding __a : Optional[int] = use_learned_position_embeddings __a : Union[str, Any] = layernorm_embedding super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
581
'''simple docstring''' def _A ( snake_case = 60_08_51_47_51_43 ) -> int: try: _lowercase : str = int(snake_case ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _lowercase : Union[str, Any] = 2 _lowercase : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowercase : Optional[Any] = i while n % i == 0: _lowercase : Dict = n // i i += 1 return int(snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
245
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] __lowerCamelCase : Any = DisjunctiveConstraint(UpperCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase__ ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase__ ): DisjunctiveConstraint(UpperCAmelCase__ ) # fails here def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] __lowerCamelCase : Tuple = DisjunctiveConstraint(UpperCAmelCase__ ) __lowerCamelCase : Union[str, Any] = dc.update(1 ) __lowerCamelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCamelCase : Dict = dc.update(2 ) __lowerCamelCase : Tuple = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCamelCase : List[Any] = dc.update(3 ) __lowerCamelCase : List[str] = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCamelCase : Dict = DisjunctiveConstraint(UpperCAmelCase__ ) __lowerCamelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCamelCase : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCamelCase : Optional[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCamelCase : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCamelCase : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCamelCase : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCamelCase : Tuple = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
718
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ): super().__init__() __lowerCamelCase : List[Any] = nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) __lowerCamelCase : str = nn.Embedding(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : str = nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder __lowerCamelCase : List[str] = DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Optional[int] = self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : int = torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : Optional[Any] = self.position_encoding(UpperCAmelCase ) __lowerCamelCase : List[str] = self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(UpperCAmelCase ) # decoder: No padding present. __lowerCamelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Optional[Any] = [(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : List[Any] = lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] __lowerCamelCase : Dict = self.decoder_norm(UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.post_dropout(UpperCAmelCase ) __lowerCamelCase : str = self.spec_out(UpperCAmelCase ) return spec_out class _snake_case ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , ): __lowerCamelCase : Union[str, Any] = self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : Dict = self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : List[Any] = self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ): super().__init__() __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : Tuple = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , ): # pre_self_attention_layer_norm __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Optional[Any] = self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block __lowerCamelCase : Optional[Any] = self.attention(UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] ): super().__init__() __lowerCamelCase : str = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : List[Any] = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , ): __lowerCamelCase : str = self.layer_norm(UpperCAmelCase ) __lowerCamelCase : Dict = self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : List[str] = hidden_states + self.dropout(UpperCAmelCase ) return layer_output class _snake_case ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : str = TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Dict = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Union[str, Any] = self.film(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = self.DenseReluDense(UpperCAmelCase ) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = NewGELUActivation() def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.act(self.wi_a(UpperCAmelCase ) ) __lowerCamelCase : Any = self.wi_a(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = hidden_gelu * hidden_linear __lowerCamelCase : Any = self.dropout(UpperCAmelCase ) __lowerCamelCase : List[Any] = self.wo(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(UpperCAmelCase ) ) __lowerCamelCase : Tuple = eps def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def lowerCamelCase__ ( self : str , UpperCAmelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class _snake_case ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ): super().__init__() __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): __lowerCamelCase : Optional[Any] = self.scale_bias(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Dict = torch.chunk(UpperCAmelCase , 2 , -1 ) __lowerCamelCase : List[Any] = x * (1 + scale) + shift return x
366
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (a_ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
450
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def A (__lowerCamelCase :List[Any] , __lowerCamelCase :List[Any] , __lowerCamelCase :str=8 ): _lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A (__lowerCamelCase :str , __lowerCamelCase :Union[str, Any]=512 , __lowerCamelCase :int=512 ): _lowerCAmelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCAmelCase = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase = arr.astype(np.floataa ) / 127.5 - 1 _lowerCAmelCase = np.transpose(__lowerCamelCase , [2, 0, 1] ) _lowerCAmelCase = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) return image class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase , _lowercase , ): """simple docstring""" super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) _lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): """simple docstring""" if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}' ) _lowerCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) _lowerCAmelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase = image else: if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(_lowercase , _lowercase ): _lowerCAmelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowercase ) ] _lowerCAmelCase = torch.cat(_lowercase , dim=0 ) else: _lowerCAmelCase = self.movq.encode(_lowercase ).latent_dist.sample(_lowercase ) _lowerCAmelCase = self.movq.config.scaling_factor * init_latents _lowerCAmelCase = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase = init_latents.shape _lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents _lowerCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = init_latents return latents def _lowercase ( self , _lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) _lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def _lowercase ( self , _lowercase=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. _lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self ): """simple docstring""" if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 100 , _lowercase = 4.0 , _lowercase = 0.3 , _lowercase = 1 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" _lowerCAmelCase = self._execution_device _lowerCAmelCase = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = torch.cat(_lowercase , dim=0 ) _lowerCAmelCase = image_embeds.shape[0] if isinstance(_lowercase , _lowercase ): _lowerCAmelCase = torch.cat(_lowercase , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase = image_embeds.repeat_interleave(_lowercase , dim=0 ) _lowerCAmelCase = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) _lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) if not isinstance(_lowercase , _lowercase ): _lowerCAmelCase = [image] if not all(isinstance(_lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'Input is in incorrect format: {[type(_lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) _lowerCAmelCase = torch.cat([prepare_image(_lowercase , _lowercase , _lowercase ) for i in image] , dim=0 ) _lowerCAmelCase = image.to(dtype=image_embeds.dtype , device=_lowercase ) _lowerCAmelCase = self.movq.encode(_lowercase )["""latents"""] _lowerCAmelCase = latents.repeat_interleave(_lowercase , dim=0 ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) _lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) _lowerCAmelCase = self.prepare_latents( _lowercase , _lowercase , _lowercase , _lowercase , image_embeds.dtype , _lowercase , _lowercase ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase = {"""image_embeds""": image_embeds} _lowerCAmelCase = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase = variance_pred.chunk(2 ) _lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing _lowerCAmelCase = self.movq.decode(_lowercase , force_not_quantize=_lowercase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _lowerCAmelCase = image * 0.5 + 0.5 _lowerCAmelCase = image.clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
716
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int] ): if len(__lowerCamelCase ) == 0: return array _lowerCAmelCase , _lowerCAmelCase = min(__lowerCamelCase ), max(__lowerCamelCase ) # Compute the variables _lowerCAmelCase = _max - _min + 1 _lowerCAmelCase , _lowerCAmelCase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCAmelCase = i - _min _lowerCAmelCase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCAmelCase = 0 for i in range(__lowerCamelCase ): while holes_repeat[i] > 0: _lowerCAmelCase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""") _lowercase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
162
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : def __init__(self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=3_0 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1_0 , lowerCamelCase__=0.0_2 , lowerCamelCase__=3 , lowerCamelCase__=0.6 , lowerCamelCase__=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = mask_ratio A__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A (self ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def A (self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = model(lowerCamelCase__ ) A__ = (self.image_size // self.patch_size) ** 2 A__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A__ = 1 A__ = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(lowerCamelCase__ ) A__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def A (self ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ ,A__ ,A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase): __lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowerCamelCase = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def A (self ): """simple docstring""" A__ = ViTMAEModelTester(self ) A__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=3_7 ) def A (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def A (self ): """simple docstring""" pass def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowerCamelCase__ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" # make masks reproducible np.random.seed(2 ) A__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A__ = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A__ = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) A__ = outputs[0].cpu().numpy() A__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) A__ = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans A__ = after_outputs[0].cpu().numpy() A__ = 0 A__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A (self ): """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A (self ): """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def A (self ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def A (self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A (self ): """simple docstring""" pass @slow def A (self ): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( ): A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase): @cached_property def A (self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def A (self ): """simple docstring""" # make random mask reproducible across the PT and TF model np.random.seed(2 ) A__ = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCamelCase__ ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A__ = ViTMAEConfig() A__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A__ = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits A__ = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) A__ = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1E-4 ) )
574
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=__snake_case): __lowerCamelCase = ["torch", "torchsde"] def __init__(self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def A (cls , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def A (cls , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] )
574
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _snake_case = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _snake_case = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" _snake_case = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase_ ( A : Optional[int] ): """simple docstring""" def remove_articles(A : Union[str, Any] ): lowerCAmelCase_ = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(A , ''' ''' , A ) def white_space_fix(A : int ): return " ".join(text.split() ) def remove_punc(A : str ): lowerCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A ) ) ) ) def lowerCamelCase_ ( A : Optional[Any] , A : int ): """simple docstring""" return int(normalize_answer(A ) == normalize_answer(A ) ) def lowerCamelCase_ ( A : Tuple , A : Optional[int] ): """simple docstring""" lowerCAmelCase_ = [any(compute_exact(A , A ) for ref in refs ) for pred, refs in zip(A , A )] return (sum(A ) / len(A )) * 1_00 def lowerCamelCase_ ( A : Dict , A : Tuple , A : List[Any] , A : Union[str, Any] ): """simple docstring""" lowerCAmelCase_ = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCAmelCase_ = Counter(A ) lowerCAmelCase_ = Counter(A ) lowerCAmelCase_ = Counter() for sgram, scount in sgramcounter.items(): lowerCAmelCase_ = scount * numref lowerCAmelCase_ = Counter(A ) lowerCAmelCase_ = Counter() for cgram, ccount in cgramcounter.items(): lowerCAmelCase_ = ccount * numref # KEEP lowerCAmelCase_ = sgramcounter_rep & cgramcounter_rep lowerCAmelCase_ = keepgramcounter_rep & rgramcounter lowerCAmelCase_ = sgramcounter_rep & rgramcounter lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 if len(A ) > 0: lowerCAmelCase_ = keeptmpscorea / len(A ) if len(A ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCAmelCase_ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCAmelCase_ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCAmelCase_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCAmelCase_ = sgramcounter_rep - cgramcounter_rep lowerCAmelCase_ = delgramcounter_rep - rgramcounter lowerCAmelCase_ = sgramcounter_rep - rgramcounter lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase_ = 1 if len(A ) > 0: lowerCAmelCase_ = deltmpscorea / len(A ) # ADDITION lowerCAmelCase_ = set(A ) - set(A ) lowerCAmelCase_ = set(A ) & set(A ) lowerCAmelCase_ = set(A ) - set(A ) lowerCAmelCase_ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 if len(A ) > 0: lowerCAmelCase_ = addtmpscore / len(A ) if len(A ) > 0: lowerCAmelCase_ = addtmpscore / len(A ) lowerCAmelCase_ = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCAmelCase_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase_ ( A : Dict , A : Dict , A : List[str] ): """simple docstring""" lowerCAmelCase_ = len(A ) lowerCAmelCase_ = ssent.split(''' ''' ) lowerCAmelCase_ = csent.split(''' ''' ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] for rsent in rsents: lowerCAmelCase_ = rsent.split(''' ''' ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] ragramslist.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: lowerCAmelCase_ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(A ) if i < len(A ) - 2: lowerCAmelCase_ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(A ) if i < len(A ) - 3: lowerCAmelCase_ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(A ) ragramslist.append(A ) ragramslist.append(A ) ragramslist.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: lowerCAmelCase_ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(A ) if i < len(A ) - 2: lowerCAmelCase_ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(A ) if i < len(A ) - 3: lowerCAmelCase_ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: lowerCAmelCase_ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(A ) if i < len(A ) - 2: lowerCAmelCase_ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(A ) if i < len(A ) - 3: lowerCAmelCase_ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(A ) ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = SARIngram(A , A , A , A ) ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = SARIngram(A , A , A , A ) ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = SARIngram(A , A , A , A ) ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) = SARIngram(A , A , A , A ) lowerCAmelCase_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCAmelCase_ = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCAmelCase_ = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCAmelCase_ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase_ ( A : Union[str, Any] , A : bool = True , A : str = "13a" , A : bool = True ): """simple docstring""" # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: lowerCAmelCase_ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCAmelCase_ = sacrebleu.metrics.bleu._get_tokenizer(A )()(A ) else: lowerCAmelCase_ = sacrebleu.TOKENIZERS[tokenizer]()(A ) elif tokenizer == "moses": lowerCAmelCase_ = sacremoses.MosesTokenizer().tokenize(A , return_str=A , escape=A ) elif tokenizer == "penn": lowerCAmelCase_ = sacremoses.MosesTokenizer().penn_tokenize(A , return_str=A ) else: lowerCAmelCase_ = sentence if not return_str: lowerCAmelCase_ = normalized_sent.split() return normalized_sent def lowerCamelCase_ ( A : str , A : Optional[Any] , A : str ): """simple docstring""" if not (len(A ) == len(A ) == len(A )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowerCAmelCase_ = 0 for src, pred, refs in zip(A , A , A ): sari_score += SARIsent(normalize(A ) , normalize(A ) , [normalize(A ) for sent in refs] ) lowerCAmelCase_ = sari_score / len(A ) return 1_00 * sari_score def lowerCamelCase_ ( A : Optional[Any] , A : Optional[int] , A : List[Any]="exp" , A : Dict=None , A : Dict=False , A : Optional[int]=False , A : Tuple=False , ): """simple docstring""" lowerCAmelCase_ = len(references[0] ) if any(len(A ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowerCAmelCase_ = [[refs[i] for refs in references] for i in range(A )] lowerCAmelCase_ = sacrebleu.corpus_bleu( A , A , smooth_method=A , smooth_value=A , force=A , lowercase=A , use_effective_order=A , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): lowerCAmelCase_ = {} result.update({'''sari''': compute_sari(sources=_UpperCAmelCase , predictions=_UpperCAmelCase , references=_UpperCAmelCase)}) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_UpperCAmelCase , references=_UpperCAmelCase)}) result.update({'''exact''': compute_em(predictions=_UpperCAmelCase , references=_UpperCAmelCase)}) return result
413
class UpperCamelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase = "" , _UpperCAmelCase = False): # Mapping from the first character of the prefix of the node lowerCAmelCase_ = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ = is_leaf lowerCAmelCase_ = prefix def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = 0 for q, w in zip(self.prefix , _UpperCAmelCase): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , _UpperCAmelCase): for word in words: self.insert(_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowerCAmelCase_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase) else: lowerCAmelCase_ = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( _UpperCAmelCase) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ = remaining_prefix lowerCAmelCase_ = self.nodes[matching_string[0]] lowerCAmelCase_ = RadixNode(_UpperCAmelCase , _UpperCAmelCase) lowerCAmelCase_ = aux_node if remaining_word == "": lowerCAmelCase_ = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = self.nodes.get(word[0] , _UpperCAmelCase) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( _UpperCAmelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = self.nodes.get(word[0] , _UpperCAmelCase) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = incoming_node.match( _UpperCAmelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: lowerCAmelCase_ = list(self.nodes.values())[0] lowerCAmelCase_ = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: lowerCAmelCase_ = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ = list(incoming_node.nodes.values())[0] lowerCAmelCase_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ = merging_node.nodes return True def lowercase__ ( self , _UpperCAmelCase = 0): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''') for value in self.nodes.values(): value.print_tree(height + 1) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase_ = '''banana bananas bandana band apple all beast'''.split() lowerCAmelCase_ = RadixNode() root.insert_many(A ) assert all(root.find(A ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCamelCase_ ( ): """simple docstring""" assert test_trie() def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase_ = RadixNode() lowerCAmelCase_ = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(A ) print('''Words:''' , A ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
413
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A_ : Optional[Any] = "\\n\n" A_ : int = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" A_ : Any = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_6 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ : int = """cuda""" else: snake_case__ : Any = """cuda""" if torch.cuda.is_available() else """cpu""" snake_case__ : int = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ : Dict = model.config.max_length - 1 else: snake_case__ : List[str] = model.config.max_length snake_case__ : str = tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_attention_mask=__SCREAMING_SNAKE_CASE , ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = encodings["""input_ids"""] snake_case__ : Union[str, Any] = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ : int = [] snake_case__ : Optional[Any] = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ): snake_case__ : Optional[int] = min(start_index + batch_size , len(__SCREAMING_SNAKE_CASE ) ) snake_case__ : int = encoded_texts[start_index:end_index] snake_case__ : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: snake_case__ : Any = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ : Optional[Any] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 ) snake_case__ : Union[str, Any] = encoded_batch with torch.no_grad(): snake_case__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).logits snake_case__ : Optional[Any] = out_logits[..., :-1, :].contiguous() snake_case__ : Tuple = labels[..., 1:].contiguous() snake_case__ : Tuple = attn_mask[..., 1:].contiguous() snake_case__ : Optional[Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
38
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ : List[str] = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ : Any = """zero2""" SCREAMING_SNAKE_CASE__ : Dict = """zero3""" SCREAMING_SNAKE_CASE__ : str = [ZEROa, ZEROa] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param a__ : Optional[Any] = parameterized.to_safe_name("_".join(str(lowerCamelCase ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCAmelCase ( _UpperCamelCase ): @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> Dict: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> str: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def _snake_case ( self , snake_case ) -> str: """simple docstring""" pass def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = True , snake_case = True , snake_case = True , ) -> str: """simple docstring""" a__ : Tuple = models[model] a__ : int = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = 1 , snake_case = True , snake_case = True , ) -> Optional[Any]: """simple docstring""" a__ : str = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) a__ : List[Any] = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ : str = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() a__ : Dict = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] a__ : Optional[int] = self.get_launcher(snake_case ) a__ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def _snake_case ( self , snake_case=False ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
112
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] a__ = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a__ = logging.getLogger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : torch.nn.Module , SCREAMING_SNAKE_CASE__ : BnbQuantizationConfig , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> int: _snake_case : int = bnb_quantization_config.load_in_abit _snake_case : Tuple = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) _snake_case : List[Any] = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(device_map.keys() ) > 1: _snake_case : Tuple = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _snake_case : Union[str, Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _snake_case : Optional[Any] = [] _snake_case : Dict = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE__ ) # compatibility with peft _snake_case : Union[str, Any] = load_in_abit _snake_case : Any = load_in_abit _snake_case : Optional[int] = get_parameter_device(SCREAMING_SNAKE_CASE__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) _snake_case : int = replace_with_bnb_layers(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , modules_to_not_convert=SCREAMING_SNAKE_CASE__ ) # convert param to the right dtype _snake_case : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _snake_case : Union[str, Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) _snake_case : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): param.to(SCREAMING_SNAKE_CASE__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): _snake_case : Optional[int] = replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , modules_to_not_convert=SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_memory=SCREAMING_SNAKE_CASE__ , no_split_module_classes=SCREAMING_SNAKE_CASE__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _snake_case : Union[str, Any] = True _snake_case : Any = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE__ , offload_state_dict=SCREAMING_SNAKE_CASE__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , offload_dir=SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None ) -> List[Any]: if device_map is None: if torch.cuda.is_available(): _snake_case : Dict = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) _snake_case : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _snake_case : Tuple = {} _snake_case : List[str] = special_dtypes _snake_case : int = no_split_module_classes _snake_case : List[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _snake_case : Optional[int] = get_balanced_memory( SCREAMING_SNAKE_CASE__ , low_zero=(device_map == """balanced_low_0""") , max_memory=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _snake_case : str = max_memory _snake_case : Optional[int] = infer_auto_device_map(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # check if don't have any quantized module on the cpu _snake_case : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _snake_case : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None ) -> List[Any]: if modules_to_not_convert is None: _snake_case : Tuple = [] _snake_case , _snake_case : str = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> Optional[Any]: _snake_case : List[str] = False for name, module in model.named_children(): if current_key_name is None: _snake_case : List[str] = [] current_key_name.append(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _snake_case : int = """.""".join(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _snake_case : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _snake_case : List[Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _snake_case : Any = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) _snake_case : List[str] = module.weight.data if module.bias is not None: _snake_case : List[Any] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = True if len(list(module.children() ) ) > 0: _snake_case , _snake_case : Optional[int] = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: # Create a copy of the model with init_empty_weights(): _snake_case : Optional[Any] = deepcopy(SCREAMING_SNAKE_CASE__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _snake_case : Tuple = find_tied_parameters(SCREAMING_SNAKE_CASE__ ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _snake_case : Optional[Any] = sum(SCREAMING_SNAKE_CASE__ , [] ) _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) > 0 # Check if it is a base model _snake_case : str = False if hasattr(SCREAMING_SNAKE_CASE__ , """base_model_prefix""" ): _snake_case : List[Any] = not hasattr(SCREAMING_SNAKE_CASE__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _snake_case : str = list(model.named_children() ) _snake_case : Dict = [list_modules[-1][0]] # add last module together with tied weights _snake_case : Optional[int] = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = list(set(SCREAMING_SNAKE_CASE__ ) ) + list(SCREAMING_SNAKE_CASE__ ) # remove ".weight" from the keys _snake_case : Union[str, Any] = [""".weight""", """.bias"""] _snake_case : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _snake_case : Optional[Any] = name.replace(SCREAMING_SNAKE_CASE__ , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE__ ) return filtered_module_names def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE__ , bnb.nn.Linearabit ): return True return False def lowercase ( SCREAMING_SNAKE_CASE__ : nn.Module ) -> Union[str, Any]: return next(parameter.parameters() ).device def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , dtype=SCREAMING_SNAKE_CASE__ , value=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = param_name _snake_case : List[Any] = model if "." in tensor_name: _snake_case : str = tensor_name.split(""".""" ) for split in splits[:-1]: _snake_case : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) _snake_case : Tuple = new_module _snake_case : Dict = splits[-1] # offload weights _snake_case : List[str] = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , ) else: offload_weight(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) offload_weight(SCREAMING_SNAKE_CASE__ , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """meta""" , dtype=SCREAMING_SNAKE_CASE__ , value=torch.empty(*param.size() ) )
198
0
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): _validate_point(_snake_case ) _validate_point(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_snake_case ,_snake_case ) ) ) def lowercase_ ( _snake_case ): if point: if isinstance(_snake_case ,_snake_case ): for item in point: if not isinstance(_snake_case ,(int, float) ): SCREAMING_SNAKE_CASE__ : int = ( """Expected a list of numbers as input, found """ f'''{type(_snake_case ).__name__}''' ) raise TypeError(_snake_case ) else: SCREAMING_SNAKE_CASE__ : Tuple = f'''Expected a list of numbers as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) else: raise ValueError("""Missing an input""" ) def lowercase_ ( _snake_case ,_snake_case ): _validate_point(_snake_case ) _validate_point(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_snake_case ,_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
223
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = '''data2vec-vision''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2_55 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_mask_token SCREAMING_SNAKE_CASE__ : Dict = use_absolute_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = use_relative_position_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_shared_relative_position_bias SCREAMING_SNAKE_CASE__ : Dict = layer_scale_init_value SCREAMING_SNAKE_CASE__ : int = drop_path_rate SCREAMING_SNAKE_CASE__ : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : int = out_indices SCREAMING_SNAKE_CASE__ : str = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Any = use_auxiliary_head SCREAMING_SNAKE_CASE__ : str = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ : str = auxiliary_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = auxiliary_num_convs SCREAMING_SNAKE_CASE__ : Dict = auxiliary_concat_input SCREAMING_SNAKE_CASE__ : Union[str, Any] = semantic_loss_ignore_index class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4
223
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _a ( lowerCamelCase_ ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _a ( ): snake_case : Union[str, Any] =ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=lowercase__ ) snake_case : List[str] =parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) TestCommand.register_subcommand(lowercase__ ) RunBeamCommand.register_subcommand(lowercase__ ) DummyDataCommand.register_subcommand(lowercase__ ) # Parse args snake_case , snake_case : List[Any] =parser.parse_known_args() if not hasattr(lowercase__ , '''func''' ): parser.print_help() exit(1 ) snake_case : Any =parse_unknown_args(lowercase__ ) # Run snake_case : List[Any] =args.func(lowercase__ , **lowercase__ ) service.run() if __name__ == "__main__": main()
702
'''simple docstring''' def _a ( lowerCamelCase_ = 1_00 ): snake_case : List[Any] =0 snake_case : List[str] =0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
136
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): UpperCamelCase :int = [] for part_id in partition_order: UpperCamelCase :int = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(SCREAMING_SNAKE_CASE__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :Tuple = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :List[str] = spark.range(100 ).repartition(1 ) UpperCamelCase :List[Any] = Spark(SCREAMING_SNAKE_CASE__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :Any = spark.range(10 ).repartition(2 ) UpperCamelCase :Optional[int] = [1, 0] UpperCamelCase :Optional[Any] = _generate_iterable_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Reverse the partitions. UpperCamelCase :Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase , UpperCamelCase :Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :Dict = spark.range(10 ).repartition(1 ) UpperCamelCase :Union[str, Any] = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: UpperCamelCase :Dict = lambda SCREAMING_SNAKE_CASE__ : x.reverse() UpperCamelCase :List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__ , [2, 1, 0] ) UpperCamelCase :Any = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shuffle_data_sources(SCREAMING_SNAKE_CASE__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase , UpperCamelCase :Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :Union[str, Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase :Dict = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase :Any = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase , UpperCamelCase :str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase :Any = SparkExamplesIterable(SCREAMING_SNAKE_CASE__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase :List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase , UpperCamelCase :int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _A ( ): UpperCamelCase :Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCamelCase :int = spark.range(100 ).repartition(1 ) UpperCamelCase :int = Spark(SCREAMING_SNAKE_CASE__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
658
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: return None class UpperCAmelCase_ : """simple docstring""" def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: return None class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =[ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) @require_torch @slow def UpperCAmelCase ( self ) -> int: from transformers import BertModel UpperCamelCase :int = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) vocab_file.flush() UpperCamelCase :Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCamelCase :Union[str, Any] = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE_ ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , SCREAMING_SNAKE_CASE_ ) @require_tf @slow def UpperCAmelCase ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :Tuple = self._test_export(SCREAMING_SNAKE_CASE_ , '''tf''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = quantize(Path(SCREAMING_SNAKE_CASE_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCamelCase :str = self._test_export(SCREAMING_SNAKE_CASE_ , '''pt''' , 12 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = quantize(SCREAMING_SNAKE_CASE_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: UpperCamelCase :Union[str, Any] = Path(SCREAMING_SNAKE_CASE_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE_ ) @require_torch @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[str]: from transformers import BertModel UpperCamelCase :List[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''pt''' ) @require_tf @require_tokenizers @slow def UpperCAmelCase ( self ) -> List[Any]: from transformers import TFBertModel UpperCamelCase :Optional[Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCamelCase :Optional[Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''tf''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :Tuple = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = infer_shapes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] UpperCamelCase :Tuple = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} UpperCamelCase , UpperCamelCase :Any = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE_ ) , set(SCREAMING_SNAKE_CASE_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCamelCase , UpperCamelCase :Tuple = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :str = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
658
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase ( SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def snake_case_ ( __snake_case : ArgumentParser ) -> Optional[Any]: raise NotImplementedError() @abstractmethod def snake_case_ ( self : List[Any] ) -> int: raise NotImplementedError()
249
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase_ ): _a : Optional[Any] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _a : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False _a : Optional[Any] = True if '''large''' in model_name or '''huge''' in model_name else False _a : Any = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _a : Any = [3, 3, 3, 3] _a : Optional[int] = [5, 5, 5, 5] elif "fl4" in model_name: _a : List[str] = [4, 4, 4, 4] _a : Optional[int] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _a : str = [3, 3, 3, 3] if "lrf" in model_name: _a : int = [3, 3, 3, 3] else: _a : str = [2, 2, 2, 2] if "tiny" in model_name: _a : Optional[int] = 96 elif "small" in model_name: _a : Dict = 96 elif "base" in model_name: _a : Any = 128 elif "large" in model_name: _a : int = 192 elif "xlarge" in model_name: _a : Optional[int] = 256 elif "huge" in model_name: _a : str = 352 # set label information _a : Any = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _a : Optional[int] = '''imagenet-22k-id2label.json''' else: _a : Dict = '''imagenet-1k-id2label.json''' _a : int = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) _a : int = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} _a : Optional[int] = {v: k for k, v in idalabel.items()} _a : Union[str, Any] = FocalNetConfig( embed_dim=UpperCamelCase_ , depths=UpperCamelCase_ , focal_levels=UpperCamelCase_ , focal_windows=UpperCamelCase_ , use_conv_embed=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ , use_post_layernorm=UpperCamelCase_ , use_layerscale=UpperCamelCase_ , ) return config def lowerCamelCase_ ( UpperCamelCase_ ): if "patch_embed.proj" in name: _a : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : Dict = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _a : Any = '''encoder.''' + name if "encoder.layers" in name: _a : int = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: _a : int = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: _a : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _a : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _a : Any = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _a : Tuple = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": _a : Optional[int] = '''layernorm.weight''' if name == "norm.bias": _a : List[str] = '''layernorm.bias''' if "head" in name: _a : List[str] = name.replace('''head''' , '''classifier''' ) else: _a : str = '''focalnet.''' + name return name def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): # fmt: off _a : str = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _a : List[Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , UpperCamelCase_ ) _a : Optional[int] = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): _a : int = state_dict.pop(UpperCamelCase_ ) _a : List[Any] = val _a : List[str] = get_focalnet_config(UpperCamelCase_ ) _a : Dict = FocalNetForImageClassification(UpperCamelCase_ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase_ ) # verify conversion _a : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : List[str] = BitImageProcessor( do_resize=UpperCamelCase_ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase_ , crop_size=224 , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , ) _a : Tuple = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) _a : str = processor(images=UpperCamelCase_ , return_tensors='''pt''' ) _a : Dict = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _a : int = image_transforms(UpperCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase_ , atol=1E-4 ) _a : Optional[Any] = model(**UpperCamelCase_ ) _a : int = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _a : str = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _a : Tuple = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _a : List[Any] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _a : Optional[int] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _a : List[Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _a : List[Any] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
249
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : str = RobertaEmbeddings(_lowercase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Optional[Any] = config.num_labels snake_case_ : Dict = config.num_hidden_layers snake_case_ : str = DeeRobertaModel(_lowercase ) snake_case_ : Dict = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=-1 , _lowercase=False , ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.num_layers try: snake_case_ : int = self.roberta( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , ) snake_case_ : str = outputs[1] snake_case_ : Union[str, Any] = self.dropout(_lowercase ) snake_case_ : Tuple = self.classifier(_lowercase ) snake_case_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : List[Any] = e.message snake_case_ : Union[str, Any] = e.exit_layer snake_case_ : Dict = outputs[0] if not self.training: snake_case_ : Dict = entropy(_lowercase ) snake_case_ : Optional[int] = [] snake_case_ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Union[str, Any] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : int = [] for highway_exit in outputs[-1]: snake_case_ : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Optional[int] = MSELoss() snake_case_ : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[int] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowercase ) if train_highway: snake_case_ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : List[str] = (loss,) + outputs if not self.training: snake_case_ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
58
0
'''simple docstring''' from collections import namedtuple __UpperCAmelCase = namedtuple("""from_to""", """from_ to""") __UpperCAmelCase = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(lowerCamelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(lowerCamelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' def __A ( lowerCamelCase_ ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = number while duplicate > 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = divmod(lowerCamelCase_ , 10 ) fact_sum += factorial(lowerCamelCase_ ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") __UpperCAmelCase = int(input("""Enter number: """).strip()) print( f'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
79
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a , a , a ): __snake_case = list(range(len(a ) ) ) __snake_case = [v / w for v, w in zip(a , a )] index.sort(key=lambda a : ratio[i] , reverse=a ) __snake_case = 0 __snake_case = [0] * len(a ) for i in index: if weight[i] <= capacity: __snake_case = 1 max_value += value[i] capacity -= weight[i] else: __snake_case = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = int(a ) if n_element < 1: __snake_case = ValueError('a should be a positive number' ) raise my_error __snake_case = [1] __snake_case , __snake_case , __snake_case = (0, 0, 0) __snake_case = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") _lowercase = hamming(int(n)) print("""-----------------------------------------------------""") print(f'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
356
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : int=2 , __UpperCamelCase : str=56 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Any=99 , __UpperCamelCase : str=32 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : str="gelu_new" , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[int]=512 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Any=0.02 , __UpperCamelCase : str=4 , __UpperCamelCase : List[Any]="block_sparse" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : str=2 , __UpperCamelCase : Tuple=3 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices _UpperCAmelCase = rescale_embeddings _UpperCAmelCase = attention_type _UpperCAmelCase = use_bias _UpperCAmelCase = block_size _UpperCAmelCase = num_random_blocks def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Dict = False def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Tuple ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : List[str] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Optional[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Dict ): super().test_hidden_states_output() @slow def UpperCAmelCase__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase : Dict , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : List[Any] ): return model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("JIT Enabled" ): _UpperCAmelCase = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : Dict="outputs" , __UpperCamelCase : Any=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
129
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase = pd.read_csv("sample_data.csv", header=None) __lowerCAmelCase = df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase = df.iloc[:, 1:2] __lowerCAmelCase = actual_data.values.reshape(len_data, 1) __lowerCAmelCase = MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase = 1_0 __lowerCAmelCase = 5 __lowerCAmelCase = 2_0 __lowerCAmelCase = len_data - periods * look_back __lowerCAmelCase = actual_data[:division] __lowerCAmelCase = actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase = [], [] __lowerCAmelCase , __lowerCAmelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase = np.array(train_x) __lowerCAmelCase = np.array(test_x) __lowerCAmelCase = np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase = np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __lowerCAmelCase = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase = model.predict(x_test)
129
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ = 16 , UpperCamelCase__ = 88 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 32 , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "geglu" , UpperCamelCase__ = None , ) -> Dict: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase_ = [1, 0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = True , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = hidden_states lowerCamelCase_ = [] lowerCamelCase_ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase_ = self.transformer_index_for_condition[i] lowerCamelCase_ = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
142
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _lowerCAmelCase : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['DPTFeatureExtractor'] _lowerCAmelCase : Tuple = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
246
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCamelCase : Tuple = ["bert-base-uncased", "bert-base-cased"] lowerCamelCase : Union[str, Any] = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class A( tf.keras.Model ): '''simple docstring''' def __init__( self : int , A_ : Any ) -> Optional[int]: """simple docstring""" super().__init__() lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCamelCase_ = TFAutoModel.from_config(_UpperCAmelCase ) def a__ ( self : Dict , A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer(_UpperCAmelCase ) lowerCamelCase_ = self.bert(**_UpperCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ BertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase_ = [TFBertTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_UpperCAmelCase , use_fast_bert_tokenizer=_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase_ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowerCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding='longest' ) lowerCamelCase_ = tf_tokenizer(_UpperCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def a__ ( self : Dict ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf_tokenizer(self.paired_sentences ) lowerCamelCase_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def a__ ( self : Tuple ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.function(_UpperCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase_ = tf.constant(_UpperCAmelCase ) lowerCamelCase_ = compiled_tokenizer(_UpperCAmelCase ) lowerCamelCase_ = tf_tokenizer(_UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = ModelToSave(tokenizer=_UpperCAmelCase ) lowerCamelCase_ = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase_ = model(_UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(_UpperCAmelCase ) / '''saved.model''' model.save(_UpperCAmelCase ) lowerCamelCase_ = tf.keras.models.load_model(_UpperCAmelCase ) lowerCamelCase_ = loaded_model(_UpperCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase : int = datasets.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase : Tuple = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase : Optional[Any] = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] , lowercase : Any=False , lowercase : Any=False , lowercase : Dict=True , lowercase : List[str]=False , lowercase : int="dummy_doc" ): '''simple docstring''' lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = reader.get_mention_assignments(lowercase , lowercase ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def a__ ( self : List[str] , A_ : Optional[Any] , A_ : Optional[int] , A_ : int=True , A_ : str=False , A_ : int=False , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(A_ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=A_ , sys_lines=A_ , metrics=A_ , NP_only=A_ , remove_nested=A_ , keep_singletons=A_ , min_span=A_ , ) return score
651
0
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__=10_24 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] SCREAMING_SNAKE_CASE__ = list(zip(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = sorted_examples[0] def is_too_big(snake_case__ ): return tok(snake_case__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE__ = new_src + """ """ + src SCREAMING_SNAKE_CASE__ = new_tgt + """ """ + tgt if is_too_big(snake_case__ ) or is_too_big(snake_case__ ): # cant fit, finalize example finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) return finished_src, finished_tgt def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Path(snake_case__ ) save_path.mkdir(exist_ok=snake_case__ ) for split in ["train"]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pack_examples(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) print(f"""packed {split} split from {len(snake_case__ )} examples -> {len(snake_case__ )}.""" ) Path(save_path / f"""{split}.source""" ).open("""w""" ).write("""\n""".join(snake_case__ ) ) Path(save_path / f"""{split}.target""" ).open("""w""" ).write("""\n""".join(snake_case__ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(snake_case__ , save_path / f"""{split}.source""" ) shutil.copyfile(snake_case__ , save_path / f"""{split}.target""" ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=snake_case__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=snake_case__ , default=1_28 ) parser.add_argument("""--data_dir""" , type=snake_case__ ) parser.add_argument("""--save_path""" , type=snake_case__ ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
196
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss A_ : List[str] = pytest.mark.integration @require_faiss class lowerCamelCase (A__ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(__UpperCAmelCase ) for x in np.arange(3_0 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() SCREAMING_SNAKE_CASE__ = dset.map( lambda __UpperCAmelCase , __UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = dset.add_faiss_index("""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(__UpperCAmelCase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: from elasticsearch import Elasticsearch SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 3_0 ) SCREAMING_SNAKE_CASE__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 2_9}]}} SCREAMING_SNAKE_CASE__ = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class lowerCamelCase (A__ ): def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries SCREAMING_SNAKE_CASE__ = np.eye(5 , dtype=np.floataa )[::-1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(__UpperCAmelCase ) self.assertRaises(__UpperCAmelCase , index.search_batch , queries[0] ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: import faiss SCREAMING_SNAKE_CASE__ = faiss.IndexFlat(5 ) SCREAMING_SNAKE_CASE__ = FaissIndex(custom_index=__UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(__UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A ( snake_case__ ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) SCREAMING_SNAKE_CASE__ = """index.faiss""" SCREAMING_SNAKE_CASE__ = f"""mock://{index_name}""" index.save(snake_case__ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCamelCase (A__ ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = Elasticsearch() SCREAMING_SNAKE_CASE__ = {"""acknowledged""": True} SCREAMING_SNAKE_CASE__ = ElasticSearchIndex(es_client=__UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query SCREAMING_SNAKE_CASE__ = """foo""" SCREAMING_SNAKE_CASE__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(__UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout SCREAMING_SNAKE_CASE__ = """foo""" SCREAMING_SNAKE_CASE__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(__UpperCAmelCase , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries SCREAMING_SNAKE_CASE__ = ["""foo""", """bar""", """foobar"""] SCREAMING_SNAKE_CASE__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase ) # batched queries with timeout SCREAMING_SNAKE_CASE__ = ["""foo""", """bar""", """foobar"""] SCREAMING_SNAKE_CASE__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(__UpperCAmelCase , request_timeout=3_0 ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __UpperCAmelCase )
196
1
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = '''''' for i in range(len(lowerCAmelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = int("0b" + data[0] + data[-1] , 2 ) snake_case__ = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = message[:4] snake_case__ = message[4:] snake_case__ = apply_table(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case__ = xor(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case__ = apply_sbox(lowerCAmelCase_ , temp[:4] ) # noqa: E741 snake_case__ = apply_sbox(lowerCAmelCase_ , temp[4:] ) snake_case__ = '''0''' * (2 - len(lowerCAmelCase_ )) + l # noqa: E741 snake_case__ = '''0''' * (2 - len(lowerCAmelCase_ )) + r snake_case__ = apply_table(l + r , lowerCAmelCase_ ) snake_case__ = xor(lowerCAmelCase_ , lowerCAmelCase_ ) return temp + right if __name__ == "__main__": __magic_name__ = input('''Enter 10 bit key: ''') __magic_name__ = input('''Enter 8 bit message: ''') __magic_name__ = [6, 3, 7, 4, 8, 5, 10, 9] __magic_name__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __magic_name__ = [2, 4, 3, 1] __magic_name__ = [2, 6, 3, 1, 4, 8, 5, 7] __magic_name__ = [4, 1, 3, 5, 7, 2, 8, 6] __magic_name__ = [4, 1, 2, 3, 2, 3, 4, 1] __magic_name__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __magic_name__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __magic_name__ = apply_table(key, paa_table) __magic_name__ = temp[:5] __magic_name__ = temp[5:] __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = apply_table(left + right, pa_table) __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = left_shift(left) __magic_name__ = left_shift(right) __magic_name__ = apply_table(left + right, pa_table) # encryption __magic_name__ = apply_table(message, IP) __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = temp[4:] + temp[:4] __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption __magic_name__ = apply_table(CT, IP) __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = temp[4:] + temp[:4] __magic_name__ = function(expansion, sa, sa, keya, temp) __magic_name__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
703
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
530
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Dict ) ->Any: # Return True if there is node that has not iterated. lowerCamelCase__ : List[Any] =[False] * len(snake_case_ ) lowerCamelCase__ : Union[str, Any] =[] queue.append(snake_case_ ) lowerCamelCase__ : Optional[int] =True while queue: lowerCamelCase__ : List[Any] =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case_ ) lowerCamelCase__ : Tuple =True lowerCamelCase__ : str =u return visited[t] def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : List[Any] ) ->Dict: # This array is filled by BFS and to store path lowerCamelCase__ : str =[-1] * (len(snake_case_ )) lowerCamelCase__ : Tuple =0 while bfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowerCamelCase__ : Optional[int] =float('Inf' ) lowerCamelCase__ : Any =sink while s != source: # Find the minimum value in select path lowerCamelCase__ : str =min(snake_case_ , graph[parent[s]][s] ) lowerCamelCase__ : str =parent[s] max_flow += path_flow lowerCamelCase__ : int =sink while v != source: lowerCamelCase__ : str =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase__ : List[Any] =parent[v] return max_flow lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase , lowerCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
174
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
174
1
"""simple docstring""" _A : Optional[Any] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on _A : List[str] = {value: key for key, value in MORSE_CODE_DICT.items()} def __magic_name__ ( __snake_case : str ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __magic_name__ ( __snake_case : str ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def __magic_name__ ( ) -> None: lowercase : Any = "Morse code here!" print(__snake_case ) lowercase : int = encrypt(__snake_case ) print(__snake_case ) lowercase : List[Any] = decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
518
"""simple docstring""" def __magic_name__ ( __snake_case : str ) -> list: lowercase : Optional[Any] = [0] * len(__snake_case ) for i in range(1 , len(__snake_case ) ): # use last results for better performance - dynamic programming lowercase : int = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase : List[str] = j return prefix_result def __magic_name__ ( __snake_case : str ) -> int: return max(prefix_function(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
518
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
181
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
113
0
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) __lowercase : List[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE_ )} , ) __lowercase : List[Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowercase : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowercase : int = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : Dict = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''The input training data file (a text file).'''} ) __lowercase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) __lowercase : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __lowercase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) __lowercase : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) __lowercase : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) __lowercase : Dict = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) __lowercase : List[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) __lowercase : List[str] = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __lowercase : Tuple = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) __lowercase : Dict = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) __lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) __lowercase : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , ): """simple docstring""" def _dataset(UpperCamelCase , UpperCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=__A , file_path=__A , block_size=args.block_size , ref_path=__A , ) return LineByLineTextDataset(tokenizer=__A , file_path=__A , block_size=args.block_size ) else: return TextDataset( tokenizer=__A , file_path=__A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase__ : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowerCAmelCase__ : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowerCAmelCase__ : Dict = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase__ : str = AutoModelWithLMHead.from_config(__A ) model.resize_token_embeddings(len(__A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowerCAmelCase__ : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase__ : Union[str, Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase__ : List[str] = ( get_dataset(__A , tokenizer=__A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase__ : Tuple = ( get_dataset(__A , tokenizer=__A , evaluate=__A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase__ : Optional[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=__A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase__ : Tuple = DataCollatorForWholeWordMask( tokenizer=__A , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase__ : Any = DataCollatorForLanguageModeling( tokenizer=__A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase__ : List[str] = Trainer( model=__A , args=__A , data_collator=__A , train_dataset=__A , eval_dataset=__A , prediction_loss_only=__A , ) # Training if training_args.do_train: lowerCAmelCase__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase__ : Dict = trainer.evaluate() lowerCAmelCase__ : Tuple = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase__ : List[str] = {'''perplexity''': perplexity} lowerCAmelCase__ : List[str] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(__A , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __A , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(__A ) return results def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
565
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : str , __A : str ): a_ : int = get_failure_array(__A ) # 2) Step through text searching for pattern a_ , a_ : Any = 0, 0 # index into text, pattern while i < len(__A ): if pattern[j] == text[i]: if j == (len(__A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a_ : Any = failure[j - 1] continue i += 1 return False def _UpperCAmelCase ( __A : str ): a_ : Optional[Any] = [0] a_ : Any = 0 a_ : int = 1 while j < len(__A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a_ : List[Any] = failure[i - 1] continue j += 1 failure.append(__A ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase = 'abc1abc12' __lowerCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowerCAmelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase = 'ABABX' __lowerCAmelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __lowerCAmelCase = 'AAAB' __lowerCAmelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __lowerCAmelCase = 'abcdabcy' __lowerCAmelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __lowerCAmelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
466
0
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case__ : Any = 16 snake_case__ : Dict = 32 def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return int(x / 2**20 ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCAmelCase_ : Dict = torch.cuda.memory_allocated() return self def __exit__( self , *snake_case_ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() UpperCAmelCase_ : List[Any] = torch.cuda.memory_allocated() UpperCAmelCase_ : Any = torch.cuda.max_memory_allocated() UpperCAmelCase_ : Optional[int] = bamb(self.end - self.begin ) UpperCAmelCase_ : List[str] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _lowerCamelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int = 16 , lowerCamelCase_ : str = "bert-base-cased" , lowerCamelCase_ : int = 320 , lowerCamelCase_ : int = 160 , ): """simple docstring""" UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = load_dataset( 'glue' , 'mrpc' , split={'train': F'''train[:{n_train}]''', 'validation': F'''validation[:{n_val}]'''} ) def tokenize_function(lowerCamelCase_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Optional[int] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowerCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCAmelCase_ : int = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader def _lowerCamelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Tuple = config["""lr"""] UpperCAmelCase_ : Optional[Any] = int(config['num_epochs'] ) UpperCAmelCase_ : Tuple = int(config['seed'] ) UpperCAmelCase_ : Optional[int] = int(config['batch_size'] ) UpperCAmelCase_ : List[Any] = args.model_name_or_path set_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) # Instantiate optimizer UpperCAmelCase_ : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : str = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Union[str, Any] = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , ) else: UpperCAmelCase_ : Dict = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ : Any = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Any = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : str = 0 # Now we train the model UpperCAmelCase_ : Optional[int] = {} for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = outputs.loss UpperCAmelCase_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCAmelCase_ : Any = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'peak_memory_utilization.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Tuple = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase_ , ) parser.add_argument( '--output_dir' , type=lowerCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--peak_memory_upper_bound' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.' , ) parser.add_argument( '--n_train' , type=lowerCamelCase_ , default=320 , help='Number of training examples to use.' , ) parser.add_argument( '--n_val' , type=lowerCamelCase_ , default=160 , help='Number of validation examples to use.' , ) parser.add_argument( '--num_epochs' , type=lowerCamelCase_ , default=1 , help='Number of train epochs.' , ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Tuple = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
389
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCamelCase : int = 16 __UpperCamelCase : str = 32 def snake_case ( lowerCamelCase , lowerCamelCase = 16 , lowerCamelCase = "bert-base-cased" ): '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) __lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' model.eval() __lowercase = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase ) - 1: __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __lowercase = metric.compute() return eval_metric["accuracy"] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["""lr"""] __lowercase = int(config["""num_epochs"""] ) __lowercase = int(config["""seed"""] ) __lowercase = int(config["""batch_size"""] ) __lowercase = args.model_name_or_path set_seed(lowerCamelCase ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowercase = 1 __lowercase = (len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=0 , num_training_steps=lowerCamelCase , ) else: __lowercase = DummyScheduler(lowerCamelCase , total_num_steps=lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 __lowercase = evaluate.load("""glue""" , """mrpc""" ) __lowercase = num_epochs if args.partial_train_epoch is not None: __lowercase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowercase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowercase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowercase = int(lowerCamelCase ) + 1 __lowercase = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) accelerator.print("""resumed checkpoint performance:""" , lowerCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowercase = json.load(lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowercase = {} for epoch in range(lowerCamelCase , lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowercase = F'epoch_{epoch}' __lowercase = os.path.join(args.output_dir , lowerCamelCase ) accelerator.save_state(lowerCamelCase ) __lowercase = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = accuracy __lowercase = lr_scheduler.get_lr()[0] __lowercase = optimizer.param_groups[0]["""lr"""] __lowercase = epoch __lowercase = overall_step accelerator.print(F'epoch {epoch}:' , lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCamelCase , default=lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCamelCase , default=lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) __lowercase = parser.parse_args() __lowercase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
80
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''swinv2''' snake_case__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , __UpperCamelCase : List[str]=224 , __UpperCamelCase : Any=4 , __UpperCamelCase : int=3 , __UpperCamelCase : Tuple=96 , __UpperCamelCase : Union[str, Any]=[2, 2, 6, 2] , __UpperCamelCase : List[Any]=[3, 6, 12, 24] , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : List[str]=4.0 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : int=False , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : Any=1E-5 , __UpperCamelCase : Optional[Any]=32 , **__UpperCamelCase : Any , ) -> List[Any]: super().__init__(**__UpperCamelCase ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(__UpperCamelCase ) - 1) ) _UpperCamelCase = (0, 0, 0, 0)
420
0
'''simple docstring''' def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase_ : Optional[int] = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int = 1777 , _SCREAMING_SNAKE_CASE : int = 1855 , _SCREAMING_SNAKE_CASE : int = 8 ): UpperCamelCase_ : Optional[int] = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Union[str, Any] = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
708
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( __a ): a__ :Optional[int] = (CMStochasticIterativeScheduler,) a__ :Optional[Any] = 10 def A_ (self , **__UpperCamelCase ) -> Dict: UpperCamelCase_ : int = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**__UpperCamelCase ) return config def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Union[str, Any] = 10 UpperCamelCase_ : str = self.get_scheduler_config() UpperCamelCase_ : List[str] = self.scheduler_classes[0](**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = scheduler.timesteps[0] UpperCamelCase_ : Union[str, Any] = scheduler.timesteps[1] UpperCamelCase_ : Dict = self.dummy_sample UpperCamelCase_ : Tuple = 0.1 * sample UpperCamelCase_ : int = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample UpperCamelCase_ : str = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ (self ) -> Dict: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def A_ (self ) -> Union[str, Any]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__UpperCamelCase ) def A_ (self ) -> int: UpperCamelCase_ : int = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config() UpperCamelCase_ : int = scheduler_class(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = 1 scheduler.set_timesteps(__UpperCamelCase ) UpperCamelCase_ : Tuple = scheduler.timesteps UpperCamelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = self.dummy_model() UpperCamelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__UpperCamelCase ): # 1. scale model input UpperCamelCase_ : Optional[int] = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # 2. predict noise residual UpperCamelCase_ : int = model(__UpperCamelCase , __UpperCamelCase ) # 3. predict previous sample x_t-1 UpperCamelCase_ : List[str] = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample UpperCamelCase_ : Optional[Any] = pred_prev_sample UpperCamelCase_ : List[Any] = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ : List[str] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 192.7_614 ) < 1E-2 assert abs(result_mean.item() - 0.2_510 ) < 1E-3 def A_ (self ) -> int: UpperCamelCase_ : Tuple = self.scheduler_classes[0] UpperCamelCase_ : List[str] = self.get_scheduler_config() UpperCamelCase_ : List[Any] = scheduler_class(**__UpperCamelCase ) UpperCamelCase_ : Any = [106, 0] scheduler.set_timesteps(timesteps=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = scheduler.timesteps UpperCamelCase_ : Any = torch.manual_seed(0 ) UpperCamelCase_ : Any = self.dummy_model() UpperCamelCase_ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase_ : int = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # 2. predict noise residual UpperCamelCase_ : List[Any] = model(__UpperCamelCase , __UpperCamelCase ) # 3. predict previous sample x_t-1 UpperCamelCase_ : str = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample UpperCamelCase_ : str = pred_prev_sample UpperCamelCase_ : str = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ : Union[str, Any] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 347.6_357 ) < 1E-2 assert abs(result_mean.item() - 0.4_527 ) < 1E-3 def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Any = self.scheduler_classes[0] UpperCamelCase_ : List[Any] = self.get_scheduler_config() UpperCamelCase_ : List[str] = scheduler_class(**__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(__UpperCamelCase , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__UpperCamelCase ) def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Tuple = self.scheduler_classes[0] UpperCamelCase_ : Union[str, Any] = self.get_scheduler_config() UpperCamelCase_ : Any = scheduler_class(**__UpperCamelCase ) UpperCamelCase_ : List[Any] = [39, 30, 12, 1, 0] UpperCamelCase_ : str = len(__UpperCamelCase ) with self.assertRaises(__UpperCamelCase , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase ) def A_ (self ) -> Tuple: UpperCamelCase_ : List[str] = self.scheduler_classes[0] UpperCamelCase_ : Any = self.get_scheduler_config() UpperCamelCase_ : List[str] = scheduler_class(**__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCamelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__UpperCamelCase )
138
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = KandinskyVaaPipeline _lowerCamelCase = [ """image_embeds""", """negative_image_embeds""", ] _lowerCamelCase = ["""image_embeds""", """negative_image_embeds"""] _lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase = False @property def UpperCamelCase__( self ): '''simple docstring''' return 32 @property def UpperCamelCase__( self ): '''simple docstring''' return 32 @property def UpperCamelCase__( self ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase__( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase__( self ): '''simple docstring''' return 100 @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A : Optional[Any] = UNetaDConditionModel(**__lowerCamelCase ) return model @property def UpperCamelCase__( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.dummy_unet __A : Optional[int] = self.dummy_movq __A : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCamelCase , ) __A : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=0 ): '''simple docstring''' __A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): __A : Optional[Any] = torch.manual_seed(__lowerCamelCase ) else: __A : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __A : Dict = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCamelCase__( self ): '''simple docstring''' __A : str = '''cpu''' __A : str = self.get_dummy_components() __A : Dict = self.pipeline_class(**__lowerCamelCase ) __A : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : List[str] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) __A : Tuple = output.images __A : Tuple = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] __A : Dict = image[0, -3:, -3:, -1] __A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A : Optional[int] = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__( self ): '''simple docstring''' __A : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __A : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) __A : int = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __A : Union[str, Any] = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) __A : List[Any] = '''red cat, 4k photo''' __A : Union[str, Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) __A , __A : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A : Any = torch.Generator(device='''cuda''' ).manual_seed(0 ) __A : Optional[int] = pipeline( image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , output_type='''np''' , ) __A : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
177
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class __lowercase : def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = question_encoder __snake_case = generator __snake_case = self.question_encoder def _a ( self , lowercase_) -> List[str]: if os.path.isfile(lowercase_): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = os.path.join(lowercase_ , 'question_encoder_tokenizer') __snake_case = os.path.join(lowercase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(lowercase_) self.generator.save_pretrained(lowercase_) @classmethod def _a ( cls , lowercase_ , **lowercase_) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __snake_case = kwargs.pop('config' , lowercase_) if config is None: __snake_case = RagConfig.from_pretrained(lowercase_) __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=lowercase_ , generator=lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> Tuple: return self.current_tokenizer(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.generator.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.generator.decode(*lowercase_ , **lowercase_) def _a ( self) -> int: __snake_case = self.question_encoder def _a ( self) -> Optional[int]: __snake_case = self.generator def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase_ , ) if max_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) __snake_case = labels['input_ids'] return model_inputs
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]: config.addinivalue_line( 'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' ) def _UpperCamelCase ( __UpperCamelCase ) -> List[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ) -> str: from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase_ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase ,id=__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCamelCase_ = 0 # Doctest custom flag to ignore output. A_ = doctest.register_optionflag("IGNORE_RESULT") A_ = doctest.OutputChecker class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = CustomOutputChecker A_ = HfDoctestModule A_ = HfDocTestParser
42
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( A ): UpperCamelCase__ = args.pruning_method UpperCamelCase__ = args.threshold UpperCamelCase__ = args.model_name_or_path.rstrip('''/''' ) UpperCamelCase__ = args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) UpperCamelCase__ = torch.load(os.path.join(A , '''pytorch_model.bin''' ) ) UpperCamelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCamelCase__ = tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: UpperCamelCase__ = tensor print(f"Copied layer {name}" ) elif "bias" in name: UpperCamelCase__ = tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": UpperCamelCase__ = MagnitudeBinarizer.apply(inputs=A , threshold=A ) UpperCamelCase__ = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[f"{prefix_}mask_scores"] UpperCamelCase__ = TopKBinarizer.apply(A , A ) UpperCamelCase__ = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[f"{prefix_}mask_scores"] UpperCamelCase__ = ThresholdBinarizer.apply(A , A , A ) UpperCamelCase__ = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[f"{prefix_}mask_scores"] UpperCamelCase__ , UpperCamelCase__ = -0.1, 1.1 UpperCamelCase__ = torch.sigmoid(A ) UpperCamelCase__ = s * (r - l) + l UpperCamelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) UpperCamelCase__ = tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: UpperCamelCase__ = os.path.join( os.path.dirname(A ) , f"bertarized_{os.path.basename(A )}" ) if not os.path.isdir(A ): shutil.copytree(A , A ) print(f"\nCreated folder {target_model_path}" ) torch.save(A , os.path.join(A , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __magic_name__ =parser.parse_args() main(args)
415
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowercase ( unittest.TestCase ): _lowerCamelCase = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): __magic_name__ = (3, 32, 128) __magic_name__ = tempfile.mkdtemp() # fmt: off __magic_name__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __magic_name__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) __magic_name__ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __magic_name__ = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): __magic_name__ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __magic_name__ = Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) return image_input def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) __magic_name__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(UpperCamelCase_ , return_tensors='''np''' ) __magic_name__ = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = '''test''' __magic_name__ = processor(text=UpperCamelCase_ ) __magic_name__ = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = '''test''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.char_decode(UpperCamelCase_ ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase_ ) __magic_name__ = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = None __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = torch.randn(1 , 27 , 38 ) __magic_name__ = torch.randn(1 , 27 , 5_0257 ) __magic_name__ = torch.randn(1 , 27 , 3_0522 ) __magic_name__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
190
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = '''fnet''' def __init__( self , UpperCamelCase_=3_2000 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=4 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=False , UpperCamelCase_=512 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = initializer_range __magic_name__ = type_vocab_size __magic_name__ = layer_norm_eps __magic_name__ = use_tpu_fourier_optimizations __magic_name__ = tpu_short_seq_length
190
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() if is_torch_available(): import torch def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Optional[Any]=1.0 , lowercase__ : Dict=None , lowercase__ : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' if rng is None: lowerCAmelCase_ : Tuple = global_rng lowerCAmelCase_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase : Dict , UpperCAmelCase : str=7 , UpperCAmelCase : int=4_00 , UpperCAmelCase : Any=20_00 , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Optional[Any]=1_60_00 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , ): lowerCAmelCase_ : Dict = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = min_seq_length lowerCAmelCase_ : Tuple = max_seq_length lowerCAmelCase_ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Tuple = feature_size lowerCAmelCase_ : Optional[int] = padding_value lowerCAmelCase_ : Tuple = sampling_rate lowerCAmelCase_ : str = return_attention_mask lowerCAmelCase_ : int = do_normalize def A ( self : Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Dict=False ): def _flatten(UpperCAmelCase : Dict ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: lowerCAmelCase_ : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : List[Any] = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Dict = ASTFeatureExtractor def A ( self : str ): lowerCAmelCase_ : Tuple = ASTFeatureExtractionTester(self ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : List[str] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowerCAmelCase_ : Dict = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : str = feat_extract(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="""np""" ).input_values lowerCAmelCase_ : int = feat_extract(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Dict = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Tuple = np.asarray(lowerCamelCase__ ) lowerCAmelCase_ : int = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values lowerCAmelCase_ : str = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) @require_torch def A ( self : Optional[Any] ): import torch lowerCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : List[Any] = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : List[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A ( self : str , UpperCAmelCase : str ): from datasets import load_dataset lowerCAmelCase_ : List[str] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCAmelCase_ : Dict = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def A ( self : List[Any] ): lowerCAmelCase_ : str = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on lowerCAmelCase_ : Any = self._load_datasamples(1 ) lowerCAmelCase_ : Tuple = ASTFeatureExtractor() lowerCAmelCase_ : str = feature_extractor(lowerCamelCase__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase__ , atol=1e-4 ) )
600
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return int((input_a, input_a).count(0 ) != 0 ) def A__ ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
195
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( _UpperCamelCase : Iterable[str] ,_UpperCamelCase : int ): __lowerCamelCase = iter(UpperCamelCase__ ) while True: __lowerCamelCase = tuple(itertools.islice(UpperCamelCase__ ,UpperCamelCase__ ) ) if not chunk: return yield chunk def a__ ( _UpperCamelCase : str ): __lowerCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __lowerCamelCase = '''''' if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def a__ ( _UpperCamelCase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __lowerCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __lowerCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = generate_table(UpperCamelCase__ ) __lowerCamelCase = prepare_input(UpperCamelCase__ ) __lowerCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ ,2 ): __lowerCamelCase ,__lowerCamelCase = divmod(table.index(UpperCamelCase__ ) ,5 ) __lowerCamelCase ,__lowerCamelCase = divmod(table.index(UpperCamelCase__ ) ,5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): __lowerCamelCase = generate_table(UpperCamelCase__ ) __lowerCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ ,2 ): __lowerCamelCase ,__lowerCamelCase = divmod(table.index(UpperCamelCase__ ) ,5 ) __lowerCamelCase ,__lowerCamelCase = divmod(table.index(UpperCamelCase__ ) ,5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
715
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = np.full((len(_UpperCamelCase ), sequence_length, 2) ,_UpperCamelCase ) else: __lowerCamelCase = np.full((len(_UpperCamelCase ), sequence_length) ,_UpperCamelCase ) for i, tensor in enumerate(_UpperCamelCase ): if padding_side == "right": if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = tensor[:sequence_length] else: __lowerCamelCase = tensor[:sequence_length] else: if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = tensor[:sequence_length] else: __lowerCamelCase = tensor[:sequence_length] return out_tensor.tolist() def a__ ( _UpperCamelCase : Dict ): __lowerCamelCase = ord(_UpperCamelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True __lowerCamelCase = unicodedata.category(_UpperCamelCase ) if cat.startswith('''P''' ): return True return False @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = -1_0_0 lowerCAmelCase__ = "pt" def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' import torch __lowerCamelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCamelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCamelCase = self.tokenizer.pad( __UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCamelCase = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCamelCase = self.tokenizer.padding_side if padding_side == "right": __lowerCamelCase = [ list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels ] else: __lowerCamelCase = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels ] __lowerCamelCase = [feature['''ner_tags'''] for feature in features] __lowerCamelCase = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = [feature['''original_entity_spans'''] for feature in features] __lowerCamelCase = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
622
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Tuple , __A : Dict , __A : Optional[Any]=7 , __A : str=3 , __A : int=18 , __A : Optional[Any]=30 , __A : Optional[int]=400 , __A : int=True , __A : List[str]=None , __A : Union[str, Any]=True , ): __A : Optional[int] = size if size is not None else {"""height""": 18, """width""": 18} __A : Any = parent __A : Dict = batch_size __A : Any = num_channels __A : Any = image_size __A : str = min_resolution __A : List[str] = max_resolution __A : Dict = do_resize __A : Tuple = size __A : List[str] = apply_ocr def lowerCAmelCase_ ( self : Optional[Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self : List[Any] ): __A : Dict = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """apply_ocr""" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): # Initialize image_processing __A : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched __A : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing __A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __A : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : int ): # with apply_OCR = True __A : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __A : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __A : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __A : Optional[int] = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __A : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False __A : Any = LayoutLMvaImageProcessor(apply_ocr=__A ) __A : int = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( a_ ,a_ ,a_ ,unittest.TestCase ): __lowerCAmelCase = AltDiffusionPipeline __lowerCAmelCase = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ): torch.manual_seed(0 ) a_ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) a_ : Union[str, Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) a_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) a_ : List[str] = CLIPTextModel(a_ ) a_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) a_ : List[Any] = 7_7 a_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case_ ( self , a_ , a_=0 ): if str(a_ ).startswith("mps" ): a_ : int = torch.manual_seed(a_ ) else: a_ : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) a_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case_ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case_ ( self ): a_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : List[str] = self.get_dummy_components() torch.manual_seed(0 ) a_ : List[str] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder a_ : Optional[int] = RobertaSeriesModelWithTransformation(a_ ) a_ : List[str] = text_encoder a_ : int = AltDiffusionPipeline(**a_ ) a_ : Dict = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a_ : List[str] = self.get_dummy_inputs(a_ ) a_ : Union[str, Any] = "A photo of an astronaut" a_ : Optional[Any] = alt_pipe(**a_ ) a_ : Dict = output.images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Optional[int] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ): a_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : Tuple = self.get_dummy_components() a_ : str = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) a_ : int = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder a_ : Dict = RobertaSeriesModelWithTransformation(a_ ) a_ : Union[str, Any] = text_encoder a_ : int = AltDiffusionPipeline(**a_ ) a_ : Optional[int] = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a_ : List[Any] = self.get_dummy_inputs(a_ ) a_ : Tuple = alt_pipe(**a_ ) a_ : int = output.images a_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Optional[int] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): # make sure here that pndm scheduler skips prk a_ : Union[str, Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=a_ ) a_ : Optional[int] = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a_ : Tuple = "A painting of a squirrel eating a burger" a_ : Tuple = torch.manual_seed(0 ) a_ : Dict = alt_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="np" ) a_ : Optional[int] = output.images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Optional[Any] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ): a_ : Any = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) a_ : int = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=a_ , safety_checker=a_ ) a_ : Tuple = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a_ : List[Any] = "A painting of a squirrel eating a burger" a_ : str = torch.manual_seed(0 ) a_ : str = alt_pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="numpy" ) a_ : Dict = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Union[str, Any] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=0.9 , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' snake_case : List[Any] = size if size is not None else {"""shortest_edge""": 30} snake_case : Tuple = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} snake_case : List[Any] = parent snake_case : Optional[int] = batch_size snake_case : List[Any] = num_channels snake_case : Dict = min_resolution snake_case : List[str] = max_resolution snake_case : List[str] = do_resize_and_center_crop snake_case : List[Any] = size snake_case : int = crop_pct snake_case : Dict = crop_size snake_case : List[str] = do_normalize snake_case : Optional[int] = image_mean snake_case : int = image_std def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowerCAmelCase ( a__ , unittest.TestCase ): __UpperCAmelCase : str = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : str = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "crop_pct" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : str = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Dict = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Tuple = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
178
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Dict = logging.get_logger(__name__) def __lowerCamelCase ( A__ : Optional[Any] ) -> List[str]: lowerCamelCase_ : int = """huggingface/label-files""" lowerCamelCase_ : Dict = """imagenet-1k-id2label.json""" lowerCamelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_ : str = {int(A__ ): v for k, v in idalabel.items()} lowerCamelCase_ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase_ : str = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCamelCase_ : Optional[Any] = BitConfig( conv_layer=A__ , num_labels=1000 , idalabel=A__ , labelaid=A__ , ) return config def __lowerCamelCase ( A__ : str ) -> Any: if "stem.conv" in name: lowerCamelCase_ : Any = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase_ : Dict = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCamelCase_ : Optional[Any] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCamelCase_ : int = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCamelCase_ : str = """bit.encoder.""" + name return name def __lowerCamelCase ( ) -> List[Any]: lowerCamelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ : List[Any] , A__ : List[str] , A__ : Tuple=False ) -> List[str]: lowerCamelCase_ : Optional[Any] = get_config(A__ ) # load original model from timm lowerCamelCase_ : Optional[Any] = create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model lowerCamelCase_ : Optional[int] = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCamelCase_ : int = state_dict.pop(A__ ) lowerCamelCase_ : Union[str, Any] = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCamelCase_ : Tuple = BitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # create image processor lowerCamelCase_ : Optional[Any] = create_transform(**resolve_data_config({} , model=A__ ) ) lowerCamelCase_ : List[Any] = transform.transforms lowerCamelCase_ : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCamelCase_ : List[str] = BitImageProcessor( do_resize=A__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ : int = prepare_img() lowerCamelCase_ : int = transform(A__ ).unsqueeze(0 ) lowerCamelCase_ : List[str] = processor(A__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): lowerCamelCase_ : str = model(A__ ) lowerCamelCase_ : int = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCamelCase_ : List[Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) snake_case__ : int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase (lowerCamelCase ): def __lowerCamelCase ( self ): __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_heads' ) ) class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[16, 48, 96] , SCREAMING_SNAKE_CASE_=[1, 3, 6] , SCREAMING_SNAKE_CASE_=[1, 2, 10] , SCREAMING_SNAKE_CASE_=[7, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2] , SCREAMING_SNAKE_CASE_=[2, 1, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 2] , SCREAMING_SNAKE_CASE_=[False, False, True] , SCREAMING_SNAKE_CASE_=[0.0, 0.0, 0.0] , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , ): __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_sizes __snake_case = patch_stride __snake_case = patch_padding __snake_case = is_training __snake_case = use_labels __snake_case = num_labels __snake_case = num_channels __snake_case = embed_dim __snake_case = num_heads __snake_case = stride_kv __snake_case = depth __snake_case = cls_token __snake_case = attention_drop_rate __snake_case = initializer_range __snake_case = layer_norm_eps def __lowerCamelCase ( self ): __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = CvtModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ ) __snake_case = (self.image_size, self.image_size) __snake_case , __snake_case = image_size[0], image_size[1] for i in range(len(self.depth ) ): __snake_case = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __snake_case = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.num_labels __snake_case = CvtForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase (lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): __snake_case = CvtModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='Cvt does not output attentions' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.hidden_states __snake_case = len(self.model_tester.depth ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = CvtModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __lowercase( ) -> Union[str, Any]: __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase (unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowerCamelCase ( self ): __snake_case = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
345
lowerCamelCase_ : List[str] = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) lowerCamelCase_ : List[str] = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __lowercase( __snake_case : float ,__snake_case : str ,__snake_case : str ) -> float: __snake_case = from_type.lower().strip('s' ) __snake_case = to_type.lower().strip('s' ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) if from_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) __snake_case = METRIC_CONVERSION[from_sanitized] __snake_case = METRIC_CONVERSION[to_sanitized] __snake_case = 1 if from_exponent > to_exponent: __snake_case = from_exponent - to_exponent else: __snake_case = -(to_exponent - from_exponent) return value * pow(10 ,__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
345
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCamelCase = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_ , cache_dir=lowerCamelCase_) UpperCamelCase = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_ , os.listdir(lowerCamelCase_)[0] , '''snapshots'''))] UpperCamelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 4 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.151_4745) < 1e-3 assert np.abs(np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 4_9947.875) < 5e-1 UpperCamelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowerCamelCase_) == num_samples def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0565_2401)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 238_3808.2)) < 5e-1 def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) UpperCamelCase = scheduler.create_state() UpperCamelCase = scheduler_state UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_4504_3945)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 234_7693.5)) < 5e-1 def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = jax.random.split(jax.random.PRNGKey(0) , lowerCamelCase_) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , use_memory_efficient_attention=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
34
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = TransfoXLTokenizer _A : Union[str, Any] = False _A : Tuple = False def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() __lowercase : List[str] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Union[str, Any] , **__a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Any , __a : int ) -> Tuple: """simple docstring""" __lowercase : Tuple = """<unk> UNwanted , running""" __lowercase : Dict = """<unk> unwanted, running""" return input_text, output_text def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[int] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__a ) __lowercase : Any = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__a , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [0, 4, 8, 7] ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : Tuple = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = TransfoXLTokenizer(lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Tuple = TransfoXLTokenizer(lower_case=__a ) __lowercase : List[str] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" __lowercase : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) self.assertEqual(tokenizer.convert_tokens_to_string(__a ) , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = len(__a ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
149
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowerCamelCase : List[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _lowerCAmelCase ( __magic_name__ :Optional[Any] ): UpperCAmelCase_ = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) _lowerCamelCase : Dict = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _lowerCAmelCase ( __magic_name__ :Optional[Any] ): UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = key for k, v in WHISPER_MAPPING.items(): if k in key: UpperCAmelCase_ = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F'''{key} -> {new_key}''' ) UpperCAmelCase_ = s_dict.pop(__UpperCamelCase ) return s_dict def _lowerCAmelCase ( __magic_name__ :Optional[Any] ): UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) UpperCAmelCase_ = emb.weight.data return lin_layer def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str ): os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) UpperCAmelCase_ = os.path.basename(__UpperCamelCase ) UpperCAmelCase_ = url.split('''/''' )[-2] UpperCAmelCase_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not os.path.isfile(__UpperCamelCase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(__UpperCamelCase ): UpperCAmelCase_ = open(__UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(__UpperCamelCase ) as source, open(__UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=__UpperCamelCase , unit_divisor=1_0_2_4 ) as loop: while True: UpperCAmelCase_ = source.read(8_1_9_2 ) if not buffer: break output.write(__UpperCamelCase ) loop.update(len(__UpperCamelCase ) ) UpperCAmelCase_ = open(__UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def _lowerCAmelCase ( __magic_name__ :List[Any] , __magic_name__ :str ): if ".pt" not in checkpoint_path: UpperCAmelCase_ = _download(_MODELS[checkpoint_path] ) else: UpperCAmelCase_ = torch.load(__UpperCamelCase , map_location='''cpu''' ) UpperCAmelCase_ = original_checkpoint["""dims"""] UpperCAmelCase_ = original_checkpoint["""model_state_dict"""] UpperCAmelCase_ = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) UpperCAmelCase_ = True UpperCAmelCase_ = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] UpperCAmelCase_ = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__UpperCamelCase , decoder_ffn_dim=__UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) UpperCAmelCase_ = WhisperForConditionalGeneration(__UpperCamelCase ) UpperCAmelCase_ = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase_ = proj_out_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCamelCase : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
721
from __future__ import annotations _lowerCamelCase : Dict = 1.6_0_2_1E-1_9 # units = C def _lowerCAmelCase ( __magic_name__ :float , __magic_name__ :float , __magic_name__ :float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
407
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase__ ( _A ): '''simple docstring''' monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def lowerCamelCase__ ( _A ): '''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , __lowercase : Dict ): """simple docstring""" snake_case_ = metric_id class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = [MetricMock(_lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def snake_case__ ( self : str ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' if "tmp_path" in args: snake_case_ = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(a__ , match="https://huggingface.co/docs/evaluate" ): func(*a__ )
376
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): UpperCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase__ (self : Optional[int] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self : str ) -> int: lowercase = (3, 3_2, 1_2_8) lowercase = tempfile.mkdtemp() # fmt: off lowercase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase = dict(zip(A__ , range(len(A__ ) ) ) ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A__ ) + "\n" ) lowercase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 3_2, "width": 1_2_8}, } lowercase = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A__ , A__ ) def UpperCAmelCase__ (self : Dict , **A__ : List[Any] ) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCAmelCase__ (self : Any , **A__ : Tuple ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def UpperCAmelCase__ (self : Optional[int] ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self : str ) -> List[str]: lowercase = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) lowercase = Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) return image_input def UpperCAmelCase__ (self : str ) -> List[Any]: lowercase = self.get_tokenizer() lowercase = self.get_image_processor() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) processor.save_pretrained(self.tmpdirname ) lowercase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def UpperCAmelCase__ (self : Any ) -> Optional[int]: lowercase = self.get_tokenizer() lowercase = self.get_image_processor() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) lowercase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> List[Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ , return_tensors="np" ) lowercase = processor(images=A__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = "test" lowercase = processor(text=A__ ) lowercase = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self : int ) -> Optional[int]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = "test" lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.char_decode(A__ ) lowercase = tokenizer.batch_decode(A__ ) lowercase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(A__ , A__ ) def UpperCAmelCase__ (self : Any ) -> Optional[int]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = None lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase__ (self : int ) -> Optional[Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = torch.randn(1 , 2_7 , 3_8 ) lowercase = torch.randn(1 , 2_7 , 5_0_2_5_7 ) lowercase = torch.randn(1 , 2_7 , 3_0_5_2_2 ) lowercase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
459
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = "https://openaipublic.azureedge.net/jukebox/models/" __lowerCamelCase : Tuple = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: lowercase = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: lowercase = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: lowercase = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: lowercase = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowercase = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowercase = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowercase = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowercase = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = {} import re lowercase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowercase = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowercase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowercase = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowercase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowercase = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowercase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase_ ): lowercase = re_encoder_block_conv_in.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' lowercase = re_encoder_block_conv_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase_ ): lowercase = re_encoder_block_resnet.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) lowercase = {"1": 1, "3": 2}[groups[-2]] lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_encoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase_ ): lowercase = re_encoder_block_proj_out.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' lowercase = re_encoder_block_proj_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase_ ): lowercase = re_decoder_block_conv_out.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' lowercase = re_decoder_block_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase_ ): lowercase = re_decoder_block_resnet.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowercase = {"1": 1, "3": 2}[groups[-2]] lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_decoder_block_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase_ ): lowercase = re_decoder_block_proj_in.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' lowercase = re_decoder_block_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase_ ): lowercase = re_prior_cond_conv_out.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' lowercase = re_prior_cond_conv_out.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase_ ): lowercase = re_prior_cond_resnet.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowercase = {"1": 1, "3": 2}[groups[-2]] lowercase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' lowercase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' lowercase = prefix + resnet_block lowercase = re_prior_cond_resnet.sub(lowerCAmelCase_ , lowerCAmelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase_ ): lowercase = re_prior_cond_proj_in.match(lowerCAmelCase_ ) lowercase = regex_match.groups() lowercase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' lowercase = re_prior_cond_proj_in.sub(lowerCAmelCase_ , lowerCAmelCase_ ) # keep original key else: lowercase = original_key lowercase = replace_key(lowerCAmelCase_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: lowercase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) lowercase = original_key lowercase = original_key lowercase = value return new_dict @torch.no_grad() def UpperCAmelCase_ ( lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): lowercase = requests.get(f'{PREFIX}{file}' , allow_redirects=lowerCAmelCase_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=lowerCAmelCase_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , "wb" ).write(r.content ) lowercase = MODEL_MAPPING[model_name.split("/" )[-1]] lowercase = JukeboxConfig.from_pretrained(lowerCAmelCase_ ) lowercase = JukeboxModel(lowerCAmelCase_ ) lowercase = [] lowercase = {} for i, dict_name in enumerate(lowerCAmelCase_ ): lowercase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["model"] lowercase = {} for k in old_dic.keys(): if k.endswith(".b" ): lowercase = old_dic[k] elif k.endswith(".w" ): lowercase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowercase = old_dic[k] else: lowercase = old_dic[k] lowercase = "vqvae" if i == 0 else f'priors.{3 - i}' lowercase = fix_jukebox_keys(lowerCAmelCase_ , model.state_dict() , lowerCAmelCase_ , lowerCAmelCase_ ) weight_dict.append(lowerCAmelCase_ ) lowercase = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , "w" ) as txtfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) return weight_dict if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCamelCase : List[str] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
459
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A_ : List[Any] ="""\ """ A_ : Optional[Any] =""" Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ A_ : Any =""" Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class lowercase_ ( datasets.Metric): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = True , _UpperCAmelCase=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": a_ = """cuda""" else: a_ = """cuda""" if torch.cuda.is_available() else """cpu""" a_ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) a_ = model.to(_UpperCAmelCase ) a_ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: a_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" a_ = model.config.max_length - 1 else: a_ = model.config.max_length a_ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) a_ = encodings["""input_ids"""] a_ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." a_ = [] a_ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): a_ = min(start_index + batch_size , len(_UpperCAmelCase ) ) a_ = encoded_texts[start_index:end_index] a_ = attn_masks[start_index:end_index] if add_start_token: a_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) a_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) a_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) a_ = encoded_batch with torch.no_grad(): a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits a_ = out_logits[..., :-1, :].contiguous() a_ = labels[..., 1:].contiguous() a_ = attn_mask[..., 1:].contiguous() a_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
483
def lowerCamelCase_ ( UpperCAmelCase__ = 100 ): """simple docstring""" a_ = (n * (n + 1) // 2) ** 2 a_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
483
1
'''simple docstring''' import argparse import json from tqdm import tqdm def lowercase_ ( ) -> Dict: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=_lowercase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=_lowercase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=_lowercase , help='''where to store parsed gold_data_path file''' , ) lowerCamelCase_ : Optional[int] = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: lowerCamelCase_ : Any = json.load(_lowercase ) for dpr_record in tqdm(_lowercase ): lowerCamelCase_ : Union[str, Any] = dpr_record['''question'''] lowerCamelCase_ : Dict = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(_lowercase ) + '''\n''' ) if __name__ == "__main__": main()
357
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : List[str] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = "encodec" def __init__( self : List[Any] , A : Tuple=[1.5, 3.0, 6.0, 12.0, 24.0] , A : int=2_4_0_0_0 , A : Union[str, Any]=1 , A : Any=False , A : List[Any]=None , A : List[Any]=None , A : int=1_2_8 , A : Optional[Any]=3_2 , A : Tuple=1 , A : int=[8, 5, 4, 2] , A : Dict="weight_norm" , A : Optional[Any]=7 , A : Optional[int]=7 , A : str=3 , A : Optional[Any]=2 , A : Any=True , A : Dict="reflect" , A : List[str]=2 , A : Any=2 , A : int=1.0 , A : List[Any]=1_0_2_4 , A : List[Any]=None , A : Any=True , **A : Any , ) ->Dict: lowerCamelCase__ : List[Any] = target_bandwidths lowerCamelCase__ : Any = sampling_rate lowerCamelCase__ : Tuple = audio_channels lowerCamelCase__ : Optional[Any] = normalize lowerCamelCase__ : List[str] = chunk_length_s lowerCamelCase__ : Tuple = overlap lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_filters lowerCamelCase__ : str = num_residual_layers lowerCamelCase__ : Tuple = upsampling_ratios lowerCamelCase__ : int = norm_type lowerCamelCase__ : Dict = kernel_size lowerCamelCase__ : Any = last_kernel_size lowerCamelCase__ : int = residual_kernel_size lowerCamelCase__ : str = dilation_growth_rate lowerCamelCase__ : Dict = use_causal_conv lowerCamelCase__ : Tuple = pad_mode lowerCamelCase__ : Any = compress lowerCamelCase__ : int = num_lstm_layers lowerCamelCase__ : Any = trim_right_ratio lowerCamelCase__ : Tuple = codebook_size lowerCamelCase__ : Tuple = codebook_dim if codebook_dim is not None else hidden_size lowerCamelCase__ : str = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**A ) @property def __lowerCamelCase ( self : str ) ->Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCamelCase ( self : Optional[Any] ) ->Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCamelCase ( self : Tuple ) ->int: lowerCamelCase__ : int = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCamelCase ( self : int ) ->int: return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
315
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return getitem, k def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" return setitem, k, v def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return delitem, k def _a ( UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> Optional[int]: """simple docstring""" try: return fun(UpperCAmelCase , *UpperCAmelCase ), None except Exception as e: return None, e _A : List[str] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _A : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _A : str = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _A : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _A : Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Dict = HashMap(initial_block_size=4 ) lowerCamelCase__ : List[str] = {} for _, (fun, *args) in enumerate(UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) assert my_res == py_res assert str(UpperCAmelCase ) == str(UpperCAmelCase ) assert set(UpperCAmelCase ) == set(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) assert set(my.items() ) == set(py.items() ) def _a ( ) -> Any: """simple docstring""" def is_public(UpperCAmelCase ) -> bool: return not name.startswith('''_''' ) lowerCamelCase__ : List[Any] = {name for name in dir({} ) if is_public(UpperCAmelCase )} lowerCamelCase__ : Dict = {name for name in dir(HashMap() ) if is_public(UpperCAmelCase )} assert dict_public_names > hash_public_names
315
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a : str = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['''OwlViTFeatureExtractor'''] a : Optional[int] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} a : Union[str, Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } a : Dict = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): '''simple docstring''' __lowercase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ) -> Optional[int]: '''simple docstring''' __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: __lowercase = json.load(snake_case_ ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: __lowercase = merges_handle.read().split('''\n''' )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def A ( self ) -> List[str]: '''simple docstring''' return len(self.encoder ) def A ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , snake_case_ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(snake_case_ ) __lowercase = get_pairs(snake_case_ ) if not pairs: return token while True: __lowercase = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(snake_case_ ): try: __lowercase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(snake_case_ ) __lowercase = new_word if len(snake_case_ ) == 1: break else: __lowercase = get_pairs(snake_case_ ) __lowercase = ''' '''.join(snake_case_ ) __lowercase = word return word def A ( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , snake_case_ ): __lowercase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def A ( self , snake_case_ ) -> Any: '''simple docstring''' return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def A ( self , snake_case_ ) -> Dict: '''simple docstring''' return self.decoder.get(snake_case_ ) def A ( self , snake_case_ ) -> List[str]: '''simple docstring''' __lowercase = ''''''.join(snake_case_ ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) __lowercase = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __lowercase = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def A ( self , snake_case_ , snake_case_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def A ( self , snake_case_ , snake_case_ = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self , snake_case_ , snake_case_=False , **snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): __lowercase = ''' ''' + text return (text, kwargs)
527
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __magic_name__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize __magic_name__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' __magic_name__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' __magic_name__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def _a ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] ,reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] ,) def _a ( self : str ,_a : Optional[Any] ): '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def _a ( self : str ,_a : Dict ,_a : Optional[Any] ,_a : Tuple=0.9 ,_a : Optional[int]=3 ,_a : Tuple=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): A_ : Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(_A ) ,word_tokenize(_A ) ,alpha=_A ,beta=_A ,gamma=_A ) for ref, pred in zip(_A ,_A ) ] else: A_ : Tuple = [ meteor_score.single_meteor_score(_A ,_A ,alpha=_A ,beta=_A ,gamma=_A ) for ref, pred in zip(_A ,_A ) ] return {"meteor": np.mean(_A )}
665
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase__ = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') UpperCamelCase__ = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def a__ ( lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : str = None # source code of `config_class` UpperCAmelCase__ : str = inspect.getsource(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): UpperCAmelCase__ : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase__ : Union[str, Any] = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCAmelCase__ : Any = ckpt_name break return checkpoint def a__ ( ) -> Dict: UpperCAmelCase__ : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase__ : Any = get_checkpoint_from_config_class(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: UpperCAmelCase__ : List[str] = '''\n'''.join(sorted(lowerCAmelCase__ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
75
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A: def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str=3 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[int]=9_9 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : str=5 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : str=5_1_2 , __UpperCamelCase : str=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Any=0.02 , __UpperCamelCase : Dict=3 , __UpperCamelCase : str=4 , __UpperCamelCase : str=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def lowercase__ ( self : List[Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : List[Any] ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCamelCase , ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): lowerCamelCase_ = FalconModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , ): lowerCamelCase_ = True lowerCamelCase_ = FalconModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) lowerCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , ): lowerCamelCase_ = FalconForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , ): lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = FalconForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass lowerCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) lowerCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] lowerCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def lowercase__ ( self : List[Any] ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (FalconForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = FalconModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Tuple ): lowerCamelCase_ , *lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase_ = alibi self.model_tester.create_and_check_model(__UpperCamelCase , *__UpperCamelCase ) def lowercase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = input_dict["""input_ids"""] lowerCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Any ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = """single_label_classification""" lowerCamelCase_ = input_dict["""input_ids"""] lowerCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) lowerCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = input_dict["""input_ids"""] lowerCamelCase_ = FalconForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , use_cache=__UpperCamelCase ) lowerCamelCase_ = input_ids.shape[0] lowerCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase_ = model._convert_cache_to_standard_format(__UpperCamelCase , __UpperCamelCase ) for layer in range(len(__UpperCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = """multi_label_classification""" lowerCamelCase_ = input_dict["""input_ids"""] lowerCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) lowerCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Dict ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__UpperCamelCase , """use_cache""" ): return lowerCamelCase_ = model_class(__UpperCamelCase ).to(__UpperCamelCase ) if "use_cache" not in inputs: lowerCamelCase_ = True lowerCamelCase_ = model(**__UpperCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase_ = ( getattr(__UpperCamelCase , """decoder_layers""" , __UpperCamelCase ) or getattr(__UpperCamelCase , """num_decoder_layers""" , __UpperCamelCase ) or config.num_hidden_layers ) lowerCamelCase_ = getattr(__UpperCamelCase , """num_kv_heads""" , config.num_attention_heads ) lowerCamelCase_ = getattr(__UpperCamelCase , """d_model""" , config.hidden_size ) lowerCamelCase_ = embed_dim // num_attention_heads lowerCamelCase_ = outputs["""past_key_values"""] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ = inputs["""input_ids"""].shape for i in range(__UpperCamelCase ): if config.new_decoder_architecture: lowerCamelCase_ = config.num_attention_heads elif config.multi_query: lowerCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A( unittest.TestCase ): @slow def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) lowerCamelCase_ = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__UpperCamelCase ) lowerCamelCase_ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCamelCase ) lowerCamelCase_ = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) lowerCamelCase_ = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=1_9 ) lowerCamelCase_ = tokenizer.batch_decode(__UpperCamelCase )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def lowercase__ ( self : Any ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(__UpperCamelCase ) model.eval() model.to(__UpperCamelCase ) lowerCamelCase_ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=4 ) model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=4 ) model.generate(**__UpperCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def lowercase__ ( self : Optional[Any] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = FalconForCausalLM.from_pretrained(__UpperCamelCase ) model.eval() model.to(device=__UpperCamelCase ) lowerCamelCase_ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCamelCase ) # Test results are the same with and without cache lowerCamelCase_ = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=2_0 , use_cache=__UpperCamelCase ) lowerCamelCase_ = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=2_0 , use_cache=__UpperCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
103
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: def __init__( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=3_2 , __UpperCamelCase : Any=3 , __UpperCamelCase : List[str]=1_0 , __UpperCamelCase : int=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase : List[str]=[1, 1, 2, 1] , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Dict="relu" , __UpperCamelCase : int=3 , __UpperCamelCase : Dict=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFRegNetModel(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , training=__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Tuple ): lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowercase__ ( self : Optional[int] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowercase__ ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : int ): def check_hidden_states_output(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Any ): lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) , training=__UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any]={} ): lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ).to_tuple() def recursive_check(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): if isinstance(__UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCamelCase , __UpperCamelCase ): recursive_check(__UpperCamelCase , __UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__UpperCamelCase , __UpperCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__UpperCamelCase , __UpperCamelCase ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( ) -> Optional[int]: lowerCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : List[str] ): lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""tf""" ) # forward pass lowerCamelCase_ = model(**__UpperCamelCase , training=__UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 )
103
1
"""simple docstring""" UpperCAmelCase = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } UpperCAmelCase = {value: key for key, value in encode_dict.items()} def __magic_name__ ( _lowerCamelCase: str ) -> str: '''simple docstring''' lowerCAmelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def __magic_name__ ( _lowerCamelCase: str ) -> str: '''simple docstring''' if set(_lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowerCAmelCase = '''''' for word in coded.split(): while len(_lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] lowerCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
535
"""simple docstring""" from collections import namedtuple UpperCAmelCase = namedtuple("""from_to""", """from_ to""") UpperCAmelCase = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def __magic_name__ ( _lowerCamelCase: float, _lowerCamelCase: str, _lowerCamelCase: str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(_lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(_lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
535
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__: Union[str, Any] = logging.get_logger(__name__) A__: List[Any] = {'''vocab_file''': '''spiece.model'''} A__: int = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } A__: Dict = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self :List[str] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Union[str, Any]=False , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE :Dict , ) -> None: '''simple docstring''' _a : str ={} if sp_model_kwargs is None else sp_model_kwargs _a : Union[str, Any] =kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) _a : Tuple ="""None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _a : List[Any] ="""<|endoftext|>""" if eos_token is None else eos_token _a : int ="""<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _a : Tuple =unk_token if pad_token is None else pad_token _a : List[Any] =eos_token if bos_token is None else bos_token else: _a : List[str] ="""<pad>""" if pad_token is None else pad_token _a : Any ="""<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _a : str =do_lower_case _a : Optional[Any] =remove_space _a : List[Any] =keep_accents _a : Optional[int] =vocab_file _a : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off _a : Optional[int] ={""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _a : int =re.compile( f"[{''.join(map(SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]" ) def __getstate__( self :Optional[Any] ) -> Tuple: '''simple docstring''' _a : List[Any] =self.__dict__.copy() _a : Union[str, Any] =None return state def __setstate__( self :str , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _a : List[str] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Dict ={} _a : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __UpperCAmelCase ( self :List[str] ) -> int: '''simple docstring''' return len(self.sp_model ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> str: '''simple docstring''' _a : Tuple =self.non_printing_characters_re.sub("""""" , SCREAMING_SNAKE_CASE ) # Normalize whitespaces _a : str ="""""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization _a : List[str] =unicodedata.normalize("""NFC""" , SCREAMING_SNAKE_CASE ) return text def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str , **SCREAMING_SNAKE_CASE :Union[str, Any] ) -> List[str]: '''simple docstring''' _a : Any =self.preprocess_text(SCREAMING_SNAKE_CASE ) return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :str ) -> str: '''simple docstring''' return out_string def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[str] ) -> str: '''simple docstring''' _a : List[Any] =[] _a : Optional[int] ="""""" _a : Any =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token _a : Dict =True _a : Optional[Any] =[] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string def __UpperCAmelCase ( self :List[Any] ) -> Dict[str, int]: '''simple docstring''' _a : Tuple ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a : int =os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , """wb""" ) as fi: _a : str =self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[str, List[str]] , SCREAMING_SNAKE_CASE :Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _a : str =self.preprocess_text(SCREAMING_SNAKE_CASE ) _a : Tuple =self.sp_model.encode(SCREAMING_SNAKE_CASE ) else: _a : Any =[self.preprocess_text(SCREAMING_SNAKE_CASE ) for t in text] _a : List[Any] =self.sp_model.encode(SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": _a : List[str] =torch.tensor(SCREAMING_SNAKE_CASE ) return token_ids def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Union[int, List[int]] ) -> str: '''simple docstring''' return self.sp_model.decode(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :"Conversation" ) -> List[int]: '''simple docstring''' _a : Tuple =[f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] _a : List[Any] =( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(SCREAMING_SNAKE_CASE ) + f"{self.bos_token}Bot:" ) return self.encode(text=SCREAMING_SNAKE_CASE )
506
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self :Any , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[Any]=1_2 , SCREAMING_SNAKE_CASE :List[str]=7 , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :List[str]=9_9 , SCREAMING_SNAKE_CASE :Optional[int]=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :List[str]=3_7 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :str=5_1_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[int]=0 , SCREAMING_SNAKE_CASE :List[Any]=None , ) -> List[Any]: '''simple docstring''' _a : List[str] =parent _a : Dict =batch_size _a : Optional[int] =seq_length _a : Any =is_training _a : Optional[Any] =use_input_mask _a : List[str] =use_labels _a : List[str] =vocab_size _a : Any =hidden_size _a : Optional[Any] =projection_dim _a : Any =num_hidden_layers _a : List[str] =num_attention_heads _a : Any =intermediate_size _a : List[Any] =dropout _a : Any =attention_dropout _a : Any =max_position_embeddings _a : Optional[int] =initializer_range _a : int =scope _a : Dict =bos_token_id def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' _a : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Union[str, Any] =None if self.use_input_mask: _a : int =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _a : Any =input_mask.numpy() _a , _a : Any =input_mask.shape _a : str =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): _a : str =1 _a : int =0 _a : int =self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[int]: '''simple docstring''' _a : Optional[Any] =TFBlipTextModel(config=SCREAMING_SNAKE_CASE ) _a : Dict =model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) _a : Tuple =model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' _a : Dict =self.prepare_config_and_inputs() _a , _a , _a : List[Any] =config_and_inputs _a : List[str] ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Tuple = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase : Tuple = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Union[str, Any] = False def __UpperCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' _a : Tuple =BlipTextModelTester(self ) _a : int =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> Dict: '''simple docstring''' pass def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def __UpperCAmelCase ( self :Optional[int] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' pass @slow def __UpperCAmelCase ( self :int ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any =TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :Tuple=True ) -> str: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE )
506
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = UNetaDModel snake_case__ = '''sample''' @property def _UpperCamelCase ( self : Dict ) -> List[str]: _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) _UpperCamelCase = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : List[Any] ) -> int: return (3, 32, 32) @property def _UpperCamelCase ( self : List[Any] ) -> int: return (3, 32, 32) def _UpperCamelCase ( self : Tuple ) -> int: _UpperCamelCase = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = UNetaDModel snake_case__ = '''sample''' @property def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = 4 _UpperCamelCase = 4 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) _UpperCamelCase = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : List[Any] ) -> str: return (4, 32, 32) @property def _UpperCamelCase ( self : Tuple ) -> Dict: return (4, 32, 32) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self : List[Any] ) -> Dict: _UpperCamelCase , _UpperCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__UpperCamelCase ) _UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self : List[Any] ) -> Tuple: _UpperCamelCase , _UpperCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__UpperCamelCase ) model.to(__UpperCamelCase ) _UpperCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _UpperCamelCase ( self : Tuple ) -> List[Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCamelCase , _UpperCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=__UpperCamelCase ) model_accelerate.to(__UpperCamelCase ) model_accelerate.eval() _UpperCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCamelCase = noise.to(__UpperCamelCase ) _UpperCamelCase = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) _UpperCamelCase = model_accelerate(__UpperCamelCase , __UpperCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCamelCase , _UpperCamelCase = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=__UpperCamelCase , low_cpu_mem_usage=__UpperCamelCase ) model_normal_load.to(__UpperCamelCase ) model_normal_load.eval() _UpperCamelCase = model_normal_load(__UpperCamelCase , __UpperCamelCase )['''sample'''] assert torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__UpperCamelCase ) _UpperCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCamelCase = noise.to(__UpperCamelCase ) _UpperCamelCase = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , __UpperCamelCase ).sample _UpperCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCamelCase = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) ) class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = UNetaDModel snake_case__ = '''sample''' @property def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any]=(32, 32) ) -> Union[str, Any]: _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) _UpperCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return (3, 32, 32) @property def _UpperCamelCase ( self : Optional[Any] ) -> Dict: return (3, 32, 32) def _UpperCamelCase ( self : Tuple ) -> str: _UpperCamelCase = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } _UpperCamelCase = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self : Union[str, Any] ) -> Dict: _UpperCamelCase , _UpperCamelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__UpperCamelCase ) _UpperCamelCase = self.dummy_input _UpperCamelCase = floats_tensor((4, 3) + (256, 256) ).to(__UpperCamelCase ) _UpperCamelCase = noise _UpperCamelCase = model(**__UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self : List[str] ) -> int: _UpperCamelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__UpperCamelCase ) _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = (256, 256) _UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) _UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , __UpperCamelCase ).sample _UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCamelCase = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def _UpperCamelCase ( self : Any ) -> Any: _UpperCamelCase = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__UpperCamelCase ) _UpperCamelCase = 4 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) _UpperCamelCase = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , __UpperCamelCase ).sample _UpperCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCamelCase = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def _UpperCamelCase ( self : int ) -> Optional[Any]: # not required for this model pass
420
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase = 6_37_81_37.0 UpperCAmelCase = 6_35_67_52.31_42_45 UpperCAmelCase = 6_378_137 def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> float: _UpperCamelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) _UpperCamelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCamelCase = haversine_distance(a__ , a__ , a__ , a__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCamelCase = (b_lata + b_lata) / 2 _UpperCamelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCamelCase = (sin(a__ ) ** 2) * (cos(a__ ) ** 2) _UpperCamelCase = cos(sigma / 2 ) ** 2 _UpperCamelCase = (sigma - sin(a__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCamelCase = (cos(a__ ) ** 2) * (sin(a__ ) ** 2) _UpperCamelCase = sin(sigma / 2 ) ** 2 _UpperCamelCase = (sigma + sin(a__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
420
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__ ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = StableUnCLIPPipeline _lowerCAmelCase = TEXT_TO_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCAmelCase = False def __snake_case ( self ): A__ : List[Any] = 32 A__ : Union[str, Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A__ : Any = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=A_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A__ : Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A_ , num_layers=1 , ) torch.manual_seed(0 ) A__ : Optional[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=A_ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) A__ : Tuple = StableUnCLIPImageNormalizer(embedding_dim=A_ ) A__ : Optional[int] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) A__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A__ : Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A__ : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A_ , layers_per_block=1 , upcast_attention=A_ , use_linear_projection=A_ , ) torch.manual_seed(0 ) A__ : Union[str, Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=A_ , steps_offset=1 , ) torch.manual_seed(0 ) A__ : Any = AutoencoderKL() A__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=0 ): if str(A_ ).startswith('''mps''' ): A__ : List[str] = torch.manual_seed(A_ ) else: A__ : str = torch.Generator(device=A_ ).manual_seed(A_ ) A__ : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self ): A__ : Any = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=A_ ) def __snake_case ( self ): A__ : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=A_ ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) A__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A__ : Tuple = pipe('''anime turle''' , generator=A_ , output_type='''np''' ) A__ : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ ) def __snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) A__ : List[Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ : List[Any] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) A__ : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
__A = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A = [{'type': 'code', 'content': INSTALL_CONTENT}] __A = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
484
def __A ( _lowercase = 2_00 ): '''simple docstring''' _A = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _A = [0] * (pence + 1) _A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
484
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) UpperCamelCase : int = { "input_ids": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCamelCase : List[Any] = model(lowerCamelCase )["last_hidden_state"] UpperCamelCase : str = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice. UpperCamelCase : int = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
435
'''simple docstring''' from __future__ import annotations import math def A__ ( A : int): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def A__ ( A : int): '''simple docstring''' if not isinstance(A , A): raise ValueError("n must be an integer") if n <= 0: raise ValueError("n must be >= 0") UpperCamelCase : Union[str, Any] = [] for num in range(len(A)): UpperCamelCase : Any = 0 while 2 * i * i <= odd_composites[num]: UpperCamelCase : str = odd_composites[num] - 2 * i * i if is_prime(A): break i += 1 else: list_nums.append(odd_composites[num]) if len(A) == n: return list_nums return [] def A__ ( ): '''simple docstring''' return compute_nums(1)[0] if __name__ == "__main__": print(f"""{solution() = }""")
435
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str ) -> bool: __A : Union[str, Any] = 0 for ch in input_str: __A : str = ord(__snake_case ) __A : Any = pow(2 , __snake_case ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
8
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Dict=None , UpperCamelCase : str=None ) -> List[str]: if attention_mask is None: _lowerCamelCase = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase__ : '''simple docstring''' lowerCAmelCase_ = OPTConfig lowerCAmelCase_ = {} lowerCAmelCase_ = 'gelu' def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Any=1_3 , snake_case__ : List[str]=7 , snake_case__ : Optional[Any]=True , snake_case__ : int=False , snake_case__ : Any=9_9 , snake_case__ : Optional[int]=1_6 , snake_case__ : str=2 , snake_case__ : List[str]=4 , snake_case__ : Union[str, Any]=4 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=2_0 , snake_case__ : Any=2 , snake_case__ : Optional[int]=1 , snake_case__ : Optional[Any]=0 , snake_case__ : int=1_6 , snake_case__ : List[Any]=1_6 , ) -> List[Any]: _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = eos_token_id _lowerCamelCase = pad_token_id _lowerCamelCase = bos_token_id _lowerCamelCase = embed_dim _lowerCamelCase = word_embed_proj_dim _lowerCamelCase = False def _snake_case ( self : List[Any] ) -> Optional[int]: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) _lowerCamelCase = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def _snake_case ( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Optional[int]: _lowerCamelCase = TFOPTModel(config=snake_case__ ) _lowerCamelCase = inputs_dict['input_ids'] _lowerCamelCase = input_ids[:1, :] _lowerCamelCase = inputs_dict['attention_mask'][:1, :] _lowerCamelCase = 1 # first forward pass _lowerCamelCase = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) _lowerCamelCase , _lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase = model(snake_case__ , attention_mask=snake_case__ )[0] _lowerCamelCase = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) @require_tf class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase_ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase_ = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = 10 def _snake_case ( self : List[Any] ) -> int: _lowerCamelCase = TFOPTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=snake_case__ ) def _snake_case ( self : List[str] ) -> Union[str, Any]: self.config_tester.run_common_tests() def _snake_case ( self : Dict ) -> Union[str, Any]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def _snake_case ( self : Optional[int] ) -> Optional[Any]: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ : List[Any] , snake_case__ : Dict ): if hasattr(snake_case__ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings _lowerCamelCase = model_class(config=snake_case__ ) _lowerCamelCase = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) _lowerCamelCase = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) _lowerCamelCase = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) _lowerCamelCase = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing _lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) _lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCamelCase = False self.assertTrue(snake_case__ ) def lowerCamelCase ( UpperCamelCase : str ) -> List[str]: return tf.constant(UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = 99 def _snake_case ( self : Any ) -> int: _lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCamelCase = input_ids.shape[0] _lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : List[Any] ) -> str: _lowerCamelCase = TFOPTModel.from_pretrained('facebook/opt-350m' ) _lowerCamelCase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): _lowerCamelCase = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state _lowerCamelCase = (1, 1_1, 5_1_2) self.assertEqual(output.shape , snake_case__ ) _lowerCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-3 ) ) _lowerCamelCase = tf.function(snake_case__ , jit_compile=snake_case__ ) _lowerCamelCase = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-2 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ) -> List[str]: super().setUp() _lowerCamelCase = 'facebook/opt-350m' def _snake_case ( self : Union[str, Any] ) -> Dict: _lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCamelCase = tokenizer(snake_case__ , return_tensors='tf' , padding=snake_case__ , add_special_tokens=snake_case__ ) _lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) _lowerCamelCase = tf.function(snake_case__ , jit_compile=snake_case__ ) _lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self : str ) -> List[str]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _snake_case ( self : Dict ) -> Optional[int]: _lowerCamelCase = 'facebook/opt-125m' _lowerCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase = [] _lowerCamelCase = GPTaTokenizer.from_pretrained(snake_case__ ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: _lowerCamelCase = tokenizer(snake_case__ , return_tensors='tf' ).input_ids _lowerCamelCase = model.generate(snake_case__ , max_length=1_0 ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def _snake_case ( self : int ) -> Dict: _lowerCamelCase = 'facebook/opt-350m' _lowerCamelCase = GPTaTokenizer.from_pretrained(snake_case__ ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(snake_case__ ) _lowerCamelCase = 'left' # use different length sentences to test batching _lowerCamelCase = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase = tokenizer(snake_case__ , return_tensors='tf' , padding=snake_case__ ) _lowerCamelCase = inputs['input_ids'] _lowerCamelCase = model.generate(input_ids=snake_case__ , attention_mask=inputs['attention_mask'] ) _lowerCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase = model.generate(input_ids=snake_case__ ) _lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) _lowerCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) _lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) _lowerCamelCase = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def _snake_case ( self : List[Any] ) -> Optional[Any]: _lowerCamelCase = 'facebook/opt-350m' _lowerCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] _lowerCamelCase = [] _lowerCamelCase = GPTaTokenizer.from_pretrained(snake_case__ ) _lowerCamelCase = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: _lowerCamelCase = tokenizer(snake_case__ , return_tensors='tf' ).input_ids _lowerCamelCase = model.generate(snake_case__ , max_length=1_0 ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
544
0
def lowercase_ ( A__ , A__ ) -> List[Any]: """simple docstring""" snake_case = [0 for i in range(r + 1 )] # nc0 = 1 snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case = min(A__ , A__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
294
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[int] = "roberta" def __init__(self : Union[str, Any] , _A : List[Any]=5_0_2_6_5 , _A : Dict=7_6_8 , _A : Tuple=1_2 , _A : Optional[Any]=1_2 , _A : int=3_0_7_2 , _A : List[str]="gelu" , _A : Tuple=0.1 , _A : Dict=0.1 , _A : Optional[int]=5_1_2 , _A : Dict=2 , _A : Optional[Any]=0.02 , _A : Optional[Any]=1E-12 , _A : str=1 , _A : Dict=0 , _A : Optional[int]=2 , _A : int="absolute" , _A : Any=True , _A : Union[str, Any]=None , **_A : Optional[int] , ) -> Tuple: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( A_ ): @property def UpperCAmelCase(self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
294
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __UpperCamelCase ( UpperCamelCase ): def __init__( self : Tuple , UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ) -> List[Any]: lowerCAmelCase :List[Any] = path_or_paths lowerCAmelCase :Union[str, Any] = split if split or isinstance(UpperCAmelCase , UpperCAmelCase ) else 'train' lowerCAmelCase :Any = features lowerCAmelCase :Dict = cache_dir lowerCAmelCase :int = keep_in_memory lowerCAmelCase :Optional[int] = streaming lowerCAmelCase :Tuple = num_proc lowerCAmelCase :Tuple = kwargs @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __UpperCamelCase ( UpperCamelCase ): def __init__( self : Dict , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[str] , ) -> Union[str, Any]: lowerCAmelCase :int = features lowerCAmelCase :Tuple = cache_dir lowerCAmelCase :Tuple = keep_in_memory lowerCAmelCase :Optional[Any] = streaming lowerCAmelCase :Optional[int] = num_proc lowerCAmelCase :Tuple = kwargs @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[Dataset, IterableDataset]: pass
553
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
553
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __lowercase = True except (ImportError, AttributeError): __lowercase = object def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' pass __lowercase = False __lowercase = logging.get_logger('''transformers-cli/serving''') def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE , args.host , args.port , args.workers ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : dict class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] a__ : Optional[List[int]] class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @staticmethod def UpperCamelCase__ ( __lowercase) -> Union[str, Any]: __UpperCamelCase :str = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''') serve_parser.add_argument( '''--task''' , type=__lowercase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__lowercase , default='''localhost''' , help='''Interface the server will listen on.''') serve_parser.add_argument('''--port''' , type=__lowercase , default=8_888 , help='''Port the serving will listen to.''') serve_parser.add_argument('''--workers''' , type=__lowercase , default=1 , help='''Number of http workers''') serve_parser.add_argument('''--model''' , type=__lowercase , help='''Model\'s name or path to stored model.''') serve_parser.add_argument('''--config''' , type=__lowercase , help='''Model\'s config name or path to stored model.''') serve_parser.add_argument('''--tokenizer''' , type=__lowercase , help='''Tokenizer name to use.''') serve_parser.add_argument( '''--device''' , type=__lowercase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__lowercase) def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase) -> Any: __UpperCamelCase :Optional[Any] = pipeline __UpperCamelCase :Optional[int] = host __UpperCamelCase :Dict = port __UpperCamelCase :Dict = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''') else: logger.info(f"""Serving model over {host}:{port}""") __UpperCamelCase :Optional[Any] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__lowercase , response_class=__lowercase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCamelCase__ ( self) -> Any: run(self._app , host=self.host , port=self.port , workers=self.workers) def UpperCamelCase__ ( self) -> str: return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def UpperCamelCase__ ( self , __lowercase = Body(__lowercase , embed=__lowercase) , __lowercase = Body(__lowercase , embed=__lowercase)) -> Any: try: __UpperCamelCase :Any = self._pipeline.tokenizer.tokenize(__lowercase) if return_ids: __UpperCamelCase :str = self._pipeline.tokenizer.convert_tokens_to_ids(__lowercase) return ServeTokenizeResult(tokens=__lowercase , tokens_ids=__lowercase) else: return ServeTokenizeResult(tokens=__lowercase) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__lowercase)}) def UpperCamelCase__ ( self , __lowercase = Body(__lowercase , embed=__lowercase) , __lowercase = Body(__lowercase , embed=__lowercase) , __lowercase = Body(__lowercase , embed=__lowercase) , ) -> int: try: __UpperCamelCase :List[str] = self._pipeline.tokenizer.decode(__lowercase , __lowercase , __lowercase) return ServeDeTokenizeResult(model='''''' , text=__lowercase) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__lowercase)}) async def UpperCamelCase__ ( self , __lowercase=Body(__lowercase , embed=__lowercase)) -> int: # Check we don't have empty string if len(__lowercase) == 0: return ServeForwardResult(output=[] , attention=[]) try: # Forward through the model __UpperCamelCase :Union[str, Any] = self._pipeline(__lowercase) return ServeForwardResult(output=__lowercase) except Exception as e: raise HTTPException(500 , {'''error''': str(__lowercase)})
452
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=2 , __lowercase=8 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=16 , __lowercase=5 , __lowercase=2 , __lowercase=36 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> List[str]: __UpperCamelCase :Union[str, Any] = parent __UpperCamelCase :str = batch_size __UpperCamelCase :Union[str, Any] = seq_length __UpperCamelCase :Optional[Any] = is_training __UpperCamelCase :Union[str, Any] = use_input_mask __UpperCamelCase :Any = use_token_type_ids __UpperCamelCase :List[str] = use_labels __UpperCamelCase :Tuple = vocab_size __UpperCamelCase :Tuple = hidden_size __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :Tuple = num_attention_heads __UpperCamelCase :Any = intermediate_size __UpperCamelCase :Optional[Any] = hidden_act __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :str = attention_probs_dropout_prob __UpperCamelCase :Optional[Any] = max_position_embeddings __UpperCamelCase :int = type_vocab_size __UpperCamelCase :Optional[int] = type_sequence_label_size __UpperCamelCase :Any = initializer_range __UpperCamelCase :List[str] = num_labels __UpperCamelCase :Dict = num_choices __UpperCamelCase :Union[str, Any] = scope def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :List[Any] = None if self.use_input_mask: __UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Union[str, Any] = None if self.use_token_type_ids: __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCamelCase :List[str] = None __UpperCamelCase :Tuple = None __UpperCamelCase :Union[str, Any] = None if self.use_labels: __UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = self.get_config() __UpperCamelCase :List[str] = 300 return config def UpperCamelCase__ ( self) -> int: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Tuple = self.prepare_config_and_inputs() __UpperCamelCase :Union[str, Any] = True __UpperCamelCase :List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :int = MraModel(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) __UpperCamelCase :Tuple = model(__lowercase , token_type_ids=__lowercase) __UpperCamelCase :str = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: __UpperCamelCase :Tuple = True __UpperCamelCase :Dict = MraModel(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :int = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __UpperCamelCase :Any = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , ) __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Dict = MraForMaskedLM(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Optional[Any] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :Tuple = MraForQuestionAnswering(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Any = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> List[str]: __UpperCamelCase :List[Any] = self.num_labels __UpperCamelCase :str = MraForSequenceClassification(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Dict = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[int]: __UpperCamelCase :str = self.num_labels __UpperCamelCase :Optional[int] = MraForTokenClassification(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Optional[Any] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Optional[Any] = self.num_choices __UpperCamelCase :Dict = MraForMultipleChoice(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :int = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Union[str, Any] = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :str = config_and_inputs __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[str] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a__ : Optional[int] = False a__ : Optional[int] = False a__ : str = False a__ : Optional[Any] = False a__ : Union[str, Any] = () def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :str = MraModelTester(self) __UpperCamelCase :Tuple = ConfigTester(self , config_class=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase :Optional[int] = type self.model_tester.create_and_check_model(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase) @slow def UpperCamelCase__ ( self) -> Dict: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :List[Any] = MraModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @unittest.skip(reason='''MRA does not output attentions''') def UpperCamelCase__ ( self) -> Any: return @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''') __UpperCamelCase :Union[str, Any] = torch.arange(256).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :List[Any] = model(__lowercase)[0] __UpperCamelCase :Dict = torch.Size((1, 256, 768)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Optional[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :str = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''') __UpperCamelCase :str = torch.arange(256).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :Optional[Any] = model(__lowercase)[0] __UpperCamelCase :List[str] = 50_265 __UpperCamelCase :List[Any] = torch.Size((1, 256, vocab_size)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Optional[Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''') __UpperCamelCase :Optional[int] = torch.arange(4_096).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :Tuple = model(__lowercase)[0] __UpperCamelCase :Optional[int] = 50_265 __UpperCamelCase :Optional[Any] = torch.Size((1, 4_096, vocab_size)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :List[str] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4))
452
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ :Optional[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys a_ :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __a :str = logging.get_logger(__name__) __a :Any = Dict[str, Any] __a :int = List[Prediction] @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __A ( self : str , **UpperCAmelCase : str ): A_ = {} if "threshold" in kwargs: A_ = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Any ): A_ = load_image(UpperCAmelCase ) A_ = torch.IntTensor([[image.height, image.width]] ) A_ = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: A_ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) A_ = target_size return inputs def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] ): A_ = model_inputs.pop("target_size" ) A_ = self.model(**UpperCAmelCase ) A_ = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: A_ = model_inputs["bbox"] return model_outputs def __A ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=0.9 ): A_ = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A_ , A_ = target_size[0].tolist() def unnormalize(UpperCAmelCase : Any ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A_ , A_ = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A_ = [unnormalize(UpperCAmelCase ) for bbox in model_outputs["bbox"].squeeze(0 )] A_ = ["score", "label", "box"] A_ = [dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for vals in zip(scores.tolist() , UpperCAmelCase , UpperCAmelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A_ = self.image_processor.post_process_object_detection(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = raw_annotations[0] A_ = raw_annotation["scores"] A_ = raw_annotation["labels"] A_ = raw_annotation["boxes"] A_ = scores.tolist() A_ = [self.model.config.idalabel[label.item()] for label in labels] A_ = [self._get_bounding_box(UpperCAmelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A_ = ["score", "label", "box"] A_ = [ dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def __A ( self : Tuple , UpperCAmelCase : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) A_ , A_ , A_ , A_ = box.int().tolist() A_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
86
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''retribert''' def __init__( self : Optional[int] , __UpperCamelCase : Optional[Any]=3_0522 , __UpperCamelCase : List[str]=768 , __UpperCamelCase : int=8 , __UpperCamelCase : int=12 , __UpperCamelCase : Optional[Any]=3072 , __UpperCamelCase : int="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : List[str]=1E-12 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=128 , __UpperCamelCase : List[str]=0 , **__UpperCamelCase : str , ) -> Dict: super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = share_encoders _UpperCamelCase = projection_dim
342
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = 0 def _UpperCamelCase ( self : Any ) -> str: _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : int ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> List[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: with self.assertRaisesRegex( __UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCamelCase ( self : int ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: class UpperCAmelCase_ ( _lowercase): snake_case__ = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
342
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =DDIMPipeline UpperCamelCase__ =UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ =PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ =False def snake_case_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ :List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) UpperCAmelCase_ :str = DDIMScheduler() UpperCAmelCase_ :Optional[int] = {'''unet''': unet, '''scheduler''': scheduler} return components def snake_case_ ( self : Optional[int] , snake_case : List[str] , snake_case : Optional[int]=0 ): if str(snake_case ).startswith('''mps''' ): UpperCAmelCase_ :Tuple = torch.manual_seed(snake_case ) else: UpperCAmelCase_ :List[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCAmelCase_ :Dict = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self : Dict ): UpperCAmelCase_ :List[str] = '''cpu''' UpperCAmelCase_ :Optional[int] = self.get_dummy_components() UpperCAmelCase_ :Optional[int] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) UpperCAmelCase_ :Tuple = self.get_dummy_inputs(snake_case ) UpperCAmelCase_ :List[str] = pipe(**snake_case ).images UpperCAmelCase_ :Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCAmelCase_ :Union[str, Any] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) UpperCAmelCase_ :int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) def snake_case_ ( self : List[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def snake_case_ ( self : Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def snake_case_ ( self : Tuple ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def snake_case_ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Any = '''google/ddpm-cifar10-32''' UpperCAmelCase_ :Union[str, Any] = UNetaDModel.from_pretrained(snake_case ) UpperCAmelCase_ :Any = DDIMScheduler() UpperCAmelCase_ :Optional[int] = DDIMPipeline(unet=snake_case , scheduler=snake_case ) ddim.to(snake_case ) ddim.set_progress_bar_config(disable=snake_case ) UpperCAmelCase_ :List[Any] = torch.manual_seed(0 ) UpperCAmelCase_ :List[str] = ddim(generator=snake_case , eta=0.0 , output_type='''numpy''' ).images UpperCAmelCase_ :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ :Union[str, Any] = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Dict = '''google/ddpm-ema-bedroom-256''' UpperCAmelCase_ :int = UNetaDModel.from_pretrained(snake_case ) UpperCAmelCase_ :Dict = DDIMScheduler.from_pretrained(snake_case ) UpperCAmelCase_ :Optional[Any] = DDIMPipeline(unet=snake_case , scheduler=snake_case ) ddpm.to(snake_case ) ddpm.set_progress_bar_config(disable=snake_case ) UpperCAmelCase_ :Any = torch.manual_seed(0 ) UpperCAmelCase_ :Optional[Any] = ddpm(generator=snake_case , output_type='''numpy''' ).images UpperCAmelCase_ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ :Any = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
608
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __lowerCAmelCase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowerCAmelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): _snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_SCREAMING_SNAKE_CASE ) return next_generation def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [] for _ in range(_SCREAMING_SNAKE_CASE ): # Create output image _snake_case = Image.new("""RGB""" , (len(cells[0] ), len(_SCREAMING_SNAKE_CASE )) ) _snake_case = img.load() # Save cells to image for x in range(len(_SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): _snake_case = 255 - cells[y][x] * 255 _snake_case = (colour, colour, colour) # Save image images.append(_SCREAMING_SNAKE_CASE ) _snake_case = new_generation(_SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": __lowerCAmelCase = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
585
0
"""simple docstring""" from PIL import Image def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Image: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = image.size UpperCamelCase__ = 0 UpperCamelCase__ = image.load() for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = pixels[j, i] mean += pixel mean //= width * height for j in range(SCREAMING_SNAKE_CASE ): for i in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": A__ : List[str]= mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=[10, 20, 30, 40] , UpperCamelCase_ : Tuple=[1, 1, 2, 1] , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict="relu" , UpperCamelCase_ : str=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Union[str, Any] = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : Dict = depths __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : str = num_labels __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Dict = len(UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values def a_ ( self : Dict): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a_ ( self : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[str] = FlaxRegNetModel(config=UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Tuple = FlaxRegNetForImageClassification(config=UpperCamelCase_) __UpperCAmelCase : str = model(UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = FlaxRegNetModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Tuple): """simple docstring""" return def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) @unittest.skip(reason="RegNet does not use inputs_embeds") def a_ ( self : Union[str, Any]): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings") def a_ ( self : Optional[int]): """simple docstring""" pass def a_ ( self : str): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : int): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]): __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_) , expected_num_stages + 1) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __UpperCAmelCase : List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_) @jax.jit def model_jitted(UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int]): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_) with self.subTest("JIT Enabled"): __UpperCAmelCase : Optional[Any] = model_jitted(**UpperCamelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): __UpperCAmelCase : Dict = model_jitted(**UpperCamelCase_).to_tuple() self.assertEqual(len(UpperCamelCase_) , len(UpperCamelCase_)) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCamelCase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Dict = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : Dict = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : Any = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4))
77
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __lowercase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]=8 ): SCREAMING_SNAKE_CASE__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase_ ( lowercase ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): super().__init__() self.register_modules( unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , movq=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if latents is None: SCREAMING_SNAKE_CASE__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) SCREAMING_SNAKE_CASE__ = latents.to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self , UpperCAmelCase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE__ = torch.device(f'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) SCREAMING_SNAKE_CASE__ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE__ = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cpu_offload_with_hook(UpperCAmelCase__ , UpperCAmelCase__ , prev_module_hook=UpperCAmelCase__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase__ ) def __call__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 100 , UpperCAmelCase__ = 4.0 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , ): SCREAMING_SNAKE_CASE__ = self._execution_device SCREAMING_SNAKE_CASE__ = guidance_scale > 1.0 if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCAmelCase__ , dim=0 ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCAmelCase__ , dim=0 ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCAmelCase__ , dim=0 ) SCREAMING_SNAKE_CASE__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ = image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 ) SCREAMING_SNAKE_CASE__ = negative_image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 ) SCREAMING_SNAKE_CASE__ = hint.repeat_interleave(UpperCAmelCase__ , dim=0 ) SCREAMING_SNAKE_CASE__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase__ ) self.scheduler.set_timesteps(UpperCAmelCase__ , device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.movq.config.latent_channels SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = downscale_height_and_width(UpperCAmelCase__ , UpperCAmelCase__ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__ = {"image_embeds": image_embeds, "hint": hint} SCREAMING_SNAKE_CASE__ = self.unet( sample=UpperCAmelCase__ , timestep=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , added_cond_kwargs=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ , )[0] # post-processing SCREAMING_SNAKE_CASE__ = self.movq.decode(UpperCAmelCase__ , force_not_quantize=UpperCAmelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE__ = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
721
"""simple docstring""" from __future__ import annotations def __lowercase ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) SCREAMING_SNAKE_CASE__ = result + left + right return input_list def __lowercase ( lowerCamelCase_ : list ): if len(lowerCamelCase_ ) <= 1: return input_list SCREAMING_SNAKE_CASE__ = list(lowerCamelCase_ ) # iteration for two-way merging SCREAMING_SNAKE_CASE__ = 2 while p <= len(lowerCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = i + p - 1 SCREAMING_SNAKE_CASE__ = (low + high + 1) // 2 SCREAMING_SNAKE_CASE__ = merge(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # final merge of last two parts if p * 2 >= len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = merge(lowerCamelCase_ , 0 , lowerCamelCase_ , len(lowerCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _lowerCamelCase = [] else: _lowerCamelCase = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
112
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Tuple=64 , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> int: lowerCAmelCase__ = np.random.default_rng(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Dict ) -> List[str]: return self.length def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: return {"x": self.x[i], "y": self.y[i]} class __lowerCamelCase ( torch.nn.Module ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : str=False ) -> Tuple: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ) -> Tuple: if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class __lowerCamelCase ( torch.nn.Module ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Dict: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ).float() ) lowerCAmelCase__ = True def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None ) -> Dict: if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowerCAmelCase__ = False return x * self.a + self.b def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} lowerCAmelCase__ = load_dataset("csv" , data_files=lowerCAmelCase_ ) lowerCAmelCase__ = datasets["train"].unique("label" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCAmelCase_ )} def tokenize_function(lowerCAmelCase_ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=1 ) return train_dataloader, eval_dataloader
61
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=64 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[str]=1 , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = q_groups __A = k_groups __A = v_groups __A = post_attention_groups __A = intermediate_groups __A = output_groups def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Any ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): """simple docstring""" __A = SqueezeBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , UpperCamelCase_ ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = SqueezeBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A = SqueezeBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ): """simple docstring""" __A = self.num_choices __A = SqueezeBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = SqueezeBertModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = SqueezeBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) __A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) __A = model(UpperCamelCase_ )[0] __A = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase_ ) __A = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-4 ) )
637
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=128 , A__=32 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ): A__ : List[Any] = parent A__ : int = batch_size A__ : Union[str, Any] = seq_length A__ : List[str] = is_training A__ : Optional[Any] = use_input_mask A__ : str = use_token_type_ids A__ : Union[str, Any] = use_labels A__ : Optional[int] = vocab_size A__ : Optional[int] = hidden_size A__ : Any = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : List[str] = intermediate_size A__ : Any = hidden_act A__ : Dict = hidden_dropout_prob A__ : str = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Dict = type_sequence_label_size A__ : Optional[int] = initializer_range A__ : str = num_labels A__ : Any = num_choices A__ : Union[str, Any] = scope def __A ( self ): A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[int] = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.seq_length] ) A__ : str = None if self.use_token_type_ids: A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Tuple = None A__ : int = None A__ : str = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) def __A ( self ): ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[Any] = self.prepare_config_and_inputs() A__ : Union[str, Any] = True A__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : List[Any] = NezhaModel(config=A__ ) model.to(A__ ) model.eval() A__ : Union[str, Any] = model(A__ , attention_mask=A__ , token_type_ids=A__ ) A__ : str = model(A__ , token_type_ids=A__ ) A__ : Optional[int] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : List[str] = True A__ : List[Any] = NezhaModel(A__ ) model.to(A__ ) model.eval() A__ : Tuple = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) A__ : Optional[Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , ) A__ : Dict = model(A__ , attention_mask=A__ , token_type_ids=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Any = NezhaForMaskedLM(config=A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = NezhaForNextSentencePrediction(config=A__ ) model.to(A__ ) model.eval() A__ : int = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : str = NezhaForPreTraining(config=A__ ) model.to(A__ ) model.eval() A__ : Union[str, Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , next_sentence_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : str = NezhaForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() A__ : str = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[int] = self.num_labels A__ : Optional[int] = NezhaForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Union[str, Any] = self.num_labels A__ : List[Any] = NezhaForTokenClassification(config=A__ ) model.to(A__ ) model.eval() A__ : List[str] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : int = self.num_choices A__ : Optional[int] = NezhaForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() A__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): A__ : Any = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[str] = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__: List[Any] = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__: List[Any] = True def __A ( self , A__ , A__ , A__=False ): A__ : Tuple = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class in get_values(A__ ): A__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ ) A__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def __A ( self ): A__ : Optional[int] = NezhaModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A__ ) def __A ( self ): # This regression test was failing with PyTorch < 1.3 ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def __A ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) def __A ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def __A ( self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = NezhaModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @slow @require_torch_gpu def __A ( self ): A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A__ : Optional[Any] = True A__ : Dict = model_class(config=A__ ) A__ : Optional[Any] = self._prepare_for_class(A__ , A__ ) A__ : List[Any] = torch.jit.trace( A__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A__ , os.path.join(A__ , """bert.pt""" ) ) A__ : Optional[Any] = torch.jit.load(os.path.join(A__ , """bert.pt""" ) , map_location=A__ ) loaded(inputs_dict["""input_ids"""].to(A__ ) , inputs_dict["""attention_mask"""].to(A__ ) ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Optional[int] = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) A__ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : Any = model(A__ , attention_mask=A__ )[0] A__ : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A__ ) A__ : Optional[Any] = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4 ) ) @slow def __A ( self ): A__ : List[Any] = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) A__ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : List[Any] = model(A__ , attention_mask=A__ )[0] A__ : Union[str, Any] = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , A__ ) A__ : Optional[int] = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4 ) )
64
from __future__ import annotations from collections.abc import Callable A_ : List[Any] = list[list[float | int]] def UpperCamelCase (lowercase_: Matrix , lowercase_: Matrix ) -> Matrix: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase_ )] A__ : int A__ : int A__ : int A__ : int A__ : int A__ : float for row in range(lowercase_ ): for col in range(lowercase_ ): A__ : List[str] = matrix[row][col] A__ : int = vector[row][0] A__ : Optional[int] = 0 A__ : str = 0 while row < size and col < size: # pivoting A__ : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase_ , lowercase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase_ ): A__ : List[Any] = augmented[rowa][col] / augmented[row][col] A__ : Dict = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase_ ): for row in range(lowercase_ ): A__ : List[str] = augmented[row][col] / augmented[col][col] for cola in range(lowercase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase_ ) ] def UpperCamelCase (lowercase_: list[int] ) -> Callable[[int], int]: A__ : int = len(lowercase_ ) A__ : Matrix = [[0 for _ in range(lowercase_ )] for _ in range(lowercase_ )] A__ : Matrix = [[0] for _ in range(lowercase_ )] A__ : Matrix A__ : int A__ : int A__ : int for x_val, y_val in enumerate(lowercase_ ): for col in range(lowercase_ ): A__ : Dict = (x_val + 1) ** (size - col - 1) A__ : Any = y_val A__ : Union[str, Any] = solve(lowercase_ , lowercase_ ) def interpolated_func(lowercase_: int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase_ ) ) return interpolated_func def UpperCamelCase (lowercase_: int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase (lowercase_: Callable[[int], int] = question_function , lowercase_: int = 10 ) -> int: A__ : list[int] = [func(lowercase_ ) for x_val in range(1 , order + 1 )] A__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ : int = 0 A__ : Callable[[int], int] A__ : int for poly in polynomials: A__ : List[str] = 1 while func(lowercase_ ) == poly(lowercase_ ): x_val += 1 ret += poly(lowercase_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
64
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Tuple = SMALL_MODEL_IDENTIFIER __UpperCamelCase :int = '''pt''' __UpperCamelCase :Dict = '''tf''' def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: __UpperCamelCase :Dict = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: __UpperCamelCase :str = TFAutoModel.from_pretrained(self.test_model , from_pt=__lowercase) model_tf.save_pretrained(__lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :List[Any] = '''mock_framework''' # Framework provided - return whatever the user provides __UpperCamelCase :Tuple = FeaturesManager.determine_framework(self.test_model , __lowercase) self.assertEqual(__lowercase , __lowercase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase) __UpperCamelCase :Optional[int] = FeaturesManager.determine_framework(__lowercase , __lowercase) self.assertEqual(__lowercase , __lowercase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase) __UpperCamelCase :Any = FeaturesManager.determine_framework(__lowercase , __lowercase) self.assertEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Dict: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__lowercase) __UpperCamelCase :Tuple = FeaturesManager.determine_framework(__lowercase) self.assertEqual(__lowercase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__lowercase) __UpperCamelCase :str = FeaturesManager.determine_framework(__lowercase) self.assertEqual(__lowercase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__lowercase): __UpperCamelCase :Union[str, Any] = FeaturesManager.determine_framework(__lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[str] = MagicMock(return_value=__lowercase) with patch('''transformers.onnx.features.is_tf_available''' , __lowercase): __UpperCamelCase :Tuple = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__lowercase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __UpperCamelCase :Optional[Any] = MagicMock(return_value=__lowercase) with patch('''transformers.onnx.features.is_torch_available''' , __lowercase): __UpperCamelCase :Tuple = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__lowercase , self.framework_tf) # Both in environment -> use PyTorch __UpperCamelCase :Tuple = MagicMock(return_value=__lowercase) __UpperCamelCase :Tuple = MagicMock(return_value=__lowercase) with patch('''transformers.onnx.features.is_tf_available''' , __lowercase), patch( '''transformers.onnx.features.is_torch_available''' , __lowercase): __UpperCamelCase :int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__lowercase , self.framework_pt) # Both not in environment -> raise error __UpperCamelCase :List[Any] = MagicMock(return_value=__lowercase) __UpperCamelCase :List[str] = MagicMock(return_value=__lowercase) with patch('''transformers.onnx.features.is_tf_available''' , __lowercase), patch( '''transformers.onnx.features.is_torch_available''' , __lowercase): with self.assertRaises(__lowercase): __UpperCamelCase :Optional[int] = FeaturesManager.determine_framework(self.test_model)
167
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } __UpperCamelCase :Union[str, Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE ) return dataset class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :str = get_dataset() __UpperCamelCase :Dict = make_duplicate_clusters(__lowercase , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = get_dataset() __UpperCamelCase , __UpperCamelCase :Dict = deduplicate_dataset(__lowercase) self.assertEqual(len(__lowercase) , 2) print(__lowercase) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __lowercase)
167
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCamelCase__ ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" pass def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> Any: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __snake_case : List[str] = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): _SCREAMING_SNAKE_CASE : Dict = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model=_UpperCamelCase , tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) lowerCAmelCase__ = 'What is the placebo?' lowerCAmelCase__ = [ { 'image': load_image(_UpperCamelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = dqa_pipeline(_UpperCamelCase , top_k=2 ) self.assertEqual( _UpperCamelCase , [ [ {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'answer': ANY(_UpperCamelCase ), 'start': ANY(_UpperCamelCase ), 'end': ANY(_UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'How many cats are there?' lowerCAmelCase__ = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , _UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , words=_UpperCamelCase , boxes=_UpperCamelCase , top_k=2 ) self.assertEqual(_UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCamelCase ) lowerCAmelCase__ = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCamelCase , revision='3dc6de3' , max_seq_len=50 , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(_UpperCamelCase ) , _UpperCamelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=_UpperCamelCase , question=_UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCamelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass
365
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm lowerCAmelCase_ : Tuple = 2048 lowerCAmelCase_ : Tuple = 4096 lowerCAmelCase_ : Any = 42 lowerCAmelCase_ : int = os.environ.pop("""PROCESS_TRAIN""", """false""") lowerCAmelCase_ : Union[str, Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __A ( UpperCAmelCase ) -> Dict: '''simple docstring''' def choose_first(UpperCAmelCase ,UpperCAmelCase=False ): assert isinstance(UpperCAmelCase ,UpperCAmelCase ) if len(UpperCAmelCase ) == 1: _UpperCamelCase : List[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _UpperCamelCase : List[Any] = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a _UpperCamelCase : Dict = {"id": example["id"]} _UpperCamelCase : List[Any] = example["annotations"] _UpperCamelCase : Optional[Any] = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: _UpperCamelCase : List[Any] = ["yes"] if 1 in yes_no_answer else ["no"] _UpperCamelCase : Tuple = [] _UpperCamelCase : int = [] _UpperCamelCase : str = ["<cls>"] else: _UpperCamelCase : str = ["short"] _UpperCamelCase : Any = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available _UpperCamelCase : int = ["long"] _UpperCamelCase : Dict = choose_first(annotation["long_answer"] ,is_long_answer=UpperCAmelCase ) _UpperCamelCase : Any = [] answer.update(UpperCAmelCase ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: _UpperCamelCase : Dict = True else: _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[Any] = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] ,UpperCAmelCase ) for k in cols ): raise ValueError("Issue in ID" ,example["id"] ) return answer def __A ( UpperCAmelCase ,UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = _get_single_answer(UpperCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _UpperCamelCase : int = example["document"]["tokens"] _UpperCamelCase : int = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(UpperCAmelCase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _UpperCamelCase : Tuple = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _UpperCamelCase : Optional[Any] = example["document"]["tokens"] _UpperCamelCase : Tuple = answer["start_token"] _UpperCamelCase : Tuple = answer["end_token"] _UpperCamelCase : List[Any] = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _UpperCamelCase : Union[str, Any] = " ".join(context[start_token:end_token] ) # checking above code if assertion: _UpperCamelCase : Optional[int] = doc["is_html"][answer["start_token"] : answer["end_token"]] _UpperCamelCase : Any = doc["token"][answer["start_token"] : answer["end_token"]] _UpperCamelCase : int = " ".join([old[i] for i in range(len(UpperCAmelCase ) ) if not is_html[i]] ) if new != old: print("ID:" ,example["id"] ) print("New:" ,UpperCAmelCase ,end="\n" ) print("Old:" ,UpperCAmelCase ,end="\n\n" ) return { "context": " ".join(UpperCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=2_0_4_8 ,UpperCAmelCase=4_0_9_6 ,UpperCAmelCase=True ) -> List[str]: '''simple docstring''' # overlap will be of doc_stride - q_len _UpperCamelCase : Dict = get_context_and_ans(UpperCAmelCase ,assertion=UpperCAmelCase ) _UpperCamelCase : Dict = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _UpperCamelCase : str = tokenizer(example["question"]["text"] ,out["context"] ).input_ids _UpperCamelCase : Tuple = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _UpperCamelCase : List[Any] = [] _UpperCamelCase : Dict = [] _UpperCamelCase : Dict = input_ids[:q_len] _UpperCamelCase : Optional[Any] = range(UpperCAmelCase ,len(UpperCAmelCase ) ,max_length - doc_stride ) for i in doc_start_indices: _UpperCamelCase : Optional[int] = i + max_length - q_len _UpperCamelCase : str = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(UpperCAmelCase ), "end_token": [-1_0_0] * len(UpperCAmelCase ), "category": category, }, } _UpperCamelCase : Any = out["context"].split() _UpperCamelCase : List[str] = splitted_context[answer["end_token"]] _UpperCamelCase : Dict = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) ,add_special_tokens=UpperCAmelCase ,).input_ids ) _UpperCamelCase : Tuple = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) ,add_special_tokens=UpperCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _UpperCamelCase : str = len(tokenizer(UpperCAmelCase ,add_special_tokens=UpperCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _UpperCamelCase : Dict = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive _UpperCamelCase : Tuple = answer["start_token"] _UpperCamelCase : Tuple = answer["end_token"] if assertion: _UpperCamelCase : int = tokenizer.decode(UpperCAmelCase ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" ,answer["span"] ) print("NEW:" ,UpperCAmelCase ,end="\n\n" ) if len(UpperCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _UpperCamelCase : Optional[Any] = input_ids[:q_len] _UpperCamelCase : Dict = range(UpperCAmelCase ,len(UpperCAmelCase ) ,max_length - doc_stride ) _UpperCamelCase : Tuple = [] _UpperCamelCase : Dict = [] _UpperCamelCase : List[Any] = [] _UpperCamelCase : Tuple = [] # null, yes, no, long, short for i in doc_start_indices: _UpperCamelCase : int = i + max_length - q_len _UpperCamelCase : Optional[int] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _UpperCamelCase : Dict = start_token - i + q_len _UpperCamelCase : Dict = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: _UpperCamelCase : Tuple = -1_0_0 _UpperCamelCase : Optional[int] = -1_0_0 answers_category.append("null" ) _UpperCamelCase : str = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCAmelCase ) answers_end_token.append(UpperCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" ,example["id"] ) print("New:" ,tokenizer.decode(UpperCAmelCase ) ) print("Old:" ,tokenizer.decode(UpperCAmelCase ) ,end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=2_0_4_8 ,UpperCAmelCase=4_0_9_6 ,UpperCAmelCase=False ) -> List[str]: '''simple docstring''' _UpperCamelCase : Any = get_strided_contexts_and_ans( UpperCAmelCase ,UpperCAmelCase ,doc_stride=UpperCAmelCase ,max_length=UpperCAmelCase ,assertion=UpperCAmelCase ,) return example def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with jsonlines.open(UpperCAmelCase ,"a" ) as writer: for example in tqdm(UpperCAmelCase ,total=len(UpperCAmelCase ) ,desc="Saving samples ... " ): _UpperCamelCase : int = example["labels"] for ids, start, end, cat in zip( example["input_ids"] ,labels["start_token"] ,labels["end_token"] ,labels["category"] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowerCAmelCase_ : List[Any] = load_dataset("""natural_questions""") lowerCAmelCase_ : str = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") lowerCAmelCase_ : Union[str, Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] lowerCAmelCase_ : Optional[int] = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } lowerCAmelCase_ : str = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowerCAmelCase_ : Tuple = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) lowerCAmelCase_ : Optional[int] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
435
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowerCAmelCase_ : int = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ lowerCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ lowerCAmelCase_ : Any = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self : str ) ->Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def snake_case__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : Optional[Any]=None , lowercase__ : List[str]=1 , lowercase__ : Optional[int]="binary" , lowercase__ : int=None ) ->int: '''simple docstring''' _UpperCamelCase : List[str] = fa_score( lowercase__ , lowercase__ , labels=lowercase__ , pos_label=lowercase__ , average=lowercase__ , sample_weight=lowercase__ ) return {"f1": float(lowercase__ ) if score.size == 1 else score}
435
1
from __future__ import annotations def UpperCamelCase ( _a , _a ) -> float: '''simple docstring''' lowercase_ :Dict = sorted(numsa + numsa ) lowercase_ :Dict = divmod(len(lowerCamelCase_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Dict = [float(x) for x in input("Enter the elements of first array: ").split()] SCREAMING_SNAKE_CASE : List[Any] = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
441
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1