code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCamelCase : str = test_metrics @require_cpu def A_ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def A_ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def A_ ( self ): self.test_metrics.main() @require_multi_gpu def A_ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) _lowerCamelCase : Optional[int] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase , env=os.environ.copy() )
630
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ ): _lowerCamelCase : int = len(lowercase__ ) # We need to create solution object to save path. _lowerCamelCase : Tuple = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )] _lowerCamelCase : Optional[Any] = run_maze(lowercase__ , 0 , 0 , lowercase__ ) if solved: print('\n'.join(str(lowercase__ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = len(lowercase__ ) # Final check point. if i == j == (size - 1): _lowerCamelCase : Optional[Any] = 1 return True _lowerCamelCase : List[str] = (not i < 0) and (not j < 0) # Check lower bounds _lowerCamelCase : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowerCamelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowerCamelCase : Union[str, Any] = 1 # check for directions if ( run_maze(lowercase__ , i + 1 , lowercase__ , lowercase__ ) or run_maze(lowercase__ , lowercase__ , j + 1 , lowercase__ ) or run_maze(lowercase__ , i - 1 , lowercase__ , lowercase__ ) or run_maze(lowercase__ , lowercase__ , j - 1 , lowercase__ ) ): return True _lowerCamelCase : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
630
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=400 , UpperCAmelCase=2000 , UpperCAmelCase=1 , UpperCAmelCase=0.0 , UpperCAmelCase=16000 , UpperCAmelCase=True , UpperCAmelCase=80 , UpperCAmelCase=16 , UpperCAmelCase=64 , UpperCAmelCase="hann_window" , UpperCAmelCase=80 , UpperCAmelCase=7600 , UpperCAmelCase=1e-1_0 , UpperCAmelCase=True , ) -> str: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = feature_size _snake_case = padding_value _snake_case = sampling_rate _snake_case = do_normalize _snake_case = num_mel_bins _snake_case = hop_length _snake_case = win_length _snake_case = win_function _snake_case = fmin _snake_case = fmax _snake_case = mel_floor _snake_case = return_attention_mask def lowercase (self ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase (self , UpperCAmelCase=False , UpperCAmelCase=False ) -> Optional[Any]: def _flatten(UpperCAmelCase ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: _snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs def lowercase (self , UpperCAmelCase=False , UpperCAmelCase=False ) -> Optional[Any]: if equal_length: _snake_case = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SpeechTaFeatureExtractor def lowercase (self ) -> Optional[int]: _snake_case = SpeechTaFeatureExtractionTester(self ) def lowercase (self , UpperCAmelCase ) -> Tuple: self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def lowercase (self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input _snake_case = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _snake_case = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched _snake_case = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values _snake_case = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def lowercase (self ) -> str: _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = ["""longest""", """max_length""", """do_not_pad"""] _snake_case = [None, 1600, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors="""np""" ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowercase (self ) -> List[Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = range(800 , 1400 , 200 ) _snake_case = [floats_list((1, x) )[0] for x in lengths] _snake_case = ["""longest""", """max_length""", """do_not_pad"""] _snake_case = [None, 1600, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = feat_extract(UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowercase (self ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase (self ) -> str: _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def lowercase (self ) -> Any: _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = np.random.rand(100 ).astype(np.floataa ) _snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase (self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size _snake_case = feature_extractor(audio_target=UpperCAmelCase , padding=UpperCAmelCase , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _snake_case = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched _snake_case = feature_extractor(UpperCAmelCase , return_tensors="""np""" ).input_values _snake_case = feature_extractor(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(UpperCAmelCase ) _snake_case = feature_extractor(UpperCAmelCase , return_tensors="""np""" ).input_values _snake_case = feature_extractor(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def lowercase (self ) -> List[str]: _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCAmelCase ) == len(UpperCAmelCase ) for x, y in zip(UpperCAmelCase , processed_features[input_name] ) ) ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCAmelCase ) _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase (self ) -> Any: _snake_case = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCAmelCase ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase (self ) -> List[Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad(UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] _snake_case = feat_extract.pad(UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowercase (self ) -> Any: _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**UpperCAmelCase ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = [len(UpperCAmelCase ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad(UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCAmelCase ) def lowercase (self ) -> Any: _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**UpperCAmelCase ) _snake_case = self.feat_extract_tester.prepare_inputs_for_target() _snake_case = [len(UpperCAmelCase ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = min(UpperCAmelCase ) _snake_case = feat_extract.num_mel_bins # hack! _snake_case = feat_extract.pad( UpperCAmelCase , padding="""max_length""" , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: from datasets import load_dataset _snake_case = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _snake_case = ds.sort("""id""" ).select(range(UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase (self ) -> Optional[int]: # fmt: off _snake_case = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on _snake_case = self._load_datasamples(1 ) _snake_case = SpeechTaFeatureExtractor() _snake_case = feature_extractor(UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , UpperCAmelCase , atol=1e-6 ) ) def lowercase (self ) -> int: # fmt: off _snake_case = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on _snake_case = self._load_datasamples(1 ) _snake_case = SpeechTaFeatureExtractor() _snake_case = feature_extractor(audio_target=UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCAmelCase , atol=1e-4 ) )
585
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __lowerCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __lowerCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return float((preds == labels).mean() ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="binary" ): _snake_case = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" _snake_case = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _snake_case = [(pred, label)] _snake_case, _snake_case = [], [] for question, preds_labels in question_map.items(): _snake_case, _snake_case = zip(*_SCREAMING_SNAKE_CASE ) _snake_case = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average="""macro""" ) fas.append(_SCREAMING_SNAKE_CASE ) _snake_case = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) _snake_case = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) _snake_case = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) _snake_case = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> int: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def lowercase (self ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase , UpperCAmelCase )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase , UpperCAmelCase , fa_avg="""macro""" ) elif self.config_name == "record": _snake_case = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] _snake_case = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(UpperCAmelCase , UpperCAmelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase , UpperCAmelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
585
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : Any = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : int = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off _lowerCAmelCase : Any = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __snake_case ( snake_case__ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = NllbTokenizer SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def __init__( self ,a_=None ,a_=None ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_=None ,a_=None ,a_=None ,a_=False ,**a_ ,): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token lowerCAmelCase__ = legacy_behaviour super().__init__( vocab_file=_A ,tokenizer_file=_A ,bos_token=_A ,eos_token=_A ,sep_token=_A ,cls_token=_A ,unk_token=_A ,pad_token=_A ,mask_token=_A ,src_lang=_A ,tgt_lang=_A ,additional_special_tokens=_A ,legacy_behaviour=_A ,**_A ,) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True lowerCAmelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCAmelCase__ = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCAmelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ,**a_ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCAmelCase__ = src_lang lowerCAmelCase__ = self(_A ,add_special_tokens=_A ,return_tensors=_A ,**_A ) lowerCAmelCase__ = self.convert_tokens_to_ids(_A ) lowerCAmelCase__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = "eng_Latn" ,a_ = None ,a_ = "fra_Latn" ,**a_ ,): """simple docstring""" lowerCAmelCase__ = src_lang lowerCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(_A ,_A ,**_A ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: lowerCAmelCase__ = [] lowerCAmelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ = [self.cur_lang_code] lowerCAmelCase__ = [self.eos_token_id] lowerCAmelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: lowerCAmelCase__ = [] lowerCAmelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ = [self.cur_lang_code] lowerCAmelCase__ = [self.eos_token_id] lowerCAmelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCAmelCase__ = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file ,_A ) return (out_vocab_file,)
711
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCAmelCase_ ( snake_case__ ) -> Optional[int]: """simple docstring""" if "resnet-50" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) lowerCAmelCase__ = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes lowerCAmelCase__ = 'panoptic' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'coco-detection-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase_ ( snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val def UpperCAmelCase_ ( snake_case__ , snake_case__=False ) -> str: """simple docstring""" lowerCAmelCase__ = '' if is_panoptic: lowerCAmelCase__ = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase__ = in_proj_bias_cross_attn[:256] lowerCAmelCase__ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase__ = in_proj_bias_cross_attn[256:512] lowerCAmelCase__ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase__ = in_proj_bias_cross_attn[-256:] def UpperCAmelCase_ ( ) -> Any: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( snake_case__ , snake_case__=None , snake_case__=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_detr_config(snake_case__ ) # load original model from torch hub lowerCAmelCase__ = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(f'Converting model {model_name}...' ) lowerCAmelCase__ = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() lowerCAmelCase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: lowerCAmelCase__ = 'detr.' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image lowerCAmelCase__ = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase__ = DetrImageProcessor(format=snake_case__ ) lowerCAmelCase__ = processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ = encoding['pixel_values'] lowerCAmelCase__ = detr(snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") _lowerCAmelCase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
604
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __snake_case :List[Any] =datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): A_ : Optional[datasets.Features] = None def lowerCamelCase_ ( lowerCAmelCase__ : "pyspark.sql.DataFrame" , lowerCAmelCase__ : List[int] , ) -> int: '''simple docstring''' import pyspark def generate_fn(): A = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: A = df_with_partition_id.select('*' ).where(F'''part_id = {partition_id}''' ).drop('part_id' ) A = partition_df.collect() A = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class lowerCAmelCase__ ( _BaseExamplesIterable ): def __init__( self : List[str] , __UpperCamelCase : "pyspark.sql.DataFrame" , __UpperCamelCase : str=None , ) -> int: A = df A = partition_order or range(self.df.rdd.getNumPartitions() ) A = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[str] ) -> Union[str, Any]: yield from self.generate_examples_fn() def __UpperCamelCase ( self : Tuple , __UpperCamelCase : np.random.Generator ) -> "SparkExamplesIterable": A = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCamelCase ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : int ) -> "SparkExamplesIterable": A = self.split_shard_indices_by_worker(__UpperCamelCase , __UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCamelCase ) @property def __UpperCamelCase ( self : List[Any] ) -> int: return len(self.partition_order ) class lowerCAmelCase__ ( datasets.DatasetBuilder ): A_ : Union[str, Any] = SparkConfig def __init__( self : List[Any] , __UpperCamelCase : "pyspark.sql.DataFrame" , __UpperCamelCase : str = None , __UpperCamelCase : str = None , **__UpperCamelCase : Optional[int] , ) -> Union[str, Any]: import pyspark A = pyspark.sql.SparkSession.builder.getOrCreate() A = df A = working_dir super().__init__( cache_dir=__UpperCamelCase , config_name=str(self.df.semanticHash() ) , **__UpperCamelCase , ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: # Returns the path of the created file. def create_cache_and_write_probe(__UpperCamelCase : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__UpperCamelCase ) A = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__UpperCamelCase , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: A = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__UpperCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __UpperCamelCase ( self : str ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : datasets.download.download_manager.DownloadManager ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[str] ) -> str: import pyspark def get_arrow_batch_size(__UpperCamelCase : Optional[int] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) A = self.df.count() A = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. A = ( self.df.limit(__UpperCamelCase ) .repartition(1 ) .mapInArrow(__UpperCamelCase , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) A = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. A = min(__UpperCamelCase , int(approx_total_size / max_shard_size ) ) A = self.df.repartition(__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark A = ParquetWriter if file_format == 'parquet' else ArrowWriter A = os.path.join(self._working_dir , os.path.basename(__UpperCamelCase ) ) if self._working_dir else fpath A = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. A = self.config.features A = self._writer_batch_size A = self._fs.storage_options def write_arrow(__UpperCamelCase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. A = pyspark.TaskContext().taskAttemptId() A = next(__UpperCamelCase , __UpperCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) A = 0 A = writer_class( features=__UpperCamelCase , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=__UpperCamelCase , storage_options=__UpperCamelCase , embed_local_files=__UpperCamelCase , ) A = pa.Table.from_batches([first_batch] ) writer.write_table(__UpperCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: A , A = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 A = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=__UpperCamelCase , storage_options=__UpperCamelCase , embed_local_files=__UpperCamelCase , ) A = pa.Table.from_batches([batch] ) writer.write_table(__UpperCamelCase ) if writer._num_bytes > 0: A , A = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__UpperCamelCase ) ): A = os.path.join(os.path.dirname(__UpperCamelCase ) , os.path.basename(__UpperCamelCase ) ) shutil.move(__UpperCamelCase , __UpperCamelCase ) A = ( self.df.mapInArrow(__UpperCamelCase , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __UpperCamelCase ( self : str , __UpperCamelCase : "datasets.SplitGenerator" , __UpperCamelCase : str = "arrow" , __UpperCamelCase : Optional[Union[str, int]] = None , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Optional[int] , ) -> int: self._validate_cache_dir() A = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__UpperCamelCase ) A = not is_remote_filesystem(self._fs ) A = os.path.join if is_local else posixpath.join A = '-TTTTT-SSSSS-of-NNNNN' A = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' A = path_join(self._output_dir , __UpperCamelCase ) A = 0 A = 0 A = 0 A = [] A = [] for task_id, content in self._prepare_split_single(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): ( ( A ) , ( A ) , ( A ) , ( A ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__UpperCamelCase ) A = total_num_examples A = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: A = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. A = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , ): rename( __UpperCamelCase , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) A = [] A = 0 for i in range(len(__UpperCamelCase ) ): A , A = task_id_and_num_shards[i] for shard_id in range(__UpperCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__UpperCamelCase , len(__UpperCamelCase ) ).map(lambda __UpperCamelCase : _rename_shard(*__UpperCamelCase ) ).collect() else: # don't use any pattern A = 0 A = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(__UpperCamelCase , '' ) , ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
106
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case__ ( lowercase , lowercase ): assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: Any = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_: Optional[int] = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: List[str] = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase_: List[str] = features.copy() if features else default_expected_features lowerCAmelCase_: Any = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_: int = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def snake_case__ ( lowercase ): with contextlib.closing(sqlitea.connect(lowercase ) ) as con: lowerCAmelCase_: Any = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Optional[int] = tmp_path / "cache" lowerCAmelCase_: Optional[Any] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: str = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() lowerCAmelCase_: Union[str, Any] = iter_sql_file(lowercase ) lowerCAmelCase_: str = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: str = tmp_path / "cache" lowerCAmelCase_: Optional[int] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() lowerCAmelCase_: Optional[Any] = iter_sql_file(lowercase ) lowerCAmelCase_: Optional[int] = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Union[str, Any] = tmp_path / "cache" lowerCAmelCase_: int = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Any = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
613
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[Any] =TapasConfig.from_json_file(__a ) # set absolute/relative position embeddings parameter lowerCamelCase__: int =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCamelCase__: Optional[int] =TapasForQuestionAnswering(config=__a ) elif task == "WTQ": # run_task_main.py hparams lowerCamelCase__: Optional[Any] =4 lowerCamelCase__: List[Any] =True # hparam_utils.py hparams lowerCamelCase__: Any =0.6_6_4_6_9_4 lowerCamelCase__: List[Any] =0.2_0_7_9_5_1 lowerCamelCase__: str =0.1_2_1_1_9_4 lowerCamelCase__: List[str] =True lowerCamelCase__: Any =True lowerCamelCase__: Dict =False lowerCamelCase__: Optional[int] =0.0_3_5_2_5_1_3 lowerCamelCase__: Optional[int] =TapasForQuestionAnswering(config=__a ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCamelCase__: Tuple =4 lowerCamelCase__: Optional[int] =False # hparam_utils.py hparams lowerCamelCase__: int =36.4519 lowerCamelCase__: Any =0.9_0_3_4_2_1 lowerCamelCase__: Any =222.088 lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[str] =True lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[str] =0.7_6_3_1_4_1 lowerCamelCase__: List[str] =TapasForQuestionAnswering(config=__a ) elif task == "TABFACT": lowerCamelCase__: Union[str, Any] =TapasForSequenceClassification(config=__a ) elif task == "MLM": lowerCamelCase__: Dict =TapasForMaskedLM(config=__a ) elif task == "INTERMEDIATE_PRETRAINING": lowerCamelCase__: Any =TapasModel(config=__a ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__a , __a , __a ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCamelCase__: List[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__a ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
711
import re def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: Tuple =split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase_ ( __a , __a , __a ) -> str: """simple docstring""" try: lowerCamelCase__: Optional[Any] =split_input(__a ) if upper: lowerCamelCase__: Tuple ="".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCamelCase__: Dict ="".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" return to_simple_case(__a ) def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" try: lowerCamelCase__: Any =to_simple_case(__a ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" return to_complex_case(__a , __a , "_" ) def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" return to_complex_case(__a , __a , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
437
0
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase = "" , lowerCamelCase = False ): '''simple docstring''' __A : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __A : int = is_leaf __A : List[str] = prefix def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = 0 for q, w in zip(self.prefix , lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' for word in words: self.insert(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' if self.prefix == word: __A : Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __A : str = RadixNode(prefix=lowerCamelCase , is_leaf=lowerCamelCase ) else: __A : Tuple = self.nodes[word[0]] __A ,__A ,__A : Optional[Any] = incoming_node.match( lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __A : List[str] = remaining_prefix __A : Union[str, Any] = self.nodes[matching_string[0]] __A : List[Any] = RadixNode(lowerCamelCase , lowerCamelCase ) __A : str = aux_node if remaining_word == "": __A : int = True else: self.nodes[matching_string[0]].insert(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = self.nodes.get(word[0] , lowerCamelCase ) if not incoming_node: return False else: __A ,__A ,__A : str = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.nodes.get(word[0] , lowerCamelCase ) if not incoming_node: return False else: __A ,__A ,__A : Any = incoming_node.match( lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __A : Tuple = list(self.nodes.values() )[0] __A : int = merging_node.is_leaf self.prefix += merging_node.prefix __A : Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __A : Optional[int] = False # If there is 1 edge, we merge it with its child else: __A : Union[str, Any] = list(incoming_node.nodes.values() )[0] __A : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __A : Optional[int] = merging_node.nodes return True def lowerCAmelCase__ ( self , lowerCamelCase = 0 ): '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _lowercase (): '''simple docstring''' __A : Optional[int] = "banana bananas bandana band apple all beast".split() __A : Tuple = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _lowercase (): '''simple docstring''' assert test_trie() def _lowercase (): '''simple docstring''' __A : Optional[int] = RadixNode() __A : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(SCREAMING_SNAKE_CASE ) print("Words:" , SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
111
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : int = b.T __A : Optional[Any] = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __A : List[Any] = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __A : List[Any] = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __A : str = aa[:, None] - 2 * ab + ba[None, :] return d def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : Union[str, Any] = x.reshape(-1 , 3 ) __A : Any = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = ['pixel_values'] def __init__( self , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = True , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : Optional[int] = size if size is not None else {"height": 256, "width": 256} __A : int = get_size_dict(lowerCamelCase ) __A : str = np.array(lowerCamelCase ) if clusters is not None else None __A : List[Any] = do_resize __A : Dict = size __A : str = resample __A : Optional[Any] = do_normalize __A : Dict = do_color_quantize def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( lowerCamelCase , size=(size["height"], size["width"]) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , ): '''simple docstring''' __A : List[str] = rescale(image=lowerCamelCase , scale=1 / 127.5 , data_format=lowerCamelCase ) __A : List[Any] = image - 1 return image def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): '''simple docstring''' __A : List[Any] = do_resize if do_resize is not None else self.do_resize __A : int = size if size is not None else self.size __A : Tuple = get_size_dict(lowerCamelCase ) __A : Tuple = resample if resample is not None else self.resample __A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __A : Any = clusters if clusters is not None else self.clusters __A : Dict = np.array(lowerCamelCase ) __A : Optional[int] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __A : Optional[Any] = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __A : Dict = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_normalize: __A : List[Any] = [self.normalize(image=lowerCamelCase ) for image in images] if do_color_quantize: __A : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __A : int = np.array(lowerCamelCase ) __A : Any = color_quantize(lowerCamelCase , lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __A : Tuple = images.shape[0] __A : List[Any] = images.reshape(lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __A : Optional[int] = list(lowerCamelCase ) else: __A : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __A : Optional[int] = {"input_ids": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
111
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() snake_case_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model snake_case_ : str = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names snake_case_ : int = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: snake_case_ : int = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: snake_case_ : Optional[Any] = "allenai" def __a ( __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : str = dict((re.sub(R"@@$" , "" , __UpperCAmelCase ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __UpperCAmelCase ), v) for k, v in d.items() ) lowerCamelCase_ : Tuple = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] lowerCamelCase_ : Any = d[k] # restore return da def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" assert os.path.exists(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models lowerCamelCase_ : List[str] = basename(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = dirname(__UpperCAmelCase ) lowerCamelCase_ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase_ : Tuple = cls.hub_models() lowerCamelCase_ : Dict = {"bpe": "fastbpe", "tokenizer": "moses"} lowerCamelCase_ : Tuple = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}" ) lowerCamelCase_ : int = hub_utils.from_pretrained( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , archive_map=__UpperCAmelCase , **__UpperCAmelCase ) lowerCamelCase_ : str = vars(chkpt["args"]["model"] ) lowerCamelCase_ : Any = args["source_lang"] lowerCamelCase_ : List[str] = args["target_lang"] lowerCamelCase_ : List[str] = dirname(__UpperCAmelCase ) lowerCamelCase_ : Dict = basename(__UpperCAmelCase ) # dicts lowerCamelCase_ : Optional[int] = os.path.join(__UpperCAmelCase , f"dict.{src_lang}.txt" ) lowerCamelCase_ : List[Any] = os.path.join(__UpperCAmelCase , f"dict.{tgt_lang}.txt" ) lowerCamelCase_ : int = Dictionary.load(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase_ : Optional[int] = len(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = os.path.join(__UpperCAmelCase , "vocab-src.json" ) print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase_ : Any = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase_ : Tuple = False break lowerCamelCase_ : List[Any] = Dictionary.load(__UpperCAmelCase ) lowerCamelCase_ : Dict = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase_ : str = len(__UpperCAmelCase ) lowerCamelCase_ : Dict = os.path.join(__UpperCAmelCase , "vocab-tgt.json" ) print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # merges_file (bpecodes) lowerCamelCase_ : str = os.path.join(__UpperCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase_ : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): break with open(__UpperCAmelCase , encoding="utf-8" ) as fin: lowerCamelCase_ : Optional[int] = fin.read() lowerCamelCase_ : int = re.sub(R" \d+$" , "" , __UpperCAmelCase , 0 , re.M ) # remove frequency number print(f"Generating {merges_file}" ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as fout: fout.write(__UpperCAmelCase ) # model config lowerCamelCase_ : Dict = os.path.join(__UpperCAmelCase , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" lowerCamelCase_ : Tuple = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.0_2, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with lowerCamelCase_ : List[Any] = 5 lowerCamelCase_ : Any = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase_ : List[Any] = best_score_hparams[model_dir]["length_penalty"] else: lowerCamelCase_ : Any = 1.0 print(f"Generating {fsmt_model_config_file}" ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # tokenizer config lowerCamelCase_ : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}" ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__UpperCAmelCase , ensure_ascii=__UpperCAmelCase , indent=__UpperCAmelCase ) ) # model lowerCamelCase_ : Union[str, Any] = chkpt["models"][0] lowerCamelCase_ : Union[str, Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase_ : int = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase_ : Any = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : int = FSMTConfig.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Dict = FSMTForConditionalGeneration(__UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) # save lowerCamelCase_ : int = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(f"cd {data_root}" ) print(f"transformers-cli upload {model_dir}" ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : Tuple = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
253
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case_ : str = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Union[str, Any] , *__magic_name__ : int , **__magic_name__ : List[str] ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
253
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Optional[Any] = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : Optional[Any] = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : str , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[Any] ) -> Any: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCamelCase , ) A = kwargs.pop('feature_extractor' ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __UpperCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , __UpperCamelCase : Optional[Union[List[int], List[List[int]]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : List[str] , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor A = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): A = [text] # add batch dimension (as the image processor always adds a batch dimension) A = features['words'] A = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values A = features.pop('pixel_values' ) if return_overflowing_tokens is True: A = self.get_overflowing_images(__UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) A = images return encoded_inputs def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ) -> str: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f''' {len(__UpperCamelCase )} and {len(__UpperCamelCase )}''' ) return images_with_overflow def __UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : int , **__UpperCamelCase : List[str] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __UpperCamelCase ( self : List[str] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] ) -> Dict: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __UpperCamelCase ( self : List[str] ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCamelCase , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCamelCase , ) return self.image_processor
106
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =SpeechTaTokenizer a_ : Dict =False a_ : List[Any] =True def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Union[str, Any] = SpeechTaTokenizer(UpperCamelCase ) _snake_case : Tuple = AddedToken('<mask>' , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) _snake_case : Union[str, Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : str , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Tuple = 'this is a test' _snake_case : Optional[int] = 'this is a test' return input_text, output_text def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str=False , UpperCamelCase : Union[str, Any]=20 , UpperCamelCase : Optional[int]=5 ): '''simple docstring''' _snake_case , _snake_case : str = self.get_input_output_texts(UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _snake_case : List[str] = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = '<pad>' _snake_case : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCamelCase ) , 81 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _snake_case : Any = tokenizer.vocab_size _snake_case : Any = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : int = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _snake_case : List[Any] = tokenizer.add_tokens(UpperCamelCase ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : List[Any] = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , len(UpperCamelCase ) ) self.assertEqual(UpperCamelCase , all_size + len(UpperCamelCase ) ) _snake_case : List[Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCamelCase ) self.assertGreaterEqual(len(UpperCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _snake_case : Dict = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _snake_case : Dict = tokenizer.add_special_tokens(UpperCamelCase ) _snake_case : int = tokenizer.vocab_size _snake_case : Tuple = len(UpperCamelCase ) self.assertNotEqual(UpperCamelCase , 0 ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , len(UpperCamelCase ) ) self.assertEqual(UpperCamelCase , all_size_a + len(UpperCamelCase ) ) _snake_case : str = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCamelCase ) self.assertGreaterEqual(len(UpperCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Union[str, Any] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCamelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _snake_case : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) # fmt: off self.assertListEqual(UpperCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _snake_case : int = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCamelCase , )
411
0
def UpperCamelCase ( snake_case__ , snake_case__): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive") lowerCAmelCase_ : int = str(bin(_snake_case))[2:] # remove the leading "0b" lowerCAmelCase_ : Dict = str(bin(_snake_case))[2:] # remove the leading "0b" lowerCAmelCase_ : Any = max(len(_snake_case) , len(_snake_case)) return "0b" + "".join( str(int(char_a == "1" and char_b == "1")) for char_a, char_b in zip(a_binary.zfill(_snake_case) , b_binary.zfill(_snake_case))) if __name__ == "__main__": import doctest doctest.testmod()
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase_ (lowercase__ : BertModel , lowercase__ : str , lowercase__ : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowerCAmelCase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) lowerCAmelCase__ = model.state_dict() def to_tf_var_name(lowercase__ : str ): for patt, repl in iter(lowercase__ ): lowerCAmelCase__ = name.replace(lowercase__ , lowercase__ ) return f'bert/{name}' def create_tf_var(lowercase__ : np.ndarray , lowercase__ : str , lowercase__ : tf.Session ): lowerCAmelCase__ = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase__ = tf.get_variable(dtype=lowercase__ , shape=tensor.shape , name=lowercase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase__ = to_tf_var_name(lowercase__ ) lowerCAmelCase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase__ = torch_tensor.T lowerCAmelCase__ = create_tf_var(tensor=lowercase__ , name=lowercase__ , session=lowercase__ ) tf.keras.backend.set_value(lowercase__ , lowercase__ ) lowerCAmelCase__ = session.run(lowercase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowercase__ , lowercase__ )}' ) lowerCAmelCase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase__ , os.path.join(lowercase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def lowerCAmelCase_ (lowercase__ : Tuple=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowercase__ , required=lowercase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowercase__ , default=lowercase__ , required=lowercase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowercase__ , required=lowercase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowercase__ , required=lowercase__ , help='''Directory in which to save tensorflow model''' ) lowerCAmelCase__ = parser.parse_args(lowercase__ ) lowerCAmelCase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
668
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Tuple = "true" def lowerCAmelCase_ (lowercase__ : int , lowercase__ : int=82 , lowercase__ : str=16 ) -> Tuple: '''simple docstring''' set_seed(42 ) lowerCAmelCase__ = RegressionModel() lowerCAmelCase__ = deepcopy(lowercase__ ) lowerCAmelCase__ = RegressionDataset(length=lowercase__ ) lowerCAmelCase__ = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def lowerCAmelCase_ (lowercase__ : Accelerator , lowercase__ : Optional[Any]=False ) -> int: '''simple docstring''' lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ : Any ): lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ : Any ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def lowerCAmelCase_ (lowercase__ : Tuple , lowercase__ : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) lowerCAmelCase__ = get_dataloader(lowercase__ , not dispatch_batches ) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase_ (lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase__ = [] for batch in dataloader: lowerCAmelCase__ , lowerCAmelCase__ = batch.values() with torch.no_grad(): lowerCAmelCase__ = model(lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def lowerCAmelCase_ (lowercase__ : Accelerator , lowercase__ : Optional[Any]=82 , lowercase__ : List[Any]=False , lowercase__ : Optional[int]=False , lowercase__ : Union[str, Any]=16 ) -> int: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase__ , lowerCAmelCase__ = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}' def lowerCAmelCase_ (lowercase__ : bool = False , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ , lowerCAmelCase__ = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) lowerCAmelCase__ = metric.compute() # Then do distributed lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ = model(**lowercase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ = batch['''labels'''] lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) lowerCAmelCase__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def lowerCAmelCase_ () -> Tuple: '''simple docstring''' lowerCAmelCase__ = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ = Accelerator() test_torch_metrics(lowercase__ , 5_12 ) accelerator.state._reset_state() def lowerCAmelCase_ (lowercase__ : Optional[int] ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
668
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "wav2vec2" def __init__(self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="sum" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , __a=None , **__a , ) -> int: super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(__a ) UpperCamelCase = list(__a ) UpperCamelCase = list(__a ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # adapter UpperCamelCase = add_adapter UpperCamelCase = adapter_kernel_size UpperCamelCase = adapter_stride UpperCamelCase = num_adapter_layers UpperCamelCase = output_hidden_size or hidden_size UpperCamelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(__a ) UpperCamelCase = list(__a ) UpperCamelCase = list(__a ) UpperCamelCase = xvector_output_dim @property def snake_case_ (self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
544
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def decorator(_SCREAMING_SNAKE_CASE ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += [key] setattr(_SCREAMING_SNAKE_CASE , "handle_key" , _SCREAMING_SNAKE_CASE ) return func return decorator def a__ ( *_SCREAMING_SNAKE_CASE ): """simple docstring""" def decorator(_SCREAMING_SNAKE_CASE ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += keys setattr(_SCREAMING_SNAKE_CASE , "handle_key" , _SCREAMING_SNAKE_CASE ) return func return decorator class _lowerCamelCase ( _lowercase ): def __new__(cls , __a , __a , __a ) -> Any: UpperCamelCase = super().__new__(cls , __a , __a , __a ) if not hasattr(__a , "key_handler" ): setattr(__a , "key_handler" , {} ) setattr(__a , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): UpperCamelCase = getattr(__a , "handle_key" , [] ) for key in handled_keys: UpperCamelCase = value return new_cls @staticmethod def snake_case_ (cls ) -> Optional[Any]: UpperCamelCase = get_character() if char != KEYMAP["undefined"]: UpperCamelCase = ord(__a ) UpperCamelCase = cls.key_handler.get(__a ) if handler: UpperCamelCase = char return handler(cls ) else: return None def a__ ( cls ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
544
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase : Any = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: lowerCAmelCase : int = json.load(f) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self , snake_case__ ): '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = F'facebook/wmt19-{pair}' _lowerCAmelCase : str = self.get_tokenizer(snake_case__ ) _lowerCAmelCase : Optional[int] = self.get_model(snake_case__ ) _lowerCAmelCase : List[Any] = bleu_data[pair]['src'] _lowerCAmelCase : str = bleu_data[pair]['tgt'] _lowerCAmelCase : Tuple = tokenizer(snake_case__ , return_tensors='pt' , truncation=snake_case__ , padding='longest' ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _lowerCAmelCase : Tuple = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) _lowerCAmelCase : Tuple = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores['bleu'] , snake_case__ )
444
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ["""OwlViTFeatureExtractor"""] lowerCAmelCase : int = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
444
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(a__ , "num_encoder_blocks" ) ) class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=64 , a__=3 , a__=4 , a__=[2, 2, 2, 2] , a__=[8, 4, 2, 1] , a__=[16, 32, 64, 128] , a__=[1, 4, 8, 16] , a__=[1, 2, 4, 8] , a__=True , a__=True , a__="gelu" , a__=0.1 , a__=0.1 , a__=0.02 , a__=3 , a__=None , ): __SCREAMING_SNAKE_CASE : int = parent __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_channels __SCREAMING_SNAKE_CASE : List[Any] = num_encoder_blocks __SCREAMING_SNAKE_CASE : Optional[Any] = sr_ratios __SCREAMING_SNAKE_CASE : Union[str, Any] = depths __SCREAMING_SNAKE_CASE : int = hidden_sizes __SCREAMING_SNAKE_CASE : Dict = downsampling_rates __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_labels __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : List[str] = num_labels __SCREAMING_SNAKE_CASE : List[str] = scope def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values, labels def a_ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a_ ( self , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : str = SegformerModel(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(a__ ) __SCREAMING_SNAKE_CASE : Dict = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def a_ ( self , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = self.num_labels __SCREAMING_SNAKE_CASE : Any = SegformerForSemanticSegmentation(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , labels=a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def a_ ( self , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 1 __SCREAMING_SNAKE_CASE : List[Any] = SegformerForSemanticSegmentation(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) self.parent.assertGreater(result.loss , 0.0 ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = config_and_inputs __SCREAMING_SNAKE_CASE : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) snake_case__ : Union[str, Any] = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ : Union[str, Any] = True snake_case__ : List[str] = False snake_case__ : Optional[Any] = False snake_case__ : Dict = False def a_ ( self ): __SCREAMING_SNAKE_CASE : str = SegformerModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = SegformerConfigTester(self , config_class=a__ ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*a__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def a_ ( self ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def a_ ( self ): pass def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a__ ) __SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.attentions __SCREAMING_SNAKE_CASE : Dict = sum(self.model_tester.depths ) self.assertEqual(len(a__ ) , a__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) __SCREAMING_SNAKE_CASE : List[str] = outputs.attentions self.assertEqual(len(a__ ) , a__ ) # verify the first attentions (first block, first layer) __SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.image_size // 4) ** 2 __SCREAMING_SNAKE_CASE : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __SCREAMING_SNAKE_CASE : str = (self.model_tester.image_size // 32) ** 2 __SCREAMING_SNAKE_CASE : str = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = len(a__ ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Optional[int] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions self.assertEqual(len(a__ ) , a__ ) # verify the first attentions (first block, first layer) __SCREAMING_SNAKE_CASE : Optional[Any] = (self.model_tester.image_size // 4) ** 2 __SCREAMING_SNAKE_CASE : Optional[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def a_ ( self ): def check_hidden_states_output(a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(a__ , a__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(a__ ) , a__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(a__ , a__ , a__ ) def a_ ( self ): if not self.model_tester.is_training: return __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(a__ ): continue __SCREAMING_SNAKE_CASE : Optional[int] = model_class(a__ ) model.to(a__ ) model.train() __SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(a__ , a__ , return_labels=a__ ) __SCREAMING_SNAKE_CASE : List[Any] = model(**a__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def a_ ( self ): pass @slow def a_ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Any = SegformerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a__ , align=a__ , do_random_crop=a__ ) __SCREAMING_SNAKE_CASE : Dict = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE : Tuple = image_processor(images=a__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : List[Any] = encoded_inputs.pixel_values.to(a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) __SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a__ , atol=1e-4 ) ) @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a__ , align=a__ , do_random_crop=a__ ) __SCREAMING_SNAKE_CASE : Any = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(a__ ) __SCREAMING_SNAKE_CASE : Tuple = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=a__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Any = encoded_inputs.pixel_values.to(a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Any = model(a__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a__ , atol=1e-1 ) ) @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a__ , align=a__ , do_random_crop=a__ ) __SCREAMING_SNAKE_CASE : Dict = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a__ ) __SCREAMING_SNAKE_CASE : List[Any] = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=a__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : List[Any] = encoded_inputs.pixel_values.to(a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.detach().cpu() __SCREAMING_SNAKE_CASE : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a__ , target_sizes=[(500, 300)] ) __SCREAMING_SNAKE_CASE : int = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , a__ ) __SCREAMING_SNAKE_CASE : List[str] = image_processor.post_process_semantic_segmentation(outputs=a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , a__ )
721
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None __SCREAMING_SNAKE_CASE : int = sorted_collection[point] if current_item == item: return point else: if point < left: __SCREAMING_SNAKE_CASE : Tuple = left __SCREAMING_SNAKE_CASE : Any = point elif point > right: __SCREAMING_SNAKE_CASE : Tuple = right __SCREAMING_SNAKE_CASE : Dict = point else: if item < current_item: __SCREAMING_SNAKE_CASE : Optional[int] = point - 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = point + 1 return None def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE : Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point + 1 , _SCREAMING_SNAKE_CASE ) def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if collection != sorted(_SCREAMING_SNAKE_CASE ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowercase = 0 if debug == 1: lowercase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowercase = 67 lowercase = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
564
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
276
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __magic_name__ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Dict = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = ['input_ids', 'attention_mask'] _A : Dict = RobertaTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="replace" , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=False , lowerCamelCase=True , **lowerCamelCase , ): super().__init__( lowerCamelCase , lowerCamelCase , tokenizer_file=lowerCamelCase , errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , **lowerCamelCase , ) snake_case__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: snake_case__ = getattr(lowerCamelCase , pre_tok_state.pop("type" ) ) snake_case__ = add_prefix_space snake_case__ = pre_tok_class(**lowerCamelCase ) snake_case__ = add_prefix_space snake_case__ = "post_processor" snake_case__ = getattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) if tokenizer_component_instance: snake_case__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ = tuple(state["sep"] ) if "cls" in state: snake_case__ = tuple(state["cls"] ) snake_case__ = False if state.get("add_prefix_space" , lowerCamelCase ) != add_prefix_space: snake_case__ = add_prefix_space snake_case__ = True if state.get("trim_offsets" , lowerCamelCase ) != trim_offsets: snake_case__ = trim_offsets snake_case__ = True if changes_to_apply: snake_case__ = getattr(lowerCamelCase , state.pop("type" ) ) snake_case__ = component_class(**lowerCamelCase ) setattr(self.backend_tokenizer , lowerCamelCase , lowerCamelCase ) @property def A_ ( self ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self , lowerCamelCase ): snake_case__ = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else value snake_case__ = value def A_ ( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = kwargs.get("is_split_into_words" , lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase=None ): snake_case__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
276
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = MobileBertTokenizer _UpperCAmelCase = MobileBertTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = filter_non_english _UpperCAmelCase = 'google/mobilebert-uncased' def snake_case ( self : int ): super().setUp() lowerCamelCase :Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase :List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case ( self : str , __snake_case : List[Any] ): lowerCamelCase :Dict = '''UNwant\u00E9d,running''' lowerCamelCase :Any = '''unwanted, running''' return input_text, output_text def snake_case ( self : List[str] ): lowerCamelCase :int = self.tokenizer_class(self.vocab_file ) lowerCamelCase :Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def snake_case ( self : str ): if not self.test_rust_tokenizer: return lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase :Union[str, Any] = '''UNwant\u00E9d,running''' lowerCamelCase :List[Any] = tokenizer.tokenize(__snake_case ) lowerCamelCase :str = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :str = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Any = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :int = self.get_rust_tokenizer() lowerCamelCase :List[Any] = tokenizer.encode(__snake_case ) lowerCamelCase :Optional[int] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # With lower casing lowerCamelCase :Tuple = self.get_tokenizer(do_lower_case=__snake_case ) lowerCamelCase :str = self.get_rust_tokenizer(do_lower_case=__snake_case ) lowerCamelCase :Optional[Any] = '''UNwant\u00E9d,running''' lowerCamelCase :int = tokenizer.tokenize(__snake_case ) lowerCamelCase :Optional[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Dict = self.get_rust_tokenizer() lowerCamelCase :Tuple = tokenizer.encode(__snake_case ) lowerCamelCase :Optional[Any] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def snake_case ( self : Dict ): lowerCamelCase :Optional[int] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def snake_case ( self : str ): lowerCamelCase :Optional[int] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : str ): lowerCamelCase :Tuple = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : int ): lowerCamelCase :Union[str, Any] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : List[Any] ): lowerCamelCase :Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase :Optional[Any] = {} for i, token in enumerate(__snake_case ): lowerCamelCase :List[Any] = i lowerCamelCase :int = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def snake_case ( self : str ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def snake_case ( self : Optional[int] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def snake_case ( self : List[Any] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.get_tokenizer() lowerCamelCase :str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def snake_case ( self : int ): lowerCamelCase :str = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) lowerCamelCase :Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Union[str, Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase :Optional[int] = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) lowerCamelCase :Tuple = tokenizer_r.do_lower_case if hasattr(__snake_case , '''do_lower_case''' ) else False lowerCamelCase :Union[str, Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def snake_case ( self : Any ): lowerCamelCase :Optional[int] = ['''的''', '''人''', '''有'''] lowerCamelCase :List[Any] = ''''''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = True lowerCamelCase :List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :List[str] = tokenizer_r.convert_ids_to_tokens(__snake_case ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = False lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :str = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Dict = tokenizer_r.convert_ids_to_tokens(__snake_case ) lowerCamelCase :Any = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase :List[str] = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = MgpstrTokenizer A : Any = False A : Any = {} A : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'tester' SCREAMING_SNAKE_CASE : List[Any] = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE : Union[str, Any] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode([special_token], add_special_tokens=A ) self.assertEqual(len(A ), 1 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A, skip_special_tokens=A ) self.assertTrue(special_token not in decoded ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.get_input_output_texts(A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(A, add_special_tokens=A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(A ) self.assertNotEqual(len(A ), 0 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(A ) self.assertIsInstance(A, A ) self.assertEqual(text_a.replace(' ', '' ), A ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass
28
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''bit''' UpperCamelCase = ['''preactivation''', '''bottleneck'''] UpperCamelCase = ['''SAME''', '''VALID'''] def __init__( self : Optional[Any] , A_ : int=3 , A_ : Any=64 , A_ : Optional[int]=[256, 512, 1024, 2048] , A_ : str=[3, 4, 6, 3] , A_ : Any="preactivation" , A_ : Optional[int]="relu" , A_ : List[Any]=None , A_ : Tuple=32 , A_ : List[str]=0.0 , A_ : str=False , A_ : Optional[int]=32 , A_ : List[str]=1 , A_ : List[str]=None , A_ : str=None , **A_ : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCamelCase_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) lowerCamelCase_ = num_channels lowerCamelCase_ = embedding_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = layer_type lowerCamelCase_ = hidden_act lowerCamelCase_ = global_padding lowerCamelCase_ = num_groups lowerCamelCase_ = drop_path_rate lowerCamelCase_ = embedding_dynamic_padding lowerCamelCase_ = output_stride lowerCamelCase_ = width_factor lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
651
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _UpperCAmelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _UpperCAmelCase = TaTokenizerFast _UpperCAmelCase = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _UpperCAmelCase = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
699
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = "SpeechT5FeatureExtractor" snake_case = "SpeechT5Tokenizer" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = kwargs.pop("""audio""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""text""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""text_target""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""audio_target""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""sampling_rate""" , _SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCamelCase__ = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif text is not None: lowerCamelCase__ = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: lowerCamelCase__ = None if audio_target is not None: lowerCamelCase__ = self.feature_extractor(audio_target=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase__ = targets["""input_values"""] elif text_target is not None: lowerCamelCase__ = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase__ = targets["""input_ids"""] else: lowerCamelCase__ = None if inputs is None: return targets if targets is not None: lowerCamelCase__ = labels lowerCamelCase__ = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ = decoder_attention_mask return inputs def __UpperCAmelCase ( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ): lowerCamelCase__ = kwargs.pop("""input_values""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""input_ids""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase__ = kwargs.pop("""labels""" , _SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCamelCase__ = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif input_ids is not None: lowerCamelCase__ = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: lowerCamelCase__ = None if labels is not None: if "input_ids" in labels or (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): lowerCamelCase__ = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase__ = targets["""input_ids"""] else: lowerCamelCase__ = self.feature_extractor.feature_size lowerCamelCase__ = self.feature_extractor.num_mel_bins lowerCamelCase__ = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase__ = feature_size_hack lowerCamelCase__ = targets["""input_values"""] else: lowerCamelCase__ = None if inputs is None: return targets if targets is not None: lowerCamelCase__ = labels lowerCamelCase__ = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__ = decoder_attention_mask return inputs def __UpperCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Dict ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase : List[str] = TypeVar("""T""") def A_ ( A__ ) -> Tuple: return (position - 1) // 2 def A_ ( A__ ) -> Union[str, Any]: return (2 * position) + 1 def A_ ( A__ ) -> int: return (2 * position) + 2 class A__ ( Generic[T] ): """simple docstring""" def __init__( self) -> None: '''simple docstring''' a__ : list[tuple[T, int]] = [] a__ : dict[T, int] = {} a__ : int = 0 def __len__( self) -> int: '''simple docstring''' return self.elements def __repr__( self) -> str: '''simple docstring''' return str(self.heap) def __lowercase ( self) -> bool: '''simple docstring''' return self.elements == 0 def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' self.heap.append((elem, weight)) a__ : Any = self.elements self.elements += 1 self._bubble_up(lowercase) def __lowercase ( self) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1) a__ : Dict = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: a__ : Tuple = self.heap[0] self._bubble_down(lowercase) return elem def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : List[Any] = self.position_map[elem] a__ : Tuple = (elem, weight) if position > 0: a__ : List[str] = get_parent_position(lowercase) a__ : int = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase) else: self._bubble_down(lowercase) else: self._bubble_down(lowercase) def __lowercase ( self , lowercase) -> None: '''simple docstring''' a__ : int = self.position_map[elem] if curr_pos == 0: return None a__ : List[Any] = get_parent_position(lowercase) a__ : Dict = self.heap[curr_pos] a__ : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase , lowercase) return self._bubble_up(lowercase) return None def __lowercase ( self , lowercase) -> None: '''simple docstring''' a__ : int = self.position_map[elem] a__ : Dict = self.heap[curr_pos] a__ : str = get_child_left_position(lowercase) a__ : int = get_child_right_position(lowercase) if child_left_position < self.elements and child_right_position < self.elements: a__ : Optional[Any] = self.heap[child_left_position] a__ : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) if child_left_position < self.elements: a__ : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) else: return None if child_right_position < self.elements: a__ : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase , lowercase) return self._bubble_down(lowercase) return None def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : List[str] = self.heap[nodea_pos][0] a__ : Dict = self.heap[nodea_pos][0] a__ : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) a__ : Optional[Any] = nodea_pos a__ : int = nodea_pos class A__ ( Generic[T] ): """simple docstring""" def __init__( self) -> None: '''simple docstring''' a__ : dict[T, dict[T, int]] = {} a__ : int = 0 def __repr__( self) -> str: '''simple docstring''' return str(self.connections) def __len__( self) -> int: '''simple docstring''' return self.nodes def __lowercase ( self , lowercase) -> None: '''simple docstring''' if node not in self.connections: a__ : int = {} self.nodes += 1 def __lowercase ( self , lowercase , lowercase , lowercase) -> None: '''simple docstring''' self.add_node(lowercase) self.add_node(lowercase) a__ : List[Any] = weight a__ : int = weight def A_ ( A__ , ) -> Optional[int]: a__ : dict[T, int] = {node: maxsize for node in graph.connections} a__ : dict[T, T | None] = {node: None for node in graph.connections} a__ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__snake_case , __snake_case ) if priority_queue.is_empty(): return dist, parent # initialization a__ : List[str] = priority_queue.extract_min() a__ : str = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a__ : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__snake_case , dist[neighbour] ) a__ : Tuple = node # running prim's algorithm while not priority_queue.is_empty(): a__ : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a__ : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__snake_case , dist[neighbour] ) a__ : List[str] = node return dist, parent
302
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): return int((input_a, input_a).count(0 ) != 0 ) def SCREAMING_SNAKE_CASE ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
701
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase = {} lowercase = {} if prompt is not None: lowercase = prompt if generate_kwargs is not None: lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Any: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: '''simple docstring''' lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. """ """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase = self.model.config.model_type if model_type == "git": lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids lowercase = [self.tokenizer.cls_token_id] + input_ids lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase = None return model_inputs def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase = None if generate_kwargs is None: lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase = model_inputs.pop(self.model.main_input_name ) lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase = [] for output_ids in model_outputs: lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
653
0
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : int = 5_0 ) ->int: lowerCamelCase__ : Any =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
174
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase = """base_with_context""" def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) ->Tuple: lowerCamelCase__ : Any =nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowerCamelCase__ : int =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Union[str, Any] =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : List[Any] =ly_weight['attention'] lowerCamelCase__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : str =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any ) ->Union[str, Any]: lowerCamelCase__ : Tuple =nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : List[Any] =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : List[str] =ly_weight['attention'] lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : Dict =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : str =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Dict =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : List[Any] ) ->Optional[int]: lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) lowerCamelCase__ : Tuple =nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : Tuple =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : List[str] =nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : Optional[int] =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ : Union[str, Any] =ly_weight['self_attention'] lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : int =ly_weight['MultiHeadDotProductAttention_0'] lowerCamelCase__ : Any =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : Tuple =nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) ->List[Any]: lowerCamelCase__ : Optional[int] =checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[Any] =jnp.tree_util.tree_map(onp.array , snake_case_ ) lowerCamelCase__ : Dict =[ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowerCamelCase__ : Optional[int] =os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowerCamelCase__ : Optional[int] =inference.parse_training_gin_file(snake_case_ , snake_case_ ) lowerCamelCase__ : Tuple =inference.InferenceModel(args.checkpoint_path , snake_case_ ) lowerCamelCase__ : List[Any] =DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowerCamelCase__ : int =SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ : Optional[Any] =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ : int =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : str =load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case_ ) lowerCamelCase__ : int =load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case_ ) lowerCamelCase__ : Any =load_decoder(ta_checkpoint['target']['decoder'] , snake_case_ ) lowerCamelCase__ : Any =OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowerCamelCase__ : Optional[int] =SpectrogramDiffusionPipeline( notes_encoder=snake_case_ , continuous_encoder=snake_case_ , decoder=snake_case_ , scheduler=snake_case_ , melgan=snake_case_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) lowerCAmelCase = parser.parse_args() main(args)
174
1
'''simple docstring''' import functools from typing import Any def _a( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' if not isinstance(lowerCamelCase_, lowerCamelCase_ ) or len(lowerCamelCase_ ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(lowerCamelCase_, lowerCamelCase_ ) or not all( isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie SCREAMING_SNAKE_CASE__ : dict[str, Any] ={} SCREAMING_SNAKE_CASE__ : Tuple ="""WORD_KEEPER""" for word in words: SCREAMING_SNAKE_CASE__ : Tuple =trie for c in word: if c not in trie_node: SCREAMING_SNAKE_CASE__ : Optional[Any] ={} SCREAMING_SNAKE_CASE__ : Dict =trie_node[c] SCREAMING_SNAKE_CASE__ : str =True SCREAMING_SNAKE_CASE__ : str =len(lowerCamelCase_ ) # Dynamic programming method @functools.cache def is_breakable(UpperCamelCase__ : Union[str, Any] ) -> bool: if index == len_string: return True SCREAMING_SNAKE_CASE__ : str =trie for i in range(lowerCamelCase_, lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : str =trie_node.get(string[i], lowerCamelCase_ ) if trie_node is None: return False if trie_node.get(lowerCamelCase_, lowerCamelCase_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _snake_case : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_a ) class A ( _a ): def __init__( self : Any , **lowerCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : Tuple ) -> Optional[int]: """simple docstring""" _a = {} _a = {} _a = {} # preprocess args if "points_per_batch" in kwargs: _a = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: _a = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: _a = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: _a = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: _a = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: _a = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: _a = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: _a = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: _a = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: _a = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: _a = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: _a = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Dict , lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=64 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : float = 5_12 / 15_00 , lowerCAmelCase_ : Optional[int] = 32 , lowerCAmelCase_ : Optional[int] = 1 , ) -> Dict: """simple docstring""" _a = load_image(lowerCAmelCase_ ) _a = self.image_processor.size['''longest_edge'''] _a , _a , _a , _a = self.image_processor.generate_crop_boxes( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a = self.image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": _a = self.get_inference_context() with inference_context(): _a = self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device ) _a = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) _a = image_embeddings _a = grid_points.shape[1] _a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ ): _a = grid_points[:, i : i + points_per_batch, :, :] _a = input_labels[:, i : i + points_per_batch] _a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=0.8_8 , lowerCAmelCase_ : Tuple=0.9_5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Optional[int]=1 , ) -> str: """simple docstring""" _a = model_inputs.pop('''input_boxes''' ) _a = model_inputs.pop('''is_last''' ) _a = model_inputs.pop('''original_sizes''' ).tolist() _a = model_inputs.pop('''reshaped_input_sizes''' ).tolist() _a = self.model(**lowerCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _a = model_outputs['''pred_masks'''] _a = self.image_processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_ ) _a = model_outputs['''iou_scores'''] _a , _a , _a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[Any]=0.7 , ) -> int: """simple docstring""" _a = [] _a = [] _a = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) _a = torch.cat(lowerCAmelCase_ ) _a = torch.cat(lowerCAmelCase_ ) _a , _a , _a , _a = self.image_processor.post_process_for_mask_generation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _a = defaultdict(lowerCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_ ) _a = {} if output_rle_mask: _a = rle_mask if output_bboxes_mask: _a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
22
'''simple docstring''' import requests def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = {'''Content-Type''': '''application/json'''} _a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase ) if response.status_code != 200: _a = ( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
22
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Tuple: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> int: from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Union[str, Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__snake_case , id=__snake_case )
713
from __future__ import annotations import pandas as pd def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: list[int] , lowerCAmelCase: int ) -> list[int]: _UpperCAmelCase : List[Any] = [0] * no_of_processes _UpperCAmelCase : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowerCAmelCase ): _UpperCAmelCase : List[str] = burst_time[i] _UpperCAmelCase : Any = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : str = 9_9999_9999 _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Any = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowerCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _UpperCAmelCase : Optional[int] = remaining_time[j] _UpperCAmelCase : int = j _UpperCAmelCase : Tuple = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _UpperCAmelCase : List[Any] = remaining_time[short] if minm == 0: _UpperCAmelCase : List[Any] = 9_9999_9999 if remaining_time[short] == 0: complete += 1 _UpperCAmelCase : int = False # Find finish time of current process _UpperCAmelCase : Optional[int] = increment_time + 1 # Calculate waiting time _UpperCAmelCase : str = finish_time - arrival_time[short] _UpperCAmelCase : Union[str, Any] = finar - burst_time[short] if waiting_time[short] < 0: _UpperCAmelCase : Optional[int] = 0 # Increment time increment_time += 1 return waiting_time def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: int , lowerCAmelCase: list[int] ) -> list[int]: _UpperCAmelCase : str = [0] * no_of_processes for i in range(lowerCAmelCase ): _UpperCAmelCase : str = burst_time[i] + waiting_time[i] return turn_around_time def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: list[int] , lowerCAmelCase: int ) -> None: _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[str] = 0 for i in range(lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = total_waiting_time + waiting_time[i] _UpperCAmelCase : int = total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') SCREAMING_SNAKE_CASE_ = int(input()) SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = map(int, input().split()) SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = burst_time SCREAMING_SNAKE_CASE_ = no_of_processes SCREAMING_SNAKE_CASE_ = waiting_time SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) SCREAMING_SNAKE_CASE_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
467
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = '''gpt_neo''' __UpperCAmelCase : Optional[int] = ['''past_key_values'''] __UpperCAmelCase : Optional[int] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,_a : Optional[int]=5_0257 ,_a : Tuple=2048 ,_a : Optional[int]=2048 ,_a : Any=24 ,_a : Tuple=[[["global", "local"], 12]] ,_a : Union[str, Any]=16 ,_a : List[Any]=None ,_a : Optional[int]=256 ,_a : Optional[Any]="gelu_new" ,_a : List[Any]=0.0 ,_a : Optional[int]=0.0 ,_a : List[Any]=0.0 ,_a : Union[str, Any]=0.1 ,_a : Optional[Any]=1E-5 ,_a : Optional[Any]=0.02 ,_a : str=True ,_a : Any=5_0256 ,_a : Tuple=5_0256 ,**_a : List[str] ,): '''simple docstring''' _a : Dict = vocab_size _a : Union[str, Any] = max_position_embeddings _a : List[str] = hidden_size _a : Optional[Any] = num_layers _a : Optional[Any] = num_heads _a : Dict = intermediate_size _a : Any = window_size _a : List[str] = activation_function _a : int = resid_dropout _a : Tuple = embed_dropout _a : int = attention_dropout _a : Dict = classifier_dropout _a : Tuple = layer_norm_epsilon _a : List[str] = initializer_range _a : str = use_cache _a : List[str] = bos_token_id _a : Optional[Any] = eos_token_id _a : Tuple = attention_types _a : Union[str, Any] = self.expand_attention_types_params(_a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=_a ,eos_token_id=_a ,**_a ) @staticmethod def __lowercase ( _a : Dict ): '''simple docstring''' _a : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCAmelCase_ (__a : str , __a : Optional[int] , __a : Tuple , __a : Dict ): """simple docstring""" import torch _a : Tuple = input.size() _a : Union[str, Any] = len(__a ) _a : Union[str, Any] = shape[dimension] _a : str = torch.arange(0 , __a , __a ) _a : Optional[Any] = torch.div(sizedim - size , __a , rounding_mode='floor' ) + 1 _a : str = torch.arange(__a ) + low_indices[:min_length][:, None] _a : Optional[Any] = [slice(__a )] * rank _a : Dict = indices _a : List[str] = input[s] _a : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def UpperCAmelCase_ (__a : str , __a : Optional[int] ): """simple docstring""" import torch _a : List[str] = torch.arange(1 , __a ) _a : int = torch.remainder(__a , __a ) _a : Tuple = remainders == 0 _a : Optional[Any] = candidates[divisor_indices] _a : List[Any] = torch.max(__a ) return largest_divisor, torch.div(__a , __a , rounding_mode='floor' ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_a ,direction='inputs' ) _a : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: _a : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __lowercase ( self : List[str] ): '''simple docstring''' return self._config.num_heads def __lowercase ( self : Any ,_a : PreTrainedTokenizer ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional[TensorType] = None ,): '''simple docstring''' _a : Dict = super(_a ,self ).generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) # We need to order the input in the way they appears in the forward() _a : Union[str, Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a, _a : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a : Any = seqlen + 2 _a : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Tuple = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] _a : List[str] = common_inputs['attention_mask'] if self.use_past: _a : Optional[int] = ordered_inputs['attention_mask'].dtype _a : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_a ,_a ,dtype=_a )] ,dim=1 ) return ordered_inputs @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return 13
229
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ (): """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ): '''simple docstring''' super().__init__() _a : Union[str, Any] = nn.Linear(3 ,4 ) _a : Optional[int] = nn.BatchNormad(4 ) _a : List[Any] = nn.Linear(4 ,5 ) def __lowercase ( self : Dict ,_a : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Any ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Tuple ,_a : str ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _a, _a : int = mock_training_loop_function('hello' ) self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] ,[8, 'hello'] ) def __lowercase ( self : int ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_a : Optional[Any] ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : List[str] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Optional[int] ,_a : Tuple ,_a : List[str] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 ,'hello' ,'world' ) self.assertIn('Batch size was passed into `f`' ,cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' ,cm.exception.args[0] ) def __lowercase ( self : str ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : int ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' ,cm.exception.args[0] ) @require_cuda def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = torch.cuda.memory_allocated() _a : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() ,_a ) _a : Dict = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() ,_a )
229
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCAmelCase : List[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
462
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = len(SCREAMING_SNAKE_CASE__ ) __a : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __a : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __a : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __a : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __a : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
597
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[str] = OmegaConf.load(lowercase_ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase_ ) ) ) return config def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ): '''simple docstring''' if conf_path is None: A_ : Any = """./model_checkpoints/vqgan_only.yaml""" A_ : List[str] = load_config(lowercase_ ,display=lowercase_ ) A_ : List[str] = VQModel(**config.model.params ) if ckpt_path is None: A_ : Optional[int] = """./model_checkpoints/vqgan_only.pt""" A_ : Union[str, Any] = torch.load(lowercase_ ,map_location=lowercase_ ) if ".ckpt" in ckpt_path: A_ : Dict = sd["""state_dict"""] model.load_state_dict(lowercase_ ,strict=lowercase_ ) model.to(lowercase_ ) del sd return model def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : str = model.encode(lowercase_ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) A_ : Tuple = model.decode(lowercase_ ) return xrec def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : int = string.rsplit(""".""" ,1 ) if reload: A_ : List[Any] = importlib.import_module(lowercase_ ) importlib.reload(lowercase_ ) return getattr(importlib.import_module(lowercase_ ,package=lowercase_ ) ,cls ) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" ,{} ) ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=True ,_lowerCAmelCase=True ): '''simple docstring''' A_ : Union[str, Any] = instantiate_from_config(lowercase_ ) if sd is not None: model.load_state_dict(lowercase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' if ckpt: A_ : Any = torch.load(lowercase_ ,map_location="""cpu""" ) A_ : str = pl_sd["""global_step"""] print(f"""loaded model from global step {global_step}.""" ) else: A_ : Any = {"""state_dict""": None} A_ : Dict = None A_ : Optional[int] = load_model_from_config(config.model ,pl_sd["""state_dict"""] ,gpu=lowercase_ ,eval_mode=lowercase_ )["""model"""] return model, global_step
720
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _UpperCAmelCase : def __init__( self , a__ ): if isinstance(a__ , a__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A_ : Optional[Any] = deepcopy(a__ ) elif os.path.exists(a__ ): with io.open(a__ , """r""" , encoding="""utf-8""" ) as f: A_ : str = json.load(a__ ) else: try: A_ : Dict = baseaa.urlsafe_baadecode(a__ ).decode("""utf-8""" ) A_ : List[Any] = json.loads(a__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) A_ : Any = config self.set_stage_and_offload() def _lowerCamelCase ( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. A_ : List[str] = self.get_value("""zero_optimization.stage""" , -1 ) # offload A_ : Any = False if self.is_zeroa() or self.is_zeroa(): A_ : Optional[int] = set(["""cpu""", """nvme"""] ) A_ : Dict = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A_ : Tuple = True def _lowerCamelCase ( self , a__ ): A_ : List[Any] = self.config # find the config node of interest if it exists A_ : Optional[Any] = ds_key_long.split(""".""" ) A_ : Union[str, Any] = nodes.pop() for node in nodes: A_ : List[str] = config.get(a__ ) if config is None: return None, ds_key return config, ds_key def _lowerCamelCase ( self , a__ , a__=None ): A_ , A_ : Union[str, Any] = self.find_config_node(a__ ) if config is None: return default return config.get(a__ , a__ ) def _lowerCamelCase ( self , a__ , a__=False ): A_ : Union[str, Any] = self.config # find the config node of interest if it exists A_ : str = ds_key_long.split(""".""" ) for node in nodes: A_ : int = config A_ : int = config.get(a__ ) if config is None: if must_exist: raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(a__ ) def _lowerCamelCase ( self , a__ ): A_ : Optional[Any] = self.get_value(a__ ) return False if value is None else bool(a__ ) def _lowerCamelCase ( self , a__ ): A_ : Optional[Any] = self.get_value(a__ ) return False if value is None else not bool(a__ ) def _lowerCamelCase ( self ): return self._stage == 2 def _lowerCamelCase ( self ): return self._stage == 3 def _lowerCamelCase ( self ): return self._offload class _UpperCAmelCase : def __init__( self , a__ ): A_ : Any = engine def _lowerCamelCase ( self , a__ , **a__ ): # runs backpropagation and handles mixed precision self.engine.backward(a__ , **a__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ ): super().__init__(a__ , device_placement=a__ , scaler=a__ ) A_ : Dict = hasattr(self.optimizer , """overflow""" ) def _lowerCamelCase ( self , a__=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowerCamelCase ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowerCamelCase ( self ): if self.__has_overflow__: return self.optimizer.overflow return False class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ , a__ ): super().__init__(a__ , a__ ) def _lowerCamelCase ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _UpperCAmelCase : def __init__( self , a__ , a__=0.001 , a__=0 , **a__ ): A_ : List[str] = params A_ : Any = lr A_ : int = weight_decay A_ : Optional[int] = kwargs class _UpperCAmelCase : def __init__( self , a__ , a__=None , a__=0 , **a__ ): A_ : Union[str, Any] = optimizer A_ : int = total_num_steps A_ : Any = warmup_num_steps A_ : int = kwargs
481
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase : Dict = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Train language if it is different from the evaluation language."} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __magic_name__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __magic_name__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def lowercase (): """simple docstring""" _lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , _A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Any = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _lowerCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _lowerCAmelCase : Any = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowerCAmelCase : Optional[Any] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = train_dataset.features['label'].names if training_args.do_eval: _lowerCAmelCase : Optional[Any] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = eval_dataset.features['label'].names if training_args.do_predict: _lowerCAmelCase : Optional[int] = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Any = predict_dataset.features['label'].names # Labels _lowerCAmelCase : Optional[Any] = len(_A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , idalabel={str(_A ): label for i, label in enumerate(_A )} , labelaid={label: i for i, label in enumerate(_A )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _lowerCAmelCase : Optional[Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCAmelCase : str = False def preprocess_function(_A ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=_A , max_length=data_args.max_seq_length , truncation=_A , ) if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Any = min(len(_A ) , data_args.max_train_samples ) _lowerCAmelCase : int = train_dataset.select(range(_A ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowerCAmelCase : Optional[Any] = train_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : Optional[Any] = min(len(_A ) , data_args.max_eval_samples ) _lowerCAmelCase : Optional[Any] = eval_dataset.select(range(_A ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowerCAmelCase : Optional[int] = eval_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _lowerCAmelCase : List[Any] = min(len(_A ) , data_args.max_predict_samples ) _lowerCAmelCase : List[Any] = predict_dataset.select(range(_A ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _lowerCAmelCase : Any = predict_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _lowerCAmelCase : str = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_A ): _lowerCAmelCase : Tuple = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions _lowerCAmelCase : Union[str, Any] = np.argmax(_A , axis=1 ) return metric.compute(predictions=_A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCAmelCase : List[Any] = default_data_collator elif training_args.fpaa: _lowerCAmelCase : Tuple = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: _lowerCAmelCase : Union[str, Any] = None # Initialize our Trainer _lowerCAmelCase : List[str] = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: _lowerCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : int = last_checkpoint _lowerCAmelCase : Tuple = trainer.train(resume_from_checkpoint=_A ) _lowerCAmelCase : Union[str, Any] = train_result.metrics _lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) _lowerCAmelCase : Union[str, Any] = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _A ) trainer.save_metrics('train' , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase : str = trainer.evaluate(eval_dataset=_A ) _lowerCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) _lowerCAmelCase : Any = min(_A , len(_A ) ) trainer.log_metrics('eval' , _A ) trainer.save_metrics('eval' , _A ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = trainer.predict(_A , metric_key_prefix='predict' ) _lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_A ) ) _lowerCAmelCase : Tuple = min(_A , len(_A ) ) trainer.log_metrics('predict' , _A ) trainer.save_metrics('predict' , _A ) _lowerCAmelCase : Dict = np.argmax(_A , axis=1 ) _lowerCAmelCase : Dict = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(_A , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(_A ): _lowerCAmelCase : Optional[Any] = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
444
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = TaConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase : Union[str, Any] = TaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tf_weights_in_ta(_A , _A , _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
444
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = 'laion/clap-htsat-unfused' __magic_name__ = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , **__UpperCamelCase: List[Any] ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: int , **__UpperCamelCase: Dict ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_feature_extractor() __magic_name__ = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ = self.get_feature_extractor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __magic_name__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __magic_name__ = floats_list((3, 10_00) ) __magic_name__ = feature_extractor(__UpperCamelCase , return_tensors='np' ) __magic_name__ = processor(audios=__UpperCamelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __magic_name__ = 'This is a test string' __magic_name__ = processor(text=__UpperCamelCase ) __magic_name__ = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(__UpperCamelCase ) __magic_name__ = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
720
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : str = DownBlockaD # noqa F405 _lowercase : Union[str, Any] = "down" def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Union[str, Any] = "down" def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' __magic_name__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Dict = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = "down" def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : int = CrossAttnDownBlockaD # noqa F405 _lowercase : Any = "down" def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : List[str] = "down" @property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : str = SkipDownBlockaD # noqa F405 _lowercase : Union[str, Any] = "down" @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = AttnSkipDownBlockaD # noqa F405 _lowercase : str = "down" @property def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_skip_sample=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Optional[int] = DownEncoderBlockaD # noqa F405 _lowercase : List[str] = "down" @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = { 'in_channels': 32, 'out_channels': 32, } __magic_name__ = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[Any] = AttnDownEncoderBlockaD # noqa F405 _lowercase : Optional[Any] = "down" @property def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = { 'in_channels': 32, 'out_channels': 32, } __magic_name__ = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[Any] = UNetMidBlockaD # noqa F405 _lowercase : Any = "mid" def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = { 'in_channels': 32, 'temb_channels': 1_28, } __magic_name__ = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : str = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : int = "mid" def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = "mid" @property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[Any] = UpBlockaD # noqa F405 _lowercase : List[Any] = "up" @property def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[Any] = ResnetUpsampleBlockaD # noqa F405 _lowercase : Dict = "up" @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : Union[str, Any] = "up" @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : str = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Tuple = "up" @property def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase , include_encoder_hidden_states=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__, __magic_name__ = super().prepare_init_args_and_inputs_for_common() __magic_name__ = 32 return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Optional[Any] = AttnUpBlockaD # noqa F405 _lowercase : Optional[int] = "up" @property def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Union[str, Any] = SkipUpBlockaD # noqa F405 _lowercase : int = "up" @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 _lowercase : Optional[Any] = "up" @property def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : List[str] = UpDecoderBlockaD # noqa F405 _lowercase : List[str] = "up" @property def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' return super().get_dummy_input(include_temb=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = {'in_channels': 32, 'out_channels': 32} __magic_name__ = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__UpperCamelCase ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Optional[Any] = AttnUpDecoderBlockaD # noqa F405 _lowercase : Any = "up" @property def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' return super().get_dummy_input(include_temb=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = {'in_channels': 32, 'out_channels': 32} __magic_name__ = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__UpperCamelCase )
184
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) # TODO Update this __lowerCAmelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Any = 'esm' def __init__( self : Optional[int] ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=768 ,_UpperCAmelCase : Union[str, Any]=12 ,_UpperCAmelCase : List[str]=12 ,_UpperCAmelCase : Tuple=3072 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : List[str]=1026 ,_UpperCAmelCase : List[str]=0.02 ,_UpperCAmelCase : Optional[int]=1E-12 ,_UpperCAmelCase : List[str]="absolute" ,_UpperCAmelCase : Tuple=True ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : int=False ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Union[str, Any]=None ,**_UpperCAmelCase : List[Any] ,): super().__init__(pad_token_id=_UpperCAmelCase ,mask_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = vocab_size _a : Union[str, Any] = hidden_size _a : Dict = num_hidden_layers _a : int = num_attention_heads _a : Dict = intermediate_size _a : List[Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Optional[int] = initializer_range _a : List[Any] = layer_norm_eps _a : int = position_embedding_type _a : Optional[int] = use_cache _a : Any = emb_layer_norm_before _a : List[str] = token_dropout _a : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _a : Dict = EsmFoldConfig() elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Dict = EsmFoldConfig(**_UpperCAmelCase ) _a : Optional[int] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _a : Optional[int] = get_default_vocab_list() else: _a : Optional[int] = vocab_list else: _a : Optional[Any] = None _a : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,_UpperCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def __lowercase ( self : Any ): _a : str = super().to_dict() if isinstance(self.esmfold_config ,_UpperCAmelCase ): _a : List[str] = self.esmfold_config.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : str = None lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : bool = False lowerCAmelCase : float = 0 lowerCAmelCase : bool = True lowerCAmelCase : bool = False lowerCAmelCase : int = 1_2_8 lowerCAmelCase : "TrunkConfig" = None def __lowercase ( self : List[str] ): if self.trunk is None: _a : Dict = TrunkConfig() elif isinstance(self.trunk ,_UpperCAmelCase ): _a : str = TrunkConfig(**self.trunk ) def __lowercase ( self : List[Any] ): _a : List[str] = asdict(self ) _a : List[str] = self.trunk.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : int = 4_8 lowerCAmelCase : int = 1_0_2_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : int = 3_2 lowerCAmelCase : float = 0 lowerCAmelCase : float = 0 lowerCAmelCase : bool = False lowerCAmelCase : int = 4 lowerCAmelCase : Optional[int] = 1_2_8 lowerCAmelCase : "StructureModuleConfig" = None def __lowercase ( self : str ): if self.structure_module is None: _a : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,_UpperCAmelCase ): _a : List[str] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _a : Optional[int] = self.sequence_state_dim // self.sequence_head_width _a : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __lowercase ( self : Optional[int] ): _a : Optional[Any] = asdict(self ) _a : Optional[Any] = self.structure_module.to_dict() return output @dataclass class __magic_name__ : lowerCAmelCase : int = 3_8_4 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_6 lowerCAmelCase : int = 1_2_8 lowerCAmelCase : int = 1_2 lowerCAmelCase : int = 4 lowerCAmelCase : int = 8 lowerCAmelCase : float = 0.1 lowerCAmelCase : int = 8 lowerCAmelCase : int = 1 lowerCAmelCase : int = 2 lowerCAmelCase : int = 7 lowerCAmelCase : int = 1_0 lowerCAmelCase : float = 1e-8 lowerCAmelCase : float = 1e5 def __lowercase ( self : str ): return asdict(self ) def __lowerCamelCase ( ) -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
358
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging a= logging.get_logger(__name__) a= { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''align_text_model''' def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1E-1_2 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = vocab_size __UpperCamelCase : Tuple = hidden_size __UpperCamelCase : Union[str, Any] = num_hidden_layers __UpperCamelCase : List[Any] = num_attention_heads __UpperCamelCase : int = hidden_act __UpperCamelCase : Any = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : int = attention_probs_dropout_prob __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : int = type_vocab_size __UpperCamelCase : Dict = initializer_range __UpperCamelCase : str = layer_norm_eps __UpperCamelCase : Dict = position_embedding_type __UpperCamelCase : int = use_cache __UpperCamelCase : Dict = pad_token_id @classmethod def lowerCAmelCase ( cls , _lowerCamelCase , **_lowerCamelCase ): cls._set_token_in_kwargs(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : List[str] = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __UpperCamelCase : Tuple = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''align_vision_model''' def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 6_0_0 , _lowerCamelCase = 2.0 , _lowerCamelCase = 3.1 , _lowerCamelCase = 8 , _lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , _lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , _lowerCamelCase = [] , _lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCamelCase = 0.2_5 , _lowerCamelCase = "swish" , _lowerCamelCase = 2_5_6_0 , _lowerCamelCase = "mean" , _lowerCamelCase = 0.0_2 , _lowerCamelCase = 0.0_0_1 , _lowerCamelCase = 0.9_9 , _lowerCamelCase = 0.2 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) __UpperCamelCase : List[str] = num_channels __UpperCamelCase : List[Any] = image_size __UpperCamelCase : Optional[Any] = width_coefficient __UpperCamelCase : Optional[Any] = depth_coefficient __UpperCamelCase : Any = depth_divisor __UpperCamelCase : int = kernel_sizes __UpperCamelCase : str = in_channels __UpperCamelCase : Union[str, Any] = out_channels __UpperCamelCase : Any = depthwise_padding __UpperCamelCase : Tuple = strides __UpperCamelCase : Union[str, Any] = num_block_repeats __UpperCamelCase : Union[str, Any] = expand_ratios __UpperCamelCase : Optional[int] = squeeze_expansion_ratio __UpperCamelCase : List[Any] = hidden_act __UpperCamelCase : Tuple = hidden_dim __UpperCamelCase : Any = pooling_type __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : int = batch_norm_eps __UpperCamelCase : str = batch_norm_momentum __UpperCamelCase : str = drop_connect_rate __UpperCamelCase : List[str] = sum(_lowerCamelCase ) * 4 @classmethod def lowerCAmelCase ( cls , _lowerCamelCase , **_lowerCamelCase ): cls._set_token_in_kwargs(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : Tuple = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __UpperCamelCase : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''align''' SCREAMING_SNAKE_CASE__ = True def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=6_4_0 , _lowerCamelCase=1.0 , _lowerCamelCase=0.0_2 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) if text_config is None: __UpperCamelCase : int = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: __UpperCamelCase : List[str] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) __UpperCamelCase : Dict = AlignTextConfig(**_lowerCamelCase ) __UpperCamelCase : List[str] = AlignVisionConfig(**_lowerCamelCase ) __UpperCamelCase : str = projection_dim __UpperCamelCase : Optional[int] = temperature_init_value __UpperCamelCase : Any = initializer_range @classmethod def lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCamelCase ) def lowerCAmelCase ( self ): __UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) __UpperCamelCase : Union[str, Any] = self.text_config.to_dict() __UpperCamelCase : Optional[int] = self.vision_config.to_dict() __UpperCamelCase : str = self.__class__.model_type return output
287
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a= {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCAmelCase ) lowerCAmelCase = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) lowerCAmelCase = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowerCAmelCase = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCAmelCase = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase = "TransientGlobalSelfAttention" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): lowerCAmelCase = f'layers_{str(_lowerCAmelCase )}' # Self-Attention lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowerCAmelCase = flax_model.params["encoder"]["block"][str(_lowerCAmelCase )]["layer"] lowerCAmelCase = tax_attention_key lowerCAmelCase = tax_attention_out lowerCAmelCase = tax_attention_query lowerCAmelCase = tax_attention_value lowerCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase = tax_global_layer_norm if split_mlp_wi: lowerCAmelCase = tax_mlp_wi_a lowerCAmelCase = tax_mlp_wi_a else: lowerCAmelCase = tax_mlp_wi lowerCAmelCase = tax_mlp_wo lowerCAmelCase = tax_mlp_layer_norm lowerCAmelCase = flax_model_encoder_layer_block # Only for layer 0: lowerCAmelCase = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowerCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowerCAmelCase = tax_encoder_global_rel_embedding # Assigning lowerCAmelCase = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowerCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCAmelCase = f'layers_{str(_lowerCAmelCase )}' # Self-Attention lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowerCAmelCase = tax_enc_dec_attention_module["key"]["kernel"] lowerCAmelCase = tax_enc_dec_attention_module["out"]["kernel"] lowerCAmelCase = tax_enc_dec_attention_module["query"]["kernel"] lowerCAmelCase = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowerCAmelCase = flax_model.params["decoder"]["block"][str(_lowerCAmelCase )]["layer"] lowerCAmelCase = tax_attention_key lowerCAmelCase = tax_attention_out lowerCAmelCase = tax_attention_query lowerCAmelCase = tax_attention_value lowerCAmelCase = tax_pre_attention_layer_norm lowerCAmelCase = tax_enc_dec_attention_key lowerCAmelCase = tax_enc_dec_attention_out lowerCAmelCase = tax_enc_dec_attention_query lowerCAmelCase = tax_enc_dec_attention_value lowerCAmelCase = tax_cross_layer_norm if split_mlp_wi: lowerCAmelCase = tax_mlp_wi_a lowerCAmelCase = tax_mlp_wi_a else: lowerCAmelCase = tax_mlp_wi lowerCAmelCase = tax_mlp_wo lowerCAmelCase = txa_mlp_layer_norm lowerCAmelCase = flax_model_decoder_layer_block # Decoder Normalization lowerCAmelCase = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowerCAmelCase = txa_decoder_norm # Only for layer 0: lowerCAmelCase = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowerCAmelCase = tax_decoder_rel_embedding # Token Embeddings lowerCAmelCase = tax_model["target"]["token_embedder"]["embedding"] lowerCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCAmelCase = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCAmelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
433
import os def A_ ( ) -> Union[str, Any]: with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCamelCase : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCamelCase : str = 0 # right for i in range(20 ): for j in range(17 ): UpperCamelCase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCamelCase : List[Any] = temp # down for i in range(17 ): for j in range(20 ): UpperCamelCase : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCamelCase : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCamelCase : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCamelCase : Tuple = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCamelCase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCamelCase : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
629
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase: dict ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase : Dict = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCamelCase : Union[str, Any] = set() return any( node not in visited and depth_first_search(A__ , A__ , A__ , A__ ) for node in graph ) def lowercase_ ( _lowerCamelCase: dict , _lowerCamelCase: int , _lowerCamelCase: set , _lowerCamelCase: set ) -> str: '''simple docstring''' visited.add(A__ ) rec_stk.add(A__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(A__ , A__ , A__ , A__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(A__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
714
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( a__ ): def __init__( self : str , UpperCAmelCase : TransformeraDModel , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : KarrasDiffusionSchedulers , UpperCAmelCase : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=UpperCAmelCase , vae=UpperCAmelCase , scheduler=UpperCAmelCase ) # create a imagenet -> id dictionary for easier use __lowerCamelCase : Optional[Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __lowerCamelCase : List[str] = int(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = dict(sorted(self.labels.items() ) ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, List[str]] ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : List[str] = list(UpperCAmelCase ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : float = 4.0 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): __lowerCamelCase : int = len(UpperCAmelCase ) __lowerCamelCase : Any = self.transformer.config.sample_size __lowerCamelCase : Dict = self.transformer.config.in_channels __lowerCamelCase : Any = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) __lowerCamelCase : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __lowerCamelCase : Optional[int] = torch.tensor(UpperCAmelCase , device=self.device ).reshape(-1 ) __lowerCamelCase : Optional[int] = torch.tensor([1000] * batch_size , device=self.device ) __lowerCamelCase : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __lowerCamelCase : str = latent_model_input[: len(UpperCAmelCase ) // 2] __lowerCamelCase : Optional[Any] = torch.cat([half, half] , dim=0 ) __lowerCamelCase : Dict = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = t if not torch.is_tensor(UpperCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __lowerCamelCase : List[str] = latent_model_input.device.type == "mps" if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : List[Any] = torch.floataa if is_mps else torch.floataa else: __lowerCamelCase : Optional[Any] = torch.intaa if is_mps else torch.intaa __lowerCamelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=UpperCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __lowerCamelCase : Union[str, Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __lowerCamelCase : Union[str, Any] = self.transformer( UpperCAmelCase , timestep=UpperCAmelCase , class_labels=UpperCAmelCase ).sample # perform guidance if guidance_scale > 1: __lowerCamelCase , __lowerCamelCase : str = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.split(UpperCAmelCase , len(UpperCAmelCase ) // 2 , dim=0 ) __lowerCamelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __lowerCamelCase : Union[str, Any] = torch.cat([half_eps, half_eps] , dim=0 ) __lowerCamelCase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __lowerCamelCase , __lowerCamelCase : int = torch.split(UpperCAmelCase , UpperCAmelCase , dim=1 ) else: __lowerCamelCase : int = noise_pred # compute previous image: x_t -> x_t-1 __lowerCamelCase : Optional[Any] = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample if guidance_scale > 1: __lowerCamelCase , __lowerCamelCase : List[str] = latent_model_input.chunk(2 , dim=0 ) else: __lowerCamelCase : Optional[Any] = latent_model_input __lowerCamelCase : Tuple = 1 / self.vae.config.scaling_factor * latents __lowerCamelCase : Any = self.vae.decode(UpperCAmelCase ).sample __lowerCamelCase : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : Optional[int] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase : Dict = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCAmelCase )
366
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowerCAmelCase = True except ImportError: _lowerCAmelCase = False _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( __snake_case ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( __snake_case ): @staticmethod def UpperCamelCase_ ( _A : str ): _UpperCamelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowerCamelCase__ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowerCamelCase__ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[Any] , _A : Optional[int] , _A : Any , _A : int=None , *_A : List[str] ): _UpperCamelCase = testing _UpperCamelCase = testing_file _UpperCamelCase = path def UpperCamelCase_ ( self : Optional[Any] ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _UpperCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowerCamelCase__ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) _UpperCamelCase = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _UpperCamelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: _UpperCamelCase = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) _UpperCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: _UpperCamelCase = json.load(lowerCamelCase__ ) _UpperCamelCase = configuration['''lowercase_modelname'''] _UpperCamelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F"""{directory}/configuration.json""" ) _UpperCamelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax _UpperCamelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax _UpperCamelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax _UpperCamelCase = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( F"""{directory}/__init__.py""" , F"""{model_dir}/__init__.py""" , ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""" , F"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(_A : Optional[int] ): with open(lowerCamelCase__ , '''r''' ) as f: _UpperCamelCase = f.readlines() with open(lowerCamelCase__ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""" , F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_A : Dict , _A : str , _A : int ): # Create temp file _UpperCamelCase , _UpperCamelCase = mkstemp() _UpperCamelCase = False with fdopen(lowerCamelCase__ , '''w''' ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: _UpperCamelCase = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(_A : List[str] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_A : Any ): with open(lowerCamelCase__ ) as datafile: _UpperCamelCase = [] _UpperCamelCase = False _UpperCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _UpperCamelCase = line.split('''\"''' )[1] _UpperCamelCase = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: _UpperCamelCase = line.split('''\"''' )[1] _UpperCamelCase = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCamelCase = [] elif "# Replace with" in line and "##" not in line: _UpperCamelCase = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowerCamelCase__ )
10
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _SCREAMING_SNAKE_CASE ( UpperCamelCase : str = "laptop" ): A__ = F"""https://www.amazon.in/laptop/s?k={product}""" A__ = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } A__ = BeautifulSoup(requests.get(UpperCamelCase , headers=UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A__ = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: A__ = item.ha.text A__ = """https://www.amazon.in/""" + item.ha.a["""href"""] A__ = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: A__ = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: A__ = """Not available""" try: A__ = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: A__ = """""" try: A__ = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: A__ = float("""nan""" ) except AttributeError: pass A__ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ = """ """ A__ = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase__ = "headphones" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
574
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _snake_case : def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: torch.manual_seed(0) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: torch.manual_seed(0) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**a) pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = inputs['prompt'] SCREAMING_SNAKE_CASE = inputs['generator'] SCREAMING_SNAKE_CASE = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE = inputs['output_type'] if "image" in inputs: SCREAMING_SNAKE_CASE = inputs['image'] else: SCREAMING_SNAKE_CASE = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE = inputs['mask_image'] else: SCREAMING_SNAKE_CASE = None if "original_image" in inputs: SCREAMING_SNAKE_CASE = inputs['original_image'] else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipe.encode_prompt(a) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a , a , a) SCREAMING_SNAKE_CASE = pipe(**a)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(a) pipe_loaded.to(a) pipe_loaded.set_progress_bar_config(disable=a) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a , a) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = inputs['generator'] SCREAMING_SNAKE_CASE = inputs['num_inference_steps'] SCREAMING_SNAKE_CASE = inputs['output_type'] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image SCREAMING_SNAKE_CASE = pipe_loaded(**a)[0] SCREAMING_SNAKE_CASE = np.abs(to_np(a) - to_np(a)).max() self.assertLess(a , 1E-4) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**a) pipe.to(a) pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = pipe(**a)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(a) pipe_loaded.to(a) pipe_loaded.set_progress_bar_config(disable=a) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) SCREAMING_SNAKE_CASE = pipe_loaded(**a)[0] SCREAMING_SNAKE_CASE = np.abs(to_np(a) - to_np(a)).max() self.assertLess(a , 1E-4)
444
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ : Optional[int] = logging.get_logger(__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = b.T SCREAMING_SNAKE_CASE = np.sum(np.square(_UpperCAmelCase) , axis=1) SCREAMING_SNAKE_CASE = np.sum(np.square(_UpperCAmelCase) , axis=0) SCREAMING_SNAKE_CASE = np.matmul(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = x.reshape(-1 , 3) SCREAMING_SNAKE_CASE = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase) return np.argmin(_UpperCAmelCase , axis=1) class _snake_case ( A__ ): _lowercase : str = ['''pixel_values'''] def __init__( self , a = None , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = True , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = size if size is not None else {'height': 256, 'width': 256} SCREAMING_SNAKE_CASE = get_size_dict(a) SCREAMING_SNAKE_CASE = np.array(a) if clusters is not None else None SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = do_color_quantize def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BILINEAR , a = None , **a , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(a) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''') return resize( a , size=(size['height'], size['width']) , resample=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , ) -> np.ndarray: SCREAMING_SNAKE_CASE = rescale(image=a , scale=1 / 1_27.5 , data_format=a) SCREAMING_SNAKE_CASE = image - 1 return image def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(a) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE = np.array(a) SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=a) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE = np.array(a) SCREAMING_SNAKE_CASE = color_quantize(a , a).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE = images.shape[0] SCREAMING_SNAKE_CASE = images.reshape(a , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE = list(a) else: SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = {'input_ids': images} return BatchFeature(data=a , tensor_type=a)
444
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] __A : Union[str, Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = (IPNDMScheduler,) snake_case__ : List[str] = (('num_inference_steps', 50),) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = {"""num_train_timesteps""": 1000} config.update(**__lowerCAmelCase ) return config def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[:] if time_step is None: lowercase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[:] lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self ): """simple docstring""" pass def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[:] if time_step is None: lowercase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[:] lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A__ ( self ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , """set_timesteps""" ): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowercase = dummy_past_residuals[:] lowercase = scheduler.timesteps[5] lowercase = scheduler.timesteps[6] lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase , time_step=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.full_loop() lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
197
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' if num <= 0: lowercase = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCAmelCase__ ) lowercase = [True] * (num + 1) lowercase = [] lowercase = 2 lowercase = int(math.sqrt(lowerCAmelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase__ ): if sieve[i] is True: lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
197
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Union[str, Any]=18 , lowerCAmelCase__ : List[str]=30 , lowerCAmelCase__ : Optional[int]=400 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=None , ): SCREAMING_SNAKE_CASE_: Optional[int] = size if size is not None else {"shortest_edge": 20} SCREAMING_SNAKE_CASE_: Any = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: str = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = image_size SCREAMING_SNAKE_CASE_: Dict = min_resolution SCREAMING_SNAKE_CASE_: str = max_resolution SCREAMING_SNAKE_CASE_: List[Any] = do_resize SCREAMING_SNAKE_CASE_: List[Any] = size SCREAMING_SNAKE_CASE_: Optional[Any] = do_center_crop SCREAMING_SNAKE_CASE_: Union[str, Any] = crop_size def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = MobileNetVaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = MobileNetVaImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : int): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize")) self.assertTrue(hasattr(lowerCAmelCase__ , "size")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop")) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size")) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18}) SCREAMING_SNAKE_CASE_: str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_: Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_: Tuple = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : int): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_: Union[str, Any] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : int): # Initialize image_processing SCREAMING_SNAKE_CASE_: int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_: int = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
671
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] lowerCAmelCase : str = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] lowerCAmelCase : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase : int = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase : List[str] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase : Any = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase : List[Any] = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase : Any = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase : str = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase : List[Any] = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase : str = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase : Any = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase : Tuple = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase : Tuple = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase : Tuple = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase : Any = """mid_block.attentions.0.""" lowerCAmelCase : Dict = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase : int = f'''mid_block.resnets.{j}.''' lowerCAmelCase : Union[str, Any] = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def A_ ( _UpperCAmelCase ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. SCREAMING_SNAKE_CASE_: Dict = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: SCREAMING_SNAKE_CASE_: Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: SCREAMING_SNAKE_CASE_: Any = v.replace(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: SCREAMING_SNAKE_CASE_: Optional[Any] = v.replace(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = v SCREAMING_SNAKE_CASE_: Optional[Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase : Union[str, Any] = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase : Optional[Any] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase : Dict = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase : List[str] = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase : List[str] = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase : int = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase : Any = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase : int = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase : str = f'''mid_block.resnets.{i}.''' lowerCAmelCase : Tuple = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def A_ ( _UpperCAmelCase ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: SCREAMING_SNAKE_CASE_: Union[str, Any] = v.replace(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: SCREAMING_SNAKE_CASE_: Any = v.replace(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = v SCREAMING_SNAKE_CASE_: Tuple = {v: vae_state_dict[k] for k, v in mapping.items()} SCREAMING_SNAKE_CASE_: Union[str, Any] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) SCREAMING_SNAKE_CASE_: List[str] = reshape_weight_for_sd(_UpperCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] lowerCAmelCase : Optional[Any] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase : Optional[int] = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase : str = {"""q""": 0, """k""": 1, """v""": 2} def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: List[str] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): SCREAMING_SNAKE_CASE_: str = k[: -len(".q_proj.weight" )] SCREAMING_SNAKE_CASE_: Dict = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: SCREAMING_SNAKE_CASE_: Tuple = [None, None, None] SCREAMING_SNAKE_CASE_: Union[str, Any] = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): SCREAMING_SNAKE_CASE_: Union[str, Any] = k[: -len(".q_proj.bias" )] SCREAMING_SNAKE_CASE_: Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: SCREAMING_SNAKE_CASE_: List[Any] = [None, None, None] SCREAMING_SNAKE_CASE_: List[str] = v continue SCREAMING_SNAKE_CASE_: int = textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) SCREAMING_SNAKE_CASE_: str = textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = torch.cat(_UpperCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) SCREAMING_SNAKE_CASE_: Optional[int] = textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = torch.cat(_UpperCAmelCase ) return new_state_dict def A_ ( _UpperCAmelCase ): return text_enc_dict if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) lowerCAmelCase : Optional[Any] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase : int = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase : List[str] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") lowerCAmelCase : Optional[int] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase : Optional[int] = load_file(unet_path, device="""cpu""") else: lowerCAmelCase : Union[str, Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") lowerCAmelCase : Optional[Any] = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): lowerCAmelCase : str = load_file(vae_path, device="""cpu""") else: lowerCAmelCase : List[Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") lowerCAmelCase : Optional[Any] = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): lowerCAmelCase : List[Any] = load_file(text_enc_path, device="""cpu""") else: lowerCAmelCase : List[Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") lowerCAmelCase : Optional[Any] = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model lowerCAmelCase : int = convert_unet_state_dict(unet_state_dict) lowerCAmelCase : Optional[int] = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase : Union[str, Any] = convert_vae_state_dict(vae_state_dict) lowerCAmelCase : Optional[int] = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase : Any = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase : Any = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} lowerCAmelCase : str = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase : Dict = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase : Any = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase : Optional[Any] = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase : str = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase : int = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
671
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _A : int = TypeVar('T') class __SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : Tuple , A : list[T] , A : Callable[[T, T], T] ) ->int: lowerCamelCase__ : List[Any] = None lowerCamelCase__ : List[Any] = len(__SCREAMING_SNAKE_CASE ) lowerCamelCase__ : str = [any_type for _ in range(self.N )] + arr lowerCamelCase__ : Dict = fnc self.build() def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: for p in range(self.N - 1 , 0 , -1 ): lowerCamelCase__ : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __lowerCamelCase ( self : List[Any] , A : int , A : T ) ->List[Any]: p += self.N lowerCamelCase__ : Any = v while p > 1: lowerCamelCase__ : Optional[int] = p // 2 lowerCamelCase__ : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __lowerCamelCase ( self : List[Any] , A : int , A : int ) ->Optional[int]: # noqa: E741 lowerCamelCase__ , lowerCamelCase__ : List[Any] = l + self.N, r + self.N lowerCamelCase__ : Union[str, Any] = None while l <= r: if l % 2 == 1: lowerCamelCase__ : Union[str, Any] = self.st[l] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[l] ) if r % 2 == 0: lowerCamelCase__ : Dict = self.st[r] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[r] ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _A : int = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _A : Tuple = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _A : Optional[int] = SegmentTree(test_array, min) _A : Union[str, Any] = SegmentTree(test_array, max) _A : str = SegmentTree(test_array, lambda a, b: a + b) def _a ( ) -> List[Any]: """simple docstring""" for i in range(len(_UpperCAmelCase ) ): for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ : str = reduce(_UpperCAmelCase , test_array[i : j + 1] ) lowerCamelCase__ : int = reduce(_UpperCAmelCase , test_array[i : j + 1] ) lowerCamelCase__ : int = reduce(lambda UpperCAmelCase , UpperCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert max_range == max_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert sum_range == sum_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): _A : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
716
import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->int: lowerCamelCase__ : Optional[Any] = (0, 0) lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Union[str, Any] = 0 def __eq__( self : Optional[int] , A : Optional[Any] ) ->List[Any]: return self.position == cell.position def __lowerCamelCase ( self : List[str] ) ->int: print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : str , A : List[str]=(5, 5) ) ->Optional[int]: lowerCamelCase__ : int = np.zeros(A ) lowerCamelCase__ : Optional[int] = world_size[0] lowerCamelCase__ : Optional[int] = world_size[1] def __lowerCamelCase ( self : List[str] ) ->List[str]: print(self.w ) def __lowerCamelCase ( self : Union[str, Any] , A : str ) ->Optional[Any]: lowerCamelCase__ : Any = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCamelCase__ : List[Any] = cell.position[0] lowerCamelCase__ : Union[str, Any] = cell.position[1] lowerCamelCase__ : int = [] for n in neughbour_cord: lowerCamelCase__ : Tuple = current_x + n[0] lowerCamelCase__ : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCamelCase__ : List[Any] = Cell() lowerCamelCase__ : Tuple = (x, y) lowerCamelCase__ : List[Any] = cell neighbours.append(A ) return neighbours def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[str] = [] _open.append(UpperCAmelCase ) while _open: lowerCamelCase__ : Any = np.argmin([n.f for n in _open] ) lowerCamelCase__ : List[str] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase ): for c in _closed: if c == n: continue lowerCamelCase__ : Any = current.g + 1 lowerCamelCase__ , lowerCamelCase__ : str = n.position lowerCamelCase__ , lowerCamelCase__ : Optional[int] = goal.position lowerCamelCase__ : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCamelCase__ : List[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = [] while current.parent is not None: path.append(current.position ) lowerCamelCase__ : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _A : Dict = Gridworld() # Start position and goal _A : Any = Cell() _A : int = (0, 0) _A : Optional[int] = Cell() _A : Tuple = (4, 4) print(F'''path from {start.position} to {goal.position}''') _A : int = astar(world, start, goal) # Just for visual reasons. for i in s: _A : List[Any] = 1 print(world.w)
130
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 1_2_8 , snake_case_ = 2_5_6 , snake_case_ = 2_0_0_0.0 , snake_case_ = 7_6_8 , snake_case_ = 1_2 , snake_case_ = 1_2 , snake_case_ = 6_4 , snake_case_ = 2_0_4_8 , snake_case_ = 0.1 , ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowercase = nn.Sequential( nn.Linear(a_ , d_model * 4 , bias=a_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a_ ) , nn.SiLU() , ) __lowercase = nn.Embedding(a_ , a_ ) __lowercase = False __lowercase = nn.Linear(a_ , a_ , bias=a_ ) __lowercase = nn.Dropout(p=a_ ) __lowercase = nn.ModuleList() for lyr_num in range(a_ ): # FiLM conditional T5 decoder __lowercase = DecoderLayer(d_model=a_ , d_kv=a_ , num_heads=a_ , d_ff=a_ , dropout_rate=a_ ) self.decoders.append(a_ ) __lowercase = TaLayerNorm(a_ ) __lowercase = nn.Dropout(p=a_ ) __lowercase = nn.Linear(a_ , a_ , bias=a_ ) def A ( self , snake_case_ , snake_case_ ) -> List[str]: '''simple docstring''' __lowercase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: '''simple docstring''' __lowercase , __lowercase , __lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowercase = self.conditioning_emb(a_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowercase = torch.broadcast_to( torch.arange(a_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowercase = self.position_encoding(a_ ) __lowercase = self.continuous_inputs_projection(a_ ) inputs += position_encodings __lowercase = self.dropout(a_ ) # decoder: No padding present. __lowercase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowercase = [(x, self.encoder_decoder_mask(a_ , a_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowercase = lyr( a_ , conditioning_emb=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , )[0] __lowercase = self.decoder_norm(a_ ) __lowercase = self.post_dropout(a_ ) __lowercase = self.spec_out(a_ ) return spec_out class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=1e-6 ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=a_ , d_ff=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ ) ) def A ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> int: '''simple docstring''' __lowercase = self.layer[0]( a_ , conditioning_emb=a_ , attention_mask=a_ , ) if encoder_hidden_states is not None: __lowercase = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) __lowercase = self.layer[1]( a_ , key_value_states=a_ , attention_mask=a_ , ) # Apply Film Conditional Feed Forward layer __lowercase = self.layer[-1](a_ , a_ ) return (hidden_states,) class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowercase = TaLayerNorm(a_ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ ) __lowercase = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ ) __lowercase = nn.Dropout(a_ ) def A ( self , snake_case_ , snake_case_=None , snake_case_=None , ) -> Optional[Any]: '''simple docstring''' __lowercase = self.layer_norm(a_ ) if conditioning_emb is not None: __lowercase = self.FiLMLayer(a_ , a_ ) # Self-attention block __lowercase = self.attention(a_ ) __lowercase = hidden_states + self.dropout(a_ ) return hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: '''simple docstring''' super().__init__() __lowercase = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ ) __lowercase = TaLayerNorm(a_ , eps=a_ ) __lowercase = nn.Dropout(a_ ) def A ( self , snake_case_ , snake_case_=None , snake_case_=None , ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.layer_norm(a_ ) __lowercase = self.attention( a_ , encoder_hidden_states=a_ , attention_mask=attention_mask.squeeze(1 ) , ) __lowercase = hidden_states + self.dropout(a_ ) return layer_output class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: '''simple docstring''' super().__init__() __lowercase = TaDenseGatedActDense(d_model=a_ , d_ff=a_ , dropout_rate=a_ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ ) __lowercase = TaLayerNorm(a_ , eps=a_ ) __lowercase = nn.Dropout(a_ ) def A ( self , snake_case_ , snake_case_=None ) -> str: '''simple docstring''' __lowercase = self.layer_norm(a_ ) if conditioning_emb is not None: __lowercase = self.film(a_ , a_ ) __lowercase = self.DenseReluDense(a_ ) __lowercase = hidden_states + self.dropout(a_ ) return hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: '''simple docstring''' super().__init__() __lowercase = nn.Linear(a_ , a_ , bias=a_ ) __lowercase = nn.Linear(a_ , a_ , bias=a_ ) __lowercase = nn.Linear(a_ , a_ , bias=a_ ) __lowercase = nn.Dropout(a_ ) __lowercase = NewGELUActivation() def A ( self , snake_case_ ) -> Optional[int]: '''simple docstring''' __lowercase = self.act(self.wi_a(a_ ) ) __lowercase = self.wi_a(a_ ) __lowercase = hidden_gelu * hidden_linear __lowercase = self.dropout(a_ ) __lowercase = self.wo(a_ ) return hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=1e-6 ) -> str: '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.ones(a_ ) ) __lowercase = eps def A ( self , snake_case_ ) -> Any: '''simple docstring''' __lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a_ ) __lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def A ( self , snake_case_ ) -> List[Any]: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(a_ , 3.0 )) )) class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ) -> Dict: '''simple docstring''' super().__init__() __lowercase = nn.Linear(a_ , out_features * 2 , bias=a_ ) def A ( self , snake_case_ , snake_case_ ) -> str: '''simple docstring''' __lowercase = self.scale_bias(a_ ) __lowercase , __lowercase = torch.chunk(a_ , 2 , -1 ) __lowercase = x * (1 + scale) + shift return x
639
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> list: __snake_case = len(_UpperCAmelCase ) __snake_case = [] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): __snake_case = True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: __snake_case = False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
69
0
from string import ascii_uppercase snake_case_ : Union[str, Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> str: """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) lowerCamelCase_ : Union[str, Any] = "" lowerCamelCase_ : Dict = 0 lowerCamelCase_ : Optional[Any] = 0 while div != 1: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = divmod(__UpperCAmelCase , __UpperCAmelCase ) if base >= 11 and 9 < mod < 36: lowerCamelCase_ : int = ALPHABET_VALUES[str(__UpperCAmelCase )] else: lowerCamelCase_ : int = str(__UpperCAmelCase ) new_value += actual_value lowerCamelCase_ : Union[str, Any] = num // base lowerCamelCase_ : Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
253
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Dict = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } snake_case_ : Union[str, Any] = { "unc-nlp/lxmert-base-uncased": 512, } snake_case_ : Any = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_INIT_CONFIGURATION lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = LxmertTokenizer def __init__( self : int , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=None , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]="[UNK]" , __magic_name__ : str="[SEP]" , __magic_name__ : int="[PAD]" , __magic_name__ : Tuple="[CLS]" , __magic_name__ : Any="[MASK]" , __magic_name__ : str=True , __magic_name__ : int=None , **__magic_name__ : Any , ) -> str: super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) lowerCamelCase_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __magic_name__ ) != do_lower_case or normalizer_state.get("strip_accents" , __magic_name__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __magic_name__ ) != tokenize_chinese_chars ): lowerCamelCase_ : int = getattr(__magic_name__ , normalizer_state.pop("type" ) ) lowerCamelCase_ : Optional[int] = do_lower_case lowerCamelCase_ : int = strip_accents lowerCamelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCamelCase_ : Optional[Any] = normalizer_class(**__magic_name__ ) lowerCamelCase_ : int = do_lower_case def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str , __magic_name__ : Dict=None ) -> Dict: lowerCamelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: lowerCamelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
253
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase__ = { "facebook/m2m100_418M": 1024, } # fmt: off lowercase__ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__(self , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="<unk>" , _lowercase="m2m100" , _lowercase = None , _lowercase=8 , **_lowercase , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs __a : List[str] = language_codes __a : str = FAIRSEQ_LANGUAGE_CODES[language_codes] __a : Optional[int] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} __a : Optional[int] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) __a : Optional[Any] = vocab_file __a : List[Any] = load_json(_lowercase ) __a : List[str] = {v: k for k, v in self.encoder.items()} __a : List[Any] = spm_file __a : int = load_spm(_lowercase , self.sp_model_kwargs ) __a : Dict = len(self.encoder ) __a : Optional[int] = { self.get_lang_token(_lowercase ): self.encoder_size + i for i, lang_code in enumerate(_lowercase ) } __a : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase )} __a : Tuple = {v: k for k, v in self.lang_token_to_id.items()} __a : List[str] = src_lang if src_lang is not None else """en""" __a : List[Any] = tgt_lang __a : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __a : Optional[Any] = num_madeup_words @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.sp_model.encode(_lowercase , out_type=_lowercase ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token] ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Any = [] __a : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token __a : Optional[Any] = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) __a : str = [1] * len(self.prefix_tokens ) __a : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' __a : Optional[Any] = self.__dict__.copy() __a : List[str] = None return state def __setstate__(self , _lowercase ): '''simple docstring''' __a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a : List[str] = {} __a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' __a : Tuple = Path(_lowercase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) __a : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __a : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowercase ) elif not os.path.isfile(self.spm_file ): with open(_lowercase , """wb""" ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (str(_lowercase ), str(_lowercase )) def lowerCAmelCase__(self , _lowercase , _lowercase = "en" , _lowercase = None , _lowercase = "ro" , **_lowercase , ): '''simple docstring''' __a : Dict = src_lang __a : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __a : Dict = src_lang __a : List[str] = self(_lowercase , add_special_tokens=_lowercase , **_lowercase ) __a : Union[str, Any] = self.get_lang_id(_lowercase ) __a : Tuple = tgt_lang_id return inputs def lowerCAmelCase__(self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__(self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : str = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Optional[Any] = [self.cur_lang_id] __a : List[str] = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Dict = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Tuple = [self.cur_lang_id] __a : Dict = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.lang_code_to_token[lang] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Union[str, Any] = self.get_lang_token(_lowercase ) return self.lang_token_to_id[lang_token] def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ): __a : Optional[int] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def __magic_name__ ( _lowerCamelCase : str ): with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
581
0
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowerCamelCase (__lowerCamelCase : List[Any] ) -> Union[str, Any]: return 1 / (1 + np.exp(-z )) def _lowerCamelCase (__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _lowerCamelCase (__lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> Optional[int]: a__ = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _lowerCamelCase (__lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=7_0000 ) -> List[str]: a__ = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): a__ = np.dot(__lowerCamelCase , __lowerCamelCase ) a__ = sigmoid_function(__lowerCamelCase ) a__ = np.dot(x.T , h - y ) / y.size a__ = theta - alpha * gradient # updating the weights a__ = np.dot(__lowerCamelCase , __lowerCamelCase ) a__ = sigmoid_function(__lowerCamelCase ) a__ = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowerCAmelCase_ : int = datasets.load_iris() lowerCAmelCase_ : Optional[int] = iris.data[:, :2] lowerCAmelCase_ : Union[str, Any] = (iris.target != 0) * 1 lowerCAmelCase_ : Tuple = 0.1 lowerCAmelCase_ : int = logistic_reg(alpha, x, y, max_iterations=70000) print("theta: ", theta) # printing the theta i.e our weights vector def _lowerCamelCase (__lowerCamelCase : List[Any] ) -> Tuple: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((lowerCAmelCase_) , (lowerCAmelCase_)) : List[Any] = (x[:, 0].min(), x[:, 0].max()) ((lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = (x[:, 1].min(), x[:, 1].max()) ((lowerCAmelCase_) , (lowerCAmelCase_)) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowerCAmelCase_ : List[Any] = np.c_[xxa.ravel(), xxa.ravel()] lowerCAmelCase_ : str = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
289
'''simple docstring''' class UpperCamelCase__ : def __init__( self : str , lowerCamelCase : int , lowerCamelCase : List[str]=None , lowerCamelCase : int=None ): '''simple docstring''' a__ = data a__ = previous a__ = next_node def __str__( self : List[Any] ): '''simple docstring''' return F'''{self.data}''' def __a ( self : List[Any] ): '''simple docstring''' return self.data def __a ( self : Tuple ): '''simple docstring''' return self.next def __a ( self : Union[str, Any] ): '''simple docstring''' return self.previous class UpperCamelCase__ : def __init__( self : int , lowerCamelCase : Tuple ): '''simple docstring''' a__ = head def __iter__( self : Any ): '''simple docstring''' return self def __a ( self : List[Any] ): '''simple docstring''' if not self.current: raise StopIteration else: a__ = self.current.get_data() a__ = self.current.get_next() return value class UpperCamelCase__ : def __init__( self : Tuple ): '''simple docstring''' a__ = None # First node in list a__ = None # Last node in list def __str__( self : Any ): '''simple docstring''' a__ = self.head a__ = [] while current is not None: nodes.append(current.get_data() ) a__ = current.get_next() return " ".join(str(lowerCamelCase ) for node in nodes ) def __contains__( self : Optional[int] , lowerCamelCase : int ): '''simple docstring''' a__ = self.head while current: if current.get_data() == value: return True a__ = current.get_next() return False def __iter__( self : int ): '''simple docstring''' return LinkedListIterator(self.head ) def __a ( self : str ): '''simple docstring''' if self.head: return self.head.get_data() return None def __a ( self : Union[str, Any] ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def __a ( self : List[Any] , lowerCamelCase : Node ): '''simple docstring''' if self.head is None: a__ = node a__ = node else: self.insert_before_node(self.head , lowerCamelCase ) def __a ( self : List[str] , lowerCamelCase : Node ): '''simple docstring''' if self.head is None: self.set_head(lowerCamelCase ) else: self.insert_after_node(self.tail , lowerCamelCase ) def __a ( self : List[str] , lowerCamelCase : int ): '''simple docstring''' a__ = Node(lowerCamelCase ) if self.head is None: self.set_head(lowerCamelCase ) else: self.set_tail(lowerCamelCase ) def __a ( self : Any , lowerCamelCase : Node , lowerCamelCase : Node ): '''simple docstring''' a__ = node a__ = node.previous if node.get_previous() is None: a__ = node_to_insert else: a__ = node_to_insert a__ = node_to_insert def __a ( self : Tuple , lowerCamelCase : Node , lowerCamelCase : Node ): '''simple docstring''' a__ = node a__ = node.next if node.get_next() is None: a__ = node_to_insert else: a__ = node_to_insert a__ = node_to_insert def __a ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' a__ = 1 a__ = Node(lowerCamelCase ) a__ = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase , lowerCamelCase ) return current_position += 1 a__ = node.next self.insert_after_node(self.tail , lowerCamelCase ) def __a ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' a__ = self.head while node: if node.get_data() == item: return node a__ = node.get_next() raise Exception("Node not found" ) def __a ( self : List[Any] , lowerCamelCase : List[str] ): '''simple docstring''' if (node := self.get_node(lowerCamelCase )) is not None: if node == self.head: a__ = self.head.get_next() if node == self.tail: a__ = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase ) @staticmethod def __a ( lowerCamelCase : Node ): '''simple docstring''' if node.get_next(): a__ = node.previous if node.get_previous(): a__ = node.next a__ = None a__ = None def __a ( self : List[str] ): '''simple docstring''' return self.head is None def _lowerCamelCase () -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
289
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( A__ ): def __init__( self , a__ , a__=1_3 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=True , a__=False , a__=False , a__=False , a__=2 , a__=9_9 , a__=0 , a__=3_2 , a__=5 , a__=4 , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=1_2 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__="last" , a__=None , a__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_lengths A__ = use_token_type_ids A__ = use_labels A__ = gelu_activation A__ = sinusoidal_embeddings A__ = causal A__ = asm A__ = n_langs A__ = vocab_size A__ = n_special A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = summary_type A__ = use_proj A__ = scope def snake_case_ ( self): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_input_lengths: A__ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , 2).float() A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case_ ( self): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = FlaubertModel(config=a__) model.to(a__) model.eval() A__ = model(a__ , lengths=a__ , langs=a__) A__ = model(a__ , langs=a__) A__ = model(a__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = FlaubertWithLMHeadModel(a__) model.to(a__) model.eval() A__ = model(a__ , token_type_ids=a__ , labels=a__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = FlaubertForQuestionAnsweringSimple(a__) model.to(a__) model.eval() A__ = model(a__) A__ = model(a__ , start_positions=a__ , end_positions=a__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = FlaubertForQuestionAnswering(a__) model.to(a__) model.eval() A__ = model(a__) A__ = model( a__ , start_positions=a__ , end_positions=a__ , cls_index=a__ , is_impossible=a__ , p_mask=a__ , ) A__ = model( a__ , start_positions=a__ , end_positions=a__ , cls_index=a__ , is_impossible=a__ , ) ((A__) , ) = result_with_labels.to_tuple() A__ = model(a__ , start_positions=a__ , end_positions=a__) ((A__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = FlaubertForSequenceClassification(a__) model.to(a__) model.eval() A__ = model(a__) A__ = model(a__ , labels=a__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = self.num_labels A__ = FlaubertForTokenClassification(a__) model.to(a__) model.eval() A__ = model(a__ , attention_mask=a__ , labels=a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): A__ = self.num_choices A__ = FlaubertForMultipleChoice(config=a__) model.to(a__) model.eval() A__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A__ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A__ = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): UpperCamelCase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case_ ( self , a__ , a__ , a__=False): A__ = super()._prepare_for_class(a__ , a__ , return_labels=a__) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__) return inputs_dict def snake_case_ ( self): A__ = FlaubertModelTester(self) A__ = ConfigTester(self , config_class=a__ , emb_dim=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a__) def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a__) @slow def snake_case_ ( self): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = FlaubertModel.from_pretrained(a__) self.assertIsNotNone(a__) @slow @require_torch_gpu def snake_case_ ( self): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return A__ = True A__ = model_class(config=a__) A__ = self._prepare_for_class(a__ , a__) A__ = torch.jit.trace( a__ , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a__ , os.path.join(a__ , '''traced_model.pt''')) A__ = torch.jit.load(os.path.join(a__ , '''traced_model.pt''') , map_location=a__) loaded(inputs_dict['''input_ids'''].to(a__) , inputs_dict['''attention_mask'''].to(a__)) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def snake_case_ ( self): A__ = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''') A__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) with torch.no_grad(): A__ = model(a__)[0] A__ = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , a__) A__ = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4))
632
from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase_ : dict , UpperCamelCase_ : str )-> set[str]: A__ , A__ = set(UpperCamelCase_ ), [start] while stack: A__ = stack.pop() explored.add(UpperCamelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase_ ) return explored _lowercase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
632
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __UpperCAmelCase (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: str , UpperCAmelCase_: Union[str, Any]=None , **UpperCAmelCase_: Dict ): '''simple docstring''' super().__init__(features=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' import torch if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and column: if all( isinstance(UpperCAmelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase_ ) return column def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[int] ): '''simple docstring''' import torch if isinstance(UpperCAmelCase_ , (str, bytes, type(UpperCAmelCase_ )) ): return value elif isinstance(UpperCAmelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _SCREAMING_SNAKE_CASE = {} if isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _SCREAMING_SNAKE_CASE = {"""dtype""": torch.intaa} elif isinstance(UpperCAmelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _SCREAMING_SNAKE_CASE = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase_ , PIL.Image.Image ): _SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase_ ) return torch.tensor(UpperCAmelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase_ , """__array__""" ) and not isinstance(UpperCAmelCase_ , torch.Tensor ): _SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase_ , map_list=UpperCAmelCase_ ) def UpperCamelCase ( self: str , UpperCAmelCase_: pa.Table ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(UpperCAmelCase_ ) return self.recursive_tensorize(UpperCAmelCase_ ) def UpperCamelCase ( self: Any , UpperCAmelCase_: pa.Table ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(UpperCAmelCase_ , pa_table.column_names[0] ) _SCREAMING_SNAKE_CASE = self.recursive_tensorize(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self._consolidate(UpperCAmelCase_ ) return column def UpperCamelCase ( self: str , UpperCAmelCase_: pa.Table ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.recursive_tensorize(UpperCAmelCase_ ) for column_name in batch: _SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
569
UpperCamelCase = 256 # Modulus to hash a string UpperCamelCase = 1_000_003 def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) if p_len > t_len: return False _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _SCREAMING_SNAKE_CASE = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _SCREAMING_SNAKE_CASE = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _SCREAMING_SNAKE_CASE = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = """abc1abc12""" _SCREAMING_SNAKE_CASE = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _SCREAMING_SNAKE_CASE = """alskfjaldsk23adsfabcabc""" assert rabin_karp(snake_case__ ,snake_case__ ) and not rabin_karp(snake_case__ ,snake_case__ ) # Test 2) _SCREAMING_SNAKE_CASE = """ABABX""" _SCREAMING_SNAKE_CASE = """ABABZABABYABABX""" assert rabin_karp(snake_case__ ,snake_case__ ) # Test 3) _SCREAMING_SNAKE_CASE = """AAAB""" _SCREAMING_SNAKE_CASE = """ABAAAAAB""" assert rabin_karp(snake_case__ ,snake_case__ ) # Test 4) _SCREAMING_SNAKE_CASE = """abcdabcy""" _SCREAMING_SNAKE_CASE = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(snake_case__ ,snake_case__ ) # Test 5) _SCREAMING_SNAKE_CASE = """Lü""" _SCREAMING_SNAKE_CASE = """Lüsai""" assert rabin_karp(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """Lue""" assert not rabin_karp(snake_case__ ,snake_case__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
569
1
'''simple docstring''' import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: return math.sqrt(_UpperCAmelCase ) * math.sqrt(_UpperCAmelCase ) == num def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: __snake_case = 0 __snake_case = n while left <= right: __snake_case = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __snake_case = mid - 1 else: __snake_case = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
69
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "autoformer" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[str] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCamelCase : bool = True , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 6_4 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 1_0_0 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int = 1_0 , __lowerCamelCase : int = 2_5 , __lowerCamelCase : int = 3 , **__lowerCamelCase : int , ): # time series specific configuration UpperCAmelCase__ :Any = prediction_length UpperCAmelCase__ :Optional[int] = context_length if context_length is not None else prediction_length UpperCAmelCase__ :int = distribution_output UpperCAmelCase__ :str = loss UpperCAmelCase__ :Tuple = input_size UpperCAmelCase__ :Optional[int] = num_time_features UpperCAmelCase__ :List[Any] = lags_sequence UpperCAmelCase__ :Any = scaling UpperCAmelCase__ :Union[str, Any] = num_dynamic_real_features UpperCAmelCase__ :Dict = num_static_real_features UpperCAmelCase__ :Optional[int] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase__ :Any = cardinality else: UpperCAmelCase__ :Dict = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase__ :List[str] = embedding_dimension else: UpperCAmelCase__ :int = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ :Optional[Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ :Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ :Optional[Any] = d_model UpperCAmelCase__ :Any = encoder_attention_heads UpperCAmelCase__ :Any = decoder_attention_heads UpperCAmelCase__ :int = encoder_ffn_dim UpperCAmelCase__ :Union[str, Any] = decoder_ffn_dim UpperCAmelCase__ :Optional[Any] = encoder_layers UpperCAmelCase__ :str = decoder_layers UpperCAmelCase__ :Optional[Any] = dropout UpperCAmelCase__ :str = attention_dropout UpperCAmelCase__ :int = activation_dropout UpperCAmelCase__ :Optional[Any] = encoder_layerdrop UpperCAmelCase__ :Dict = decoder_layerdrop UpperCAmelCase__ :Union[str, Any] = activation_function UpperCAmelCase__ :List[Any] = init_std UpperCAmelCase__ :List[str] = use_cache # Autoformer UpperCAmelCase__ :List[str] = label_length UpperCAmelCase__ :Dict = moving_average UpperCAmelCase__ :str = autocorrelation_factor super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def __SCREAMING_SNAKE_CASE ( self : int ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
467
0
'''simple docstring''' from __future__ import annotations from typing import Any class a : def __init__( self : Union[str, Any], SCREAMING_SNAKE_CASE_ : int = 6 ): snake_case : Node | None = None snake_case : Node | None = None self.create_linked_list(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str], SCREAMING_SNAKE_CASE_ : int ): snake_case : str = Node() snake_case : Any = current_node snake_case : List[Any] = current_node snake_case : str = current_node for _ in range(1, SCREAMING_SNAKE_CASE_ ): snake_case : Optional[int] = Node() snake_case : Any = current_node snake_case : Union[str, Any] = previous_node snake_case : List[str] = current_node snake_case : Union[str, Any] = self.front snake_case : int = previous_node def __snake_case ( self : Optional[int] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __snake_case ( self : Tuple ): self.check_can_perform_operation() return self.front.data if self.front else None def __snake_case ( self : Any, SCREAMING_SNAKE_CASE_ : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case : Any = self.rear.next if self.rear: snake_case : Dict = data def __snake_case ( self : int ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case : Union[str, Any] = self.front.data snake_case : str = None return data snake_case : List[Any] = self.front snake_case : List[str] = old_front.next snake_case : Dict = old_front.data snake_case : Optional[Any] = None return data def __snake_case ( self : Dict ): if self.is_empty(): raise Exception('''Empty Queue''' ) def __snake_case ( self : Optional[Any] ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class a : def __init__( self : int ): snake_case : Any | None = None snake_case : Node | None = None snake_case : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
555
'''simple docstring''' import os import sys UpperCAmelCase = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def A ( *A_ : Optional[Any] , **A_ : List[str] ): return AutoConfig.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A ( *A_ : Dict , **A_ : str ): return AutoTokenizer.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModel.__doc__ ) def A ( *A_ : Union[str, Any] , **A_ : Optional[Any] ): return AutoModel.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A ( *A_ : str , **A_ : Optional[Any] ): return AutoModelForCausalLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A ( *A_ : List[str] , **A_ : Optional[Any] ): return AutoModelForMaskedLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A ( *A_ : Tuple , **A_ : List[str] ): return AutoModelForSequenceClassification.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A ( *A_ : Tuple , **A_ : Any ): return AutoModelForQuestionAnswering.from_pretrained(*A_ , **A_ )
555
1
'''simple docstring''' class A : def __init__( self : Optional[Any] , __a : List[str] , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: __UpperCAmelCase = name __UpperCAmelCase = value __UpperCAmelCase = weight def __repr__( self : Optional[Any] ) -> int: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def snake_case__ ( self : Optional[int] ) -> List[str]: return self.value def snake_case__ ( self : Dict ) -> Optional[int]: return self.name def snake_case__ ( self : List[str] ) -> Optional[Any]: return self.weight def snake_case__ ( self : Any ) -> Optional[int]: return self.value / self.weight def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = sorted(UpperCamelCase__ , key=UpperCamelCase__ , reverse=UpperCamelCase__ ) __UpperCAmelCase = [] __UpperCAmelCase , __UpperCAmelCase = 0.0, 0.0 for i in range(len(UpperCamelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
262
'''simple docstring''' from __future__ import annotations __lowerCAmelCase : List[str] = 8.988e9 # units = N * m^s * C^-2 def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" __UpperCAmelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __UpperCAmelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __UpperCAmelCase = abs(UpperCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __UpperCAmelCase = abs(UpperCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __UpperCAmelCase = (COULOMBS_CONSTANT * charge_product / abs(UpperCamelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
262
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[int]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCamelCase__ = 1_28 elif "12-12" in model_name: UpperCamelCase__ = 12 UpperCamelCase__ = 12 elif "14-14" in model_name: UpperCamelCase__ = 14 UpperCamelCase__ = 14 elif "16-16" in model_name: UpperCamelCase__ = 16 UpperCamelCase__ = 16 else: raise ValueError('Model not supported' ) UpperCamelCase__ = 'huggingface/label-files' if "speech-commands" in model_name: UpperCamelCase__ = 35 UpperCamelCase__ = 'speech-commands-v2-id2label.json' else: UpperCamelCase__ = 5_27 UpperCamelCase__ = 'audioset-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "module.v" in name: UpperCamelCase__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: UpperCamelCase__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: UpperCamelCase__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: UpperCamelCase__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: UpperCamelCase__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCamelCase__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: UpperCamelCase__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: UpperCamelCase__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = config.hidden_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict UpperCamelCase__ = model_name_to_url[model_name] UpperCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE ) # rename some keys UpperCamelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load 🤗 model UpperCamelCase__ = ASTForAudioClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCamelCase__ = -4.2677393 if 'speech-commands' not in model_name else -6.845978 UpperCamelCase__ = 4.5689974 if 'speech-commands' not in model_name else 5.5654526 UpperCamelCase__ = 10_24 if 'speech-commands' not in model_name else 1_28 UpperCamelCase__ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: UpperCamelCase__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) UpperCamelCase__ = dataset[0]['audio']['array'] else: UpperCamelCase__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) UpperCamelCase__ , UpperCamelCase__ = torchaudio.load(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = waveform.squeeze().numpy() UpperCamelCase__ = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCamelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCamelCase__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCamelCase__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCamelCase__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCamelCase__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCamelCase__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCamelCase__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCamelCase__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : str= parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class snake_case__(nn.Module ): """simple docstring""" lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def snake_case ( self : Dict ): lowercase__ : int = [] lowercase__ : Tuple = [] for i in range(self.num_layers ): lowercase__ : List[Any] = self.in_channels if i == 0 else self.out_channels lowercase__ : Dict = FlaxResnetBlockaD( in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) lowercase__ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) lowercase__ : Optional[Any] = resnets lowercase__ : Union[str, Any] = attentions if self.add_downsample: lowercase__ : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int]=True ): lowercase__ : str = () for resnet, attn in zip(self.resnets , self.attentions ): lowercase__ : Optional[int] = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) lowercase__ : Tuple = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ : str = self.downsamplers_a(_lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class snake_case__(nn.Module ): """simple docstring""" lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def snake_case ( self : Optional[Any] ): lowercase__ : str = [] for i in range(self.num_layers ): lowercase__ : Tuple = self.in_channels if i == 0 else self.out_channels lowercase__ : Union[str, Any] = FlaxResnetBlockaD( in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) lowercase__ : Any = resnets if self.add_downsample: lowercase__ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=True ): lowercase__ : int = () for resnet in self.resnets: lowercase__ : Optional[int] = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ : Optional[int] = self.downsamplers_a(_lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class snake_case__(nn.Module ): """simple docstring""" lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def snake_case ( self : int ): lowercase__ : List[str] = [] lowercase__ : int = [] for i in range(self.num_layers ): lowercase__ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ : Any = self.prev_output_channel if i == 0 else self.out_channels lowercase__ : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) lowercase__ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) lowercase__ : Optional[Any] = resnets lowercase__ : str = attentions if self.add_upsample: lowercase__ : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowercase__ : str = res_hidden_states_tuple[-1] lowercase__ : int = res_hidden_states_tuple[:-1] lowercase__ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase__ : str = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) lowercase__ : Dict = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) if self.add_upsample: lowercase__ : Tuple = self.upsamplers_a(_lowerCAmelCase ) return hidden_states class snake_case__(nn.Module ): """simple docstring""" lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def snake_case ( self : Optional[Any] ): lowercase__ : Any = [] for i in range(self.num_layers ): lowercase__ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ : Tuple = self.prev_output_channel if i == 0 else self.out_channels lowercase__ : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) lowercase__ : Tuple = resnets if self.add_upsample: lowercase__ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states lowercase__ : Any = res_hidden_states_tuple[-1] lowercase__ : Any = res_hidden_states_tuple[:-1] lowercase__ : int = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase__ : Optional[Any] = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) if self.add_upsample: lowercase__ : Tuple = self.upsamplers_a(_lowerCAmelCase ) return hidden_states class snake_case__(nn.Module ): """simple docstring""" lowercase_ = 4_2 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def snake_case ( self : Any ): lowercase__ : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowercase__ : List[str] = [] for _ in range(self.num_layers ): lowercase__ : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) lowercase__ : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) lowercase__ : Any = resnets lowercase__ : Optional[Any] = attentions def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str=True ): lowercase__ : List[Any] = self.resnets[0](_lowerCAmelCase , _lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowercase__ : List[Any] = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) lowercase__ : Tuple = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) return hidden_states
496
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self : Optional[int] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , **_lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) snake_case_ = size if size is not None else {"height": 2_5_6, "width": 2_5_6} snake_case_ = get_size_dict(_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _lowerCAmelCase , size=(size["height"], size["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : int=None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : Tuple , ) -> PIL.Image.Image: """simple docstring""" snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) snake_case_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
283
0
'''simple docstring''' def _UpperCAmelCase ( a : int = 1_0_0_0 ) -> int: """simple docstring""" lowercase_ : List[Any] = 2**power lowercase_ : Tuple = str(a ) lowercase_ : Dict = list(a ) lowercase_ : Optional[Any] = 0 for i in list_num: sum_of_num += int(a ) return sum_of_num if __name__ == "__main__": A: Any = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A: List[Any] = solution(power) print("Sum of the digits is: ", result)
7
'''simple docstring''' import os from distutils.util import strtobool def _UpperCAmelCase ( a : Any , a : int ) -> Any: """simple docstring""" for e in env_keys: lowercase_ : Optional[Any] = int(os.environ.get(a , -1 ) ) if val >= 0: return val return default def _UpperCAmelCase ( a : List[Any] , a : Dict=False ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = os.environ.get(a , str(a ) ) return strtobool(a ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCAmelCase ( a : List[Any] , a : Dict="no" ) -> str: """simple docstring""" lowercase_ : List[Any] = os.environ.get(a , str(a ) ) return value
7
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :Dict=None , a :Optional[int]=None ) -> Any: return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class lowercase_ : '''simple docstring''' __snake_case = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __snake_case = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __snake_case = list_field( default=[8, 32, 1_28, 5_12] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Benchmark training of model'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Verbose memory tracing'''} ) __snake_case = field( default=_lowercase , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __snake_case = field( default=_lowercase , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Trace memory line by line'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Save result to a CSV file'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Save all print statements in a log file'''} ) __snake_case = field(default=_lowercase , metadata={'''help''': '''Whether to print environment information'''} ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __snake_case = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __snake_case = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __snake_case = field( default=f'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __snake_case = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __snake_case = field( default=f'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __snake_case = field( default=f'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __snake_case = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __snake_case = field( default=_lowercase , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , A_ , ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __lowerCAmelCase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
117
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _snake_case ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head('https://huggingface.co' )
91
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _UpperCAmelCase ): snake_case_ = (DDPMParallelScheduler,) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCamelCase_ ) return config def snake_case__ ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_, beta_end=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_, prediction_type=lowerCamelCase_, sample_max_value=lowerCamelCase_, ) def snake_case__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea], dim=0 ) lowercase__ = torch.arange(lowerCamelCase_ )[0:3, None].repeat(1, lowerCamelCase_ ) lowercase__ = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) lowercase__ = scheduler.batch_step_no_noise(lowerCamelCase_, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ) ) lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual lowercase__ = model(lowerCamelCase_, lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual lowercase__ = model(lowerCamelCase_, lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) lowercase__ = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: lowercase__ = -1 else: lowercase__ = timesteps[i + 1] lowercase__ = scheduler.previous_timestep(lowerCamelCase_ ) lowercase__ = prev_t.item() self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 51, 0] with self.assertRaises(lowerCamelCase_, msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 1, 0] lowercase__ = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_, timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : List[Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Optional[Any] , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : List[Any] , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Dict , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : Optional[int] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
49
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case__ ( UpperCamelCase_ ): def __init__( self : List[str] , _lowerCamelCase : NestedDataStructureLike[PathLike] , _lowerCamelCase : Optional[NamedSplit] = None , _lowerCamelCase : Optional[Features] = None , _lowerCamelCase : str = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : Optional[int] , ): super().__init__( _lowerCamelCase , split=_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase , streaming=_lowerCamelCase , num_proc=_lowerCamelCase , **_lowerCamelCase , ) snake_case__ : Tuple = path_or_paths if isinstance(_lowerCamelCase , _lowerCamelCase ) else {self.split: path_or_paths} snake_case__ : Any = Text( cache_dir=_lowerCamelCase , data_files=_lowerCamelCase , features=_lowerCamelCase , **_lowerCamelCase , ) def UpperCAmelCase__ ( self : Union[str, Any] ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case__ : List[Any] = None snake_case__ : List[str] = None snake_case__ : int = None snake_case__ : Dict = None self.builder.download_and_prepare( download_config=_lowerCamelCase , download_mode=_lowerCamelCase , verification_mode=_lowerCamelCase , base_path=_lowerCamelCase , num_proc=self.num_proc , ) snake_case__ : str = self.builder.as_dataset( split=self.split , verification_mode=_lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
170
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowercase : Any = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCamelCase__: Dict , UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ) -> Union[str, Any]: """simple docstring""" A = WavaVecaForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""projector.weight"""] A = downstream_dict["""projector.bias"""] A = downstream_dict["""model.post_net.linear.weight"""] A = downstream_dict["""model.post_net.linear.bias"""] return model def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: str , UpperCamelCase__: Any ) -> List[str]: """simple docstring""" A = WavaVecaForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""model.linear.weight"""] A = downstream_dict["""model.linear.bias"""] return model def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ) -> int: """simple docstring""" A = WavaVecaForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""connector.weight"""] A = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] A = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] A = downstream_dict["""objective.W"""] return model @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase__: Dict , UpperCamelCase__: List[Any] , UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A = torch.load(UpperCamelCase__ , map_location="""cpu""" ) A = checkpoint["""Downstream"""] A = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) A = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): A = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): A = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForXVector""" ): A = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: A = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _lowercase : Tuple = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
546
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowerCAmelCase ( UpperCamelCase__: Any ) -> Tuple: """simple docstring""" def wrapper(*UpperCamelCase__: Union[str, Any] , **UpperCamelCase__: List[str] ): A = timeit.default_timer() A = func(*UpperCamelCase__ , **UpperCamelCase__ ) A = timeit.default_timer() - starttime return delta A = func.__name__ return wrapper def _lowerCAmelCase ( UpperCamelCase__: dict , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: int=None ) -> Any: """simple docstring""" A = [] A = seq_shapes or {} for i in range(UpperCamelCase__ ): A = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): A = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": A = """The small grey turtle was surprisingly fast when challenged.""" else: A = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): A = v.feature A = seq_shapes[k] A = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) A = data dummy_data.append((i, example) ) return dummy_data def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: str=None ) -> Optional[int]: """simple docstring""" A = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: A = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) A , A = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) A = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
546
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
92
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __A = '''\ Text data. Second line of data.''' __A = '''file''' @pytest.fixture(scope="session" ) def lowercase_ ( _lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __lowerCamelCase : Tuple = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") __lowerCamelCase : Optional[int] = bytes(_lowerCamelCase , "utf-8" ) with zstd.open(_lowerCamelCase , "wb" ) as f: f.write(_lowerCamelCase ) return path @pytest.fixture def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _lowerCamelCase ) , "w" ) as f: f.write(_lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] ) -> Dict: '''simple docstring''' __lowerCamelCase : Union[str, Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} __lowerCamelCase : Optional[int] = input_paths[compression_format] __lowerCamelCase : List[str] = tmp_path / "cache" __lowerCamelCase : Optional[Any] = DownloadConfig(cache_dir=_lowerCamelCase , extract_compressed_file=_lowerCamelCase ) __lowerCamelCase : str = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) with open(_lowerCamelCase ) as f: __lowerCamelCase : int = f.read() with open(_lowerCamelCase ) as f: __lowerCamelCase : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Any = "custom_cache" __lowerCamelCase : Optional[int] = "custom_extracted_dir" __lowerCamelCase : Tuple = tmp_path / "custom_extracted_path" if default_extracted: __lowerCamelCase : Dict = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_lowerCamelCase ) ) __lowerCamelCase : Tuple = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCamelCase : Union[str, Any] = xz_file __lowerCamelCase : Union[str, Any] = ( DownloadConfig(extract_compressed_file=_lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_lowerCamelCase ) ) __lowerCamelCase : List[Any] = cached_path(_lowerCamelCase , download_config=_lowerCamelCase ) assert Path(_lowerCamelCase ).parent.parts[-2:] == expected def lowercase_ ( _lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : List[str] = str(Path(_lowerCamelCase ).resolve() ) assert cached_path(_lowerCamelCase ) == text_file # relative path __lowerCamelCase : Optional[int] = str(Path(_lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_lowerCamelCase ) == text_file def lowercase_ ( _lowerCamelCase: Optional[int] ) -> Dict: '''simple docstring''' __lowerCamelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) # relative path __lowerCamelCase : Optional[int] = "./__missing_file__.txt" with pytest.raises(_lowerCamelCase ): cached_path(_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: int ) -> int: '''simple docstring''' __lowerCamelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_lowerCamelCase ) as f: __lowerCamelCase : Union[str, Any] = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowercase_ ( ) -> Any: '''simple docstring''' with pytest.raises(_lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optional[int] ) -> List[Any]: '''simple docstring''' __lowerCamelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): http_get("https://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple ) -> Tuple: '''simple docstring''' __lowerCamelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=_lowerCamelCase ) with pytest.raises(_lowerCamelCase ): fsspec_head("s3://huggingface.co" )
646
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowercase_ , ) class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = """roberta""" def __init__( self : Dict , UpperCamelCase__ : List[str] ) -> List[Any]: super().__init__(UpperCamelCase__ ) _UpperCamelCase =RobertaEmbeddings(UpperCamelCase__ ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , lowercase_ , ) class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = """roberta""" def __init__( self : Tuple , UpperCamelCase__ : Any ) -> Dict: super().__init__(UpperCamelCase__ ) _UpperCamelCase =config.num_labels _UpperCamelCase =config.num_hidden_layers _UpperCamelCase =DeeRobertaModel(UpperCamelCase__ ) _UpperCamelCase =nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=-1 , UpperCamelCase__ : Dict=False , ) -> Union[str, Any]: _UpperCamelCase =self.num_layers try: _UpperCamelCase =self.roberta( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , ) _UpperCamelCase =outputs[1] _UpperCamelCase =self.dropout(UpperCamelCase__ ) _UpperCamelCase =self.classifier(UpperCamelCase__ ) _UpperCamelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase =e.message _UpperCamelCase =e.exit_layer _UpperCamelCase =outputs[0] if not self.training: _UpperCamelCase =entropy(UpperCamelCase__ ) _UpperCamelCase =[] _UpperCamelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase =MSELoss() _UpperCamelCase =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase =CrossEntropyLoss() _UpperCamelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCamelCase =[] for highway_exit in outputs[-1]: _UpperCamelCase =highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase =MSELoss() _UpperCamelCase =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase =CrossEntropyLoss() _UpperCamelCase =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase__ ) if train_highway: _UpperCamelCase =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase =(loss,) + outputs if not self.training: _UpperCamelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
713
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : str = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __lowerCamelCase : Tuple = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _a (): """simple docstring""" _UpperCamelCase =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _UpperCamelCase =bs[:] _UpperCamelCase =0 for b in range(2**8 ): if b not in bs: bs.append(__SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 _UpperCamelCase =[chr(__SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =set() _UpperCamelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase =char return pairs class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any="replace" , UpperCamelCase__ : List[Any]="<s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Tuple="</s>" , UpperCamelCase__ : List[Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : int=False , **UpperCamelCase__ : int , ) -> Tuple: _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase =json.load(UpperCamelCase__ ) _UpperCamelCase ={v: k for k, v in self.encoder.items()} _UpperCamelCase =errors # how to handle errors in decoding _UpperCamelCase =bytes_to_unicode() _UpperCamelCase ={v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase =merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase =[tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _UpperCamelCase ={} _UpperCamelCase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self : Tuple ) -> List[str]: return len(self.encoder ) def UpperCamelCase__ ( self : List[Any] ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[Any] ) -> List[Any]: if token in self.cache: return self.cache[token] _UpperCamelCase =tuple(UpperCamelCase__ ) _UpperCamelCase =get_pairs(UpperCamelCase__ ) if not pairs: return token while True: _UpperCamelCase =min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase =bigram _UpperCamelCase =[] _UpperCamelCase =0 while i < len(UpperCamelCase__ ): try: _UpperCamelCase =word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase =j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase =tuple(UpperCamelCase__ ) _UpperCamelCase =new_word if len(UpperCamelCase__ ) == 1: break else: _UpperCamelCase =get_pairs(UpperCamelCase__ ) _UpperCamelCase =''' '''.join(UpperCamelCase__ ) _UpperCamelCase =word return word def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase =[] for token in re.findall(self.pat , UpperCamelCase__ ): _UpperCamelCase =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def UpperCamelCase__ ( self : Any , UpperCamelCase__ : str ) -> int: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : List[Any] ) -> int: return self.decoder.get(UpperCamelCase__ ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : Any ) -> List[Any]: _UpperCamelCase =''''''.join(UpperCamelCase__ ) _UpperCamelCase =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCamelCase__ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase =os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase =os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) _UpperCamelCase =0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase =token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase =[self.cls_token_id] _UpperCamelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase =[self.sep_token_id] _UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : str ) -> Dict: _UpperCamelCase =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): _UpperCamelCase =''' ''' + text return (text, kwargs) def UpperCamelCase__ ( self : Optional[Any] , UpperCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , ) -> dict: _UpperCamelCase =super()._pad( encoded_inputs=UpperCamelCase__ , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) # Load from model defaults if return_attention_mask is None: _UpperCamelCase ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCamelCase =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCamelCase =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCamelCase__ ) if needs_to_be_padded: _UpperCamelCase =len(UpperCamelCase__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCamelCase =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _UpperCamelCase =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
271
0
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int ) -> Tuple: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_lowerCamelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _a : Tuple = 'Enter the base and the power separated by a comma: ' _a , _a : Optional[int] = map(int, input(prompt).split(',')) _a , _a : List[str] = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _a : Optional[int] = res(xa, ya) _a : str = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
213
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = "xlm" _UpperCamelCase : str = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , a__=30145 , a__=2048 , a__=12 , a__=16 , a__=0.1 , a__=0.1 , a__=True , a__=False , a__=False , a__=False , a__=1 , a__=True , a__=512 , a__=2048**-0.5 , a__=1e-12 , a__=0.0_2 , a__=0 , a__=1 , a__=2 , a__=3 , a__=5 , a__=True , a__="first" , a__=True , a__=None , a__=True , a__=0.1 , a__=5 , a__=5 , a__=0 , a__=0 , a__=2 , a__=0 , **a__ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = emb_dim _lowerCAmelCase : Union[str, Any] = n_layers _lowerCAmelCase : str = n_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : Union[str, Any] = attention_dropout _lowerCAmelCase : Optional[Any] = gelu_activation _lowerCAmelCase : Tuple = sinusoidal_embeddings _lowerCAmelCase : Optional[int] = causal _lowerCAmelCase : List[str] = asm _lowerCAmelCase : Dict = n_langs _lowerCAmelCase : str = use_lang_emb _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = bos_index _lowerCAmelCase : int = eos_index _lowerCAmelCase : str = pad_index _lowerCAmelCase : List[str] = unk_index _lowerCAmelCase : Optional[int] = mask_index _lowerCAmelCase : str = is_encoder _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = embed_init_std _lowerCAmelCase : Optional[int] = init_std _lowerCAmelCase : Optional[Any] = summary_type _lowerCAmelCase : Union[str, Any] = summary_use_proj _lowerCAmelCase : List[Any] = summary_activation _lowerCAmelCase : Union[str, Any] = summary_proj_to_labels _lowerCAmelCase : Optional[Any] = summary_first_dropout _lowerCAmelCase : Optional[Any] = start_n_top _lowerCAmelCase : List[Any] = end_n_top _lowerCAmelCase : List[str] = mask_token_id _lowerCAmelCase : Optional[int] = lang_id if "n_words" in kwargs: _lowerCAmelCase : Tuple = kwargs["""n_words"""] super().__init__(pad_token_id=a__ , bos_token_id=a__ , **a__ ) class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
213
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _lowerCamelCase = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): @classmethod def _snake_case ( cls :Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__A ) @classmethod def _snake_case ( cls :str ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE__ = FlaxBertModel(__A ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__A , repo_id="""test-model-flax""" , push_to_hub=__A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1E-3 , msg=f'''{key} not identical''' ) def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE__ = FlaxBertModel(__A ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __A , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE__ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE__ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1E-3 , msg=f'''{key} not identical''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE__ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: SCREAMING_SNAKE_CASE__ = False return models_are_equal @require_flax class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) SCREAMING_SNAKE_CASE__ = FlaxBertModel(__A ) SCREAMING_SNAKE_CASE__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__A , __A ) ) with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertTrue(check_models_equal(__A , __A ) ) def _snake_case ( self :Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) SCREAMING_SNAKE_CASE__ = FlaxBertModel(__A ) SCREAMING_SNAKE_CASE__ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__A , __A ) , max_shard_size="""10KB""" ) with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertTrue(check_models_equal(__A , __A ) ) def _snake_case ( self :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = """bert""" SCREAMING_SNAKE_CASE__ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertIsNotNone(__A ) def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """bert""" SCREAMING_SNAKE_CASE__ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(__A ): SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertIsNotNone(__A )
707
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCamelCase = '\\n Text data.\n Second line of data.' _lowerCamelCase = 'file' @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") SCREAMING_SNAKE_CASE__ = bytes(UpperCamelCase__ , """utf-8""" ) with zstd.open(UpperCamelCase__ , """wb""" ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , """w""" ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Dict , UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} SCREAMING_SNAKE_CASE__ = input_paths[compression_format] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = """custom_cache""" SCREAMING_SNAKE_CASE__ = """custom_extracted_dir""" SCREAMING_SNAKE_CASE__ = tmp_path / """custom_extracted_path""" if default_extracted: SCREAMING_SNAKE_CASE__ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , UpperCamelCase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE__ = xz_file SCREAMING_SNAKE_CASE__ = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ): # absolute path SCREAMING_SNAKE_CASE__ = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path SCREAMING_SNAKE_CASE__ = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): # absolute path SCREAMING_SNAKE_CASE__ = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path SCREAMING_SNAKE_CASE__ = """./__missing_file__.txt""" with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( ): with pytest.raises(UpperCamelCase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): http_get("""https://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head("""s3://huggingface.co""" )
59
0
'''simple docstring''' from __future__ import annotations from typing import Any def __UpperCamelCase( _A : list ): '''simple docstring''' if not postfix_notation: return 0 UpperCAmelCase__ : int = {"+", "-", "*", "/"} UpperCAmelCase__ : list[Any] = [] for token in postfix_notation: if token in operations: UpperCAmelCase__ : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
614
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' if not conversation_id: snake_case : Union[str, Any] = uuid.uuida() if past_user_inputs is None: snake_case : Optional[Any] = [] if generated_responses is None: snake_case : Optional[Any] = [] snake_case : uuid.UUID = conversation_id snake_case : List[str] = past_user_inputs snake_case : List[str] = generated_responses snake_case : Optional[str] = text def __eq__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Dict: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) snake_case : int = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: snake_case : Any = text def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case : Dict = None def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' self.generated_responses.append(UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): snake_case : List[str] = "user" if is_user else "bot" output += F'{name} >> {text} \n' return output @add_end_docstrings( snake_case_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _lowerCAmelCase ( snake_case_ ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) if self.tokenizer.pad_token_id is None: snake_case : str = self.tokenizer.eos_token def lowerCamelCase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = {} snake_case : Optional[int] = {} snake_case : Optional[Any] = {} if min_length_for_response is not None: snake_case : int = min_length_for_response if minimum_tokens is not None: snake_case : Dict = minimum_tokens if "max_length" in generate_kwargs: snake_case : Any = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCamelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , UpperCamelCase__ , UpperCamelCase__=0 , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : int = super().__call__(UpperCamelCase__ , num_workers=UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=32 ) -> Dict[str, Any]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): snake_case : Optional[Any] = self.tokenizer._build_conversation_input_ids(UpperCamelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case : Optional[Any] = self._legacy_parse_and_tokenize(UpperCamelCase__ ) if self.framework == "pt": snake_case : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case : Optional[int] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=10 , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = generate_kwargs.get("max_length" , self.model.config.max_length ) snake_case : Optional[Any] = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) snake_case : List[str] = max_length - minimum_tokens snake_case : Dict = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: snake_case : List[Any] = model_inputs["attention_mask"][:, -trim:] snake_case : Union[str, Any] = model_inputs.pop("conversation" ) snake_case : Union[str, Any] = max_length snake_case : Any = self.model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) if self.model.config.is_encoder_decoder: snake_case : Optional[int] = 1 else: snake_case : int = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=True ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = model_outputs["output_ids"] snake_case : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) snake_case : List[Any] = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(UpperCamelCase__ ) return conversation def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : str = self.tokenizer.eos_token_id snake_case : str = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) if len(UpperCamelCase__ ) > self.tokenizer.model_max_length: snake_case : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
178
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase ( UpperCamelCase__ ): _a = "Wav2Vec2FeatureExtractor" _a = "AutoTokenizer" def __init__( self , _a , _a ) -> List[str]: super().__init__(_a , _a ) _A : int = self.feature_extractor _A : Optional[int] = False @classmethod def a__ ( cls , _a , **_a ) -> str: try: return super().from_pretrained(_a , **_a ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , _a , ) _A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_a , **_a ) _A : str = WavaVecaCTCTokenizer.from_pretrained(_a , **_a ) return cls(feature_extractor=_a , tokenizer=_a ) def __call__( self , *_a , **_a ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _A : Dict = kwargs.pop("""raw_speech""" ) else: _A : int = kwargs.pop("""audio""" , _a ) _A : str = kwargs.pop("""sampling_rate""" , _a ) _A : Tuple = kwargs.pop("""text""" , _a ) if len(_a ) > 0: _A : Dict = args[0] _A : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _A : Optional[Any] = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: _A : str = self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: _A : Dict = encodings["""input_ids"""] return inputs def a__ ( self , *_a , **_a ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) _A : Optional[Any] = kwargs.pop("""input_features""" , _a ) _A : Dict = kwargs.pop("""labels""" , _a ) if len(_a ) > 0: _A : Union[str, Any] = args[0] _A : List[Any] = args[1:] if input_features is not None: _A : Dict = self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: _A : List[Any] = self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: _A : List[str] = labels["""input_ids"""] return input_features def a__ ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) @contextmanager def a__ ( self ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _A : List[str] = True _A : Optional[int] = self.tokenizer yield _A : List[str] = self.feature_extractor _A : str = False
704
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __UpperCamelCase ( _A ): def wrapper(*_A , **_A ): lowerCAmelCase_ = timeit.default_timer() lowerCAmelCase_ = func(*_A , **_A ) lowerCAmelCase_ = timeit.default_timer() - starttime return delta lowerCAmelCase_ = func.__name__ return wrapper def __UpperCamelCase ( _A , _A=100 , _A=None ): lowerCAmelCase_ = [] lowerCAmelCase_ = seq_shapes or {} for i in range(_A ): lowerCAmelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_A , _ArrayXD ): lowerCAmelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_A , datasets.Value ): if v.dtype == "string": lowerCAmelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_A , datasets.Sequence ): while isinstance(_A , datasets.Sequence ): lowerCAmelCase_ = v.feature lowerCAmelCase_ = seq_shapes[k] lowerCAmelCase_ = np.random.rand(*_A ).astype(v.dtype ) lowerCAmelCase_ = data dummy_data.append((i, example) ) return dummy_data def __UpperCamelCase ( _A , _A , _A=100 , _A=None ): lowerCAmelCase_ = generate_examples(_A , num_examples=_A , seq_shapes=_A ) with ArrowWriter(features=_A , path=_A ) as writer: for key, record in dummy_data: lowerCAmelCase_ = features.encode_example(_A ) writer.write(_A ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCAmelCase_ = datasets.Dataset.from_file(filename=_A , info=datasets.DatasetInfo(features=_A ) ) return dataset
431
from collections.abc import Sequence def __UpperCamelCase ( _A , _A = False ): if not arr: return 0 lowerCAmelCase_ = 0 if allow_empty_subarrays else float('''-inf''' ) lowerCAmelCase_ = 0.0 for num in arr: lowerCAmelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
431
1
'''simple docstring''' def A ( A_ : int ): if not isinstance(A_ , A_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) snake_case : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
555
'''simple docstring''' import numpy as np class a : def __init__( self : Dict ): snake_case : List[str] = (0, 0) snake_case : Tuple = None snake_case : Union[str, Any] = 0 snake_case : Dict = 0 snake_case : List[str] = 0 def __eq__( self : str, SCREAMING_SNAKE_CASE_ : List[Any] ): return self.position == cell.position def __snake_case ( self : Optional[int] ): print(self.position ) class a : def __init__( self : Dict, SCREAMING_SNAKE_CASE_ : Union[str, Any]=(5, 5) ): snake_case : int = np.zeros(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = world_size[0] snake_case : Optional[Any] = world_size[1] def __snake_case ( self : Any ): print(self.w ) def __snake_case ( self : str, SCREAMING_SNAKE_CASE_ : Optional[int] ): snake_case : Union[str, Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] snake_case : str = cell.position[0] snake_case : Optional[Any] = cell.position[1] snake_case : Any = [] for n in neughbour_cord: snake_case : List[str] = current_x + n[0] snake_case : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: snake_case : int = Cell() snake_case : int = (x, y) snake_case : Any = cell neighbours.append(SCREAMING_SNAKE_CASE_ ) return neighbours def A ( A_ : Tuple , A_ : Tuple , A_ : Union[str, Any] ): snake_case : Union[str, Any] = [] snake_case : Union[str, Any] = [] _open.append(A_ ) while _open: snake_case : List[Any] = np.argmin([n.f for n in _open] ) snake_case : List[Any] = _open[min_f] _closed.append(_open.pop(A_ ) ) if current == goal: break for n in world.get_neigbours(A_ ): for c in _closed: if c == n: continue snake_case : Dict = current.g + 1 snake_case, snake_case : Optional[Any] = n.position snake_case, snake_case : Union[str, Any] = goal.position snake_case : Tuple = (ya - ya) ** 2 + (xa - xa) ** 2 snake_case : Union[str, Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A_ ) snake_case : Dict = [] while current.parent is not None: path.append(current.position ) snake_case : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase = Gridworld() # Start position and goal UpperCAmelCase = Cell() UpperCAmelCase = (0, 0) UpperCAmelCase = Cell() UpperCAmelCase = (4, 4) print(f'''path from {start.position} to {goal.position}''') UpperCAmelCase = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase = 1 print(world.w)
555
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : List[Any],__A : str,__A : List[str]=1_3,__A : str=3_2,__A : Tuple=2,__A : Any=3,__A : Dict=1_6,__A : Dict=[3_2, 6_4, 1_2_8],__A : List[str]=[1, 2, 1],__A : str=[2, 2, 4],__A : Optional[int]=2,__A : Dict=2.0,__A : str=True,__A : Tuple=0.0,__A : int=0.0,__A : List[str]=0.1,__A : Any="gelu",__A : List[Any]=False,__A : Optional[Any]=True,__A : List[str]=0.02,__A : Tuple=1e-5,__A : Any=True,__A : Tuple=None,__A : Tuple=True,__A : Tuple=1_0,__A : List[Any]=8,__A : Optional[int]=["stage1", "stage2"],__A : int=[1, 2],): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : int = embed_dim _lowerCamelCase : int = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Any = num_heads _lowerCamelCase : List[str] = window_size _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Any = qkv_bias _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = use_absolute_embeddings _lowerCamelCase : List[Any] = patch_norm _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = scope _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : Tuple = encoder_stride _lowerCamelCase : Any = out_features _lowerCamelCase : Any = out_indices def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): return FocalNetConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,embed_dim=self.embed_dim,hidden_sizes=self.hidden_sizes,depths=self.depths,num_heads=self.num_heads,window_size=self.window_size,mlp_ratio=self.mlp_ratio,qkv_bias=self.qkv_bias,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,drop_path_rate=self.drop_path_rate,hidden_act=self.hidden_act,use_absolute_embeddings=self.use_absolute_embeddings,path_norm=self.patch_norm,layer_norm_eps=self.layer_norm_eps,initializer_range=self.initializer_range,encoder_stride=self.encoder_stride,out_features=self.out_features,out_indices=self.out_indices,) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Tuple,__A : List[Any] ): _lowerCamelCase : Optional[Any] = FocalNetModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) _lowerCamelCase : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCamelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : int,__A : Optional[int] ): _lowerCamelCase : Any = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = FocalNetBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : str = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Dict ): _lowerCamelCase : List[Any] = FocalNetForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.reconstruction.shape,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCamelCase : Dict = 1 _lowerCamelCase : Any = FocalNetForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.reconstruction.shape,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any],__A : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.type_sequence_label_size _lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[int] = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : str = FocalNetForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = FocalNetModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,embed_dim=3_7,has_text_modality=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): return def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : str = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(),(nn.Module) ) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A,nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Tuple,__A : Any,__A : List[Any],__A : str,__A : Any ): _lowerCamelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.hidden_states _lowerCamelCase : int = getattr( self.model_tester,"expected_num_hidden_layers",len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__A ),__A ) # FocalNet has a different seq_length _lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[num_patches, self.model_tester.embed_dim],) _lowerCamelCase : Any = outputs.reshaped_hidden_states self.assertEqual(len(__A ),__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = reshaped_hidden_states[0].shape _lowerCamelCase : List[str] = ( reshaped_hidden_states[0].view(__A,__A,height * width ).permute(0,2,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ),[num_patches, self.model_tester.embed_dim],) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True self.check_hidden_states_output(__A,__A,__A,(padded_height, padded_width) ) @slow def lowerCamelCase_ ( self : Tuple ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FocalNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Dict = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__A ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : List[str] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(),2_8_1 ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase_ = FocalNetConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FocalNetModelTester(self )
44
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """git_vision_model""" def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE="quick_gelu" , SCREAMING_SNAKE_CASE=1E-5 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : Tuple = hidden_size snake_case : Dict = intermediate_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Optional[int] = num_channels snake_case : str = patch_size snake_case : str = image_size snake_case : List[Any] = initializer_range snake_case : Union[str, Any] = attention_dropout snake_case : str = layer_norm_eps snake_case : List[Any] = hidden_act @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) snake_case , snake_case : Optional[int] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": snake_case : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = """git""" def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=30_522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1_024 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1E-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=101 , SCREAMING_SNAKE_CASE=102 , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if vision_config is None: snake_case : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) snake_case : int = GitVisionConfig(**SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = vocab_size snake_case : str = hidden_size snake_case : Dict = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : Tuple = hidden_act snake_case : Optional[int] = intermediate_size snake_case : Any = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : List[str] = position_embedding_type snake_case : Tuple = use_cache snake_case : Optional[Any] = tie_word_embeddings snake_case : Tuple = num_image_with_embedding snake_case : Tuple = bos_token_id snake_case : Union[str, Any] = eos_token_id def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = copy.deepcopy(self.__dict__ ) snake_case : List[str] = self.vision_config.to_dict() snake_case : Any = self.__class__.model_type return output
134
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : Tuple = OpenAIGPTTokenizer _lowerCamelCase : Union[str, Any] = OpenAIGPTTokenizerFast _lowerCamelCase : List[Any] = True _lowerCamelCase : List[Any] = False def __magic_name__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] a_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) a_ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): return "lower newer", "lower newer" def __magic_name__ ( self ): a_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) a_ = """lower""" a_ = ["""low""", """er</w>"""] a_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = tokens + ["""<unk>"""] a_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input a_ = """This is a simple input""" a_ = ["""This is a simple input 1""", """This is a simple input 2"""] a_ = ("""This is a simple input""", """This is a pair""") a_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="""max_length""" , ) def __magic_name__ ( self ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): pass
403
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" a_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=UpperCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=UpperCamelCase ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" a_ = parse_args() # Import training_script as a module. a_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a_ = script_fpath.stem a_ = importlib.import_module(UpperCamelCase ) # Patch sys.argv a_ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
403
1
"""simple docstring""" from __future__ import annotations import time A : List[str] = list[tuple[int, int]] A : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase : '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Node | None ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = pos_x UpperCamelCase__ = pos_y UpperCamelCase__ = (pos_y, pos_x) UpperCamelCase__ = goal_x UpperCamelCase__ = goal_y UpperCamelCase__ = parent class lowerCAmelCase : '''simple docstring''' def __init__( self :int , lowerCamelCase_ :tuple[int, int] , lowerCamelCase_ :tuple[int, int] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase_ ) UpperCamelCase__ = [self.start] UpperCamelCase__ = False def lowerCamelCase__ ( self :Any ) -> Path | None: """simple docstring""" while self.node_queue: UpperCamelCase__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCamelCase__ = True return self.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.get_successors(lowerCamelCase_ ) for node in successors: self.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self :str , lowerCamelCase_ :Node ) -> list[Node]: """simple docstring""" UpperCamelCase__ = [] for action in delta: UpperCamelCase__ = parent.pos_x + action[1] UpperCamelCase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , lowerCamelCase_ ) ) return successors def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Node | None ) -> Path: """simple docstring""" UpperCamelCase__ = node UpperCamelCase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase__ = current_node.parent path.reverse() return path class lowerCAmelCase : '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = BreadthFirstSearch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = False def lowerCamelCase__ ( self :int ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCamelCase__ = self.fwd_bfs.node_queue.pop(0 ) UpperCamelCase__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCamelCase__ = True return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = current_bwd_node UpperCamelCase__ = current_fwd_node UpperCamelCase__ = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Node , lowerCamelCase_ :Node ) -> Path: """simple docstring""" UpperCamelCase__ = self.fwd_bfs.retrace_path(lowerCamelCase_ ) UpperCamelCase__ = self.bwd_bfs.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : str = (0, 0) A : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Any = time.time() A : Optional[int] = BreadthFirstSearch(init, goal) A : List[str] = bfs.search() A : Dict = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) A : Optional[int] = time.time() A : Any = BidirectionalBreadthFirstSearch(init, goal) A : List[Any] = bd_bfs.search() A : Dict = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
516
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
516
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a = 1_6 a = 3_2 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ = 1_6 ): lowercase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ = 1_6 elif accelerator.mixed_precision != "no": lowercase_ = 8 else: lowercase_ = None return tokenizer.pad( UpperCAmelCase__ , padding="""longest""" , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCAmelCase__ ) == "1": lowercase_ = 2 # New Code # lowercase_ = int(args.gradient_accumulation_steps ) lowercase_ = int(args.local_sgd_steps ) # Initialize accelerator lowercase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ = config["""lr"""] lowercase_ = int(config["""num_epochs"""] ) lowercase_ = int(config["""seed"""] ) lowercase_ = int(config["""batch_size"""] ) lowercase_ = evaluate.load("""glue""" , """mrpc""" ) set_seed(UpperCAmelCase__ ) lowercase_ , lowercase_ = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ = model.to(accelerator.device ) # Instantiate optimizer lowercase_ = AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) # Instantiate scheduler lowercase_ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() with LocalSGD( accelerator=UpperCAmelCase__ , model=UpperCAmelCase__ , local_sgd_steps=UpperCAmelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase__ ): lowercase_ = model(**UpperCAmelCase__ ) lowercase_ = output.loss accelerator.backward(UpperCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ = model(**UpperCAmelCase__ ) lowercase_ = outputs.logits.argmax(dim=-1 ) lowercase_ , lowercase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) lowercase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) def UpperCAmelCase_ ( ): lowercase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=UpperCAmelCase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=UpperCAmelCase__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase_ = parser.parse_args() lowercase_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
650
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase_ () -> int: '''simple docstring''' lowerCAmelCase__ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowerCAmelCase__ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go lowerCAmelCase__ = parser.parse_args() if not hasattr(lowercase__ , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase__ = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
668
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase_ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str]=13 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Any=99 , SCREAMING_SNAKE_CASE_ : int=[1, 1, 2] , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : List[str]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : int=37 , SCREAMING_SNAKE_CASE_ : str="gelu_new" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=512 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=False , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = block_sizes lowerCAmelCase__ = num_decoder_layers lowerCAmelCase__ = d_model lowerCAmelCase__ = n_head lowerCAmelCase__ = d_head lowerCAmelCase__ = d_inner lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = 2 lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase__ = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase__ = self.num_hidden_layers + 2 def __snake_case ( self : List[str] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase__ = False lowerCAmelCase__ = TFFunnelBaseModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase__ = TFFunnelForPreTraining(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase__ = TFFunnelForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , ): lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFFunnelForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFFunnelForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase__ = TFFunnelForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCamelCase_ :Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase_ :Optional[int] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ :Dict = False UpperCamelCase_ :Tuple = False def __snake_case ( self : int ): lowerCAmelCase__ = TFFunnelModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : str ): self.config_tester.run_common_tests() def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) @require_tf class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): UpperCamelCase_ :str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase_ :Optional[Any] = False UpperCamelCase_ :Any = False def __snake_case ( self : Union[str, Any] ): lowerCAmelCase__ = TFFunnelModelTester(self , base=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Any ): self.config_tester.run_common_tests() def __snake_case ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
668
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A__ ( lowercase: Optional[Any], lowercase: List[Any]=False ) -> Dict: A : Optional[Any] =OmegaConf.load(lowercase ) if display: print(yaml.dump(OmegaConf.to_container(lowercase ) ) ) return config def A__ ( lowercase: Union[str, Any], lowercase: str=None, lowercase: List[Any]=None ) -> List[Any]: if conf_path is None: A : List[str] ='./model_checkpoints/vqgan_only.yaml' A : Any =load_config(lowercase, display=lowercase ) A : Tuple =VQModel(**config.model.params ) if ckpt_path is None: A : Union[str, Any] ='./model_checkpoints/vqgan_only.pt' A : Optional[int] =torch.load(lowercase, map_location=lowercase ) if ".ckpt" in ckpt_path: A : Optional[int] =sd['state_dict'] model.load_state_dict(lowercase, strict=lowercase ) model.to(lowercase ) del sd return model def A__ ( lowercase: int, lowercase: Tuple ) -> List[str]: A , A , A : List[str] =model.encode(lowercase ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) A : Dict =model.decode(lowercase ) return xrec def A__ ( lowercase: Optional[int], lowercase: int=False ) -> Dict: A , A : Any =string.rsplit('.', 1 ) if reload: A : int =importlib.import_module(lowercase ) importlib.reload(lowercase ) return getattr(importlib.import_module(lowercase, package=lowercase ), cls ) def A__ ( lowercase: List[Any] ) -> int: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params', {} ) ) def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Union[str, Any]=True, lowercase: Any=True ) -> List[str]: A : Dict =instantiate_from_config(lowercase ) if sd is not None: model.load_state_dict(lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A__ ( lowercase: Optional[Any], lowercase: Tuple, lowercase: Union[str, Any], lowercase: int ) -> List[str]: # load the specified checkpoint if ckpt: A : str =torch.load(lowercase, map_location='cpu' ) A : str =pl_sd['global_step'] print(F'loaded model from global step {global_step}.' ) else: A : Dict ={'state_dict': None} A : Any =None A : Optional[Any] =load_model_from_config(config.model, pl_sd['state_dict'], gpu=lowercase, eval_mode=lowercase )['model'] return model, global_step
661
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[str] ='''src/transformers''' # Matches is_xxx_available() _lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Optional[Any] =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : List[Any] =re.compile(R'''^\s*else:''') def A__ ( lowercase: Dict ) -> int: if _re_test_backend.search(lowercase ) is None: return None A : Any =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Any ) -> List[Any]: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : Optional[Any] =f.readlines() A : Dict =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Optional[int] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : int =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : int =_re_one_line_import_struct.search(lowercase ).groups()[0] A : int =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : Optional[int] =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : str ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Optional[int] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : Optional[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : Optional[Any] =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : Any =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Optional[Any] ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : str =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : Any =lines[line_index] A : Any =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Dict =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Any, lowercase: int ) -> Dict: def find_duplicates(lowercase: List[str] ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : List[Any] =[] for key in import_dict_objects.keys(): A : List[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : Tuple =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> List[str]: A : Dict =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Any =os.path.join(lowercase, '__init__.py' ) A : Union[str, Any] =parse_init(lowercase ) if objects is not None: A : str =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> int: A : List[str] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : List[str] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Tuple =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> Tuple: # This is to make sure the transformers module imported is the one in the repo. A : str =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Any =spec.loader.load_module() A : Any =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : Dict ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
661
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase_ = 3 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): print("Generating primitive root of p" ) while True: lowercase__ = random.randrange(3 , SCREAMING_SNAKE_CASE_ ) if pow(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ ) == 1: continue if pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) == 1: continue return g def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): print("Generating prime p..." ) lowercase__ = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) # select large prime number. lowercase__ = primitive_root(SCREAMING_SNAKE_CASE_ ) # one primitive root on modulo p. lowercase__ = random.randrange(3 , SCREAMING_SNAKE_CASE_ ) # private_key -> have to be greater than 2 for safety. lowercase__ = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) lowercase__ = (key_size, e_a, e_a, p) lowercase__ = (key_size, d) return public_key, private_key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print("\nWARNING:" ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' "Use a different name or delete these files and re-run this program." ) sys.exit() lowercase__ , lowercase__ = generate_key(SCREAMING_SNAKE_CASE_ ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , "w" ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , "w" ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def __lowerCAmelCase ( ): print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
413
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : List[Any] =StableUnCLIPImgaImgPipeline UpperCamelCase__ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase__ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ : int =frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Optional[Any] =frozenset([]) def A__ ( self : Optional[Any] ): lowercase__ = 32 lowercase__ = embedder_hidden_size # image encoding components lowercase__ = CLIPImageProcessor(crop_size=32, size=32 ) torch.manual_seed(0 ) lowercase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase, projection_dim=__lowercase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0 ) lowercase__ = StableUnCLIPImageNormalizer(embedding_dim=__lowercase ) lowercase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=__lowercase, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="projection", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=__lowercase, layers_per_block=1, upcast_attention=__lowercase, use_linear_projection=__lowercase, ) torch.manual_seed(0 ) lowercase__ = DDIMScheduler( beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=__lowercase, steps_offset=1, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL() lowercase__ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self : Dict, __lowercase : Tuple, __lowercase : Union[str, Any]=0, __lowercase : Tuple=True ): if str(__lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(__lowercase ) else: lowercase__ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(__lowercase ) ).to(__lowercase ) if pil_image: lowercase__ = input_image * 0.5 + 0.5 lowercase__ = input_image.clamp(0, 1 ) lowercase__ = input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowercase__ = DiffusionPipeline.numpy_to_pil(__lowercase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self : str ): lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableUnCLIPImgaImgPipeline(**__lowercase ) lowercase__ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = self.get_dummy_inputs(__lowercase ) inputs.update({"image_embeds": None} ) lowercase__ = sd_pipe(**__lowercase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self : List[str] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__lowercase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase): def A__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : List[Any] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Any ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Optional[int] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) lowercase__ = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = pipe( __lowercase, "anime turtle", num_inference_steps=2, output_type="np", ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
413
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _snake_case : Any = {"UserAgent": UserAgent().random} def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = script.contents[0] __snake_case : List[str] = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class a : """simple docstring""" def __init__( self : Any , lowerCamelCase : str ) -> Tuple: __snake_case : Union[str, Any] = F'https://www.instagram.com/{username}/' __snake_case : Dict = self.get_json() def __snake_case ( self : List[Any] ) -> dict: __snake_case : Optional[Any] = requests.get(self.url , headers=lowerCamelCase ).text __snake_case : Tuple = BeautifulSoup(lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self : List[str] ) -> str: return F'{self.fullname} ({self.username}) is {self.biography}' @property def __snake_case ( self : Optional[int] ) -> str: return self.user_data["username"] @property def __snake_case ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __snake_case ( self : Union[str, Any] ) -> str: return self.user_data["biography"] @property def __snake_case ( self : Union[str, Any] ) -> str: return self.user_data["business_email"] @property def __snake_case ( self : List[Any] ) -> str: return self.user_data["external_url"] @property def __snake_case ( self : Optional[Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __snake_case ( self : Dict ) -> int: return self.user_data["edge_follow"]["count"] @property def __snake_case ( self : List[Any] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __snake_case ( self : List[str] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __snake_case ( self : Tuple ) -> bool: return self.user_data["is_verified"] @property def __snake_case ( self : Union[str, Any] ) -> bool: return self.user_data["is_private"] def lowerCAmelCase_ ( __lowerCamelCase = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions __snake_case : List[str] = InstagramUser(__lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Dict = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
715
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case : Dict = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class a (unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase : Optional[int] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __snake_case ( self : str ) -> str: __snake_case : Dict = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) __snake_case : Optional[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}] ) __snake_case : Any = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) __snake_case : int = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) __snake_case : List[str] = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior __snake_case : Dict = text_classifier("This is great !" , return_all_scores=lowerCamelCase ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}] ) __snake_case : Any = text_classifier("This is great !" , return_all_scores=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) __snake_case : Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) __snake_case : Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def __snake_case ( self : Optional[int] ) -> List[Any]: import torch __snake_case : Dict = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) __snake_case : Optional[int] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def __snake_case ( self : Any ) -> Tuple: __snake_case : List[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) __snake_case : str = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def __snake_case ( self : int ) -> int: __snake_case : Dict = pipeline("text-classification" ) __snake_case : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) __snake_case : int = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) __snake_case : str = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def __snake_case ( self : List[Any] ) -> str: __snake_case : Optional[Any] = pipeline("text-classification" , framework="tf" ) __snake_case : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) __snake_case : Optional[int] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) __snake_case : Any = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def __snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : Union[str, Any] = TextClassificationPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ) -> str: __snake_case : Tuple = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __snake_case : Any = "HuggingFace is in" __snake_case : Tuple = text_classifier(lowerCamelCase ) self.assertEqual(nested_simplify(lowerCamelCase ) , [{"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __snake_case : Union[str, Any] = ["HuggingFace is in ", "Paris is in France"] __snake_case : Union[str, Any] = text_classifier(lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}, {"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __snake_case : str = text_classifier(lowerCamelCase , top_k=lowerCamelCase ) __snake_case : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCamelCase ) , [[{"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}] * N, [{"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}] * N] , ) __snake_case : Optional[int] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __snake_case : Optional[Any] = text_classifier(lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ) , {"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __snake_case : Any = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCamelCase ): text_classifier(lowerCamelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __snake_case : List[Any] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"label": ANY(lowerCamelCase ), "score": ANY(lowerCamelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
203
0
'''simple docstring''' import math def __lowerCamelCase ( A__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [True] * n UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase = i * 2 while index < n: UpperCamelCase = False UpperCamelCase = index + i UpperCamelCase = [2] for i in range(3 , __a , 2 ): if is_prime[i]: primes.append(__a ) return primes def __lowerCamelCase ( A__ = 999_966_663_333 ) -> int: """simple docstring""" UpperCamelCase = math.floor(math.sqrt(__a ) ) + 100 UpperCamelCase = prime_sieve(__a ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase = primes[prime_index + 1] UpperCamelCase = last_prime**2 UpperCamelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
430
from manim import * class lowercase_ (lowercase__ ): def __UpperCamelCase ( self) -> List[Any]: a__ =Rectangle(height=0.5 , width=0.5) a__ =Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ =[mem.copy() for i in range(6)] a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) a__ =Text('CPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(4)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('GPU' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Model' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) a__ =[] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a__ =Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) cpu_targs.append(lowercase_) a__ =[mem.copy() for i in range(6)] a__ =VGroup(*lowercase_).arrange(lowercase_ , buff=0) a__ =Text('Loaded Checkpoint' , font_size=24) a__ =Group(lowercase_ , lowercase_).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4) checkpoint.move_to([3, 0.5, 0]) a__ =Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ =MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) a__ =MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) a__ =MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_) , Write(lowercase_)) self.play(Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) a__ =[] a__ =[] for i, rect in enumerate(lowercase_): a__ =fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) first_animations.append(GrowFromCenter(lowercase_ , run_time=1)) a__ =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(*lowercase_) self.wait()
20
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->str: if number > 0: raise ValueError('input must be a negative integer' ) a__: Dict = len(bin(_SCREAMING_SNAKE_CASE )[3:] ) a__: List[str] = bin(abs(_SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] a__: Any = ( ( '1' + '0' * (binary_number_length - len(_SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
217
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( __lowerCAmelCase ): @staticmethod @abstractmethod def lowerCamelCase_ ( lowercase) -> int: '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError()
217
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __a : List[str] = TypeVar('''T''') class UpperCAmelCase( Generic[T] ): """simple docstring""" a : deque[T] # Cache store of keys a : set[T] # References of the keys in cache a : int = 1_0 # Maximum capacity of cache def __init__( self , lowerCamelCase ) -> None: """simple docstring""" lowercase__ : Optional[Any] = deque() lowercase__ : Dict = set() if not n: lowercase__ : List[str] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : Optional[int] = n def __a ( self , lowerCamelCase ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Tuple = self.dq_store.pop() self.key_reference.remove(lowerCamelCase ) else: self.dq_store.remove(lowerCamelCase ) self.dq_store.appendleft(lowerCamelCase ) self.key_reference.add(lowerCamelCase ) def __a ( self ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCamelCase ) def __repr__( self ) -> str: """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __a : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a : int = logging.get_logger(__name__) __a : Tuple = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a : Optional[Any] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __a : Any = {'''facebook/blenderbot_small-90M''': 5_1_2} def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : str = set() lowercase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Any = char lowercase__ : int = set(SCREAMING_SNAKE_CASE_ ) return pairs class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Tuple = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="__start__" , lowerCamelCase="__end__" , lowerCamelCase="__unk__" , lowerCamelCase="__null__" , **lowerCamelCase , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowercase__ : Optional[int] = json.load(lowerCamelCase ) lowercase__ : List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: lowercase__ : Any = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in merges] lowercase__ : Any = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowercase__ : Dict = {} @property def __a ( self ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ : str = re.sub("([.,!?()])" , r" \1" , lowerCamelCase ) lowercase__ : Dict = re.sub("(')" , r" \1 " , lowerCamelCase ) lowercase__ : Union[str, Any] = re.sub(r"\s{2,}" , " " , lowerCamelCase ) if "\n" in token: lowercase__ : Optional[Any] = token.replace("\n" , " __newln__" ) lowercase__ : Optional[Any] = token.split(" " ) lowercase__ : Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase ): continue lowercase__ : Union[str, Any] = token.lower() lowercase__ : Any = tuple(lowerCamelCase ) lowercase__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowercase__ : Optional[int] = get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: lowercase__ : str = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : int = bigram lowercase__ : str = [] lowercase__ : int = 0 while i < len(lowerCamelCase ): try: lowercase__ : List[str] = word.index(lowerCamelCase , lowerCamelCase ) new_word.extend(word[i:j] ) lowercase__ : Tuple = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : int = tuple(lowerCamelCase ) lowercase__ : Tuple = new_word if len(lowerCamelCase ) == 1: break else: lowercase__ : Optional[Any] = get_pairs(lowerCamelCase ) lowercase__ : Tuple = "@@ ".join(lowerCamelCase ) lowercase__ : Optional[Any] = word[:-4] lowercase__ : int = word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def __a ( self , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Dict = [] lowercase__ : Dict = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def __a ( self , lowerCamelCase ) -> int: """simple docstring""" lowercase__ : Optional[Any] = token.lower() return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" return self.decoder.get(lowerCamelCase , self.unk_token ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" lowercase__ : Optional[Any] = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) lowercase__ : List[Any] = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase__ : str = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file
298
0
'''simple docstring''' def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : List[str] = 1 __A : Union[str, Any] = 2 while i * i <= n: __A : List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowercase (): '''simple docstring''' __A : Optional[Any] = 1 __A : Dict = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE ) > 500: break return t_num if __name__ == "__main__": print(solution())
111
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = 'beit' def __init__( self , lowerCamelCase=8192 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=[3, 5, 7, 11] , lowerCamelCase=[1, 2, 3, 6] , lowerCamelCase=True , lowerCamelCase=0.4 , lowerCamelCase=256 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=255 , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __A : int = vocab_size __A : Tuple = hidden_size __A : List[str] = num_hidden_layers __A : Optional[int] = num_attention_heads __A : Dict = intermediate_size __A : Optional[int] = hidden_act __A : str = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = initializer_range __A : List[str] = layer_norm_eps __A : str = image_size __A : Optional[int] = patch_size __A : List[Any] = num_channels __A : List[str] = use_mask_token __A : Union[str, Any] = use_absolute_position_embeddings __A : Optional[int] = use_relative_position_bias __A : int = use_shared_relative_position_bias __A : int = layer_scale_init_value __A : Union[str, Any] = drop_path_rate __A : Dict = use_mean_pooling # decode head attributes (semantic segmentation) __A : List[str] = out_indices __A : str = pool_scales # auxiliary head attributes (semantic segmentation) __A : List[str] = use_auxiliary_head __A : Tuple = auxiliary_loss_weight __A : Dict = auxiliary_channels __A : Tuple = auxiliary_num_convs __A : List[str] = auxiliary_concat_input __A : int = semantic_loss_ignore_index class __magic_name__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase__ = version.parse('1.11' ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 1E-4
111
1
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] = 1.0 , UpperCamelCase_ : int = None , ): super().__init__() lowerCAmelCase : Tuple = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : int = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : Any = name def __call__( self : List[str] , UpperCamelCase_ : Union[str, Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Optional[int] = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : int = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : Optional[int] = global_step_float / warmup_steps_float lowerCAmelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : List[str] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowercase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowercase , ) if num_warmup_steps: lowerCAmelCase : Tuple = WarmUp( initial_learning_rate=__lowercase , decay_schedule_fn=__lowercase , warmup_steps=__lowercase , ) if weight_decay_rate > 0.0: lowerCAmelCase : Union[str, Any] = AdamWeightDecay( learning_rate=__lowercase , weight_decay_rate=__lowercase , beta_a=__lowercase , beta_a=__lowercase , epsilon=__lowercase , clipnorm=__lowercase , global_clipnorm=__lowercase , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__lowercase , ) else: lowerCAmelCase : Dict = tf.keras.optimizers.Adam( learning_rate=__lowercase , beta_a=__lowercase , beta_a=__lowercase , epsilon=__lowercase , clipnorm=__lowercase , global_clipnorm=__lowercase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( __A ): def __init__( self : List[str] , UpperCamelCase_ : Any = 0.001 , UpperCamelCase_ : Optional[Any] = 0.9 , UpperCamelCase_ : str = 0.999 , UpperCamelCase_ : Union[str, Any] = 1E-7 , UpperCamelCase_ : str = False , UpperCamelCase_ : Optional[Any] = 0.0 , UpperCamelCase_ : str = None , UpperCamelCase_ : List[Any] = None , UpperCamelCase_ : Any = "AdamWeightDecay" , **UpperCamelCase_ : Optional[int] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Dict = weight_decay_rate lowerCAmelCase : Union[str, Any] = include_in_weight_decay lowerCAmelCase : str = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Tuple = {'WarmUp': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str=None , **UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : List[str] = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Dict = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=None ): lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]=None ): lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( __A ): def __init__( self : List[str] ): lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = None @property def lowerCamelCase__ ( self : Union[str, Any] ): if self._accum_steps is None: lowerCAmelCase : int = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Union[str, Any] , UpperCamelCase_ : Tuple ): if not self._gradients: lowerCAmelCase : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Optional[Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :List[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Optional[Any] = use_input_mask lowerCAmelCase__ :str = use_token_type_ids lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :Any = vocab_size lowerCAmelCase__ :Union[str, Any] = hidden_size lowerCAmelCase__ :List[str] = num_hidden_layers lowerCAmelCase__ :Optional[int] = num_attention_heads lowerCAmelCase__ :Tuple = intermediate_size lowerCAmelCase__ :Union[str, Any] = hidden_act lowerCAmelCase__ :int = hidden_dropout_prob lowerCAmelCase__ :str = attention_probs_dropout_prob lowerCAmelCase__ :List[Any] = max_position_embeddings lowerCAmelCase__ :str = type_vocab_size lowerCAmelCase__ :List[str] = type_sequence_label_size lowerCAmelCase__ :int = initializer_range lowerCAmelCase__ :List[str] = num_labels lowerCAmelCase__ :List[Any] = num_choices lowerCAmelCase__ :int = relative_attention lowerCAmelCase__ :Optional[Any] = position_biased_input lowerCAmelCase__ :Union[str, Any] = pos_att_type lowerCAmelCase__ :Optional[Any] = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Union[str, Any] = None if self.use_input_mask: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ :Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Any = None lowerCAmelCase__ :int = None lowerCAmelCase__ :str = None if self.use_labels: lowerCAmelCase__ :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.get_config() lowerCAmelCase__ :List[Any] = 3_0_0 return config def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :str = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = self.num_labels lowerCAmelCase__ :List[str] = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.num_labels lowerCAmelCase__ :int = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Optional[Any] = config_and_inputs lowerCAmelCase__ :Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ :List[str] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :str = True __magic_name__ :Tuple = False __magic_name__ :int = False __magic_name__ :Optional[int] = False __magic_name__ :List[str] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = DebertaModelTester(self ) lowerCAmelCase__ :Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :Dict = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase__ :Any = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :Any = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
93
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=lowerCAmelCase , ) assert hasattr(self , '''env''' ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Tuple: # configuration for running training on smdistributed Model Parallel SCREAMING_SNAKE_CASE__: Optional[Any]= { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE__: Dict= { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE__: Optional[Any]= {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE__: Dict= '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase , py_version='''py36''' , ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: TrainingJobAnalytics(lowerCAmelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: # create estimator SCREAMING_SNAKE_CASE__: List[str]= self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__: Any= TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__: Optional[int]= list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE__: Optional[int]= list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__: List[Any]= ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowerCAmelCase )
64
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np snake_case = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 snake_case = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return sum((va - va) ** 2 for va, va in zip(lowercase_, lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase_ ( ): from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])', number=1_0_0_0_0, globals=globals(), ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])', number=1_0_0_0_0, globals=globals(), ) ) benchmark()
720
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case = sys.version_info >= (3, 1_0) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ): return field(default_factory=lambda: default, metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : str UpperCAmelCase_ : bool @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int = 42 UpperCAmelCase_ : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[bool] = None class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Tuple = "titi" UpperCAmelCase_ : str = "toto" class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Dict = "titi" UpperCAmelCase_ : Tuple = "toto" UpperCAmelCase_ : Any = 42 @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : BasicEnum = "toto" def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : MixedTypeEnum = "toto" def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[float] = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[List[str]] = list_field(default=[] ) UpperCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = list_field(default=[] ) UpperCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) UpperCAmelCase_ : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = field() UpperCAmelCase_ : str = field() UpperCAmelCase_ : BasicEnum = field() def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : "BasicEnum" = field() UpperCAmelCase_ : "Optional[bool]" = None UpperCAmelCase_ : "str" = field(default="toto" , metadata={"help": "help message"} ) UpperCAmelCase_ : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : bool | None = None @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int | None = None UpperCAmelCase_ : float | None = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : str | None = None UpperCAmelCase_ : list[str] | None = list_field(default=[] ) UpperCAmelCase_ : list[int] | None = list_field(default=[] ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase__ ) and yy.get('choices' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase__ ) , yy['type'](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--bar' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--baz' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--flag' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) expected.add_argument('--baz' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase__ , dest='baz' ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) SCREAMING_SNAKE_CASE = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A ( self ) -> Dict: """simple docstring""" @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Literal["titi", "toto", 42] = "toto" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--bar' , default=lowercase__ , type=lowercase__ , help='help message' ) expected.add_argument('--baz' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase__ ) SCREAMING_SNAKE_CASE = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--required_str' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } SCREAMING_SNAKE_CASE = parser.parse_dict(lowercase__ )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_json' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_yaml' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
406
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=2 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=36 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=6 , __UpperCAmelCase=6 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=1_000 , ): SCREAMING_SNAKE_CASE_ : int =parent SCREAMING_SNAKE_CASE_ : str =batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] =num_channels SCREAMING_SNAKE_CASE_ : Optional[int] =image_size SCREAMING_SNAKE_CASE_ : Dict =patch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =text_seq_length SCREAMING_SNAKE_CASE_ : int =is_training SCREAMING_SNAKE_CASE_ : int =use_input_mask SCREAMING_SNAKE_CASE_ : str =use_token_type_ids SCREAMING_SNAKE_CASE_ : str =use_labels SCREAMING_SNAKE_CASE_ : Any =vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE_ : str =num_hidden_layers SCREAMING_SNAKE_CASE_ : int =num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int =max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] =type_vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] =initializer_range SCREAMING_SNAKE_CASE_ : Tuple =coordinate_size SCREAMING_SNAKE_CASE_ : int =shape_size SCREAMING_SNAKE_CASE_ : List[str] =num_labels SCREAMING_SNAKE_CASE_ : Any =num_choices SCREAMING_SNAKE_CASE_ : str =scope SCREAMING_SNAKE_CASE_ : Tuple =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE_ : Optional[Any] =text_seq_length SCREAMING_SNAKE_CASE_ : int =(image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE_ : List[str] =self.text_seq_length + self.image_seq_length def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[str] =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : Any =bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : List[str] =t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : Dict =bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : Dict =bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : Any =t SCREAMING_SNAKE_CASE_ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : str =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] =random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE_ : str =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] =None SCREAMING_SNAKE_CASE_ : List[str] =None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict =model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str =model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE_ : Dict =model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE_ : Optional[int] =model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict =self.num_labels SCREAMING_SNAKE_CASE_ : Dict =LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict =model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] =self.num_labels SCREAMING_SNAKE_CASE_ : Any =LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] =model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] =model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : Dict =config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] ={ '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' _lowercase = False _lowercase = False _lowercase = False _lowercase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _lowercase = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return True def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Optional[int] =copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict ={ k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: SCREAMING_SNAKE_CASE_ : Dict =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __lowerCamelCase ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCamelCase ( self ): return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.default_image_processor SCREAMING_SNAKE_CASE_ : str =prepare_img() SCREAMING_SNAKE_CASE_ : int =image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE_ : Any =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE_ : Tuple =model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits SCREAMING_SNAKE_CASE_ : str =torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] =torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
220
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCamelCase__ : List[str] = {"UserAgent": UserAgent().random} def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = script.contents[0] SCREAMING_SNAKE_CASE_ = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : def __init__( self , _A): SCREAMING_SNAKE_CASE_ = f"""https://www.instagram.com/{username}/""" SCREAMING_SNAKE_CASE_ = self.get_json() def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = requests.get(self.url , headers=_A).text SCREAMING_SNAKE_CASE_ = BeautifulSoup(_A , 'html.parser').find_all('script') try: return extract_user_profile(scripts[4]) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3]) def __repr__( self): return f"""{self.__class__.__name__}('{self.username}')""" def __str__( self): return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def lowerCAmelCase__ ( self): return self.user_data["username"] @property def lowerCAmelCase__ ( self): return self.user_data["full_name"] @property def lowerCAmelCase__ ( self): return self.user_data["biography"] @property def lowerCAmelCase__ ( self): return self.user_data["business_email"] @property def lowerCAmelCase__ ( self): return self.user_data["external_url"] @property def lowerCAmelCase__ ( self): return self.user_data["edge_followed_by"]["count"] @property def lowerCAmelCase__ ( self): return self.user_data["edge_follow"]["count"] @property def lowerCAmelCase__ ( self): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCAmelCase__ ( self): return self.user_data["profile_pic_url_hd"] @property def lowerCAmelCase__ ( self): return self.user_data["is_verified"] @property def lowerCAmelCase__ ( self): return self.user_data["is_private"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str = "github" ): """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE_ = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : List[Any] = InstagramUser("github") print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
620
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCamelCase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCAmelCase : Optional[datasets.Features] = None __lowerCAmelCase : str = "utf-8" __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : Optional[str] = None __lowerCAmelCase : bool = True # deprecated __lowerCAmelCase : Optional[int] = None # deprecated __lowerCAmelCase : int = 10 << 20 # 10MB __lowerCAmelCase : Optional[bool] = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCAmelCase : int = JsonConfig def lowerCAmelCase__ ( self): if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def lowerCAmelCase__ ( self , _A): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(_A , (str, list, tuple)): SCREAMING_SNAKE_CASE_ = data_files if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files})) return splits def lowerCAmelCase__ ( self , _A): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(_A).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(_A , self.config.features.arrow_schema) return pa_table def lowerCAmelCase__ ( self , _A): for file_idx, file in enumerate(itertools.chain.from_iterable(_A)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ = json.load(_A) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple)): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ = {col: [row.get(_A) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(_A) yield file_idx, self._cast_table(_A) # If the file has one json object per line else: with open(_A , 'rb') as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=_A).encode('utf-8') try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid) and "straddling" not in str(_A) or block_size > len(_A) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ = json.load(_A) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ = {col: [row.get(_A) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(_A) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(_A) break else: logger.error(f"""Failed to read file '{file}' with error {type(_A)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A) batch_idx += 1
620
1
from math import ceil def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ = 10_01 ): lowerCamelCase_ : List[str] = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): lowerCamelCase_ : Tuple = 2 * i + 1 lowerCamelCase_ : List[Any] = 2 * i lowerCamelCase_ : List[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowercase : Any =int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
364
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowercase : Dict =HfApi() _lowercase : str ={} # fmt: off _lowercase : Union[str, Any] =torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowercase : Optional[Any] =torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowercase : Union[str, Any] =torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowercase : Optional[Any] =torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowercase : Tuple =torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowercase : int =torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowercase : Tuple =torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowercase : Optional[int] =torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowercase : List[Any] =torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowercase : List[Any] =torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowercase : int =torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowercase : List[Any] =torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowercase : Any =torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowercase : List[str] =torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowercase : Tuple =torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowercase : Optional[int] =api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowercase : str ="""/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): _lowercase : str =UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: _lowercase : Dict =UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowercase : Optional[Any] =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowercase : Dict =torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowercase : Union[str, Any] =model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
364
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ = Features({'''audio''': Audio()} ) UpperCAmelCase__ = Features({'''transcription''': Value('''string''' )} ) UpperCAmelCase__ = "audio" UpperCAmelCase__ = "transcription" def snake_case__ ( self : Optional[Any] , lowercase__ : List[str] ) ->List[str]: '''simple docstring''' if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) _UpperCamelCase : Tuple = copy.deepcopy(self ) _UpperCamelCase : Dict = self.input_schema.copy() _UpperCamelCase : Union[str, Any] = features[self.audio_column] _UpperCamelCase : Dict = input_schema return task_template @property def snake_case__ ( self : Tuple ) ->Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
204
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Any = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] =logging.get_logger(__name__) a__ : Optional[int] ='''▁''' a__ : str ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a__ : Dict ={ '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a__ : int ={ '''facebook/s2t-small-librispeech-asr''': 1_024, } a__ : List[Any] =['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a__ : int ={'''mustc''': MUSTC_LANGS} class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple =MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__( self : Union[str, Any] , __A : int , __A : Optional[Any] , __A : Dict="<s>" , __A : List[str]="</s>" , __A : Optional[int]="<pad>" , __A : Optional[Any]="<unk>" , __A : Tuple=False , __A : Union[str, Any]=False , __A : int=None , __A : List[str]=None , __A : Optional[Dict[str, Any]] = None , **__A : Dict , ): __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , pad_token=__A , do_upper_case=__A , do_lower_case=__A , tgt_lang=__A , lang_codes=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __UpperCamelCase = do_upper_case __UpperCamelCase = do_lower_case __UpperCamelCase = load_json(__A ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} __UpperCamelCase = spm_file __UpperCamelCase = load_spm(__A , self.sp_model_kwargs ) if lang_codes is not None: __UpperCamelCase = lang_codes __UpperCamelCase = LANGUAGES[lang_codes] __UpperCamelCase = [f'''<lang:{lang}>''' for lang in self.langs] __UpperCamelCase = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} __UpperCamelCase = self.lang_tokens __UpperCamelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCamelCase = {} @property def _lowerCamelCase ( self : str ): return len(self.encoder ) @property def _lowerCamelCase ( self : Dict ): return self._tgt_lang @tgt_lang.setter def _lowerCamelCase ( self : Optional[int] , __A : Optional[Any] ): __UpperCamelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : str ): __UpperCamelCase = self.lang_code_to_id[tgt_lang] __UpperCamelCase = [lang_code_id] def _lowerCamelCase ( self : Any , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def _lowerCamelCase ( self : Dict , __A : Optional[Any] ): return self.encoder.get(__A , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : Optional[int] , __A : int ): return self.decoder.get(__A , self.unk_token ) def _lowerCamelCase ( self : str , __A : List[str] ): __UpperCamelCase = [] __UpperCamelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCamelCase = self.sp_model.decode(__A ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCamelCase = [] else: current_sub_tokens.append(__A ) __UpperCamelCase = self.sp_model.decode(__A ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _lowerCamelCase ( self : str , __A : Any , __A : Optional[Any]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) __UpperCamelCase = [1] * len(self.prefix_tokens ) __UpperCamelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self : List[str] , __A : Dict ): __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): __UpperCamelCase = Path(__A ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' __UpperCamelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __A ) if os.path.abspath(self.spm_file ) != os.path.abspath(__A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __A ) elif not os.path.isfile(self.spm_file ): with open(__A , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__A ) return (str(__A ), str(__A )) def lowercase__ ( __lowercase : str , __lowercase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" __UpperCamelCase = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def lowercase__ ( __lowercase : str ) -> Union[Dict, List]: """simple docstring""" with open(__lowercase , 'r' ) as f: return json.load(__lowercase ) def lowercase__ ( __lowercase : Any , __lowercase : str ) -> None: """simple docstring""" with open(__lowercase , 'w' ) as f: json.dump(__lowercase , __lowercase , indent=2 )
399
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] ={ '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] =['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] =['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] =[ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str =[ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
399
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """dpt""" def __init__( self , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=3_8_4 , lowerCamelCase_=1_6 , lowerCamelCase_=3 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=[2, 5, 8, 1_1] , lowerCamelCase_="project" , lowerCamelCase_=[4, 2, 1, 0.5] , lowerCamelCase_=[9_6, 1_9_2, 3_8_4, 7_6_8] , lowerCamelCase_=2_5_6 , lowerCamelCase_=-1 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=0.4 , lowerCamelCase_=2_5_5 , lowerCamelCase_=0.1 , lowerCamelCase_=[1, 1_0_2_4, 2_4, 2_4] , lowerCamelCase_=[0, 1] , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Any: super().__init__(**lowerCamelCase_ ) _a : Any = hidden_size _a : str = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) _a : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _a : List[Any] = BitConfig(**lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) _a : Optional[Any] = BitConfig(**lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): _a : Union[str, Any] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _a : Tuple = backbone_featmap_shape _a : Dict = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: _a : List[Any] = None _a : List[str] = None _a : Optional[Any] = [] _a : int = num_hidden_layers _a : Dict = num_attention_heads _a : Tuple = intermediate_size _a : Optional[int] = hidden_act _a : List[Any] = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Union[str, Any] = initializer_range _a : Union[str, Any] = layer_norm_eps _a : List[Any] = image_size _a : Optional[Any] = patch_size _a : Optional[Any] = num_channels _a : Union[str, Any] = qkv_bias _a : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) _a : Dict = readout_type _a : Optional[int] = reassemble_factors _a : Tuple = neck_hidden_sizes _a : List[str] = fusion_hidden_size _a : List[str] = head_in_index _a : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _a : List[str] = use_auxiliary_head _a : str = auxiliary_loss_weight _a : Dict = semantic_loss_ignore_index _a : int = semantic_classifier_dropout def __UpperCamelCase ( self ) -> List[str]: _a : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _a : Any = self.backbone_config.to_dict() _a : Optional[Any] = self.__class__.model_type return output
424
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : List[str] = Mock() _a : str = conn, Mock() _a : Union[str, Any] = iter([1, None] ) _a : List[str] = lambda A : next(A ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
424
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__ ( _UpperCAmelCase ): a_ ="""openai/whisper-base""" a_ =( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) a_ ="""transcriber""" a_ =WhisperProcessor a_ =WhisperForConditionalGeneration a_ =["""audio"""] a_ =["""text"""] def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' return self.pre_processor(__UpperCAmelCase , return_tensors="pt" ).input_features def UpperCAmelCase ( self , __UpperCAmelCase )-> Any: '''simple docstring''' return self.model.generate(inputs=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0]
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''CLIPFeatureExtractor'''] a_ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
339
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = """sequence-classification""" def __init__( self : List[Any] , __snake_case : List[Any] )-> Any: if type(__snake_case ) == dict: snake_case = Namespace(**__snake_case ) snake_case = glue_output_modes[hparams.task] snake_case = glue_tasks_num_labels[hparams.task] super().__init__(__snake_case , __snake_case , self.mode ) def lowerCAmelCase ( self : int , **__snake_case : Tuple )-> List[Any]: return self.model(**__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] )-> List[str]: snake_case = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None snake_case = self(**__snake_case ) snake_case = outputs[0] snake_case = self.trainer.lr_schedulers[0]["""scheduler"""] snake_case = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: snake_case = self.hparams snake_case = processors[args.task]() snake_case = processor.get_labels() for mode in ["train", "dev"]: snake_case = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __snake_case ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) snake_case = convert_examples_to_features( __snake_case , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __snake_case ) torch.save(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] = False )-> List[str]: snake_case = """dev""" if mode == """test""" else mode snake_case = self._feature_file(__snake_case ) logger.info("""Loading features from cached file %s""" , __snake_case ) snake_case = torch.load(__snake_case ) snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case , shuffle=__snake_case , ) def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] )-> List[Any]: snake_case = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None snake_case = self(**__snake_case ) snake_case , snake_case = outputs[:2] snake_case = logits.detach().cpu().numpy() snake_case = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: snake_case = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() snake_case = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case = np.argmax(__snake_case , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case = np.squeeze(__snake_case ) snake_case = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) snake_case = [[] for _ in range(out_label_ids.shape[0] )] snake_case = [[] for _ in range(out_label_ids.shape[0] )] snake_case = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __snake_case , __snake_case )} snake_case = dict(results.items() ) snake_case = results return ret, preds_list, out_label_list def lowerCAmelCase ( self : Dict , __snake_case : List[str] )-> int: snake_case , snake_case , snake_case = self._eval_end(__snake_case ) snake_case = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase ( self : List[str] , __snake_case : int )-> Any: snake_case , snake_case , snake_case = self._eval_end(__snake_case ) snake_case = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase ( __snake_case : str , __snake_case : Dict )-> int: BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=__snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__snake_case , required=__snake_case , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__snake_case , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def __lowerCamelCase ( ) -> Optional[Any]: snake_case = argparse.ArgumentParser() add_generic_args(_UpperCamelCase , os.getcwd() ) snake_case = GLUETransformer.add_model_specific_args(_UpperCamelCase , os.getcwd() ) snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case = GLUETransformer(_UpperCamelCase ) snake_case = generic_train(_UpperCamelCase , _UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=_UpperCamelCase ) ) snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCamelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : dict ) -> set: snake_case = set() # edges = list of graph's edges snake_case = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case , snake_case = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def __lowerCamelCase ( __lowerCAmelCase : dict ) -> set: snake_case = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
517
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class snake_case_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Tuple ) ->Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : Dict ) ->List[str]: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCamelCase ) snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = generator.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case__( self : List[str] ) ->Tuple: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images snake_case_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : Dict=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=50 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=None , ) ->Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = use_labels A__ = scope def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] , ) ->Dict: '''simple docstring''' A__ = BertGenerationEncoder(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' A__ = True A__ = BertGenerationEncoder(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] , ) ->Any: '''simple docstring''' A__ = True A__ = True A__ = BertGenerationDecoder(config=UpperCAmelCase__).to(UpperCAmelCase__).eval() # first forward pass A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1) A__ = torch.cat([input_mask, next_mask] , dim=-1) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1]).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : List[str] , ) ->List[Any]: '''simple docstring''' A__ = BertGenerationDecoder(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase__ = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = BertGenerationEncoderTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = '''bert''' self.model_tester.create_and_check_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' A__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') self.assertIsNotNone(UpperCAmelCase__) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') A__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): A__ = model(UpperCAmelCase__)[0] A__ = torch.Size([1, 8, 1_024]) self.assertEqual(output.shape , UpperCAmelCase__) A__ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4)) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') A__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): A__ = model(UpperCAmelCase__)[0] A__ = torch.Size([1, 8, 50_358]) self.assertEqual(output.shape , UpperCAmelCase__) A__ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4))
87
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCamelCase__ : def __init__( self ,A ,A ,A ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) UpperCAmelCase = img UpperCAmelCase = img.shape[1] UpperCAmelCase = img.shape[0] UpperCAmelCase = dst_width UpperCAmelCase = dst_height UpperCAmelCase = self.src_w / self.dst_w UpperCAmelCase = self.src_h / self.dst_h UpperCAmelCase = UpperCAmelCase = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def _UpperCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase = self.img[self.get_y(A )][self.get_x(A )] def _UpperCamelCase ( self ,A ): return int(self.ratio_x * x ) def _UpperCamelCase ( self ,A ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase = 800, 600 _UpperCamelCase = imread("""image_data/lena.jpg""", 1) _UpperCamelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
720
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE = '''CLIPImageProcessor''' SCREAMING_SNAKE_CASE = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,A=None ,A=None ,**A ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,A ,) UpperCAmelCase = kwargs.pop("""feature_extractor""" ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A ,A ) def __call__( self ,A=None ,A=None ,A=None ,**A ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase = self.tokenizer(A ,return_tensors=A ,**A ) if images is not None: UpperCAmelCase = self.image_processor(A ,return_tensors=A ,**A ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) ,tensor_type=A ) def _UpperCamelCase ( self ,*A ,**A ): return self.tokenizer.batch_decode(*A ,**A ) def _UpperCamelCase ( self ,*A ,**A ): return self.tokenizer.decode(*A ,**A ) @property def _UpperCamelCase ( self ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,A ,) return self.image_processor_class @property def _UpperCamelCase ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,A ,) return self.image_processor
74
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __a: Any = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __a: str = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __a: Union[str, Any] = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Dict = 0.0 for i, j in zip(_snake_case , _snake_case ): n_correct += 1.0 if math_equivalence.is_equiv(_snake_case , _snake_case ) else 0.0 lowercase__ : Union[str, Any] = n_correct / len(_snake_case ) return { "accuracy": accuracy, }
152
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Optional[Any] =KandinskyVaaInpaintPipeline UpperCamelCase__ : Optional[Any] =["image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCamelCase__ : Optional[int] =[ "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCamelCase__ : List[str] =[ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase__ : Dict =False @property def __a ( self :Any) -> Union[str, Any]: return 32 @property def __a ( self :List[str]) -> Dict: return 32 @property def __a ( self :str) -> List[str]: return self.time_input_dim @property def __a ( self :Any) -> Optional[Any]: return self.time_input_dim * 4 @property def __a ( self :Any) -> Union[str, Any]: return 100 @property def __a ( self :Any) -> List[str]: torch.manual_seed(0) UpperCAmelCase_ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ = UNetaDConditionModel(**_lowercase) return model @property def __a ( self :List[Any]) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self :List[str]) -> Tuple: torch.manual_seed(0) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs) return model def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , ) UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __a ( self :List[str] , _lowercase :Any , _lowercase :int=0) -> int: UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( _lowercase) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''').resize((256, 256)) # create mask UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa) UpperCAmelCase_ = 0 if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __a ( self :str) -> List[str]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_lowercase)) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(_lowercase) , return_dict=_lowercase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}") assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def __a ( self :Optional[Any]) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :Dict) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa) UpperCAmelCase_ = 0 UpperCAmelCase_ = '''a hat''' UpperCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(_lowercase) UpperCAmelCase_ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa) UpperCAmelCase_ = pipeline.to(_lowercase) pipeline.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ = pipeline( image=_lowercase , mask_image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase)
561
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class a_ ( _snake_case ): UpperCamelCase__ : torch.FloatTensor class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :str=3 , _lowercase :List[str]=3 , _lowercase :Dict=("DownEncoderBlock2D",) , _lowercase :Optional[Any]=(64,) , _lowercase :Optional[Any]=2 , _lowercase :Tuple=32 , _lowercase :int="silu" , _lowercase :Union[str, Any]=True , ) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = layers_per_block UpperCAmelCase_ = torch.nn.Convad( _lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) # down UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(_lowercase): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 UpperCAmelCase_ = get_down_block( _lowercase , num_layers=self.layers_per_block , in_channels=_lowercase , out_channels=_lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , ) self.down_blocks.append(_lowercase) # mid UpperCAmelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # out UpperCAmelCase_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowercase , eps=1E-6) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = 2 * out_channels if double_z else out_channels UpperCAmelCase_ = nn.Convad(block_out_channels[-1] , _lowercase , 3 , padding=1) UpperCAmelCase_ = False def __a ( self :Any , _lowercase :int) -> Optional[Any]: UpperCAmelCase_ = x UpperCAmelCase_ = self.conv_in(_lowercase) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowercase :Dict): def custom_forward(*_lowercase :Any): return module(*_lowercase) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0'''): for down_block in self.down_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase) , _lowercase , use_reentrant=_lowercase) # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , use_reentrant=_lowercase) else: for down_block in self.down_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase) , _lowercase) # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , _lowercase) else: # down for down_block in self.down_blocks: UpperCAmelCase_ = down_block(_lowercase) # middle UpperCAmelCase_ = self.mid_block(_lowercase) # post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = self.conv_act(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) return sample class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :Optional[Any]=3 , _lowercase :List[str]=3 , _lowercase :List[str]=("UpDecoderBlock2D",) , _lowercase :int=(64,) , _lowercase :Optional[Any]=2 , _lowercase :List[Any]=32 , _lowercase :Union[str, Any]="silu" , _lowercase :Optional[int]="group" , ) -> Any: super().__init__() UpperCAmelCase_ = layers_per_block UpperCAmelCase_ = nn.Convad( _lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = in_channels if norm_type == '''spatial''' else None # mid UpperCAmelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowercase , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowercase , temb_channels=_lowercase , ) # up UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowercase): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 UpperCAmelCase_ = get_up_block( _lowercase , num_layers=self.layers_per_block + 1 , in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowercase , resnet_groups=_lowercase , attention_head_dim=_lowercase , temb_channels=_lowercase , resnet_time_scale_shift=_lowercase , ) self.up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel # out if norm_type == "spatial": UpperCAmelCase_ = SpatialNorm(block_out_channels[0] , _lowercase) else: UpperCAmelCase_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowercase , eps=1E-6) UpperCAmelCase_ = nn.SiLU() UpperCAmelCase_ = nn.Convad(block_out_channels[0] , _lowercase , 3 , padding=1) UpperCAmelCase_ = False def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :List[Any]=None) -> Any: UpperCAmelCase_ = z UpperCAmelCase_ = self.conv_in(_lowercase) UpperCAmelCase_ = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowercase :str): def custom_forward(*_lowercase :Any): return module(*_lowercase) return custom_forward if is_torch_version('''>=''' , '''1.11.0'''): # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , _lowercase , use_reentrant=_lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowercase) , _lowercase , _lowercase , use_reentrant=_lowercase) else: # middle UpperCAmelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _lowercase , _lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowercase) , _lowercase , _lowercase) else: # middle UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase) UpperCAmelCase_ = sample.to(_lowercase) # up for up_block in self.up_blocks: UpperCAmelCase_ = up_block(_lowercase , _lowercase) # post-process if latent_embeds is None: UpperCAmelCase_ = self.conv_norm_out(_lowercase) else: UpperCAmelCase_ = self.conv_norm_out(_lowercase , _lowercase) UpperCAmelCase_ = self.conv_act(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) return sample class a_ ( nn.Module ): def __init__( self :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Dict , _lowercase :str , _lowercase :str=None , _lowercase :int="random" , _lowercase :Tuple=False , _lowercase :Tuple=True) -> Any: super().__init__() UpperCAmelCase_ = n_e UpperCAmelCase_ = vq_embed_dim UpperCAmelCase_ = beta UpperCAmelCase_ = legacy UpperCAmelCase_ = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) UpperCAmelCase_ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap))) UpperCAmelCase_ = self.used.shape[0] UpperCAmelCase_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase_ = self.re_embed UpperCAmelCase_ = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices.") else: UpperCAmelCase_ = n_e UpperCAmelCase_ = sane_index_shape def __a ( self :Dict , _lowercase :Union[str, Any]) -> Tuple: UpperCAmelCase_ = inds.shape assert len(_lowercase) > 1 UpperCAmelCase_ = inds.reshape(ishape[0] , -1) UpperCAmelCase_ = self.used.to(_lowercase) UpperCAmelCase_ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase_ = match.argmax(-1) UpperCAmelCase_ = match.sum(2) < 1 if self.unknown_index == "random": UpperCAmelCase_ = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: UpperCAmelCase_ = self.unknown_index return new.reshape(_lowercase) def __a ( self :str , _lowercase :int) -> Optional[Any]: UpperCAmelCase_ = inds.shape assert len(_lowercase) > 1 UpperCAmelCase_ = inds.reshape(ishape[0] , -1) UpperCAmelCase_ = self.used.to(_lowercase) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase_ = 0 # simply set to zero UpperCAmelCase_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowercase) return back.reshape(_lowercase) def __a ( self :Optional[int] , _lowercase :Union[str, Any]) -> Any: # reshape z -> (batch, height, width, channel) and flatten UpperCAmelCase_ = z.permute(0 , 2 , 3 , 1).contiguous() UpperCAmelCase_ = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase_ = torch.argmin(torch.cdist(_lowercase , self.embedding.weight) , dim=1) UpperCAmelCase_ = self.embedding(_lowercase).view(z.shape) UpperCAmelCase_ = None UpperCAmelCase_ = None # compute loss for embedding if not self.legacy: UpperCAmelCase_ = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: UpperCAmelCase_ = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients UpperCAmelCase_ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase_ = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: UpperCAmelCase_ = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis UpperCAmelCase_ = self.remap_to_used(_lowercase) UpperCAmelCase_ = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: UpperCAmelCase_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __a ( self :Any , _lowercase :Tuple , _lowercase :Optional[Any]) -> int: # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCAmelCase_ = indices.reshape(shape[0] , -1) # add batch axis UpperCAmelCase_ = self.unmap_to_all(_lowercase) UpperCAmelCase_ = indices.reshape(-1) # flatten again # get quantized latent vectors UpperCAmelCase_ = self.embedding(_lowercase) if shape is not None: UpperCAmelCase_ = z_q.view(_lowercase) # reshape back to match original input shape UpperCAmelCase_ = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class a_ ( _snake_case ): def __init__( self :Tuple , _lowercase :List[str] , _lowercase :Union[str, Any]=False) -> List[Any]: UpperCAmelCase_ = parameters UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_lowercase , 2 , dim=1) UpperCAmelCase_ = torch.clamp(self.logvar , -30.0 , 20.0) UpperCAmelCase_ = deterministic UpperCAmelCase_ = torch.exp(0.5 * self.logvar) UpperCAmelCase_ = torch.exp(self.logvar) if self.deterministic: UpperCAmelCase_ = UpperCAmelCase_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def __a ( self :Optional[Any] , _lowercase :Optional[torch.Generator] = None) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype UpperCAmelCase_ = randn_tensor( self.mean.shape , generator=_lowercase , device=self.parameters.device , dtype=self.parameters.dtype) UpperCAmelCase_ = self.mean + self.std * sample return x def __a ( self :Tuple , _lowercase :int=None) -> List[Any]: if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __a ( self :Optional[int] , _lowercase :str , _lowercase :Dict=[1, 2, 3]) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0]) UpperCAmelCase_ = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=_lowercase) def __a ( self :Optional[Any]) -> Optional[int]: return self.mean
561
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Any = MobileBertTokenizer _lowercase : Optional[Any] = MobileBertTokenizerFast _lowercase : List[Any] = True _lowercase : str = True _lowercase : Tuple = filter_non_english _lowercase : int = """google/mobilebert-uncased""" def _lowercase ( self ) -> Any: '''simple docstring''' super().setUp() a__ : Any =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a__ : Optional[Any] =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : List[str] ="UNwant\u00E9d,running" a__ : List[Any] ="unwanted, running" return input_text, output_text def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[str] =self.tokenizer_class(self.vocab_file ) a__ : List[str] =tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def _lowercase ( self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Tuple =self.get_tokenizer() a__ : str =self.get_rust_tokenizer() a__ : Optional[int] ="UNwant\u00E9d,running" a__ : Optional[int] =tokenizer.tokenize(lowerCAmelCase__ ) a__ : Dict =rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : Any =rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =self.get_rust_tokenizer() a__ : int =tokenizer.encode(lowerCAmelCase__ ) a__ : Union[str, Any] =rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # With lower casing a__ : Optional[Any] =self.get_tokenizer(do_lower_case=lowerCAmelCase__ ) a__ : Optional[Any] =self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__ ) a__ : Tuple ="UNwant\u00E9d,running" a__ : Optional[int] =tokenizer.tokenize(lowerCAmelCase__ ) a__ : Tuple =rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : Dict =rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =self.get_rust_tokenizer() a__ : Optional[int] =tokenizer.encode(lowerCAmelCase__ ) a__ : Optional[Any] =rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[Any] =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : int =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Optional[int] =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Dict =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Any =BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Any =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] a__ : Union[str, Any] ={} for i, token in enumerate(lowerCAmelCase__ ): a__ : Dict =i a__ : str =WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowercase ( self ) -> Any: '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowercase ( self ) -> str: '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[str] =self.get_tokenizer() a__ : Optional[int] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : str =self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) a__ : Union[str, Any] =tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase__ ) a__ : Any =tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase__ ) a__ : Union[str, Any] =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) a__ : Tuple =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def _lowercase ( self ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : Tuple =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : List[Any] =F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' a__ : Dict =tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) a__ : str =tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , "do_lower_case" ) else False a__ : str =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =["的", "人", "有"] a__ : List[str] ="".join(lowerCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] =True a__ : List[Any] =self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : List[Any] =tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : str =tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : Union[str, Any] =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) a__ : Optional[Any] =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] =False a__ : Any =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : List[str] =self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Union[str, Any] =tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : List[str] =tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : List[str] =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) a__ : str =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". a__ : Dict =[ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__ ) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
563
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = ["""input_values""", """attention_mask"""] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1_6_0_0_0 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 7_6_0_0 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> str: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple =do_normalize a__ : Tuple =return_attention_mask a__ : str =num_mel_bins a__ : Any =hop_length a__ : Optional[Any] =win_length a__ : int =win_function a__ : List[str] =frame_signal_scale a__ : List[str] =fmin a__ : str =fmax a__ : Dict =mel_floor a__ : Any =reduction_factor a__ : str =win_length * sampling_rate // 1_0_0_0 a__ : List[str] =hop_length * sampling_rate // 1_0_0_0 a__ : Optional[Any] =optimal_fft_length(self.sample_size ) a__ : Any =(self.n_fft // 2) + 1 a__ : List[Any] =window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) a__ : Optional[int] =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: a__ : List[Any] =np.array(lowerCAmelCase__ , np.intaa ) a__ : Optional[Any] =[] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): a__ : Tuple =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ : Any =padding_value normed_input_values.append(lowerCAmelCase__ ) else: a__ : Optional[int] =[(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _lowercase ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' a__ : Dict =spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: a__ : Dict =self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: a__ : str =None if audio_target is not None: a__ : int =self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: a__ : Any =inputs_target["input_values"] a__ : List[Any] =inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: a__ : Optional[int] =decoder_attention_mask return inputs def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' a__ : List[Any] =isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a__ : Optional[int] =is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : int =[np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): a__ : List[Any] =np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a__ : Optional[Any] =speech.astype(np.floataa ) # always return batch if not is_batched: a__ : Union[str, Any] =[speech] # needed to make pad() work on spectrogram inputs a__ : Union[str, Any] =self.feature_size # convert into correct format for padding if is_target: a__ : Dict =[self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] a__ : str =BatchFeature({"input_values": features} ) a__ : List[str] =self.num_mel_bins else: a__ : List[str] =BatchFeature({"input_values": speech} ) a__ : Optional[int] =self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Any =feature_size_hack # convert input values to correct format a__ : List[Any] =padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): a__ : Union[str, Any] =[np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a__ : str =[array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a__ : Optional[int] =input_values.astype(np.floataa ) # convert attention_mask to correct format a__ : str =padded_inputs.get("attention_mask" ) if attention_mask is not None: a__ : str =[np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a__ : Union[str, Any] =( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : List[Any] =self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: a__ : int =padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def _lowercase ( self ) -> Dict[str, Any]: '''simple docstring''' a__ : Optional[int] =super().to_dict() # Don't serialize these as they are derived from the other properties. a__ : Optional[Any] =["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
563
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github __lowerCamelCase = [ 'good first issue', 'feature request', 'wip', ] def a ( ) -> Any: __magic_name__: int = Github(os.environ["""GITHUB_TOKEN"""] ) __magic_name__: Tuple = g.get_repo("""huggingface/accelerate""" ) __magic_name__: List[str] = repo.get_issues(state="""open""" ) for issue in open_issues: __magic_name__: str = sorted([comment for comment in issue.get_comments()] , key=lambda __UpperCAmelCase : i.created_at , reverse=__UpperCAmelCase ) __magic_name__: Dict = comments[0] if len(__UpperCAmelCase ) > 0 else None __magic_name__: str = dt.utcnow() __magic_name__: List[str] = (current_time - issue.updated_at).days __magic_name__: Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
213
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '▁' __lowerCamelCase = {'vocab_file': 'sentencepiece.bpe.model'} __lowerCamelCase = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __lowerCamelCase = { 'facebook/mbart-large-50-one-to-many-mmt': 10_24, } # fmt: off __lowerCamelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["input_ids", "attention_mask"] UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : int , __snake_case : str , __snake_case : Tuple=None , __snake_case : Dict=None , __snake_case : Union[str, Any]="</s>" , __snake_case : int="</s>" , __snake_case : int="<s>" , __snake_case : Tuple="<unk>" , __snake_case : List[str]="<pad>" , __snake_case : Tuple="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __magic_name__: Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token __magic_name__: List[str] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__: str = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__snake_case , tgt_lang=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __magic_name__: str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) __magic_name__: Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__: str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__: List[Any] = 1 __magic_name__: List[Any] = len(self.sp_model ) __magic_name__: Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__snake_case ) } __magic_name__: Any = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__: Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__: Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__: Any = src_lang if src_lang is not None else """en_XX""" __magic_name__: Dict = self.lang_code_to_id[self._src_lang] __magic_name__: Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self : List[str] ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self : Optional[Any] ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : str ) -> None: __magic_name__: int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> Dict: __magic_name__: int = self.__dict__.copy() __magic_name__: List[str] = None return state def __setstate__( self : Any , __snake_case : Dict ) -> None: __magic_name__: List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__: Optional[Any] = {} __magic_name__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: __magic_name__: List[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : List[str] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowerCamelCase__ ( self : int , __snake_case : str ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__: Optional[Any] = self.sp_model.PieceToId(__snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[int] ) -> Union[str, Any]: __magic_name__: str = [] __magic_name__: Dict = """""" __magic_name__: Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token __magic_name__: Dict = True __magic_name__: Optional[Any] = [] else: current_sub_tokens.append(__snake_case ) __magic_name__: Union[str, Any] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__: Optional[int] = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: __magic_name__: str = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def lowerCamelCase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) __magic_name__: List[Any] = [1] * len(self.prefix_tokens ) __magic_name__: Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Any , __snake_case : Dict , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Tuple ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__: Union[str, Any] = src_lang __magic_name__: int = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) __magic_name__: Union[str, Any] = self.convert_tokens_to_ids(__snake_case ) __magic_name__: int = tgt_lang_id return inputs def lowerCamelCase__ ( self : List[Any] , __snake_case : List[str] , __snake_case : str = "en_XX" , __snake_case : Optional[List[str]] = None , __snake_case : str = "ro_RO" , **__snake_case : List[Any] , ) -> BatchEncoding: __magic_name__: List[Any] = src_lang __magic_name__: List[Any] = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Any ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Any , __snake_case : str ) -> None: __magic_name__: Any = self.lang_code_to_id[src_lang] __magic_name__: str = [self.cur_lang_code_id] __magic_name__: Tuple = [self.eos_token_id] def lowerCamelCase__ ( self : Tuple , __snake_case : str ) -> None: __magic_name__: int = self.lang_code_to_id[tgt_lang] __magic_name__: Dict = [self.cur_lang_code_id] __magic_name__: Optional[int] = [self.eos_token_id]
213
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _UpperCamelCase ( UpperCamelCase__ = "AAPL" ): UpperCAmelCase__ : Union[str, Any] = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCAmelCase__ : int = BeautifulSoup(requests.get(UpperCamelCase__ ).text , """html.parser""" ) UpperCAmelCase__ : Optional[Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
407
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a__ = get_tests_dir('''fixtures/dummy-config.json''') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : str ) -> Dict: """simple docstring""" __UpperCamelCase : Optional[Any] = 0 def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __UpperCamelCase : int = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> Any: """simple docstring""" __UpperCamelCase : List[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCamelCase : Union[str, Any] = os.path.join(lowerCAmelCase , """fake-roberta""" ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) __UpperCamelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertEqual(type(lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> str: """simple docstring""" try: AutoConfig.register("""custom""" , lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase ): AutoConfig.register("""model""" , lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoConfig.register("""bert""" , lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase : Optional[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase ) __UpperCamelCase : List[str] = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""bert-base""" ) def lowerCamelCase__ ( self : Dict ) -> Any: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase , revision="""aaaaaa""" ) def lowerCamelCase__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) __UpperCamelCase : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase ) __UpperCamelCase : str = AutoConfig.from_pretrained(lowerCAmelCase , trust_remote_code=lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : int = 'new-model' try: AutoConfig.register("""new-model""" , lowerCAmelCase ) # If remote code is not set, the default is to use local __UpperCamelCase : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. __UpperCamelCase : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub __UpperCamelCase : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
279
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if index == number_of_items: return 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[Any] = knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ) if weights[index] <= max_weight: _lowerCamelCase : Any = values[index] + knapsack( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , max_weight - weights[index] , index + 1 ) return max(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
386
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A_ ( _a ): lowerCAmelCase__ = 42 class A_ ( _a , _a ): @register_to_config def __init__( self: List[Any] ,__lowerCAmelCase: int = 65_536 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: str = "fourier" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,__lowerCAmelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,__lowerCAmelCase: Tuple[str] = "UNetMidBlock1D" ,__lowerCAmelCase: str = None ,__lowerCAmelCase: Tuple[int] = (32, 32, 64) ,__lowerCAmelCase: str = None ,__lowerCAmelCase: int = 8 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: bool = False ,): '''simple docstring''' super().__init__() _lowerCamelCase : List[str] = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase : Optional[Any] = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=__lowerCAmelCase ,log=__lowerCAmelCase ,flip_sin_to_cos=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase : Any = Timesteps( block_out_channels[0] ,flip_sin_to_cos=__lowerCAmelCase ,downscale_freq_shift=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase : str = block_out_channels[0] * 4 _lowerCamelCase : str = TimestepEmbedding( in_channels=__lowerCAmelCase ,time_embed_dim=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,out_dim=block_out_channels[0] ,) _lowerCamelCase : int = nn.ModuleList([] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Tuple = nn.ModuleList([] ) _lowerCamelCase : List[str] = None # down _lowerCamelCase : List[Any] = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = output_channel _lowerCamelCase : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase : Tuple = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : List[Any] = get_down_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(__lowerCAmelCase ) # mid _lowerCamelCase : Optional[Any] = get_mid_block( __lowerCAmelCase ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=__lowerCAmelCase ,add_downsample=__lowerCAmelCase ,) # up _lowerCamelCase : Optional[int] = list(reversed(__lowerCAmelCase ) ) _lowerCamelCase : Tuple = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase : Tuple = out_channels else: _lowerCamelCase : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = output_channel _lowerCamelCase : List[str] = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) _lowerCamelCase : Union[str, Any] = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : Tuple = get_up_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(__lowerCAmelCase ) _lowerCamelCase : Dict = output_channel # out _lowerCamelCase : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) _lowerCamelCase : List[Any] = get_out_block( out_block_type=__lowerCAmelCase ,num_groups_out=__lowerCAmelCase ,embed_dim=block_out_channels[0] ,out_channels=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,fc_dim=block_out_channels[-1] // 4 ,) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Dict = timestep if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : int = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : Optional[Any] = timesteps[None].to(sample.device ) _lowerCamelCase : Dict = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: _lowerCamelCase : Any = self.time_mlp(__lowerCAmelCase ) else: _lowerCamelCase : Optional[int] = timestep_embed[..., None] _lowerCamelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase : Any = () for downsample_block in self.down_blocks: _lowerCamelCase, _lowerCamelCase : Dict = downsample_block(hidden_states=__lowerCAmelCase ,temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase : Union[str, Any] = self.mid_block(__lowerCAmelCase ,__lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase : Any = down_block_res_samples[-1:] _lowerCamelCase : Tuple = down_block_res_samples[:-1] _lowerCamelCase : str = upsample_block(__lowerCAmelCase ,res_hidden_states_tuple=__lowerCAmelCase ,temb=__lowerCAmelCase ) # 5. post-process if self.out_block: _lowerCamelCase : List[str] = self.out_block(__lowerCAmelCase ,__lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
386
1
'''simple docstring''' from __future__ import annotations class _snake_case : def __init__( self ,_snake_case ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = text, pattern UpperCAmelCase_ , UpperCAmelCase_ : Dict = len(_snake_case ), len(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase__ ( self ,_snake_case ): for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase__ ( self ): # searches pattern in text and returns index positions UpperCAmelCase_ : str = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ : str = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: UpperCAmelCase_ : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCamelCase = """ABAABA""" _lowerCamelCase = """AB""" _lowerCamelCase = BoyerMooreSearch(text, pattern) _lowerCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
71
'''simple docstring''' def _A ( _lowerCAmelCase = 2_000_000 ): """simple docstring""" __lowercase =[0 for i in range(n + 1 )] __lowercase =1 __lowercase =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _lowerCAmelCase ): __lowercase =1 __lowercase =0 for i in range(_lowerCAmelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"{solution() = }")
474
0
'''simple docstring''' def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(SCREAMING_SNAKE_CASE , int(b / 2 ) ) else: return a * actual_power(SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(SCREAMING_SNAKE_CASE , int(b / 2 ) ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if b < 0: return 1 / actual_power(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return actual_power(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(power(-2, -3))
711
import argparse import os import re __snake_case : str = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __snake_case : Optional[Any] = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings __snake_case : Optional[Any] = re.compile(R'\s*\(\s*"(\S[^"]+)"') def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: UpperCAmelCase__ :Optional[int] = f.read() UpperCAmelCase__ :str = content.split('\n' ) UpperCAmelCase__ :List[Any] = [] UpperCAmelCase__ :Union[str, Any] = 0 while line_idx < len(SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCAmelCase__ :Union[str, Any] = len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCAmelCase__ :Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCAmelCase__ :Optional[int] = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCAmelCase__ :Tuple = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : _re_identifier.search(SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(SCREAMING_SNAKE_CASE ) ) elif "\n".join(SCREAMING_SNAKE_CASE ) != content: return True def A ( SCREAMING_SNAKE_CASE = False ): """simple docstring""" UpperCAmelCase__ :int = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for f in os.listdir(SCREAMING_SNAKE_CASE ) if f.endswith('.py' )] UpperCAmelCase__ :str = [sort_auto_mapping(SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :List[Any] = [f for f, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {", ".join(SCREAMING_SNAKE_CASE )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __snake_case : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
433
0