code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import re import shutil import sys import tempfile import unittest import black a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a : Tuple = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class _lowercase ( unittest.TestCase ): '''simple docstring''' def _a ( self ): lowerCAmelCase_: str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase_: List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowerCamelCase__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _a ( self ): lowerCAmelCase_: List[Any] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): lowerCAmelCase_: int = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowerCAmelCase_: Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowerCAmelCase_: List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_: List[str] = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ ) lowerCAmelCase_: Tuple = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowerCamelCase__ , "w" , newline="\n" ) as f: f.write(lowerCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase__ ) with open(lowerCamelCase__ , "r" ) as f: self.assertTrue(f.read() , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: str = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def _a ( self ): # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowerCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowerCamelCase__ ) , ) # Copy consistency with a really long name lowerCAmelCase_: str = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowerCamelCase__ , lowerCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowerCamelCase__ , overwrite_result=re.sub("DDPM" , "Test" , lowerCamelCase__ ) , )
613
def snake_case__ ( lowercase , lowercase ): lowerCAmelCase_: list[list[str]] = [[] for _ in range(lowercase )] lowerCAmelCase_: Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(lowercase ) <= key: return input_string for position, character in enumerate(lowercase ): lowerCAmelCase_: Optional[Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Any = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowercase ) lowerCAmelCase_: Optional[int] = ["".join(lowercase ) for row in temp_grid] lowerCAmelCase_: int = "".join(lowercase ) return output_string def snake_case__ ( lowercase , lowercase ): lowerCAmelCase_: Tuple = [] lowerCAmelCase_: str = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string lowerCAmelCase_: list[list[str]] = [[] for _ in range(lowercase )] # generates template for position in range(len(lowercase ) ): lowerCAmelCase_: List[str] = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Optional[int] = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) lowerCAmelCase_: Optional[Any] = 0 for row in temp_grid: # fills in the characters lowerCAmelCase_: Tuple = input_string[counter : counter + len(lowercase )] grid.append(list(lowercase ) ) counter += len(lowercase ) lowerCAmelCase_: int = "" # reads as zigzag for position in range(len(lowercase ) ): lowerCAmelCase_: str = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Optional[int] = min(lowercase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case__ ( lowercase ): lowerCAmelCase_: Dict = {} for key_guess in range(1 , len(lowercase ) ): # tries every key lowerCAmelCase_: int = decrypt(lowercase , lowercase ) return results if __name__ == "__main__": import doctest doctest.testmod()
613
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase__( snake_case_ ): def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() __lowercase = nn.ModuleList(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ): __lowercase , __lowercase = controlnet( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # merge samples if i == 0: __lowercase , __lowercase = down_samples, mid_sample else: __lowercase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , ): """simple docstring""" __lowercase = 0 __lowercase = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , ) idx += 1 __lowercase = model_path_to_save + F'''_{idx}''' @classmethod def __magic_name__ ( cls , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" __lowercase = 0 __lowercase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowercase = pretrained_model_path while os.path.isdir(__UpperCAmelCase ): __lowercase = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) controlnets.append(__UpperCAmelCase ) idx += 1 __lowercase = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(__UpperCAmelCase ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(__UpperCAmelCase )
703
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCamelCase : float UpperCamelCase : TreeNode | None = None UpperCamelCase : TreeNode | None = None def lowercase__ ( __UpperCamelCase : TreeNode | None ): '''simple docstring''' def is_valid_tree(__UpperCamelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__UpperCamelCase , __UpperCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__UpperCamelCase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( __UpperCamelCase : TreeNode | None , __UpperCamelCase : float , __UpperCamelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __UpperCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __UpperCamelCase ) ) return is_binary_search_tree_recursive_check(__UpperCamelCase , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> float: """simple docstring""" def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: a_ = [] a_ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ = int(max(0 , i - limit ) ) a_ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) a_ = F'''{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}''' return "".join(_UpperCAmelCase ) # matching characters a_ = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) a_ = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) a_ = len(_UpperCAmelCase ) # transposition a_ = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: a_ = 0.0 else: a_ = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
697
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # We need to create solution object to save path. a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) ) else: print('No solution exists!' ) return solved def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: """simple docstring""" a_ = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): a_ = 1 return True a_ = (not i < 0) and (not j < 0) # Check lower bounds a_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. a_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited a_ = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True a_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
697
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __a ( A , A , **A ) -> Any: '''simple docstring''' A__ = AutoConfig.from_pretrained(__a , **__a ) A__ = AutoModelForSeqaSeqLM.from_config(__a ) model.save_pretrained(__a ) AutoTokenizer.from_pretrained(__a ).save_pretrained(__a ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
720
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = StableDiffusionInstructPixaPixPipeline lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ = CLIPTextModel(UpperCamelCase__ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ) if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = "french fries" A__ = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = [inputs["prompt"]] * 2 A__ = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 A__ = torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A__ = image / 2 + 0.5 A__ = image.permute(0 , 3 , 1 , 2 ) A__ = image.repeat(2 , 1 , 1 , 1 ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" ) A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = sd_pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] A__ = [round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ = VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) )[0] A__ = components["vae"] A__ = self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ = vae.encode(inputs[image_param] ).latent_dist.mode() A__ = pipe(**UpperCamelCase__ )[0] A__ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , UpperCamelCase__=0 ): '''simple docstring''' A__ = torch.manual_seed(UpperCamelCase__ ) A__ = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) A__ = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ ) A__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self ): '''simple docstring''' A__ = 0 def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ = False A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase__ ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase_ ( self ): '''simple docstring''' A__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ = inputs["image"].resize((5_04, 5_04) ) A__ = "timbrooks/instruct-pix2pix" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ = pipe(**UpperCamelCase__ ) A__ = output.images[0] A__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
261
0
def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( lowercase__ : int = 50_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [(i * (3 * i - 1)) // 2 for i in range(1 , lowercase__ )] for i, pentagonal_i in enumerate(lowercase__ ): for j in range(lowercase__ , len(lowercase__ ) ): SCREAMING_SNAKE_CASE__ : List[str] = pentagonal_nums[j] SCREAMING_SNAKE_CASE__ : List[str] = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE__ : Dict = pentagonal_j - pentagonal_i if is_pentagonal(lowercase__ ) and is_pentagonal(lowercase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
85
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=lowercase__ , metadata={'help': 'The name of the task to train on.'} , ) _SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=lowercase__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=lowercase__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=lowercase__ , metadata={'help': 'Random seed for initialization.'} , ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" __snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __snake_case = dataset.filter(lambda SCREAMING_SNAKE_CASE : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __snake_case = int(eval_result * len(SCREAMING_SNAKE_CASE ) ) print(SCREAMING_SNAKE_CASE ) __snake_case = dataset.sort("probability" , reverse=SCREAMING_SNAKE_CASE ) __snake_case = dataset.select(range(SCREAMING_SNAKE_CASE ) ) __snake_case = dataset.remove_columns(["label", "probability"] ) __snake_case = dataset.rename_column("prediction" , "label" ) __snake_case = dataset.map(lambda SCREAMING_SNAKE_CASE : {"label": idalabel[example["label"]]} ) __snake_case = dataset.shuffle(seed=args.seed ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) else: dataset.to_json(SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __snake_case = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE ) __snake_case = STDataArguments(train_file=SCREAMING_SNAKE_CASE , infer_file=SCREAMING_SNAKE_CASE ) __snake_case = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE ) __snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE ).items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Sanity checks __snake_case = {} __snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __snake_case = args.train_file __snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __snake_case = args.eval_file for key in data_files: __snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __snake_case = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __snake_case = F'''{args.output_dir}/self-train_iter-{{}}'''.format __snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __snake_case = None __snake_case = None __snake_case = 0 __snake_case = False # Show the progress bar __snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __snake_case = data_dir_format(SCREAMING_SNAKE_CASE ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "stage-1" ) __snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): arguments_dict.update({key: value} ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 1." , SCREAMING_SNAKE_CASE ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "stage-2" ) # Update arguments_dict __snake_case = model_path __snake_case = data_files["train"] __snake_case = current_output_dir __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , SCREAMING_SNAKE_CASE ) finetune(**SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE ) logger.info("Self-training job completed: iteration: %d, stage: 2." , SCREAMING_SNAKE_CASE ) __snake_case = iteration __snake_case = data_dir_format(iteration + 1 ) __snake_case = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , "best-checkpoint" ) ) __snake_case = config.idalabel __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-checkpoint.json" ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "test_results_best-checkpoint.json" ) assert os.path.exists(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , "r" ) as f: __snake_case = float(json.load(SCREAMING_SNAKE_CASE )[args.eval_metric] ) __snake_case = os.path.join(SCREAMING_SNAKE_CASE , "infer_output_best-checkpoint.csv" ) assert os.path.exists(SCREAMING_SNAKE_CASE ) # Loading the dataset from local csv or json files. __snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] __snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE ): shutil.copy(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() __snake_case = os.path.join(SCREAMING_SNAKE_CASE , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __snake_case = eval_result if best_iteration is None: __snake_case = new_iteration __snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __snake_case = new_iteration __snake_case = new_eval_result __snake_case = 0 else: if new_eval_result == best_eval_result: __snake_case = new_iteration __snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , SCREAMING_SNAKE_CASE ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json" ) , )
163
0
from __future__ import annotations import time import numpy as np _UpperCAmelCase = [8, 5, 9, 7] _UpperCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _UpperCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case_ : def __init__( self : str , _snake_case : list[int] , _snake_case : list[list[int]] , _snake_case : list[list[int]] , )->None: '''simple docstring''' __lowerCAmelCase : Tuple = claim_vector __lowerCAmelCase : List[Any] = allocated_resources_table __lowerCAmelCase : List[Any] = maximum_claim_table def UpperCAmelCase__ ( self : Any )->list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase__ ( self : int )->list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase__ ( self : List[Any] )->list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase__ ( self : Tuple )->dict[int, list[int]]: '''simple docstring''' return {self.__need().index(_snake_case ): i for i in self.__need()} def UpperCAmelCase__ ( self : Any , **_snake_case : Dict )->None: '''simple docstring''' __lowerCAmelCase : Tuple = self.__need() __lowerCAmelCase : Union[str, Any] = self.__allocated_resources_table __lowerCAmelCase : Optional[Any] = self.__available_resources() __lowerCAmelCase : List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __lowerCAmelCase : Optional[int] = False for each_need in need_list: __lowerCAmelCase : Union[str, Any] = True for index, need in enumerate(_snake_case ): if need > available_resources[index]: __lowerCAmelCase : List[Any] = False break if execution: __lowerCAmelCase : Optional[Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : str = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_snake_case ) # update available/freed resources stack __lowerCAmelCase : List[str] = np.array(_snake_case ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(_snake_case ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_snake_case ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_snake_case ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(_snake_case ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(_snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
709
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCAmelCase = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCAmelCase = concatenate_datasets _UpperCAmelCase = DownloadConfig _UpperCAmelCase = DownloadManager _UpperCAmelCase = DownloadMode _UpperCAmelCase = DownloadConfig _UpperCAmelCase = DownloadMode _UpperCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
240
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ): '''simple docstring''' debug_launcher(test_script.main ) def _a ( self ): '''simple docstring''' debug_launcher(test_ops.main )
102
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''upernet''' def __init__( self : Optional[int] , __a : Dict=None , __a : List[str]=512 , __a : int=0.0_2 , __a : Optional[Any]=[1, 2, 3, 6] , __a : Union[str, Any]=True , __a : Any=0.4 , __a : int=384 , __a : int=256 , __a : str=1 , __a : List[Any]=False , __a : Dict=255 , **__a : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(**__a ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __snake_case : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(__a , __a ): __snake_case : List[Any] = backbone_config.get('model_type' ) __snake_case : List[str] = CONFIG_MAPPING[backbone_model_type] __snake_case : int = config_class.from_dict(__a ) __snake_case : Any = backbone_config __snake_case : Tuple = hidden_size __snake_case : str = initializer_range __snake_case : Dict = pool_scales __snake_case : Optional[Any] = use_auxiliary_head __snake_case : Optional[Any] = auxiliary_loss_weight __snake_case : Optional[int] = auxiliary_in_channels __snake_case : Dict = auxiliary_channels __snake_case : Any = auxiliary_num_convs __snake_case : Optional[Any] = auxiliary_concat_input __snake_case : List[str] = loss_ignore_index def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) __snake_case : str = self.backbone_config.to_dict() __snake_case : Optional[int] = self.__class__.model_type return output
286
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : List[Any] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( a__ ): SCREAMING_SNAKE_CASE__ ="""falcon""" SCREAMING_SNAKE_CASE__ =["""past_key_values"""] def __init__( self, _a=6_50_24, _a=45_44, _a=32, _a=71, _a=1E-5, _a=0.02, _a=True, _a=0.0, _a=0.0, _a=None, _a=False, _a=False, _a=True, _a=True, _a=False, _a=11, _a=11, **_a, ) -> int: __SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg __SCREAMING_SNAKE_CASE = kwargs.pop("n_embed", lowercase__ ) __SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = num_attention_heads if num_kv_heads is None else num_kv_heads __SCREAMING_SNAKE_CASE = alibi __SCREAMING_SNAKE_CASE = new_decoder_architecture __SCREAMING_SNAKE_CASE = multi_query # Ignored when new_decoder_architecture is True __SCREAMING_SNAKE_CASE = parallel_attn __SCREAMING_SNAKE_CASE = bias super().__init__(bos_token_id=lowercase__, eos_token_id=lowercase__, **lowercase__ ) @property def __lowerCAmelCase ( self ) -> Any: return self.hidden_size // self.num_attention_heads @property def __lowerCAmelCase ( self ) -> Tuple: return not self.alibi
703
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _A ( __snake_case :int ) -> Optional[int]: """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def _A ( __snake_case :str ) -> int: """simple docstring""" for char in word: __SCREAMING_SNAKE_CASE = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def _A ( __snake_case :List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set() for token in tokens: __SCREAMING_SNAKE_CASE = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __SCREAMING_SNAKE_CASE = list(__snake_case ) return word_list def _A ( __snake_case :List[str] , __snake_case :set() ) -> Any: """simple docstring""" if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE = max([len(__snake_case ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE = bert_tokens __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, len(__snake_case ) while start < end: __SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __SCREAMING_SNAKE_CASE = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE = "##" + bert_word[j] __SCREAMING_SNAKE_CASE = start + i __SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def _A ( __snake_case :List[str] , __snake_case :LTP , __snake_case :BertTokenizer ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = ltp_tokenizer.seg(lines[i : i + 100] )[0] __SCREAMING_SNAKE_CASE = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [] for id in input_ids: __SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __SCREAMING_SNAKE_CASE = add_sub_symbol(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def _A ( __snake_case :Tuple ) -> Any: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') _snake_case : Union[str, Any] = parser.parse_args() main(args)
214
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowercase_ ( a_ ): def __init__( self : int , *_lowercase : Dict , **_lowercase : Any ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
308
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = ['image_processor', 'tokenizer'] __UpperCAmelCase = 'ViltImageProcessor' __UpperCAmelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[Any], _snake_case : Union[str, Any]=None, _snake_case : List[str]=None, **_snake_case : Optional[int] ): '''simple docstring''' snake_case : Tuple =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', _snake_case, ) snake_case : int =kwargs.pop('''feature_extractor''' ) snake_case : List[Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case, _snake_case ) snake_case : Optional[int] =self.image_processor def __call__( self : Tuple, _snake_case : Any, _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, _snake_case : bool = True, _snake_case : Union[bool, str, PaddingStrategy] = False, _snake_case : Union[bool, str, TruncationStrategy] = None, _snake_case : Optional[int] = None, _snake_case : int = 0, _snake_case : Optional[int] = None, _snake_case : Optional[bool] = None, _snake_case : Optional[bool] = None, _snake_case : bool = False, _snake_case : bool = False, _snake_case : bool = False, _snake_case : bool = False, _snake_case : bool = True, _snake_case : Optional[Union[str, TensorType]] = None, **_snake_case : str, ): '''simple docstring''' snake_case : Optional[int] =self.tokenizer( text=_snake_case, add_special_tokens=_snake_case, padding=_snake_case, truncation=_snake_case, max_length=_snake_case, stride=_snake_case, pad_to_multiple_of=_snake_case, return_token_type_ids=_snake_case, return_attention_mask=_snake_case, return_overflowing_tokens=_snake_case, return_special_tokens_mask=_snake_case, return_offsets_mapping=_snake_case, return_length=_snake_case, verbose=_snake_case, return_tensors=_snake_case, **_snake_case, ) # add pixel_values + pixel_mask snake_case : int =self.image_processor(_snake_case, return_tensors=_snake_case ) encoding.update(_snake_case ) return encoding def __snake_case ( self : List[Any], *_snake_case : List[Any], **_snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case, **_snake_case ) def __snake_case ( self : Union[str, Any], *_snake_case : Any, **_snake_case : Dict ): '''simple docstring''' return self.tokenizer.decode(*_snake_case, **_snake_case ) @property def __snake_case ( self : str ): '''simple docstring''' snake_case : Union[str, Any] =self.tokenizer.model_input_names snake_case : int =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[Any] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', _snake_case, ) return self.image_processor_class @property def __snake_case ( self : Any ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', _snake_case, ) return self.image_processor
705
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self : List[str], _snake_case : int ): '''simple docstring''' snake_case : Optional[Any] =value snake_case : Node | None =None snake_case : Node | None =None class lowerCAmelCase_ : def __init__( self : Tuple, _snake_case : Node ): '''simple docstring''' snake_case : Optional[int] =tree def __snake_case ( self : str, _snake_case : Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
136
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str]=13 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[Any]=True , _lowercase : List[Any]=True , _lowercase : Tuple=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=99 , _lowercase : Union[str, Any]=64 , _lowercase : int=32 , _lowercase : Optional[Any]=5 , _lowercase : List[str]=4 , _lowercase : Optional[Any]=37 , _lowercase : List[str]="gelu" , _lowercase : Any=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Any=5_12 , _lowercase : Tuple=16 , _lowercase : List[str]=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Tuple=3 , _lowercase : Any=4 , _lowercase : List[str]=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = embedding_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def a ( self : List[str] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : int , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : List[Any] ): __UpperCAmelCase = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[str] , _lowercase : Dict ): __UpperCAmelCase = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : str , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : str , _lowercase : List[Any] , _lowercase : str , _lowercase : str , _lowercase : Union[str, Any] ): __UpperCAmelCase = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Optional[Any] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : str , _lowercase : Dict , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Any ): __UpperCAmelCase = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : str , _lowercase : List[Any] , _lowercase : int , _lowercase : List[Any] , _lowercase : Dict ): __UpperCAmelCase = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a ( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : List[str] , _lowercase : List[str] , _lowercase : List[Any] ): __UpperCAmelCase = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : int , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Optional[Any] , _lowercase : str , _lowercase : int , _lowercase : List[str] , _lowercase : Dict , _lowercase : List[str] , _lowercase : int , _lowercase : Dict ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : Dict , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : Optional[Any] ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : str ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ : Union[str, Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ : Optional[Any] = True # test_resize_embeddings = False a__ : Dict = False def a ( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : List[str]=False ): __UpperCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def a ( self : List[Any] ): __UpperCAmelCase = MegatronBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def a ( self : str ): self.config_tester.run_common_tests() def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def lowercase__ ( snake_case_ :int ): return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) _lowercase : List[str] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , _lowercase ) __UpperCAmelCase = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() __UpperCAmelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __UpperCAmelCase = model(_lowercase )[0] __UpperCAmelCase = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _lowercase ) __UpperCAmelCase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase = output[0, ii, jj] __UpperCAmelCase = expected[3 * ii + jj] __UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
49
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "camembert" def __init__( self : Union[str, Any] , _lowercase : Any=3_05_22 , _lowercase : Any=7_68 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : int=30_72 , _lowercase : Union[str, Any]="gelu" , _lowercase : Dict=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : int=5_12 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : Optional[Any]=1E-12 , _lowercase : Optional[int]=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : List[Any]="absolute" , _lowercase : List[Any]=True , _lowercase : Dict=None , **_lowercase : Optional[int] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache __UpperCAmelCase = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): @property def a ( self : Tuple ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = """▁""" __UpperCAmelCase = {"""vocab_file""": """spiece.model"""} __UpperCAmelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } __UpperCAmelCase = { """google/reformer-crime-and-punishment""": 524_288, } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Any =VOCAB_FILES_NAMES lowerCamelCase : List[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Dict =["input_ids", "attention_mask"] def __init__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str]="</s>" , lowerCAmelCase : Optional[Any]="<unk>" , lowerCAmelCase : List[Any]=[] , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" __lowerCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) __lowerCAmelCase : str = vocab_file __lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, int]: """simple docstring""" __lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = self.__dict__.copy() __lowerCAmelCase : Any = None return state def __setstate__( self : List[str] , lowerCAmelCase : Dict ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : int ) -> Tuple: """simple docstring""" return self.sp_model.piece_to_id(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if index < self.sp_model.get_piece_size(): __lowerCAmelCase : List[Any] = self.sp_model.IdToPiece(lowerCAmelCase ) return token def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : List[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token __lowerCAmelCase : List[str] = [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : Any = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , """wb""" ) as fi: __lowerCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
218
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MobileViTFeatureExtractor"""] __UpperCAmelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case : int = logging.get_logger(__name__) __snake_case : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __snake_case : List[str] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' for attribute in key.split("""."""): a_ : List[Any] = getattr(a__ , a__) if weight_type is not None: a_ : List[Any] = getattr(a__ , a__).shape else: a_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ : Union[str, Any] = value elif weight_type == "weight_g": a_ : List[Any] = value elif weight_type == "weight_v": a_ : int = value elif weight_type == "bias": a_ : Dict = value else: a_ : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : str = [] a_ : int = fairseq_model.state_dict() a_ : int = hf_model.feature_extractor a_ : Optional[int] = hf_model.adapter for name, value in fairseq_dict.items(): a_ : Dict = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == """group""" , ) a_ : str = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""]): load_adapter(a__ , a__ , a__ , a__) a_ : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: a_ : int = True if "*" in mapped_key: a_ : Dict = name.split(a__)[0].split(""".""")[-2] a_ : str = mapped_key.replace("""*""" , a__) if "weight_g" in name: a_ : Union[str, Any] = """weight_g""" elif "weight_v" in name: a_ : str = """weight_v""" elif "bias" in name: a_ : Optional[int] = """bias""" elif "weight" in name: a_ : Any = """weight""" else: a_ : int = None set_recursively(a__ , a__ , a__ , a__ , a__) continue if not is_used: unused_weights.append(a__) logger.warning(f'''Unused weights: {unused_weights}''') def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' a_ : int = full_name.split("""conv_layers.""")[-1] a_ : str = name.split(""".""") a_ : Union[str, Any] = int(items[0]) a_ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(a__) def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : int = full_name.split("""adaptor.""")[-1] a_ : List[str] = name.split(""".""") if items[1].isdigit(): a_ : Tuple = int(items[1]) else: a_ : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' a_ : Optional[Any] = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''') if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' a_ : Any = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' a_ : List[Any] = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''') if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' a_ : Tuple = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''') elif isinstance(a__ , a__): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' a_ : List[Any] = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''') elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' a_ : Dict = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''') else: unused_weights.append(a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ , a_ : Dict = emb.weight.shape a_ : Tuple = nn.Linear(a__ , a__ , bias=a__) a_ : Tuple = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): '''simple docstring''' a_ : int = WavaVecaConfig.from_pretrained( a__ , add_adapter=a__ , adapter_stride=a__ , adapter_kernel_size=a__ , use_auth_token=a__ , output_hidden_size=a__ , ) a_ : int = MBartConfig.from_pretrained(a__) # load model a_ , a_ , a_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""")[:-1]), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) a_ : int = model[0].eval() # load feature extractor a_ : Dict = WavaVecaFeatureExtractor.from_pretrained(a__ , use_auth_token=a__) # set weights for wav2vec2 encoder a_ : str = WavaVecaModel(a__) recursively_load_weights_wavaveca(model.encoder , a__) # load decoder weights a_ : Tuple = MBartForCausalLM(a__) a_ , a_ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a__) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''') logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''') a_ : Optional[int] = SpeechEncoderDecoderModel(encoder=a__ , decoder=a__) a_ : Any = False a_ : List[str] = MBartaaTokenizer(a__) tokenizer.save_pretrained(a__) a_ : str = hf_wavavec.config.to_dict() a_ : Optional[int] = tokenizer.pad_token_id a_ : List[Any] = tokenizer.bos_token_id a_ : Tuple = tokenizer.eos_token_id a_ : List[Any] = """mbart50""" a_ : str = """wav2vec2""" a_ : str = tokenizer.eos_token_id a_ : Union[str, Any] = 2_5_0_0_0_4 a_ : List[str] = tokenizer.eos_token_id a_ : Tuple = SpeechEncoderDecoderConfig.from_dict(a__) hf_wavavec.save_pretrained(a__) feature_extractor.save_pretrained(a__) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=10_24, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_00_04, type=int, help="""`decoder_start_token_id` of model config""") __snake_case : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
540
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Tuple = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) __snake_case : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCAmelCase ( a__): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a_ : Tuple = model_type_to_module_name(a__) a_ : Any = importlib.import_module(f'''.{module_name}''' , """transformers.models""") try: return getattr(a__ , a__) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a__ , """__name__""" , a__) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a_ : Tuple = importlib.import_module("""transformers""") if hasattr(a__ , a__): return getattr(a__ , a__) return None def _UpperCAmelCase ( a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ): '''simple docstring''' a_ : List[str] = get_file_from_repo( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""") return {} with open(a__ , encoding="""utf-8""") as reader: return json.load(a__) class A__: """simple docstring""" def __init__( self ) -> List[str]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def UpperCamelCase__ ( cls , _lowercase , **_lowercase ) -> Dict: a_ : Tuple = kwargs.pop("""config""" , _lowercase ) a_ : Dict = kwargs.pop("""trust_remote_code""" , _lowercase ) a_ : Dict = True a_ , a_ : List[str] = FeatureExtractionMixin.get_feature_extractor_dict(_lowercase , **_lowercase ) a_ : Tuple = config_dict.get("""feature_extractor_type""" , _lowercase ) a_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): a_ : Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowercase , _lowercase ): a_ : List[str] = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.feature_extractor_type`` a_ : List[Any] = getattr(_lowercase , """feature_extractor_type""" , _lowercase ) if hasattr(_lowercase , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: a_ : List[str] = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: a_ : int = feature_extractor_class_from_name(_lowercase ) a_ : Dict = feature_extractor_auto_map is not None a_ : Union[str, Any] = feature_extractor_class is not None or type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING a_ : Optional[Any] = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: a_ : int = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) a_ : Tuple = kwargs.pop("""code_revision""" , _lowercase ) if os.path.isdir(_lowercase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowercase , **_lowercase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING: a_ : List[str] = FEATURE_EXTRACTOR_MAPPING[type(_lowercase )] return feature_extractor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCamelCase__ ( _lowercase , _lowercase ) -> List[Any]: FEATURE_EXTRACTOR_MAPPING.register(_lowercase , _lowercase )
540
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): # Load configuration defined in the metadata file with open(UpperCamelCase ) as metadata_file: A = json.load(UpperCamelCase ) A = LukeConfig(use_entity_aware_attention=UpperCamelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A = torch.load(UpperCamelCase , map_location="cpu" ) # Load the entity vocab file A = load_entity_vocab(UpperCamelCase ) A = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A = AddedToken("<ent>" , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) A = AddedToken("<ent2>" , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(UpperCamelCase ) with open(os.path.join(UpperCamelCase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(UpperCamelCase , UpperCamelCase ) A = LukeTokenizer.from_pretrained(UpperCamelCase ) # Initialize the embeddings of the special tokens A = state_dict["embeddings.word_embeddings.weight"] A = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A = F"encoder.layer.{layer_index}.attention.self." A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A = state_dict["entity_embeddings.entity_embeddings.weight"] A = entity_emb[entity_vocab["[MASK]"]] A = LukeModel(config=UpperCamelCase ).eval() A, A = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if not (len(UpperCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"Missing keys {', '.join(UpperCamelCase )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs A = LukeTokenizer.from_pretrained(UpperCamelCase , task="entity_classification" ) A = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A = (39, 42) A = tokenizer(UpperCamelCase , entity_spans=[span] , add_prefix_space=UpperCamelCase , return_tensors="pt" ) A = model(**UpperCamelCase ) # Verify word hidden states if model_size == "large": A = torch.Size((1, 42, 1_024) ) A = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base A = torch.Size((1, 42, 768) ) A = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A = torch.Size((1, 1, 1_024) ) A = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base A = torch.Size((1, 1, 768) ) A = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(UpperCamelCase ) ) model.save_pretrained(UpperCamelCase ) def A__ ( UpperCamelCase ): A = {} with open(UpperCamelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(UpperCamelCase ): A, A = line.rstrip().split("\t" ) A = index return entity_vocab if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _snake_case : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
718
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[int] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _snake_case : Union[str, Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = GPTaTokenizer def __init__( self :Optional[Any] , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[Any]=None , __UpperCamelCase :str="<|endoftext|>" , __UpperCamelCase :Tuple="<|endoftext|>" , __UpperCamelCase :Dict="<|endoftext|>" , __UpperCamelCase :Union[str, Any]=False , **__UpperCamelCase :Union[str, Any] , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) A = kwargs.pop("add_bos_token" , __UpperCamelCase ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: A = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) A = add_prefix_space A = pre_tok_class(**__UpperCamelCase ) A = add_prefix_space def lowerCamelCase ( self :Any , *__UpperCamelCase :Optional[int] , **__UpperCamelCase :Any ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Dict , *__UpperCamelCase :List[str] , **__UpperCamelCase :Optional[int] ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :str , __UpperCamelCase :Optional[str] = None ): A = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :"Conversation" ): A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids
524
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @property def a ( self : Any ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a ( self : Dict ) -> Union[str, Any]: lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = ScoreSdeVeScheduler() lowerCAmelCase__ = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE__ ).images lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : int ) -> Union[str, Any]: lowerCAmelCase__ = "google/ncsnpp-church-256" lowerCAmelCase__ = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
61
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase__ ( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = AudioClassificationPipeline(model=lowerCamelCase, feature_extractor=lowerCamelCase ) # test with a raw waveform lowercase__ = np.zeros((34_000,) ) lowercase__ = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = examples lowercase__ = audio_classifier(lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) lowercase__ = audio_classifier(lowerCamelCase, top_k=1 ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) self.run_torchaudio(lowerCamelCase ) @require_torchaudio def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' import datasets # test with a local file lowercase__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) lowercase__ = dataset[0]['''audio''']['''array'''] lowercase__ = audio_classifier(lowerCamelCase ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) @require_torch def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''anton-l/wav2vec2-random-tiny-classifier''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = np.ones((8_000,) ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) lowercase__ = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] lowercase__ = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase__ = {'''array''': np.ones((8_000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase__ ( self : List[str] ): '''simple docstring''' import datasets lowercase__ = '''superb/wav2vec2-base-superb-ks''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = datasets.load_dataset('''anton-l/superb_dummy''', '''ks''', split='''test''' ) lowercase__ = np.array(dataset[3]['''speech'''], dtype=np.floataa ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase, decimals=3 ), [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ], ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass
183
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowercase__ :Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" for attribute in key.split('''.''' ): __UpperCAmelCase : List[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: __UpperCAmelCase : Any = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: __UpperCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Any = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": __UpperCAmelCase : int = value elif weight_type == "bias": __UpperCAmelCase : Any = value else: __UpperCAmelCase : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() __UpperCAmelCase : int = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __UpperCAmelCase : Tuple = None for name, value in fairseq_dict.items(): __UpperCAmelCase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : int = True elif name.split('''.''' )[0] == "proj": __UpperCAmelCase : Tuple = fairseq_model.proj __UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: __UpperCAmelCase : int = name.split(UpperCAmelCase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Dict = mapped_key.replace('''*''' , UpperCAmelCase_ ) if "weight_g" in name: __UpperCAmelCase : Optional[Any] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : str = '''weight_v''' elif "bias" in name: __UpperCAmelCase : Optional[Any] = '''bias''' elif "weight" in name: __UpperCAmelCase : List[str] = '''weight''' else: __UpperCAmelCase : Dict = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: """simple docstring""" __UpperCAmelCase : int = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : Dict = name.split('''.''' ) __UpperCAmelCase : Tuple = int(items[0] ) __UpperCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : Optional[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : str = emb.weight.shape __UpperCAmelCase : Any = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) __UpperCAmelCase : str = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCAmelCase_ ) ->List[str]: """simple docstring""" with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Optional[int] = f.readlines() __UpperCAmelCase : int = [line.split(''' ''' )[0] for line in lines] __UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(UpperCAmelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) ->int: """simple docstring""" __UpperCAmelCase : str = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : str = SpeechaTextaConfig.from_pretrained( UpperCAmelCase_ , vocab_size=UpperCAmelCase_ , decoder_layers=UpperCAmelCase_ , do_stable_layer_norm=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __UpperCAmelCase : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder __UpperCAmelCase : str = WavaVecaModel(UpperCAmelCase_ ) __UpperCAmelCase : Dict = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase_ ) __UpperCAmelCase : List[str] = SpeechaTextaForCausalLM(UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __UpperCAmelCase : int = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCAmelCase : Optional[Any] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ ) __UpperCAmelCase : str = False # add projection layer __UpperCAmelCase : int = nn.Parameter(projection_layer.weight ) __UpperCAmelCase : Optional[int] = nn.Parameter(projection_layer.bias ) __UpperCAmelCase : Optional[Any] = create_vocab_dict(UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : int = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase_ , '''vocab.json''' ) ) tokenizer.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = hf_wavavec.config.to_dict() __UpperCAmelCase : Any = tokenizer.pad_token_id __UpperCAmelCase : List[Any] = tokenizer.bos_token_id __UpperCAmelCase : str = tokenizer.eos_token_id __UpperCAmelCase : Tuple = '''speech_to_text_2''' __UpperCAmelCase : List[str] = '''wav2vec2''' __UpperCAmelCase : Any = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase_ ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0_2_2_4, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') lowercase__ :Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
374
"""simple docstring""" # flake8: noqa # Lint as: python3 lowercase__ :Tuple = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
374
1
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = emb.weight.shape __UpperCAmelCase : Dict = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def _UpperCamelCase ( UpperCamelCase ) -> Dict: """simple docstring""" __UpperCAmelCase : Tuple = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : Tuple = Namespace(**checkpoint["cfg"]["model"] ) __UpperCAmelCase : str = checkpoint["model"] remove_ignore_keys_(UpperCamelCase ) __UpperCAmelCase : int = state_dict["decoder.embed_tokens.weight"].shape[0] __UpperCAmelCase : Optional[int] = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} __UpperCAmelCase : Any = XGLMConfig( vocab_size=UpperCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __UpperCAmelCase : Union[str, Any] = XGLMForCausalLM(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) print(UpperCamelCase ) __UpperCAmelCase : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") A = parser.parse_args() A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
77
'''simple docstring''' def _A ( lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowercase__ , lowercase__ = 1, 1 for _ in range(number_of_steps - 1 ): lowercase__ , lowercase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" from math import factorial def __a ( A , A ): '''simple docstring''' if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(A ) // (factorial(A ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F'fifty-two card deck is: {combinations(5_2, 5)}\n', ) print( "If a class of 40 students must be arranged into groups of", F'4 for group projects, there are {combinations(4_0, 4)} ways', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F'are {combinations(1_0, 3)} ways that first, second and', "third place can be awarded.", )
668
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=1_3 , _A=3 , _A=2_2_4 , _A=3_0 , _A=4_0_0 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase : int = size if size is not None else {"""height""": 1_8, """width""": 1_8} UpperCamelCase : int = parent UpperCamelCase : Any = batch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : List[str] = image_size UpperCamelCase : Optional[int] = min_resolution UpperCamelCase : List[str] = max_resolution UpperCamelCase : List[Any] = do_resize UpperCamelCase : int = size UpperCamelCase : Optional[Any] = do_normalize UpperCamelCase : int = image_mean UpperCamelCase : int = image_std def _a ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : str = ViTImageProcessor if is_vision_available() else None def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def _a ( self ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """image_mean""" ) ) self.assertTrue(hasattr(_A , """image_std""" ) ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Union[str, Any] = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCamelCase : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Tuple = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCamelCase : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase : Any = image_processor(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
102
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
84
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase ( A : Dict , A : Union[str, Any] , A : Tuple , A : Optional[int]=None , A : List[str]=None , A : int=None , A : Dict=None , A : List[Any]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCamelCase_ : def __init__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=13 , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=99 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : List[Any]="relu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[Any]=20 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Union[str, Any]=1 , lowerCAmelCase__ : Union[str, Any]=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = encoder_layerdrop SCREAMING_SNAKE_CASE : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = eos_token_id SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE : int = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() SCREAMING_SNAKE_CASE : Dict = prepare_mam_aaa_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __lowercase ( self : Any ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MaMaaaModel(config=lowerCAmelCase__ ).get_decoder().to(lowerCAmelCase__ ).eval() SCREAMING_SNAKE_CASE : str = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''attention_mask'''] SCREAMING_SNAKE_CASE : int = inputs_dict['''head_mask'''] # first forward pass SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : str = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-2 ) ) def __lowercase ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = MaMaaaModel(config=lowerCAmelCase__ ).to(lowerCAmelCase__ ).eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = model.get_encoder() encoder.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = MaMaaaEncoder.from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = model.get_decoder() decoder.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = MaMaaaDecoder.from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _lowerCAmelCase : List[Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _lowerCAmelCase : str = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Any = True _lowerCAmelCase : Tuple = False _lowerCAmelCase : str = False def __lowercase ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCAmelCase__ ) def __lowercase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase__ ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE : Tuple = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Tuple = inputs['''input_ids'''] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE : str = inputs['''input_ids'''] SCREAMING_SNAKE_CASE : Tuple = inputs.get('''decoder_input_ids''' , lowerCAmelCase__ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[Any] = wte(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : int = wte(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = wte(lowerCAmelCase__ ) with torch.no_grad(): model(**lowerCAmelCase__ )[0] def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Any = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : List[str] = input_ids.ne(1 ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration(lowerCAmelCase__ ).eval().to(lowerCAmelCase__ ) if torch_device == "cuda": model.half() model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) model.generate(num_beams=4 , do_sample=lowerCAmelCase__ , early_stopping=lowerCAmelCase__ , num_return_sequences=3 ) def UpperCAmelCase ( A : Optional[Any] ): return torch.tensor(A , dtype=torch.long , device=A ) lowerCAmelCase_ : Union[str, Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCamelCase_ ( unittest.TestCase ): @cached_property def __lowercase ( self : Any ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE : int = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE : int = prepare_mam_aaa_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=lowerCAmelCase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCAmelCase__ ) # change to intended input SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE : str = prepare_mam_aaa_inputs_dict(model.config , lowerCAmelCase__ , lowerCAmelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE : str = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) # change to expected output here SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=lowerCAmelCase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=lowerCAmelCase__ ) ) def __lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Optional[int] = model.generate( input_ids=dct['''input_ids'''].to(lowerCAmelCase__ ) , attention_mask=dct['''attention_mask'''].to(lowerCAmelCase__ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) SCREAMING_SNAKE_CASE : Tuple = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) assert generated == expected_en
464
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Dict=10 , lowerCAmelCase__ : List[Any]=[10, 20, 30, 40] , lowerCAmelCase__ : List[Any]=[1, 1, 2, 1] , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]="relu" , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : str = embeddings_size SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowercase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = TFRegNetModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Any = TFRegNetForImageClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowerCAmelCase : str = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : str = False _lowerCAmelCase : str = False def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowercase ( self : Optional[int] ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __lowercase ( self : int ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowercase ( self : Dict ): """simple docstring""" pass def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Dict ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : Union[str, Any] = layer_type SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str={} ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ).to_tuple() def recursive_check(lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): if isinstance(lowerCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {'''output_hidden_states''': True} ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __lowercase ( self : Any ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = TFRegNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): SCREAMING_SNAKE_CASE : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def __lowercase ( self : List[str] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : int = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 )
464
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowercase_ ( __lowerCamelCase ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowercase_ ( __lowerCamelCase ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
107
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): __a : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): return data[1:] + data[0] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = '' for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): __a : List[str] = int('0b' + data[0] + data[-1] , 2 ) __a : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __a : List[Any] = message[:4] __a : str = message[4:] __a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ ) __a : int = xor(lowerCamelCase_ , lowerCamelCase_ ) __a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741 __a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] ) __a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741 __a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r __a : List[Any] = apply_table(l + r , lowerCamelCase_ ) __a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ = temp[:5] SCREAMING_SNAKE_CASE__ = temp[5:] SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ = apply_table(message, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE__ = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
0
def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =0 # if input_string is "aba" than new_input_string become "a|b|a" SCREAMING_SNAKE_CASE__ : Optional[Any] ='''''' SCREAMING_SNAKE_CASE__ : Dict ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(UpperCamelCase__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring SCREAMING_SNAKE_CASE__ : Optional[int] =0, 0 # length[i] shows the length of palindromic substring with center i SCREAMING_SNAKE_CASE__ : Tuple =[1 for i in range(len(UpperCamelCase__ ) )] # for each character in new_string find corresponding palindromic string SCREAMING_SNAKE_CASE__ : Tuple =0 for j in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ : str =1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(UpperCamelCase__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 SCREAMING_SNAKE_CASE__ : Dict =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: SCREAMING_SNAKE_CASE__ : Optional[int] =j - k + 1 # noqa: E741 SCREAMING_SNAKE_CASE__ : Union[str, Any] =j + k - 1 # update max_length and start position if max_length < length[j]: SCREAMING_SNAKE_CASE__ : Any =length[j] SCREAMING_SNAKE_CASE__ : List[str] =j # create that string SCREAMING_SNAKE_CASE__ : List[Any] =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from math import isqrt def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Any =False return [i for i in range(2, UpperCamelCase__ ) if is_prime[i]] def _a( UpperCamelCase__ : int = 1_0**8 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
665
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets snake_case_ = datasets.logging.get_logger(__name__) snake_case_ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' snake_case_ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' snake_case_ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' snake_case_ = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def a (self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def a (self : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) __snake_case = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: __snake_case = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __snake_case = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer __snake_case = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __snake_case = score.BleurtScorer(os.path.join(a__ , a__ ) ) def a (self : Any , a__ : Any , a__ : Any ): """simple docstring""" __snake_case = self.scorer.score(references=a__ , candidates=a__ ) return {"scores": scores}
592
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
592
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCamelCase__ = parser.parse_args() if args.model_type == "roberta": UpperCamelCase__ = RobertaForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = "roberta" elif args.model_type == "gpt2": UpperCamelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name) UpperCamelCase__ = "transformer" UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: UpperCamelCase__ = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: UpperCamelCase__ = f"""{prefix}.embeddings.{w}.weight""" UpperCamelCase__ = state_dict[param_name] for w in ["weight", "bias"]: UpperCamelCase__ = f"""{prefix}.embeddings.LayerNorm.{w}""" UpperCamelCase__ = state_dict[param_name] # Transformer Blocks # UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] UpperCamelCase__ = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: UpperCamelCase__ = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f"""lm_head.dense.{w}"""] UpperCamelCase__ = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f"""{prefix}.ln_f.{w}"""] UpperCamelCase__ = state_dict["lm_head.weight"] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
710
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) class _UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' a_ : bool = None a_ : bool = None class _UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' a_ : Optional[int] = datasets.Audio() a_ : Union[str, Any] = """audio""" a_ : int = AudioFolderConfig a_ : List[str] # definition at the bottom of the script a_ : Dict = AudioClassification(audio_column="audio",label_column="label" ) __UpperCamelCase : Any = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] __UpperCamelCase : Union[str, Any] = AUDIO_EXTENSIONS
519
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize def A__ ( self ) -> List[Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = ImageGPTImageProcessingTester(self ) @property def A__ ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def _A ( ): lowercase__ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ = Image.open(dataset[4]["""file"""] ) lowercase__ = Image.open(dataset[5]["""file"""] ) lowercase__ = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def A__ ( self ) -> str: '''simple docstring''' lowercase__ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ = prepare_images() # test non-batched lowercase__ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) lowercase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) lowercase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
325
0
def lowercase_ ( __snake_case : int ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence snake_case__ :Dict = gray_code_sequence_string(__snake_case ) # # convert them to integers for i in range(len(__snake_case ) ): snake_case__ :Optional[int] = int(sequence[i] , 2 ) return sequence def lowercase_ ( __snake_case : int ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case__ :Optional[int] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case__ :Tuple = gray_code_sequence_string(bit_count - 1 ) snake_case__ :int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case__ :List[Any] = "0" + smaller_sequence[i] sequence.append(__snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case__ :str = "1" + smaller_sequence[i] sequence.append(__snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' return (-y * np.log(SCREAMING_SNAKE_CASE__ ) - (1 - y) * np.log(1 - h )).mean() def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCAmelCase : int = np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return np.sum(y * scores - np.log(1 + np.exp(SCREAMING_SNAKE_CASE__ ) ) ) def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=70_000 ) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = np.zeros(x.shape[1] ) for iterations in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Optional[Any] = np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = sigmoid_function(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = np.dot(x.T , h - y ) / y.size _UpperCAmelCase : int = theta - alpha * gradient # updating the weights _UpperCAmelCase : Any = np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = sigmoid_function(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = cost_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = datasets.load_iris() _lowerCAmelCase : Dict = iris.data[:, :2] _lowerCAmelCase : Optional[int] = (iris.target != 0) * 1 _lowerCAmelCase : Optional[Any] = 0.1 _lowerCAmelCase : int = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("theta: ", theta) # printing the theta i.e our weights vector def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' return sigmoid_function( np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((_lowerCAmelCase), (_lowerCAmelCase)) : Optional[Any] = (x[:, 0].min(), x[:, 0].max()) ((_lowerCAmelCase), (_lowerCAmelCase)) : int = (x[:, 1].min(), x[:, 1].max()) ((_lowerCAmelCase), (_lowerCAmelCase)) : Union[str, Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _lowerCAmelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] _lowerCAmelCase : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
289
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = SwinConfig(image_size=192 ) if "base" in model_name: _UpperCAmelCase : Tuple = 6 _UpperCAmelCase : Optional[Any] = 128 _UpperCAmelCase : Dict = (2, 2, 18, 2) _UpperCAmelCase : List[Any] = (4, 8, 16, 32) elif "large" in model_name: _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[int] = 192 _UpperCAmelCase : Optional[Any] = (2, 2, 18, 2) _UpperCAmelCase : str = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) _UpperCAmelCase : Optional[int] = window_size _UpperCAmelCase : Optional[int] = embed_dim _UpperCAmelCase : List[Any] = depths _UpperCAmelCase : Any = num_heads return config def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' if "encoder.mask_token" in name: _UpperCAmelCase : Dict = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: _UpperCAmelCase : Optional[int] = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: _UpperCAmelCase : Any = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Any = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": _UpperCAmelCase : Any = "layernorm.weight" if name == "encoder.norm.bias": _UpperCAmelCase : List[Any] = "layernorm.bias" if "decoder" in name: pass else: _UpperCAmelCase : Dict = "swin." + name return name def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Dict = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCAmelCase : int = key.split("." ) _UpperCAmelCase : List[str] = int(key_split[2] ) _UpperCAmelCase : Dict = int(key_split[4] ) _UpperCAmelCase : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase : Optional[Any] = val[:dim, :] _UpperCAmelCase : List[Any] = val[ dim : dim * 2, : ] _UpperCAmelCase : Optional[Any] = val[-dim:, :] else: _UpperCAmelCase : Optional[int] = val[ :dim ] _UpperCAmelCase : Dict = val[ dim : dim * 2 ] _UpperCAmelCase : Union[str, Any] = val[ -dim: ] else: _UpperCAmelCase : List[Any] = val return orig_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" )["model"] _UpperCAmelCase : Union[str, Any] = get_swin_config(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = SwinForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCAmelCase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = ViTImageProcessor(size={"height": 192, "width": 192} ) _UpperCAmelCase : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _UpperCAmelCase : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**SCREAMING_SNAKE_CASE__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
289
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 32 def A_ ( __lowercase , __lowercase = 16 ): UpperCamelCase_ : int =AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase_ : Optional[int] =load_dataset('glue' , 'mrpc' ) def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ : Union[str, Any] =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ : Any =datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ : str =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ : List[Any] =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ : int =16 elif accelerator.mixed_precision != "no": UpperCamelCase_ : Optional[int] =8 else: UpperCamelCase_ : Dict =None return tokenizer.pad( UpperCAmelCase__ , padding='longest' , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ : str =DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) UpperCamelCase_ : int =DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811 def A_ ( __lowercase , __lowercase ): if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCAmelCase__ ) == "1": UpperCamelCase_ : int =2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCamelCase_ : Optional[int] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: UpperCamelCase_ : Any =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ : str =config['lr'] UpperCamelCase_ : List[str] =int(config['num_epochs'] ) UpperCamelCase_ : Union[str, Any] =int(config['seed'] ) UpperCamelCase_ : int =int(config['batch_size'] ) set_seed(UpperCAmelCase__ ) UpperCamelCase_ , UpperCamelCase_ : Dict =get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_ : Optional[Any] =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase_ : int =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase_ : List[Any] =batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase_ : int =MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ : Dict =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ : int =model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase_ : Tuple =AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) # Instantiate scheduler UpperCamelCase_ : Any =get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Any =accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCamelCase_ : int =os.path.split(UpperCAmelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCamelCase_ : int =0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase_ : int =model(**UpperCAmelCase__ ) UpperCamelCase_ : List[str] =outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCamelCase_ : str =loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_ : Optional[Any] =model(**UpperCAmelCase__ ) UpperCamelCase_ : Optional[Any] =outputs.logits.argmax(dim=-1 ) UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) UpperCamelCase_ : List[str] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCAmelCase__ ), 'epoch': epoch, } , step=UpperCAmelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ): UpperCamelCase_ : str =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCAmelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) UpperCamelCase_ : Optional[int] =parser.parse_args() UpperCamelCase_ : Optional[int] ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
710
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __SCREAMING_SNAKE_CASE = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __SCREAMING_SNAKE_CASE = TaTokenizerFast __SCREAMING_SNAKE_CASE = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __SCREAMING_SNAKE_CASE = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
395
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCamelCase : __a = PegasusConfig __a = {} __a = "gelu" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=40 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Dict= parent SCREAMING_SNAKE_CASE__: str= batch_size SCREAMING_SNAKE_CASE__: str= seq_length SCREAMING_SNAKE_CASE__: int= is_training SCREAMING_SNAKE_CASE__: Tuple= use_labels SCREAMING_SNAKE_CASE__: str= vocab_size SCREAMING_SNAKE_CASE__: Any= hidden_size SCREAMING_SNAKE_CASE__: List[str]= num_hidden_layers SCREAMING_SNAKE_CASE__: Tuple= num_attention_heads SCREAMING_SNAKE_CASE__: Tuple= intermediate_size SCREAMING_SNAKE_CASE__: List[Any]= hidden_dropout_prob SCREAMING_SNAKE_CASE__: Optional[int]= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: Optional[int]= max_position_embeddings SCREAMING_SNAKE_CASE__: int= eos_token_id SCREAMING_SNAKE_CASE__: Any= pad_token_id SCREAMING_SNAKE_CASE__: Union[str, Any]= bos_token_id def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: str= ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__: Tuple= tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__: Dict= tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__: str= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__: Tuple= prepare_pegasus_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Any= TFPegasusModel(config=lowerCAmelCase ).get_decoder() SCREAMING_SNAKE_CASE__: Dict= inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__: List[Any]= input_ids[:1, :] SCREAMING_SNAKE_CASE__: List[str]= inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE__: str= inputs_dict['''head_mask'''] SCREAMING_SNAKE_CASE__: List[str]= 1 # first forward pass SCREAMING_SNAKE_CASE__: List[Any]= model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[Any]= outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__: Union[str, Any]= ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__: List[str]= tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__: List[Any]= tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__: Dict= tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__: List[Any]= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] SCREAMING_SNAKE_CASE__: Optional[Any]= model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__: List[Any]= int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__: Union[str, Any]= output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__: Tuple= output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1e-3 ) def A__ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : int=None , snake_case_ : Tuple=None , snake_case_ : Optional[int]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE__: str= tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__: Any= tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__: int= tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__: str= tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__: List[str]= tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __a = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __a = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __a = True __a = False __a = False def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Tuple= TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__: Optional[Any]= ConfigTester(self , config_class=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Any= self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCamelCase ( unittest.TestCase ): __a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __a = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __a = "google/pegasus-xsum" @cached_property def UpperCamelCase_ ( self ) -> Dict: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase_ ( self , **lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: str= self.translate_src_text(**lowerCAmelCase ) assert self.expected_text == generated_words def UpperCamelCase_ ( self , **lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__: Tuple= self.tokenizer(self.src_text , **lowerCAmelCase , padding=lowerCAmelCase , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE__: Tuple= self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def UpperCamelCase_ ( self ) -> str: self._assert_generated_batch_equal_expected()
64
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : List[Any] = args.pruning_method snake_case_ : Any = args.threshold snake_case_ : Optional[Any] = args.model_name_or_path.rstrip("""/""" ) snake_case_ : Optional[Any] = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) snake_case_ : str = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , """pytorch_model.bin""" ) ) snake_case_ : Optional[int] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case_ : Dict = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: snake_case_ : List[Any] = tensor print(f'Copied layer {name}' ) elif "bias" in name: snake_case_ : Tuple = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": snake_case_ : List[Any] = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE__ , threshold=SCREAMING_SNAKE_CASE__ ) snake_case_ : int = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case_ : List[str] = name[:-6] snake_case_ : int = model[f'{prefix_}mask_scores'] snake_case_ : Optional[Any] = TopKBinarizer.apply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case_ : str = name[:-6] snake_case_ : str = model[f'{prefix_}mask_scores'] snake_case_ : List[str] = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case_ : List[Any] = name[:-6] snake_case_ : Optional[int] = model[f'{prefix_}mask_scores'] snake_case_ , snake_case_ : List[str] = -0.1, 1.1 snake_case_ : Optional[int] = torch.sigmoid(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = s * (r - l) + l snake_case_ : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) snake_case_ : List[str] = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: snake_case_ : int = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE__ ) , f'bertarized_{os.path.basename(SCREAMING_SNAKE_CASE__ )}' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): shutil.copytree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'\nCreated folder {target_model_path}' ) torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) a_ = parser.parse_args() main(args)
480
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Any = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def lowercase_ ( ) -> str: lowerCAmelCase__ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase__ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ : Optional[int] = script_fpath.stem lowerCAmelCase__ : Dict = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv lowerCAmelCase__ : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
507
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() @dataclass class _lowerCamelCase : _lowerCamelCase :nn.Module _lowerCamelCase :List[nn.Module] = field(default_factory=a_ ) _lowerCamelCase :list = field(default_factory=a_ ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Tensor , UpperCamelCase : Tensor ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase , nn.Convad ) or isinstance(UpperCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase ) def __call__( self : int , UpperCamelCase : Tensor ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCamelCase : _lowerCamelCase :nn.Module _lowerCamelCase :nn.Module _lowerCamelCase :int = 0 _lowerCamelCase :List = field(default_factory=a_ ) _lowerCamelCase :List = field(default_factory=a_ ) def __call__( self : str , UpperCamelCase : Tensor ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Tracker(self.dest )(UpperCamelCase ).parametrized lowerCAmelCase__ : Union[str, Any] = Tracker(self.src )(UpperCamelCase ).parametrized lowerCAmelCase__ : Any = list(filter(lambda UpperCamelCase : type(UpperCamelCase ) not in self.src_skip , UpperCamelCase ) ) lowerCAmelCase__ : int = list(filter(lambda UpperCamelCase : type(UpperCamelCase ) not in self.dest_skip , UpperCamelCase ) ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise Exception( f"""Numbers of operations are different. Source module has {len(UpperCamelCase )} operations while""" f""" destination module has {len(UpperCamelCase )}.""" ) for dest_m, src_m in zip(UpperCamelCase , UpperCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> List[str]: print(f"""Converting {name}...""" ) with torch.no_grad(): lowerCAmelCase__ : Any = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() lowerCAmelCase__ : int = ResNetForImageClassification(__UpperCAmelCase ).eval() lowerCAmelCase__ : List[str] = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) lowerCAmelCase__ : str = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." lowerCAmelCase__ : int = f"""resnet{'-'.join(name.split('resnet' ) )}""" print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one lowerCAmelCase__ : Tuple = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__UpperCAmelCase , ) print(f"""Pushed {checkpoint_name}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> List[str]: lowerCAmelCase__ : Dict = """imagenet-1k-id2label.json""" lowerCAmelCase__ : Any = 1000 lowerCAmelCase__ : Optional[int] = (1, num_labels) lowerCAmelCase__ : List[Any] = """huggingface/label-files""" lowerCAmelCase__ : int = num_labels lowerCAmelCase__ : Any = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Optional[Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[int] = idalabel lowerCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
507
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Tuple=13 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Any=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Union[str, Any]=224 , lowerCamelCase : str=1000 , lowerCamelCase : int=[3, 3, 6, 4] , lowerCamelCase : List[str]=[48, 56, 112, 220] , ) -> List[Any]: __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : Optional[Any] = is_training __snake_case : List[str] = use_labels __snake_case : int = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : List[str] = num_labels __snake_case : Optional[Any] = image_size __snake_case : Dict = layer_depths __snake_case : List[Any] = embed_dims def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : str = self.get_config() return config, pixel_values, labels def __snake_case ( self : List[str] ) -> Dict: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCamelCase , layer_scale_init_value=1E-5 , ) def __snake_case ( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ) -> List[Any]: __snake_case : Any = SwiftFormerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __snake_case ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] ) -> List[Any]: __snake_case : Dict = self.num_labels __snake_case : Optional[Any] = SwiftFormerForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __snake_case : List[Any] = SwiftFormerForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Optional[int] ) -> List[str]: ((__snake_case) , (__snake_case) , (__snake_case)) : List[Any] = self.prepare_config_and_inputs() __snake_case : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __UpperCAmelCase : Any = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : int = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = False def __snake_case ( self : Union[str, Any] ) -> Dict: __snake_case : int = SwiftFormerModelTester(self ) __snake_case : Union[str, Any] = ConfigTester( self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __snake_case ( self : int ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def __snake_case ( self : str ) -> Tuple: pass def __snake_case ( self : Optional[Any] ) -> Tuple: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(lowerCamelCase ) __snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : Dict ) -> List[str]: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(lowerCamelCase ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : int ) -> Any: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def __snake_case ( self : Optional[int] ) -> Union[str, Any]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = SwiftFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def __snake_case ( self : Tuple ) -> Union[str, Any]: pass def __snake_case ( self : Optional[int] ) -> List[Any]: def check_hidden_states_output(lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ): __snake_case : Any = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : Tuple = outputs.hidden_states __snake_case : Optional[Any] = 8 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Any = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Union[str, Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: def _config_zero_init(lowerCamelCase : Optional[int] ): __snake_case : List[str] = copy.deepcopy(lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCamelCase , lowerCamelCase , 1E-10 ) if isinstance(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , lowerCamelCase ): __snake_case : Optional[Any] = _config_zero_init(getattr(lowerCamelCase , lowerCamelCase ) ) setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return configs_no_init __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : List[Any] ) -> Any: pass def lowerCAmelCase_ ( ): __snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : int ) -> Any: return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def __snake_case ( self : int ) -> Tuple: __snake_case : Dict = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCamelCase ) __snake_case : Dict = self.default_image_processor __snake_case : int = prepare_img() __snake_case : Tuple = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __snake_case : Dict = model(**lowerCamelCase ) # verify the logits __snake_case : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Tuple = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) )
81
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE = 10 def _UpperCamelCase ( self ,**A ): UpperCAmelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**A ) return config def _UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=A ) def _UpperCamelCase ( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A ,beta_end=A ) def _UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def _UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ,device=A ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def _UpperCamelCase ( self ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**A ,use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps ,device=A ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma UpperCAmelCase = sample.to(A ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(A ,A ) UpperCAmelCase = model(A ,A ) UpperCAmelCase = scheduler.step(A ,A ,A ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(A ) ) UpperCAmelCase = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
341
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: int , UpperCamelCase_: Tuple , UpperCamelCase_: Any=7 , UpperCamelCase_: str=3 , UpperCamelCase_: int=18 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: List[Any]=4_00 , UpperCamelCase_: str=True , UpperCamelCase_: Dict=None , UpperCamelCase_: Tuple=True , ): __lowerCamelCase = size if size is not None else {"""height""": 18, """width""": 18} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_normalize def lowerCAmelCase__ ( self: Union[str, Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase__( lowercase_ , unittest.TestCase): UpperCAmelCase__ : Optional[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) __lowerCamelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(UpperCamelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCamelCase_ ) __lowerCamelCase = self.image_processing_class.from_json_file(UpperCamelCase_ ).to_dict() __lowerCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = self.image_processing_class.from_pretrained(UpperCamelCase_ ).to_dict() __lowerCamelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase__ ( self: Optional[int] ): pass def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) __lowerCamelCase = Image.open(dataset[4]["""file"""] ) __lowerCamelCase = Image.open(dataset[5]["""file"""] ) __lowerCamelCase = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) __lowerCamelCase = prepare_images() # test non-batched __lowerCamelCase = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) __lowerCamelCase = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCamelCase_ ) # test batched __lowerCamelCase = image_processing(UpperCamelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) __lowerCamelCase = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCamelCase_ )
719
from __future__ import annotations def lowerCamelCase__ ( A__ : list ): '''simple docstring''' if not nums: raise ValueError("""List is empty""" ) return sum(A__ ) / len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
80
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": a =input("""Enter image url: """).strip() print(F"""Downloading image from {url} ...""") a =BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image a =soup.find("""meta""", {"""property""": """og:image"""})["""content"""] a =requests.get(image_url).content a =F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
652
import logging import os from .state import PartialState class __A( logging.LoggerAdapter ): """simple docstring""" @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) UpperCamelCase__ = kwargs.pop("""main_process_only""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = kwargs.pop("""in_order""" , SCREAMING_SNAKE_CASE_ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE_ ): if self._should_log(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif in_order: UpperCamelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase__ , UpperCamelCase__ = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) state.wait_for_everyone() def __magic_name__ ( __a : str , __a : str = None ): '''simple docstring''' if log_level is None: UpperCamelCase__ = os.environ.get("""ACCELERATE_LOG_LEVEL""" , __a ) UpperCamelCase__ = logging.getLogger(__a ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__a , {} )
513
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ ={"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ =[ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __a : Tuple =IFInpaintingSuperResolutionPipeline __a : Dict =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __a : int =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __a : Union[str, Any] =PipelineTesterMixin.required_optional_params - {"""latents"""} def __snake_case ( self ): return self._get_superresolution_dummy_components() def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith('''mps''' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase_ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case ( self ): self._test_save_load_local() def __snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
33
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets snake_case = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ snake_case = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ snake_case = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/hendrycks/math' ,codebase_urls=['https://github.com/hendrycks/math'] ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : List[Any] ,__A : List[Any] ) -> str: _lowercase = 0.0 for i, j in zip(__A ,__A ): n_correct += 1.0 if math_equivalence.is_equiv(__A ,__A ) else 0.0 _lowercase = n_correct / len(__A ) return { "accuracy": accuracy, }
67
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase ( UpperCamelCase__ : BertModel , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) __UpperCAmelCase = model.state_dict() def to_tf_var_name(UpperCamelCase__ : str ): for patt, repl in iter(UpperCamelCase__ ): __UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f"""bert/{name}""" def create_tf_var(UpperCamelCase__ : np.ndarray , UpperCamelCase__ : str , UpperCamelCase__ : tf.Session ): __UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase = to_tf_var_name(UpperCamelCase__ ) __UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase = torch_tensor.T __UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = session.run(UpperCamelCase__ ) print(f"""Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}""" ) __UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def lowerCAmelCase ( UpperCamelCase__ : List[str]=None ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase = parser.parse_args(UpperCamelCase__ ) __UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
262
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def A__ ( *A__ ,**A__): pass def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = np.array(lowerCAmelCase__ ) lowercase = npimg.shape return {"hash": hashimage(lowerCAmelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): lowercase_ : Tuple =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowercase_ : List[str] =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def A__ ( self ,A__ ,A__ ,A__): lowercase = MaskGenerationPipeline(model=A__ ,image_processor=A__) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A__ ( self ,A__ ,A__): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''') def A__ ( self): pass @slow @require_torch def A__ ( self): lowercase = pipeline('''mask-generation''' ,model='''facebook/sam-vit-huge''') lowercase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,points_per_batch=2_5_6) # Shortening by hashing lowercase = [] for i, o in enumerate(outputs['''masks''']): new_outupt += [{"mask": mask_to_test_readable(A__), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A__ ,decimals=4) ,[ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8871} ] ,) # fmt: on @require_torch @slow def A__ ( self): lowercase = '''facebook/sam-vit-huge''' lowercase = pipeline('''mask-generation''' ,model=A__) lowercase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' ,pred_iou_thresh=1 ,points_per_batch=2_5_6) # Shortening by hashing lowercase = [] for i, o in enumerate(outputs['''masks''']): new_outupt += [{"mask": mask_to_test_readable(A__), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A__ ,decimals=4) ,[ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, ] ,)
633
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowercase = emb.weight.data return lin_layer def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] lowercase = mam_aaa['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase = MaMaaaConfig( vocab_size=lowerCAmelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) lowercase = state_dict['''decoder.embed_tokens.weight'''] lowercase = MaMaaaForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase__ :Tuple = parser.parse_args() lowercase__ :int = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
633
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case: Tuple = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: Tuple = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: Optional[int] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __snake_case: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
577
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
518
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' A :List[Any] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 5_0257 , __UpperCAmelCase = 1024 , __UpperCAmelCase = 768 , __UpperCAmelCase = 12 , __UpperCAmelCase = 12 , __UpperCAmelCase = None , __UpperCAmelCase = "gelu_new" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 1E-5 , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = False , ): """simple docstring""" super().__init__() a__ : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) a__ : List[Any] = prefix_inner_dim a__ : List[str] = prefix_hidden_dim a__ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ : Tuple = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) a__ : Dict = GPTaConfig( vocab_size=lowerCAmelCase_ , n_positions=lowerCAmelCase_ , n_embd=lowerCAmelCase_ , n_layer=lowerCAmelCase_ , n_head=lowerCAmelCase_ , n_inner=lowerCAmelCase_ , activation_function=lowerCAmelCase_ , resid_pdrop=lowerCAmelCase_ , embd_pdrop=lowerCAmelCase_ , attn_pdrop=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , scale_attn_weights=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , scale_attn_by_inverse_layer_idx=lowerCAmelCase_ , reorder_and_upcast_attn=lowerCAmelCase_ , ) a__ : Any = GPTaLMHeadModel(lowerCAmelCase_ ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , ): """simple docstring""" a__ : List[str] = self.transformer.transformer.wte(lowerCAmelCase_ ) a__ : Dict = self.encode_prefix(lowerCAmelCase_ ) a__ : Optional[int] = self.decode_prefix(lowerCAmelCase_ ) a__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: a__ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) a__ : str = torch.cat((dummy_token, input_ids) , dim=1 ) a__ : Optional[Any] = self.transformer(inputs_embeds=lowerCAmelCase_ , labels=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return torch.zeros(lowerCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase_ ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return self.encode_prefix(lowerCAmelCase_ ) @torch.no_grad() def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = torch.split(lowerCAmelCase_ , 1 , dim=0 ) a__ : Any = [] a__ : int = [] for feature in features: a__ : Optional[Any] = self.decode_prefix(feature.to(lowerCAmelCase_ ) ) # back to the clip feature # Only support beam search for now a__ , a__ : List[str] = self.generate_beam( input_embeds=lowerCAmelCase_ , device=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) a__ : int = torch.stack(lowerCAmelCase_ ) a__ : List[str] = torch.stack(lowerCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _A ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = 5 , __UpperCAmelCase = 67 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = None , ): """simple docstring""" a__ : Tuple = eos_token_id a__ : str = None a__ : Union[str, Any] = None a__ : Dict = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.int ) a__ : Tuple = torch.zeros(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: a__ : int = input_embeds else: a__ : Optional[int] = self.transformer.transformer.wte(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): a__ : str = self.transformer(inputs_embeds=lowerCAmelCase_ ) a__ : Union[str, Any] = outputs.logits a__ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) a__ : Dict = logits.softmax(-1 ).log() if scores is None: a__ , a__ : List[str] = logits.topk(lowerCAmelCase_ , -1 ) a__ : str = generated.expand(lowerCAmelCase_ , *generated.shape[1:] ) a__ , a__ : Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: a__ : Dict = next_tokens else: a__ : Any = tokens.expand(lowerCAmelCase_ , *tokens.shape[1:] ) a__ : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) else: a__ : Optional[int] = -float(np.inf ) a__ : int = 0 a__ : Tuple = scores[:, None] + logits seq_lengths[~is_stopped] += 1 a__ : List[str] = scores_sum / seq_lengths[:, None] a__ , a__ : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCAmelCase_ , -1 ) a__ : Optional[int] = next_tokens // scores_sum.shape[1] a__ : str = seq_lengths[next_tokens_source] a__ : str = next_tokens % scores_sum.shape[1] a__ : Any = next_tokens.unsqueeze(1 ) a__ : int = tokens[next_tokens_source] a__ : Any = torch.cat((tokens, next_tokens) , dim=1 ) a__ : Tuple = generated[next_tokens_source] a__ : Any = scores_sum_average * seq_lengths a__ : Optional[Any] = is_stopped[next_tokens_source] a__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) a__ : Any = torch.cat((generated, next_token_embed) , dim=1 ) a__ : Optional[int] = is_stopped + next_tokens.eq(lowerCAmelCase_ ).squeeze() if is_stopped.all(): break a__ : Tuple = scores / seq_lengths a__ : Union[str, Any] = scores.argsort(descending=lowerCAmelCase_ ) # tokens tensors are already padded to max_seq_length a__ : Any = [tokens[i] for i in order] a__ : Any = torch.stack(lowerCAmelCase_ , dim=0 ) a__ : Optional[int] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
712
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Dict: a__ : List[Any] = checkpoint a__ : List[Any] = {} a__ : int = vae_state_dict["encoder.conv_in.weight"] a__ : Any = vae_state_dict["encoder.conv_in.bias"] a__ : Union[str, Any] = vae_state_dict["encoder.conv_out.weight"] a__ : Optional[Any] = vae_state_dict["encoder.conv_out.bias"] a__ : List[str] = vae_state_dict["encoder.norm_out.weight"] a__ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] a__ : Optional[Any] = vae_state_dict["decoder.conv_in.weight"] a__ : Dict = vae_state_dict["decoder.conv_in.bias"] a__ : Union[str, Any] = vae_state_dict["decoder.conv_out.weight"] a__ : Optional[int] = vae_state_dict["decoder.conv_out.bias"] a__ : Dict = vae_state_dict["decoder.norm_out.weight"] a__ : int = vae_state_dict["decoder.norm_out.bias"] a__ : Any = vae_state_dict["quant_conv.weight"] a__ : Any = vae_state_dict["quant_conv.bias"] a__ : str = vae_state_dict["post_quant_conv.weight"] a__ : Any = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only a__ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) a__ : Optional[int] = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only a__ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) a__ : int = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(__UpperCamelCase ) } for i in range(__UpperCamelCase ): a__ : Tuple = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: a__ : Optional[Any] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) a__ : List[str] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) a__ : Optional[Any] = renew_vae_resnet_paths(__UpperCamelCase ) a__ : List[str] = {"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Any = [key for key in vae_state_dict if "encoder.mid.block" in key] a__ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : List[Any] = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] a__ : Dict = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Union[str, Any] = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Dict = [key for key in vae_state_dict if "encoder.mid.attn" in key] a__ : Optional[int] = renew_vae_attention_paths(__UpperCamelCase ) a__ : str = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) for i in range(__UpperCamelCase ): a__ : Optional[Any] = num_up_blocks - 1 - i a__ : str = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: a__ : Dict = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] a__ : Optional[int] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] a__ : int = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Optional[Any] = {"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Union[str, Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] a__ : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : List[str] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] a__ : List[str] = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Union[str, Any] = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : int = [key for key in vae_state_dict if "decoder.mid.attn" in key] a__ : str = renew_vae_attention_paths(__UpperCamelCase ) a__ : List[str] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) return new_checkpoint def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , ) -> str: # Only support V1 a__ : Optional[int] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) a__ : Any = io.BytesIO(r.content ) a__ : int = OmegaConf.load(__UpperCamelCase ) a__ : Any = 5_12 a__ : str = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open a__ : Optional[Any] = {} with safe_open(__UpperCamelCase , framework="pt" , device="cpu" ) as f: for key in f.keys(): a__ : Tuple = f.get_tensor(__UpperCamelCase ) else: a__ : List[Any] = torch.load(__UpperCamelCase , map_location=__UpperCamelCase )["state_dict"] # Convert the VAE model. a__ : Optional[int] = create_vae_diffusers_config(__UpperCamelCase , image_size=__UpperCamelCase ) a__ : List[Any] = custom_convert_ldm_vae_checkpoint(__UpperCamelCase , __UpperCamelCase ) a__ : Optional[int] = AutoencoderKL(**__UpperCamelCase ) vae.load_state_dict(__UpperCamelCase ) vae.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
207
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A : str = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : tuple , __magic_name__ : Path , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Tuple=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , use_external_data_format=__magic_name__ , enable_onnx_checker=__magic_name__ , opset_version=__magic_name__ , ) else: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , opset_version=__magic_name__ , ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> int: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase__ = """cpu""" lowercase__ = Path(__magic_name__ ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , 25 , 25 ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__magic_name__ , ) del vae_decoder if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') A : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
15
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> list: _snake_case = [] _snake_case , _snake_case = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _snake_case = result + left + right return input_list def _UpperCAmelCase ( __lowerCamelCase : list ) -> list: if len(__lowerCamelCase ) <= 1: return input_list _snake_case = list(__lowerCamelCase ) # iteration for two-way merging _snake_case = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): _snake_case = i _snake_case = i + p - 1 _snake_case = (low + high + 1) // 2 _snake_case = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): _snake_case = i _snake_case = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() if user_input == "": UpperCAmelCase__ = [] else: UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
224
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase__ ( __snake_case , __snake_case ): @register_to_config def __init__( self ,*, A__ = 4 ,A__ = 768 ,A__ ,A__ ,): super().__init__() _A : str = nn.Parameter(torch.zeros(A__ ) ) # parameters for additional clip time embeddings _A : Optional[int] = nn.Linear(A__ ,A__ ) _A : Union[str, Any] = nn.Linear(A__ ,A__ ) # parameters for encoder hidden states _A : List[Any] = clip_extra_context_tokens _A : Optional[int] = nn.Linear( A__ ,self.clip_extra_context_tokens * cross_attention_dim ) _A : Any = nn.Linear(A__ ,A__ ) _A : Tuple = nn.LayerNorm(A__ ) def A__ ( self ,*, A__ ,A__ ,A__ ,A__ ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _A : str = image_embeddings.shape[0] _A : List[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _A : int = classifier_free_guidance_embeddings.expand( A__ ,-1 ) _A : int = torch.cat([classifier_free_guidance_embeddings, image_embeddings] ,dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _A : List[str] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _A : Dict = self.embedding_proj(A__ ) _A : Any = self.clip_image_embeddings_project_to_time_embeddings(A__ ) _A : List[Any] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _A : Union[str, Any] = self.clip_extra_context_tokens_proj(A__ ) _A : List[Any] = clip_extra_context_tokens.reshape(A__ ,-1 ,self.clip_extra_context_tokens ) _A : str = clip_extra_context_tokens.permute(0 ,2 ,1 ) _A : int = self.encoder_hidden_states_proj(A__ ) _A : Dict = self.text_encoder_hidden_states_norm(A__ ) _A : Tuple = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] ,dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
709
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def a__ (__lowercase :str , __lowercase :int ) -> Dict: assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a__ (__lowercase :Union[str, Any] , __lowercase :str , __lowercase :str , __lowercase :str ) -> int: _A : str = tmp_path / '''cache''' _A : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : Any = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_sql_dataset(__lowercase , __lowercase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def a__ (__lowercase :Dict , __lowercase :Union[str, Any] , __lowercase :Dict , __lowercase :int ) -> List[str]: _A : Union[str, Any] = tmp_path / '''cache''' _A : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _A : Tuple = features.copy() if features else default_expected_features _A : Union[str, Any] = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowercase , cache_dir=__lowercase ).read() _check_sql_dataset(__lowercase , __lowercase ) def a__ (__lowercase :Optional[Any] ) -> List[str]: with contextlib.closing(sqlitea.connect(__lowercase ) ) as con: _A : List[str] = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def a__ (__lowercase :Tuple , __lowercase :List[str] , __lowercase :Tuple ) -> str: _A : Optional[int] = tmp_path / '''cache''' _A : Dict = os.path.join(__lowercase , '''tmp.sql''' ) _A : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _A : Dict = iter_sql_file(__lowercase ) _A : Any = iter_sql_file(__lowercase ) for rowa, rowa in zip(__lowercase , __lowercase ): assert rowa == rowa @require_sqlalchemy def a__ (__lowercase :Optional[Any] , __lowercase :Tuple , __lowercase :Union[str, Any] ) -> Union[str, Any]: _A : Optional[Any] = tmp_path / '''cache''' _A : Union[str, Any] = os.path.join(__lowercase , '''tmp.sql''' ) _A : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _A : Union[str, Any] = iter_sql_file(__lowercase ) _A : str = iter_sql_file(__lowercase ) for rowa, rowa in zip(__lowercase , __lowercase ): assert rowa == rowa @require_sqlalchemy def a__ (__lowercase :Union[str, Any] , __lowercase :Dict , __lowercase :int ) -> Any: _A : Optional[int] = tmp_path / '''cache''' _A : Optional[Any] = os.path.join(__lowercase , '''tmp.sql''' ) _A : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowercase ).read() with pytest.raises(__lowercase ): SqlDatasetWriter(__lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
332
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = AltDiffusionPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) _A = CLIPTextModel(snake_case_ ) _A = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _A = 77 _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith('mps' ): _A = torch.manual_seed(snake_case_ ) else: _A = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A = RobertaSeriesModelWithTransformation(snake_case_ ) _A = text_encoder _A = AltDiffusionPipeline(**snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = 'A photo of an astronaut' _A = alt_pipe(**snake_case_ ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) _A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A = RobertaSeriesModelWithTransformation(snake_case_ ) _A = text_encoder _A = AltDiffusionPipeline(**snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = self.get_dummy_inputs(snake_case_ ) _A = alt_pipe(**snake_case_ ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): # make sure here that pndm scheduler skips prk _A = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = alt_pipe([prompt] , generator=snake_case_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): _A = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _A = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=snake_case_ , safety_checker=snake_case_ ) _A = alt_pipe.to(snake_case_ ) alt_pipe.set_progress_bar_config(disable=snake_case_ ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = alt_pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type='numpy' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": 512, } __lowerCAmelCase ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase = RetriBertTokenizer _UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__="[UNK]" , UpperCAmelCase__="[SEP]" , UpperCAmelCase__="[PAD]" , UpperCAmelCase__="[CLS]" , UpperCAmelCase__="[MASK]" , UpperCAmelCase__=True , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> int: super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase__ ) != tokenize_chinese_chars ): a_ = getattr(UpperCAmelCase__ , normalizer_state.pop('type' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**UpperCAmelCase__ ) a_ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> str: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: a_ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
697
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a : List[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _a : Any = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _a : Tuple = spec.loader.load_module() _a : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _a : Any = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') _a : Optional[int] = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def a_ ( ) -> Tuple: """simple docstring""" snake_case : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case : Optional[Any] = False # source code of `config_class` snake_case : Any = inspect.getsource(__magic_name__ ) snake_case : Union[str, Any] = _re_checkpoint.findall(__magic_name__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case , snake_case : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case : str = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: snake_case : Tuple = True break snake_case : Optional[int] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: snake_case : Union[str, Any] = '''\n'''.join(sorted(__magic_name__ ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
84
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a_ ( a , unittest.TestCase ): A__ : Dict = ReformerTokenizer A__ : Optional[int] = ReformerTokenizerFast A__ : str = True A__ : Tuple = False A__ : str = True def lowerCAmelCase( self : List[Any] ): """simple docstring""" super().setUp() snake_case : str = ReformerTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase( self : Any ): """simple docstring""" snake_case : int = '''<s>''' snake_case : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCAmelCase__ ) , 1_000 ) def lowerCAmelCase( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowerCAmelCase( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return snake_case : Any = self.get_tokenizer() snake_case : str = self.get_rust_tokenizer() snake_case : Tuple = '''I was born in 92000, and this is falsé.''' snake_case : str = tokenizer.tokenize(UpperCAmelCase__ ) snake_case : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) snake_case : List[str] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : List[str] = self.get_rust_tokenizer() snake_case : Optional[int] = tokenizer.encode(UpperCAmelCase__ ) snake_case : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase( self : Dict , UpperCAmelCase__ : List[Any]=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case : str = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) # Simple input snake_case : Union[str, Any] = '''This is a simple input''' snake_case : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case : int = ('''This is a simple input''', '''This is a pair''') snake_case : int = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) def lowerCAmelCase( self : str ): """simple docstring""" pass def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case : Union[str, Any] = ReformerTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) snake_case : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , ) snake_case : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case : int = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case : List[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCAmelCase( self : Tuple ): """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''' ) @slow def lowerCAmelCase( self : List[str] ): """simple docstring""" snake_case : Any = '''Hello World!''' snake_case : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @require_torch @slow def lowerCAmelCase( self : List[Any] ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence snake_case : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case : Union[str, Any] = ''' '''.join(UpperCAmelCase__ ) snake_case : Optional[int] = self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors='''pt''' ) snake_case : List[str] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''' ) snake_case : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) snake_case : Tuple = encoded_sequence['''input_ids'''].shape snake_case : List[Any] = ReformerModel(UpperCAmelCase__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase__ ) model(**UpperCAmelCase__ ) @slow def lowerCAmelCase( self : Optional[int] ): """simple docstring""" # fmt: off snake_case : Tuple = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 snake_case : Tuple = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=UpperCAmelCase__ , sequences=UpperCAmelCase__ , )
84
1
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCamelCase_ ( snake_case_ ): a__ = "retribert" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __magic_name__ :List[Any] = vocab_size __magic_name__ :Tuple = hidden_size __magic_name__ :Optional[Any] = num_hidden_layers __magic_name__ :Dict = num_attention_heads __magic_name__ :List[Any] = hidden_act __magic_name__ :Optional[Any] = intermediate_size __magic_name__ :Dict = hidden_dropout_prob __magic_name__ :Optional[int] = attention_probs_dropout_prob __magic_name__ :str = max_position_embeddings __magic_name__ :Tuple = type_vocab_size __magic_name__ :List[str] = initializer_range __magic_name__ :Union[str, Any] = layer_norm_eps __magic_name__ :Any = share_encoders __magic_name__ :Optional[Any] = projection_dim
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = DebertaVaTokenizer UpperCamelCase : Optional[int] = DebertaVaTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Dict = True def __magic_name__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = DebertaVaTokenizer(__UpperCAmelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = """this is a test""" __lowercase = """this is a test""" return input_text, output_text def __magic_name__ ( self ): """simple docstring""" __lowercase = """<pad>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__UpperCAmelCase ) , 3_0_0_0_1 ) def __magic_name__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __magic_name__ ( self ): """simple docstring""" pass def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """This is a test""" __lowercase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __lowercase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = DebertaVaTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # fmt: off __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __lowercase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaVaTokenizer(__UpperCAmelCase ) __lowercase = tokenizer.encode("""sequence builders""" ) __lowercase = tokenizer.encode("""multi-sequence build""" ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCAmelCase , ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
566
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants A = 300 # TEMPERATURE (unit = K) def __A ( a_ :float , a_ :float , a_ :float , ) -> float: if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''') elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''') elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''') elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''') elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
101
0
"""simple docstring""" def A ( _A = 600_851_475_143 ): """simple docstring""" try: snake_case_ :Dict = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ :Dict = 2 snake_case_ :Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ :List[Any] = i while n % i == 0: snake_case_ :str = n // i i += 1 return int(_A ) if __name__ == "__main__": print(F'''{solution() = }''')
584
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A ( _A, _A, _A, _A, _A ): """simple docstring""" # Load configuration defined in the metadata file with open(_A ) as metadata_file: snake_case_ :Union[str, Any] = json.load(_A ) snake_case_ :List[Any] = LukeConfig(use_entity_aware_attention=_A, **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case_ :List[Any] = torch.load(_A, map_location="cpu" ) # Load the entity vocab file snake_case_ :str = load_entity_vocab(_A ) snake_case_ :List[str] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case_ :Tuple = AddedToken("<ent>", lstrip=_A, rstrip=_A ) snake_case_ :int = AddedToken("<ent2>", lstrip=_A, rstrip=_A ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_A ) with open(os.path.join(_A, LukeTokenizer.vocab_files_names["entity_vocab_file"] ), "w" ) as f: json.dump(_A, _A ) snake_case_ :Tuple = LukeTokenizer.from_pretrained(_A ) # Initialize the embeddings of the special tokens snake_case_ :Dict = state_dict["embeddings.word_embeddings.weight"] snake_case_ :Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) snake_case_ :Tuple = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) snake_case_ :Any = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case_ :Any = F'''encoder.layer.{layer_index}.attention.self.''' snake_case_ :Optional[int] = state_dict[prefix + matrix_name] snake_case_ :Dict = state_dict[prefix + matrix_name] snake_case_ :Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case_ :Union[str, Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case_ :List[str] = entity_emb[entity_vocab["[MASK]"]] snake_case_ :int = LukeModel(config=_A ).eval() snake_case_ , snake_case_ :int = model.load_state_dict(_A, strict=_A ) if not (len(_A ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(_A )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs snake_case_ :Any = LukeTokenizer.from_pretrained(_A, task="entity_classification" ) snake_case_ :Tuple = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) snake_case_ :Dict = (39, 42) snake_case_ :Any = tokenizer(_A, entity_spans=[span], add_prefix_space=_A, return_tensors="pt" ) snake_case_ :Tuple = model(**_A ) # Verify word hidden states if model_size == "large": snake_case_ :Tuple = torch.Size((1, 42, 1_024) ) snake_case_ :Dict = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base snake_case_ :Tuple = torch.Size((1, 42, 768) ) snake_case_ :Dict = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], _A, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": snake_case_ :List[str] = torch.Size((1, 1, 1_024) ) snake_case_ :Dict = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base snake_case_ :Optional[int] = torch.Size((1, 1, 768) ) snake_case_ :List[str] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], _A, atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_A ) ) model.save_pretrained(_A ) def A ( _A ): """simple docstring""" snake_case_ :List[Any] = {} with open(_A, "r", encoding="utf-8" ) as f: for index, line in enumerate(_A ): snake_case_ , snake_case_ :Tuple = line.rstrip().split("\t" ) snake_case_ :Dict = index return entity_vocab if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
584
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging a : Dict = logging.get_logger(__name__) a : Optional[int] = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "perceiver" def __init__( self , snake_case__=256 , snake_case__=1280 , snake_case__=768 , snake_case__=1 , snake_case__=26 , snake_case__=8 , snake_case__=8 , snake_case__=None , snake_case__=None , snake_case__="kv" , snake_case__=1 , snake_case__=1 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=262 , snake_case__=2048 , snake_case__=56 , snake_case__=[368, 496] , snake_case__=16 , snake_case__=1920 , snake_case__=16 , snake_case__=[1, 16, 224, 224] , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase__ : Optional[Any]= num_latents lowercase__ : Optional[int]= d_latents lowercase__ : Tuple= d_model lowercase__ : int= num_blocks lowercase__ : Tuple= num_self_attends_per_block lowercase__ : Any= num_self_attention_heads lowercase__ : Dict= num_cross_attention_heads lowercase__ : Optional[Any]= qk_channels lowercase__ : int= v_channels lowercase__ : Optional[Any]= cross_attention_shape_for_attention lowercase__ : Dict= self_attention_widening_factor lowercase__ : Dict= cross_attention_widening_factor lowercase__ : Optional[int]= hidden_act lowercase__ : Any= attention_probs_dropout_prob lowercase__ : Optional[int]= initializer_range lowercase__ : List[str]= layer_norm_eps lowercase__ : str= use_query_residual # masked language modeling attributes lowercase__ : List[str]= vocab_size lowercase__ : List[str]= max_position_embeddings # image classification attributes lowercase__ : int= image_size # flow attributes lowercase__ : Dict= train_size # multimodal autoencoding attributes lowercase__ : Any= num_frames lowercase__ : Tuple= audio_samples_per_frame lowercase__ : Any= samples_per_patch lowercase__ : Union[str, Any]= output_shape class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : int= {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : List[str]= {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , ): '''simple docstring''' # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case__ , snake_case__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : Tuple= compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : List[str]= preprocessor.num_special_tokens_to_add(snake_case__ ) lowercase__ : Any= compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence lowercase__ : List[str]= [" ".join(["a"] ) * seq_length] * batch_size lowercase__ : List[str]= dict(preprocessor(snake_case__ , return_tensors=snake_case__ ) ) lowercase__ : Any= inputs.pop("input_ids" ) return inputs elif isinstance(snake_case__ , snake_case__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : List[str]= compute_effective_axis_dimension(snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase__ : List[str]= self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase__ : int= dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) lowercase__ : Optional[int]= inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
85
"""simple docstring""" def lowercase__(A ) ->list: """simple docstring""" if n_term == "": return [] lowercase__ : list= [] for temp in range(int(A ) ): series.append(f'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": a : Dict = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
85
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = 42 _UpperCAmelCase : int = 42 def __init__( self , __magic_name__ , __magic_name__ ): super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __magic_name__ = 1 , __magic_name__ = 5_0 , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , **__magic_name__ , ): lowerCamelCase : List[Any] = self.unet.config.sample_size lowerCamelCase : Tuple = (batch_size, 3, img_size, img_size) lowerCamelCase : str = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCamelCase : Optional[int] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCamelCase : Tuple = self.scheduler.schedule[t] lowerCamelCase : int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCamelCase : Dict = self.scheduler.add_noise_to_input(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCamelCase : List[str] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCamelCase : List[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCamelCase : str = self.scheduler.step_correct( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , step_output.prev_sample , step_output["""derivative"""] , ) lowerCamelCase : Dict = step_output.prev_sample lowerCamelCase : Dict = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase : str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase : List[Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
681
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = params __magic_name__ :Any = np.array(__lowerCAmelCase ) __magic_name__ :Optional[Any] = np.array([len(__lowerCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ): """simple docstring""" return len(self.lengths ) def A ( self ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.params.max_model_input_size __magic_name__ :int = self.lengths > max_len logger.info(F'''Splitting {sum(__lowerCAmelCase )} too long sequences.''' ) def divide_chunks(__lowerCAmelCase , __lowerCAmelCase ): return [l[i : i + n] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )] __magic_name__ :Optional[int] = [] __magic_name__ :List[Any] = [] if self.params.mlm: __magic_name__ , __magic_name__ :Optional[Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: __magic_name__ , __magic_name__ :Tuple = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __magic_name__ :int = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __magic_name__ :List[Any] = np.insert(__lowerCAmelCase , 0 , __lowerCAmelCase ) if sub_s[-1] != sep_id: __magic_name__ :Union[str, Any] = np.insert(__lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase ) assert len(__lowerCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowerCAmelCase ) new_tok_ids.extend(__lowerCAmelCase ) new_lengths.extend([len(__lowerCAmelCase ) for l in sub_seqs] ) __magic_name__ :Tuple = np.array(__lowerCAmelCase ) __magic_name__ :Optional[int] = np.array(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = len(self ) __magic_name__ :int = self.lengths > 1_1 __magic_name__ :List[str] = self.token_ids[indices] __magic_name__ :Union[str, Any] = self.lengths[indices] __magic_name__ :List[str] = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def A ( self ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: __magic_name__ :Tuple = self.params.special_tok_ids['''unk_token'''] __magic_name__ :Dict = len(self ) __magic_name__ :Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __magic_name__ :int = (unk_occs / self.lengths) < 0.5 __magic_name__ :str = self.token_ids[indices] __magic_name__ :str = self.lengths[indices] __magic_name__ :Any = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def A ( self ): """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = [t[0] for t in batch] __magic_name__ :List[Any] = [t[1] for t in batch] assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) # Max for paddings __magic_name__ :Tuple = max(__lowerCAmelCase ) # Pad token ids if self.params.mlm: __magic_name__ :Any = self.params.special_tok_ids['''pad_token'''] else: __magic_name__ :str = self.params.special_tok_ids['''unk_token'''] __magic_name__ :Any = [list(t.astype(__lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(__lowerCAmelCase )) for t in token_ids] assert len(tk_ ) == len(__lowerCAmelCase ) assert all(len(__lowerCAmelCase ) == max_seq_len_ for t in tk_ ) __magic_name__ :Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_) __magic_name__ :Optional[int] = torch.tensor(__lowerCAmelCase ) # (bs) return tk_t, lg_t
0
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _A( snake_case__ ): """simple docstring""" def __init__( self , *_A , **_A ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
704
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A: """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=3 , _A=4 , _A=None , ): __A : Union[str, Any] = parent __A : List[str] = batch_size __A : Optional[int] = seq_length __A : List[Any] = is_training __A : Optional[Any] = use_input_mask __A : List[Any] = use_token_type_ids __A : Optional[Any] = use_labels __A : List[str] = vocab_size __A : Optional[int] = hidden_size __A : List[Any] = num_hidden_layers __A : int = num_attention_heads __A : Dict = intermediate_size __A : Any = hidden_act __A : Union[str, Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Dict = type_vocab_size __A : Any = type_sequence_label_size __A : Dict = initializer_range __A : str = num_labels __A : Union[str, Any] = num_choices __A : str = scope def UpperCAmelCase_ ( self ): __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_input_mask: __A : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __A : Dict = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = None __A : List[Any] = None __A : List[Any] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): __A : List[str] = LlamaModel(config=_A ) model.to(_A ) model.eval() __A : Any = model(_A , attention_mask=_A ) __A : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Dict = True __A : int = LlamaModel(_A ) model.to(_A ) model.eval() __A : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A : int = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) __A : List[Any] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Optional[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : int = True __A : List[Any] = True __A : List[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass __A : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : str = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] __A : Union[str, Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Tuple = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Dict = False def UpperCAmelCase_ ( self ): __A : List[Any] = LlamaModelTester(self ) __A : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : int = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : Optional[int] = input_dict['input_ids'] __A : int = input_ids.ne(1 ).to(_A ) __A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = 3 __A : Tuple = 'single_label_classification' __A : Union[str, Any] = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[int] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = 3 __A : int = 'multi_label_classification' __A : int = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : List[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def UpperCAmelCase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCAmelCase_ ( self , _A ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Dict = ids_tensor([1, 10] , config.vocab_size ) __A : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = LlamaModel(_A ) original_model.to(_A ) original_model.eval() __A : Dict = original_model(_A ).last_hidden_state __A : int = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : int = {'type': scaling_type, 'factor': 1_0.0} __A : str = LlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() __A : Dict = scaled_model(_A ).last_hidden_state __A : str = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) @require_torch class _A( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __A : Union[str, Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __A : Optional[int] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : str = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[str] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __A : int = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : List[str] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __A : Optional[int] = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : Optional[Any] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __A : List[Any] = model(torch.tensor(_A ) ) __A : Tuple = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # fmt: off __A : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __A : List[str] = 'Simply put, the theory of relativity states that ' __A : Union[str, Any] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __A : List[str] = tokenizer.encode(_A , return_tensors='pt' ) __A : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_A ) # greedy generation outputs __A : Union[str, Any] = model.generate(_A , max_new_tokens=64 , top_p=_A , temperature=1 , do_sample=_A ) __A : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_A ) self.assertEqual(_A , _A )
77
0
'''simple docstring''' import unittest from transformers import DonutProcessor a = "naver-clova-ix/donut-base" class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DonutProcessor.from_pretrained(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __SCREAMING_SNAKE_CASE = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __SCREAMING_SNAKE_CASE = self.processor.tokenajson(lowerCamelCase ) self.assertDictEqual(lowerCamelCase ,lowerCamelCase )
109
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase : Tuple = 2_56 class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = ['''melgan'''] def __init__( self: List[str] ,a: SpectrogramNotesEncoder ,a: SpectrogramContEncoder ,a: TaFilmDecoder ,a: DDPMScheduler ,a: OnnxRuntimeModel if is_onnx_available() else Any ,): super().__init__() # From MELGAN __UpperCAmelCase = math.log(1e-5 ) # Matches MelGAN training. __UpperCAmelCase = 4.0 # Largest value for most examples __UpperCAmelCase = 128 self.register_modules( notes_encoder=a ,continuous_encoder=a ,decoder=a ,scheduler=a ,melgan=a ,) def snake_case ( self: List[str] ,a: Union[str, Any] ,a: Optional[Any]=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = output_range if clip: __UpperCAmelCase = torch.clip(a ,self.min_value ,self.max_value ) # Scale to [0, 1]. __UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def snake_case ( self: List[Any] ,a: List[str] ,a: int=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = input_range __UpperCAmelCase = torch.clip(a ,a ,a ) if clip else outputs # Scale to [0, 1]. __UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def snake_case ( self: Optional[int] ,a: Any ,a: Optional[Any] ,a: Optional[Any] ): __UpperCAmelCase = input_tokens > 0 __UpperCAmelCase , __UpperCAmelCase = self.notes_encoder( encoder_input_tokens=a ,encoder_inputs_mask=a ) __UpperCAmelCase , __UpperCAmelCase = self.continuous_encoder( encoder_inputs=a ,encoder_inputs_mask=a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def snake_case ( self: Optional[int] ,a: int ,a: str ,a: Dict ): __UpperCAmelCase = noise_time if not torch.is_tensor(a ): __UpperCAmelCase = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(a ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) __UpperCAmelCase = self.decoder( encodings_and_masks=a ,decoder_input_tokens=a ,decoder_noise_time=a ) return logits @torch.no_grad() def __call__( self: str ,a: List[List[int]] ,a: Optional[torch.Generator] = None ,a: int = 100 ,a: bool = True ,a: str = "numpy" ,a: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,a: int = 1 ,): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a ,a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) __UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) __UpperCAmelCase = np.zeros([1, 0, self.n_dims] ,np.floataa ) __UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) for i, encoder_input_tokens in enumerate(a ): if i == 0: __UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. __UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCAmelCase = ones __UpperCAmelCase = self.scale_features( a ,output_range=[-1.0, 1.0] ,clip=a ) __UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=a ,continuous_mask=a ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=a ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.decode( encodings_and_masks=a ,input_tokens=a ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(a ,a ,a ,generator=a ).prev_sample __UpperCAmelCase = self.scale_to_features(a ,input_range=[-1.0, 1.0] ) __UpperCAmelCase = mel[:1] __UpperCAmelCase = mel.cpu().float().numpy() __UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a ,a ) logger.info('Generated segment' ,a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=a )
396
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _UpperCAmelCase : List[Any] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = test_results.split(" " ) lowercase :Dict = 0 lowercase :str = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowercase :List[Any] = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Union[str, Any] = {} lowercase :Any = None lowercase :int = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]", lowerCamelCase ): lowercase :List[Any] = True lowercase :int = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): lowercase :Optional[Any] = line lowercase :Union[str, Any] = False return failures class __lowerCAmelCase : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ): lowercase :Tuple = title lowercase :List[str] = doc_test_results["time_spent"].split("," )[0] lowercase :Optional[int] = doc_test_results["success"] lowercase :str = doc_test_results["failures"] lowercase :Dict = self.n_success + self.n_failures # Failures and success of the modeling tests lowercase :Dict = doc_test_results @property def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :int = [self._time_spent] lowercase :Optional[Any] = 0 for time in time_spent: lowercase :List[Any] = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: lowercase :List[Any] = [0, 0, time_parts[0]] lowercase :List[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds lowercase :str = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F"{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s" @property def SCREAMING_SNAKE_CASE ( self: Optional[int] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return { "type": "section", "text": { "type": "plain_text", "text": F"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def SCREAMING_SNAKE_CASE ( self: Tuple ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" F" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :int = 40 lowercase :str = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} lowercase :Dict = "" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"The following examples had failures:\n\n\n{report}\n", }, } @property def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Any = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( ): lowercase :str = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) lowercase :Tuple = F"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed." lowercase :str = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Any ): lowercase :Optional[int] = "" for key, value in failures.items(): lowercase :Optional[int] = value[:2_00] + " [Truncated]" if len(_lowerCAmelCase ) > 2_50 else value failures_text += F"*{key}*\n_{value}_\n\n" lowercase :int = job_name lowercase :Tuple = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: lowercase :List[str] = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE ( self: Tuple ): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) lowercase :Optional[int] = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) lowercase :Union[str, Any] = sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): lowercase :Tuple = F"*Num failures* :{len(job_result['failed'] )} \n" lowercase :Optional[int] = job_result["failures"] lowercase :Union[str, Any] = self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F"Results for {job}" , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def UpperCAmelCase__ ( ): lowercase :Tuple = os.environ["GITHUB_RUN_ID"] lowercase :Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" lowercase :List[Any] = requests.get(lowerCamelCase ).json() lowercase :str = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowercase :str = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowerCamelCase ): lowercase :Union[str, Any] = requests.get(url + F"&page={i + 2}" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links.", lowerCamelCase ) return {} def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Tuple = {} if os.path.exists(lowerCamelCase ): lowercase :int = os.listdir(lowerCamelCase ) for file in files: try: with open(os.path.join(lowerCamelCase, lowerCamelCase ), encoding="utf-8" ) as f: lowercase :Dict = f.read() except UnicodeDecodeError as e: raise ValueError(F"Could not open {os.path.join(lowerCamelCase, lowerCamelCase )}." ) from e return _artifact def UpperCAmelCase__ ( ): class __lowerCAmelCase : def __init__( self: List[str] , _lowerCAmelCase: str ): lowercase :Tuple = name lowercase :int = [] def __str__( self: int ): return self.name def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: str ): self.paths.append({"name": self.name, "path": path} ) lowercase :Dict[str, Artifact] = {} lowercase :str = filter(os.path.isdir, os.listdir() ) for directory in directories: lowercase :Tuple = directory if artifact_name not in _available_artifacts: lowercase :int = Artifact(lowerCamelCase ) _available_artifacts[artifact_name].add_path(lowerCamelCase ) return _available_artifacts if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = get_job_links() _UpperCAmelCase : List[str] = retrieve_available_artifacts() _UpperCAmelCase : Optional[int] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _UpperCAmelCase : Tuple = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _UpperCAmelCase : Any = github_actions_job_links.get("run_doctests") _UpperCAmelCase : Optional[Any] = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _UpperCAmelCase : Optional[Any] = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _UpperCAmelCase : int = handle_test_results(artifact["stats"]) _UpperCAmelCase : int = failed _UpperCAmelCase : Optional[int] = success _UpperCAmelCase : Optional[Any] = time_spent[1:-1] + ", " _UpperCAmelCase : Dict = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _UpperCAmelCase : Union[str, Any] = line.replace("FAILED ", "") _UpperCAmelCase : List[str] = line.split()[0].replace("\n", "") if "::" in line: _UpperCAmelCase : int = line.split("::") else: _UpperCAmelCase : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _UpperCAmelCase : Any = docs[file_regex] doc_test_results[category]["failed"].append(test) _UpperCAmelCase : Optional[Any] = all_failures[test] if test in all_failures else "N/A" _UpperCAmelCase : Dict = failure break _UpperCAmelCase : Any = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
702
_UpperCAmelCase : Union[str, Any] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
453
0
import math from numpy import inf from scipy.integrate import quad def __a ( SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
303
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ : Any = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: __UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=16 , lowercase__=2 , lowercase__=4 , lowercase__=4 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=32 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=0.02 , ) -> Union[str, Any]: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id __UpperCAmelCase = initializer_range def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCAmelCase = shift_tokens_right(lowercase__ , 1 , 2 ) __UpperCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase__ , ) __UpperCAmelCase = prepare_blenderbot_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(lowercase__ ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase__ , ) __UpperCAmelCase = model.decode(lowercase__ , lowercase__ ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(lowercase__ ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) __UpperCAmelCase , __UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase__ , decoder_position_ids=lowercase__ , ) __UpperCAmelCase = model.decode(lowercase__ , lowercase__ , decoder_attention_mask=lowercase__ ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' a__ = 99 def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._get_config_and_data() __UpperCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowercase__ ) __UpperCAmelCase = lm_model(input_ids=lowercase__ ) __UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(lowercase__ ) __UpperCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCAmelCase = lm_model(input_ids=lowercase__ , decoder_input_ids=lowercase__ ) __UpperCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCAmelCase = shift_tokens_right(lowercase__ , 1 , 2 ) __UpperCAmelCase = np.equal(lowercase__ , 1 ).astype(np.floataa ).sum() __UpperCAmelCase = np.equal(lowercase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( _a , unittest.TestCase , _a ): '''simple docstring''' a__ = True a__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) a__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = FlaxBlenderbotSmallModelTester(self ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = self._prepare_for_class(lowercase__ , lowercase__ ) __UpperCAmelCase = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ , lowercase__=None , **lowercase__ ): return model.encode(input_ids=lowercase__ , attention_mask=lowercase__ ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = encode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __UpperCAmelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase__ , lowercase__ , lowercase__ ): return model.decode( decoder_input_ids=lowercase__ , decoder_attention_mask=lowercase__ , encoder_outputs=lowercase__ , ) with self.subTest('''JIT Enabled''' ): __UpperCAmelCase = decode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __UpperCAmelCase = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ (self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCAmelCase = model(lowercase__ ) self.assertIsNotNone(lowercase__ )
303
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): return int((input_a, input_a).count(0 ) == 0 ) def lowerCAmelCase_ ( ): assert and_gate(0,0 ) == 0 assert and_gate(0,1 ) == 0 assert and_gate(1,0 ) == 0 assert and_gate(1,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
714
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
0
class A_ : def __init__( self , _A ): '''simple docstring''' UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def _lowercase ( _A ): '''simple docstring''' return index | (index + 1) @staticmethod def _lowercase ( _A ): '''simple docstring''' return (index & (index + 1)) - 1 def _lowercase ( self , _A , _A ): '''simple docstring''' UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(_A ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(_A , _A , _A ) UpperCAmelCase = self.get_next(_A ) def _lowercase ( self , _A , _A ): '''simple docstring''' right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(_A ) if left <= current_left: UpperCAmelCase = max(_A , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(_A , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
130
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __A : Optional[Any] = "sshleifer/bart-tiny-random" __A : Dict = "patrickvonplaten/t5-tiny-random" @require_torch class A_ (unittest.TestCase ): @cached_property def _lowercase ( self ): '''simple docstring''' return AutoConfig.from_pretrained(_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , *UpperCAmelCase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , *UpperCAmelCase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , *UpperCAmelCase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=_A ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , *UpperCAmelCase = create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self ): '''simple docstring''' with self.assertRaises(_A ): create_student_by_copying_alternating_layers(_A , tempfile.mkdtemp() , e=_A , d=_A )
130
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any = 1 , UpperCamelCase__ : Tuple = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_a , hypotheses=_a , min_len=_a , max_len=_a ) }
712
"""simple docstring""" class _lowercase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Any ) -> int: '''simple docstring''' __UpperCamelCase =arr.split(''',''' ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase =[int(self.array[0] )] * len(self.array ) __UpperCamelCase =[int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __UpperCamelCase =max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __UpperCamelCase =max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowercase = input('''please input some numbers:''') __lowercase = SubArray(whole_array) __lowercase = array.solve_sub_array() print(('''the results is:''', re))
296
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase_ : ClassVar[Features] = Features({"""audio""": Audio()} ) lowerCamelCase_ : ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) lowerCamelCase_ : str = "audio" lowerCamelCase_ : str = "transcription" def _lowercase ( self , UpperCamelCase__ ) -> List[str]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , UpperCamelCase__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCamelCase : Any = copy.deepcopy(self ) lowerCamelCase : List[Any] = self.input_schema.copy() lowerCamelCase : Optional[int] = features[self.audio_column] lowerCamelCase : Tuple = input_schema return task_template @property def _lowercase ( self ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
311
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = (KDPMaDiscreteScheduler,) lowerCamelCase_ : str = 1_0 def _lowercase ( self , **UpperCamelCase__ ) -> int: lowerCamelCase : Optional[Any] = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def _lowercase ( self ) -> List[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _lowercase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _lowercase ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowercase ( self ) -> str: lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase : Optional[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : Union[str, Any] = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : List[str] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def _lowercase ( self ) -> str: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config() lowerCamelCase : Optional[int] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Optional[Any] = self.dummy_model() lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : int = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def _lowercase ( self ) -> Optional[int]: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Any = self.get_scheduler_config() lowerCamelCase : str = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowerCamelCase : List[Any] = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = output.prev_sample lowerCamelCase : Dict = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if str(UpperCamelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
311
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1024 ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ =[], [] lowerCamelCase__ =list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ =sorted_examples[0] def is_too_big(__lowerCAmelCase ): return tok(__lowerCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCamelCase__ =new_src + " " + src lowerCamelCase__ =new_tgt + " " + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ =src, tgt else: # can fit, keep adding lowerCamelCase__ , lowerCamelCase__ =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowerCamelCase__ =Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: lowerCamelCase__ , lowerCamelCase__ =data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' lowerCamelCase__ =[x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] lowerCamelCase__ =[x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] lowerCamelCase__ , lowerCamelCase__ =pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(F'''packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("w" ).write("\n".join(__lowerCAmelCase ) ) Path(save_path / F'''{split}.target''' ).open("w" ).write("\n".join(__lowerCAmelCase ) ) for split in ["val", "test"]: lowerCamelCase__ , lowerCamelCase__ =data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(__lowerCAmelCase , save_path / F'''{split}.source''' ) shutil.copyfile(__lowerCAmelCase , save_path / F'''{split}.target''' ) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase__ =argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__lowerCAmelCase , default=128 ) parser.add_argument("--data_dir" , type=__lowerCAmelCase ) parser.add_argument("--save_path" , type=__lowerCAmelCase ) lowerCamelCase__ =parser.parse_args() lowerCamelCase__ =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
132
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a =logging.get_logger(__name__) a ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } a ={'mobilebert-uncased': 512} a ={} class __UpperCAmelCase ( __lowerCAmelCase ): A__ : Any = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) lowerCamelCase__ =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCamelCase ) != tokenize_chinese_chars ): lowerCamelCase__ =getattr(_lowerCamelCase , normalizer_state.pop("type" ) ) lowerCamelCase__ =do_lower_case lowerCamelCase__ =strip_accents lowerCamelCase__ =tokenize_chinese_chars lowerCamelCase__ =normalizer_class(**_lowerCamelCase ) lowerCamelCase__ =do_lower_case def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): lowerCamelCase__ =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =[self.sep_token_id] lowerCamelCase__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
132
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:Optional[Any] , _a:Any=2 , _a:Dict=True , _a:List[Any]=False , _a:List[str]=10 , _a:Union[str, Any]=3 , _a:Tuple=32 * 8 , _a:Dict=32 * 8 , _a:List[str]=4 , _a:Union[str, Any]=64 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = is_training snake_case__ = use_auxiliary_loss snake_case__ = num_queries snake_case__ = num_channels snake_case__ = min_size snake_case__ = max_size snake_case__ = num_labels snake_case__ = hidden_dim snake_case__ = hidden_dim def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) snake_case__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) snake_case__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() snake_case__ = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() snake_case__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case__ = self.num_queries snake_case__ = self.num_labels snake_case__ = [1, 1, 1, 1] snake_case__ = self.num_channels snake_case__ = 64 snake_case__ = 1_28 snake_case__ = self.hidden_dim snake_case__ = self.hidden_dim snake_case__ = self.hidden_dim return config def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.prepare_config_and_inputs() snake_case__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:str ): snake_case__ = output.encoder_hidden_states snake_case__ = output.pixel_decoder_hidden_states snake_case__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] , _a:Optional[int] , _a:List[str] , _a:Tuple=False ): with torch.no_grad(): snake_case__ = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(pixel_values=_a , pixel_mask=_a ) snake_case__ = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str , _a:Dict , _a:Optional[Any] , _a:str , _a:str ): snake_case__ = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a:Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ = model(pixel_values=_a , pixel_mask=_a ) snake_case__ = model(_a ) comm_check_on_output(_a ) snake_case__ = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowercase : int = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __lowercase : List[Any] = False __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = MaskaFormerModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:int ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE__ ( self:Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @slow def SCREAMING_SNAKE_CASE__ ( self:int ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case__ = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = (self.model_tester.min_size,) * 2 snake_case__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=_a ), '''mask_labels''': torch.randn((2, 10, *size) , device=_a ), '''class_labels''': torch.zeros(2 , 10 , device=_a ).long(), } snake_case__ = self.model_tester.get_config() snake_case__ = MaskaFormerForUniversalSegmentation(_a ).to(_a ) snake_case__ = model(**_a ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ).to(_a ) snake_case__ = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): if not self.model_tester.is_training: return snake_case__ = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs() snake_case__ = model_class(_a ) model.to(_a ) model.train() snake_case__ = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs() snake_case__ = True snake_case__ = True snake_case__ = model_class(_a ).to(_a ) model.train() snake_case__ = model(_a , mask_labels=_a , class_labels=_a ) snake_case__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def SCREAMING_SNAKE_CASE ( ) -> Tuple: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Any ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE__ ( self:int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(_a , return_tensors='''pt''' ).to(_a ) snake_case__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) snake_case__ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) snake_case__ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(_a , return_tensors='''pt''' ).to(_a ) snake_case__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case__ = model(**_a ) # masks_queries_logits snake_case__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case__ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case__ = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits snake_case__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case__ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() snake_case__ = self.default_image_processor snake_case__ = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) snake_case__ = inputs['''pixel_values'''].to(_a ) snake_case__ = [el.to(_a ) for el in inputs['''mask_labels''']] snake_case__ = [el.to(_a ) for el in inputs['''class_labels''']] with torch.no_grad(): snake_case__ = model(**_a ) self.assertTrue(outputs.loss is not None )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [file for file in os.listdir(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )] if identifier is not None: SCREAMING_SNAKE_CASE__ : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for n_ in n_identifier: SCREAMING_SNAKE_CASE__ : Optional[Any] = [file for file in files if n_ not in file] else: SCREAMING_SNAKE_CASE__ : List[Any] = [file for file in files if n_identifier not in file] SCREAMING_SNAKE_CASE__ : int = ignore_files or [] ignore_files.append("""__init__.py""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , SCREAMING_SNAKE_CASE__ ) if only_modules: SCREAMING_SNAKE_CASE__ : Union[str, Any] = file.split(""".""" )[0] try: SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = """modeling""" SCREAMING_SNAKE_CASE__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ , ignore_files=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : List[str] = """tokenization""" self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : List[str] = """configuration""" self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : Dict = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(SCREAMING_SNAKE_CASE__ , n_identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""docs/source""" ) SCREAMING_SNAKE_CASE__ : Any = ["""favicon.ico"""] self.analyze_directory(SCREAMING_SNAKE_CASE__ , ignore_files=SCREAMING_SNAKE_CASE__ , only_modules=SCREAMING_SNAKE_CASE__ )
545
"""simple docstring""" from math import pi, sqrt, tan def lowercase_ ( _snake_case ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def lowercase_ ( _snake_case ,_snake_case ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) SCREAMING_SNAKE_CASE__ : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase_ ( _snake_case ,_snake_case ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def lowercase_ ( _snake_case ,_snake_case ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(_snake_case ,2 ) * torus_radius * tube_radius def lowercase_ ( _snake_case ,_snake_case ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def lowercase_ ( _snake_case ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def lowercase_ ( _snake_case ,_snake_case ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) SCREAMING_SNAKE_CASE__ : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE__ : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase_ ( _snake_case ,_snake_case ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def lowercase_ ( _snake_case ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def lowercase_ ( _snake_case ,_snake_case ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def lowercase_ ( _snake_case ,_snake_case ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def lowercase_ ( _snake_case ,_snake_case ): if not isinstance(_snake_case ,_snake_case ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(f"""Square: {area_square(1_0) = }""") print(f"""Triangle: {area_triangle(1_0, 1_0) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(f"""Circle: {area_circle(2_0) = }""") print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print('\nSurface Areas of various geometric shapes: \n') print(f"""Cube: {surface_area_cube(2_0) = }""") print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(f"""Sphere: {surface_area_sphere(2_0) = }""") print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(f"""Square: {area_reg_polygon(4, 1_0) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
545
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : List[str] = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ["PoolFormerFeatureExtractor"] a : Union[str, Any] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
679
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : Optional[Any] = "pt" elif is_tf_available(): a : List[Any] = "tf" else: a : List[Any] = "jax" class UpperCamelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : List[str] = False def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : List[str] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A_ ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def A_ ( self , **snake_case ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def A_ ( self , snake_case , snake_case=False , snake_case=2_0 , snake_case=5 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for i in range(len(snake_case ) ): try: UpperCAmelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase : Optional[int] = list(filter(lambda snake_case : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case ) ) UpperCAmelCase : Any = list(filter(lambda snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case ) , snake_case ) ) if max_length is not None and len(snake_case ) > max_length: UpperCAmelCase : Optional[Any] = toks[:max_length] if min_length is not None and len(snake_case ) < min_length and len(snake_case ) > 0: while len(snake_case ) < min_length: UpperCAmelCase : Any = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase : Dict = [t[0] for t in toks] # Ensure consistency UpperCAmelCase : Any = tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) if " " not in output_txt and len(snake_case ) > 1: UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case ) ) if with_prefix_space: UpperCAmelCase : Union[str, Any] = " " + output_txt UpperCAmelCase : Dict = tokenizer.encode(snake_case , add_special_tokens=snake_case ) return output_txt, output_ids def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer UpperCAmelCase : Tuple = "Unicode €." UpperCAmelCase : int = tokenizer(snake_case ) UpperCAmelCase : Tuple = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded["input_ids"] , snake_case ) # decoding UpperCAmelCase : Optional[Any] = tokenizer.decode(snake_case ) self.assertEqual(snake_case , "[CLS]Unicode €.[SEP]" ) UpperCAmelCase : Tuple = tokenizer("e è é ê ë" ) UpperCAmelCase : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded["input_ids"] , snake_case ) # decoding UpperCAmelCase : Dict = tokenizer.decode(snake_case ) self.assertEqual(snake_case , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.perceiver_tokenizer UpperCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase : List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCAmelCase : Dict = tokenizer(snake_case , padding=snake_case , return_tensors=snake_case ) self.assertIsInstance(snake_case , snake_case ) if FRAMEWORK != "jax": UpperCAmelCase : List[Any] = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case , snake_case ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.perceiver_tokenizer UpperCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase : List[Any] = tokenizer(snake_case , padding=snake_case , return_tensors=snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case ) self.assertIn("attention_mask" , snake_case ) self.assertNotIn("decoder_input_ids" , snake_case ) self.assertNotIn("decoder_attention_mask" , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.perceiver_tokenizer UpperCAmelCase : int = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase : List[Any] = tokenizer( text_target=snake_case , max_length=3_2 , padding="max_length" , truncation=snake_case , return_tensors=snake_case ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test UpperCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : Any = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase : int = tokenizer.encode(snake_case , add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) UpperCAmelCase : List[str] = tokenizer.__class__.from_pretrained(snake_case ) UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) shutil.rmtree(snake_case ) UpperCAmelCase : Dict = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : int = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase : List[str] = tokenizer.encode(snake_case , add_special_tokens=snake_case ) tokenizer.save_pretrained(snake_case ) UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(snake_case ) UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) UpperCAmelCase : Optional[int] = tokenizer.__class__.from_pretrained(snake_case , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case ) with open(os.path.join(snake_case , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase : Union[str, Any] = json.load(snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase : Any = json.load(snake_case ) UpperCAmelCase : str = [f"<extra_id_{i}>" for i in range(1_2_5 )] UpperCAmelCase : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase : List[str] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case , snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained( snake_case , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase : Optional[int] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case )] UpperCAmelCase : Optional[int] = tokenizer_class.from_pretrained( snake_case , additional_special_tokens=snake_case , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , "�" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.get_tokenizers(fast=snake_case , do_lower_case=snake_case ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase : int = tokenizer.convert_tokens_to_string(snake_case ) self.assertIsInstance(snake_case , snake_case )
679
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = '''''' A__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A__ : str = None # compression type in fsspec. ex: "gzip" A__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict , __lowerCamelCase : str = "" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , **__lowerCamelCase : str ): """simple docstring""" super().__init__(self , **__lowerCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _snake_case = fsspec.open( __lowerCamelCase , mode='''rb''' , protocol=__lowerCamelCase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _snake_case = os.path.basename(self.file.path.split('''::''' )[0] ) _snake_case = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) _snake_case = None @classmethod def __UpperCAmelCase ( cls : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # compressed file paths are always relative to the archive root return super()._strip_protocol(__lowerCamelCase ).lstrip('''/''' ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" if self.dir_cache is None: _snake_case = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} _snake_case = {f['''name''']: f} def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ): """simple docstring""" return self.file.open().read() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any , ): """simple docstring""" _snake_case = self._strip_protocol(__lowerCamelCase ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = '''bz2''' A__ : List[str] = '''bz2''' A__ : Union[str, Any] = '''.bz2''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = '''gzip''' A__ : List[str] = '''gzip''' A__ : str = '''.gz''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = '''lz4''' A__ : Optional[int] = '''lz4''' A__ : Optional[Any] = '''.lz4''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = '''xz''' A__ : Optional[int] = '''xz''' A__ : List[str] = '''.xz''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = '''zstd''' A__ : Optional[Any] = '''zstd''' A__ : str = '''.zst''' def __init__( self : Any , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__( fo=__lowerCamelCase , mode=__lowerCamelCase , target_protocol=__lowerCamelCase , target_options=__lowerCamelCase , block_size=__lowerCamelCase , **__lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _snake_case = self.file.__enter__ class UpperCAmelCase : def __init__( self : Any , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = file_ def __enter__( self : Union[str, Any] ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ): """simple docstring""" self._file.__exit__(*__lowerCamelCase , **__lowerCamelCase ) def __iter__( self : List[Any] ): """simple docstring""" return iter(self._file ) def __UpperCAmelCase ( self : str ): """simple docstring""" return next(self._file ) def __getattr__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" return getattr(self._file , __lowerCamelCase ) def fixed_enter(*__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ): return WrappedFile(_enter(*__lowerCamelCase , **__lowerCamelCase ) ) _snake_case = fixed_enter
404
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
404
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase : Dict = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> int: if os.path.exists(__A ): if os.path.exists(os.path.join(__A , 'config.json' ) ) and os.path.isfile( os.path.join(__A , 'config.json' ) ): os.remove(os.path.join(__A , 'config.json' ) ) if os.path.exists(os.path.join(__A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__A , 'pytorch_model.bin' ) ): os.remove(os.path.join(__A , 'pytorch_model.bin' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> int: _snake_case = 2 if unlogit: _snake_case = torch.pow(__A , __A ) _snake_case = p * torch.log(__A ) _snake_case = 0 return -plogp.sum(dim=-1 ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: logger.info('lv, h >\t' + '\t'.join(F'{x + 1}' for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=True , __A=True , __A=None , __A=False ) -> Tuple: _snake_case , _snake_case = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case = torch.zeros(__A , __A ).to(args.device ) _snake_case = torch.zeros(__A , __A ).to(args.device ) if head_mask is None: _snake_case = torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case = None _snake_case = 0.0 _snake_case = 0.0 for step, inputs in enumerate(tqdm(__A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case = tuple(t.to(args.device ) for t in inputs ) ((_snake_case ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case = model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): _snake_case = entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case = 2 _snake_case = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__A ) logger.info('Head ranked by importance scores' ) _snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case = torch.arange( head_importance.numel() , device=args.device ) _snake_case = head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = compute_heads_importance(__A , __A , __A , compute_entropy=__A ) _snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __A , original_score * args.masking_threshold ) _snake_case = torch.ones_like(__A ) _snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case = original_score while current_score >= original_score * args.masking_threshold: _snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case = float('Inf' ) _snake_case = head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case = new_head_mask.view(-1 ) _snake_case = 0.0 _snake_case = new_head_mask.view_as(__A ) _snake_case = new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) _snake_case = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> Optional[Any]: _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): _snake_case = [ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __A , __A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(__A , args.output_dir ) def SCREAMING_SNAKE_CASE__ ( ) -> int: _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__A , type=__A , required=__A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__A , type=__A , required=__A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__A , type=__A , required=__A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__A , type=__A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__A , help='Batch size.' ) parser.add_argument('--seed' , type=__A , default=42 ) parser.add_argument('--local_rank' , type=__A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__A , default='' , help='Can be used for distant debugging.' ) _snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case = torch.device('cuda' , args.local_rank ) _snake_case = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: _snake_case = nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __A ) # Prepare dataset _snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case = (torch.from_numpy(__A ),) _snake_case = TensorDataset(*__A ) _snake_case = RandomSampler(__A ) _snake_case = DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case = mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
495
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _snake_case : Any = logging.get_logger(__name__) class UpperCamelCase_ ( __a ): '''simple docstring''' UpperCamelCase : Any = ['''input_features''', '''attention_mask'''] def __init__( self :List[Any] , lowerCAmelCase__ :List[Any]=80 , lowerCAmelCase__ :int=16000 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :List[Any]=25 , lowerCAmelCase__ :List[str]="hamming_window" , lowerCAmelCase__ :int=3_27_68.0 , lowerCAmelCase__ :str=0.97 , lowerCAmelCase__ :List[str]=1.0 , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :str=False , **lowerCAmelCase__ :Optional[Any] , ) ->Union[str, Any]: super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase = feature_size lowercase = sampling_rate lowercase = padding_value lowercase = hop_length lowercase = win_length lowercase = frame_signal_scale lowercase = preemphasis_coeff lowercase = mel_floor lowercase = normalize_means lowercase = normalize_vars lowercase = win_function lowercase = return_attention_mask lowercase = win_length * sampling_rate // 1000 lowercase = hop_length * sampling_rate // 1000 lowercase = optimal_fft_length(self.sample_size ) lowercase = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :np.array ) ->np.ndarray: if self.win_function == "hamming_window": lowercase = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) else: lowercase = window_function(window_length=self.sample_size , name=self.win_function ) lowercase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCAmelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCAmelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCAmelCase__ , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) ->int: # make sure we normalize float32 arrays if self.normalize_means: lowercase = x[:input_length].mean(axis=0 ) lowercase = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if self.normalize_vars: lowercase = x[:input_length].std(axis=0 ) lowercase = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: lowercase = padding_value # make sure array is in float32 lowercase = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :List[np.ndarray] , lowerCAmelCase__ :Optional[np.ndarray] = None ) ->List[np.ndarray]: lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCAmelCase__ , lowerCAmelCase__ , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ )] def __call__( self :Any , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Union[str, Any] , ) ->BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase = [raw_speech] # extract fbank features lowercase = [self._extract_mfsc_features(lowerCAmelCase__ ) for one_waveform in raw_speech] # convert into correct format for padding lowercase = BatchFeature({"input_features": features} ) lowercase = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format lowercase = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): lowercase = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] lowercase = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowercase = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: lowercase = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
441
0
import torch def _A ( ): """simple docstring""" if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
715
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 5_0),) def a ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: lowerCAmelCase__ = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**SCREAMING_SNAKE_CASE__ ) return config def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=0 , **SCREAMING_SNAKE_CASE__ : int ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : Dict ) -> Any: pass def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : List[str] , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def a ( self : Optional[int] ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): lowerCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a ( self : Tuple ) -> int: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> List[str]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def a ( self : List[str] ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> List[str]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample def a ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def a ( self : Any ) -> Tuple: lowerCAmelCase__ = self.full_loop() lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def a ( self : int ) -> Dict: lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def a ( self : Any ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def a ( self : int ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
125
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCamelCase__ ( a : Any , a : int , a : Union[str, Any]=1_024 , a : Tuple=1_024 , a : Union[str, Any]=False , **a : Dict ) -> List[Any]: """simple docstring""" a__ :Dict = AutoTokenizer.from_pretrained(a ) a__ :int = SeqaSeqDataset(a , a , a , a , type_path="train" , **a ) a__ :List[Any] = tok.pad_token_id def get_lens(a : Dict ): a__ :List[str] = tqdm( DataLoader(a , batch_size=512 , num_workers=8 , shuffle=a , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) a__ :Dict = [] for batch in dl: a__ :Any = batch["input_ids"].ne(a ).sum(1 ).tolist() a__ :Dict = batch["labels"].ne(a ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a , a ): max_lens.append(max(a , a ) ) else: max_lens.extend(a ) return max_lens a__ :Optional[Any] = get_lens(a ) a__ :Union[str, Any] = SeqaSeqDataset(a , a , a , a , type_path="val" , **a ) a__ :Optional[Any] = get_lens(a ) pickle_save(a , train_ds.len_file ) pickle_save(a , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
395
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case__ = logging.get_logger(__name__) class lowerCAmelCase_ ( _a): def __init__( self : Union[str, Any] , __A : int , __A : int , __A : float , **__A : Tuple ) ->Union[str, Any]: """simple docstring""" a__ :Any = feature_size a__ :int = sampling_rate a__ :List[str] = padding_value a__ :str = kwargs.pop("padding_side" , "right" ) a__ :Any = kwargs.pop("return_attention_mask" , __A ) super().__init__(**__A ) def _snake_case ( self : str , __A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __A : Union[bool, str, PaddingStrategy] = True , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[bool] = None , __A : Optional[Union[str, TensorType]] = None , ) ->BatchFeature: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a__ :Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) a__ :int = processed_features[self.model_input_names[0]] a__ :str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__A ) == 0: if return_attention_mask: a__ :Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a__ :int = required_input[0] if isinstance(__A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a__ :Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__A ): a__ :Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(__A ): a__ :Optional[Any] = "tf" elif is_torch_tensor(__A ): a__ :Optional[Any] = "pt" elif isinstance(__A , (int, float, list, tuple, np.ndarray) ): a__ :Union[str, Any] = "np" else: raise ValueError( F'''type of {first_element} unknown: {type(__A )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a__ :Optional[Any] = to_numpy(__A ) else: a__ :Union[str, Any] = [to_numpy(__A ) for v in value] # Convert padding_strategy in PaddingStrategy a__ :Optional[int] = self._get_padding_strategies(padding=__A , max_length=__A ) a__ :int = processed_features[self.model_input_names[0]] a__ :Union[str, Any] = len(__A ) if not all(len(__A ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) a__ :int = [] for i in range(__A ): a__ :Optional[int] = {k: v[i] for k, v in processed_features.items()} # truncation a__ :Tuple = self._truncate( __A , max_length=__A , pad_to_multiple_of=__A , truncation=__A , ) truncated_inputs.append(__A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a__ :str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a__ :str = PaddingStrategy.MAX_LENGTH a__ :str = {} for i in range(__A ): # padding a__ :Optional[int] = self._pad( truncated_inputs[i] , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) for key, value in outputs.items(): if key not in batch_outputs: a__ :Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): a__ :List[Any] = value.astype(np.floataa ) batch_outputs[key].append(__A ) return BatchFeature(__A , tensor_type=__A ) def _snake_case ( self : List[Any] , __A : Union[Dict[str, np.ndarray], BatchFeature] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ) ->dict: """simple docstring""" a__ :Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a__ :List[Any] = len(__A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ :List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ :int = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a__ :Dict = np.ones(len(__A ) , dtype=np.intaa ) if needs_to_be_padded: a__ :List[str] = max_length - len(__A ) if self.padding_side == "right": if return_attention_mask: a__ :List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) a__ :List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a__ :Any = np.pad( __A , __A , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a__ :Dict = np.pad( processed_features["attention_mask"] , (difference, 0) ) a__ :List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a__ :List[str] = np.pad( __A , __A , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _snake_case ( self : Tuple , __A : Union[Dict[str, np.ndarray], BatchFeature] , __A : Optional[int] = None , __A : Optional[int] = None , __A : Optional[bool] = None , ) ->Optional[Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) a__ :str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ :Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ :List[Any] = len(__A ) > max_length if needs_to_be_truncated: a__ :Optional[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a__ :List[Any] = processed_features["attention_mask"][:max_length] return processed_features def _snake_case ( self : Union[str, Any] , __A : int=False , __A : Dict=None ) ->Optional[int]: """simple docstring""" if padding is not False: if padding is True: a__ :Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__A , __A ): a__ :Union[str, Any] = PaddingStrategy(__A ) elif isinstance(__A , __A ): a__ :Union[str, Any] = padding else: a__ :Optional[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
395
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _lowercase : Dict = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8000, "sample_size": 13_1072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, } def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ) -> List[Any]: """simple docstring""" return torch.atana(UpperCamelCase__ , UpperCamelCase__ ) / math.pi * 2 def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Tuple: """simple docstring""" A = torch.sin(t * math.pi / 2 ) ** 2 A = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase__ , UpperCamelCase__ ) class _UpperCamelCase ( __snake_case ): """simple docstring""" pass class _UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self , a__ ) -> List[Any]: super().__init__() A = DiffusionAttnUnetaD(a__ , n_attn_layers=4 ) A = deepcopy(self.diffusion ) A = torch.quasirandom.SobolEngine(1 , scramble=a__ ) def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Optional[Any]: """simple docstring""" A = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' _lowercase : int = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } _lowercase : Union[str, Any] = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } _lowercase : Dict = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } _lowercase : List[str] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } _lowercase : Any = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } _lowercase : Dict = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> List[str]: """simple docstring""" if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _lowerCAmelCase ( UpperCamelCase__: Any ) -> Optional[Any]: """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase__ ) and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return name.replace(UpperCamelCase__ , UpperCamelCase__ ) elif name.startswith(UpperCamelCase__ ): return [name.replace(UpperCamelCase__ , UpperCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def _lowerCAmelCase ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int]=13 ) -> Union[str, Any]: """simple docstring""" A = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A = 0 if string.startswith("""net.3.""" ): depth += 1 A = string[6:] elif string.startswith("""net.""" ): A = string[4:] while string.startswith("""main.7.""" ): depth += 1 A = string[7:] if string.startswith("""main.""" ): A = string[5:] # mid block if string[:2].isdigit(): A = string[:2] A = string[2:] else: A = string[0] A = string[1:] if depth == max_depth: A = MID_NUM_TO_LAYER[layer_num] A = """mid_block""" elif depth > 0 and int(UpperCamelCase__ ) < 7: A = DOWN_NUM_TO_LAYER[layer_num] A = f'down_blocks.{depth}' elif depth > 0 and int(UpperCamelCase__ ) > 7: A = UP_NUM_TO_LAYER[layer_num] A = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A = DEPTH_0_TO_LAYER[layer_num] A = f'up_blocks.{max_depth - 1}' if int(UpperCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A = string_left[1:] if "resnets" in new_layer: A = convert_resconv_naming(UpperCamelCase__ ) elif "attentions" in new_layer: A = convert_attn_naming(UpperCamelCase__ ) A = new_string_left if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = prefix + """.""" + new_layer + """.""" + string_left else: A = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] ) -> Dict: """simple docstring""" A = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A = rename(UpperCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = transform_conv_attns(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = v return new_state_dict def _lowerCAmelCase ( UpperCamelCase__: Dict , UpperCamelCase__: Tuple , UpperCamelCase__: str ) -> Union[str, Any]: """simple docstring""" if len(UpperCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A = v[:, :, 0] else: # bias A = v else: # qkv matrices A = v.shape[0] A = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _lowerCAmelCase ( UpperCamelCase__: Optional[int] ) -> List[Any]: """simple docstring""" A = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A = download(UpperCamelCase__ ) A = MODELS_MAP[model_name]["""sample_rate"""] A = MODELS_MAP[model_name]["""sample_size"""] A = Object() A = sample_size A = sample_rate A = 0 A = UNetaDModel(sample_size=UpperCamelCase__ , sample_rate=UpperCamelCase__ ) A = diffusers_model.state_dict() A = DiffusionUncond(UpperCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase__ )["""state_dict"""] ) A = orig_model.diffusion_ema.eval() A = orig_model.state_dict() A = rename_orig_weights(UpperCamelCase__ ) A = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(UpperCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A = value.squeeze() A = value diffusers_model.load_state_dict(UpperCamelCase__ ) A = 1_00 A = 33 A = IPNDMScheduler(num_train_timesteps=UpperCamelCase__ ) A = torch.manual_seed(UpperCamelCase__ ) A = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase__ ).to(UpperCamelCase__ ) A = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase__ )[:-1] A = get_crash_schedule(UpperCamelCase__ ) A = DanceDiffusionPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) A = torch.manual_seed(33 ) A = pipe(num_inference_steps=UpperCamelCase__ , generator=UpperCamelCase__ ).audios A = sampling.iplms_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {} ) A = generated.clamp(-1 , 1 ) A = (generated - audio).abs().sum() A = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , UpperCamelCase__ ) print("""Diff max""" , UpperCamelCase__ ) assert diff_max < 1e-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") _lowercase : Union[str, Any] = parser.parse_args() main(args)
546
def _lowerCAmelCase ( UpperCamelCase__: int ) -> bool: """simple docstring""" return str(UpperCamelCase__ ) == str(UpperCamelCase__ )[::-1] def _lowerCAmelCase ( UpperCamelCase__: int ) -> int: """simple docstring""" return int(UpperCamelCase__ ) + int(str(UpperCamelCase__ )[::-1] ) def _lowerCAmelCase ( UpperCamelCase__: int = 1_00_00 ) -> int: """simple docstring""" A = [] for num in range(1 , UpperCamelCase__ ): A = 0 A = num while iterations < 50: A = sum_reverse(UpperCamelCase__ ) iterations += 1 if is_palindrome(UpperCamelCase__ ): break else: lychrel_nums.append(UpperCamelCase__ ) return len(UpperCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
546
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
567
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def _UpperCAmelCase ( self : int , **lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCAmelCase_) return config def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = 1_0 lowercase_ = self.get_scheduler_config() lowercase_ = self.scheduler_classes[0](**lowerCAmelCase_) scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps[0] lowercase_ = scheduler.timesteps[1] lowercase_ = self.dummy_sample lowercase_ = 0.1 * sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = 1 scheduler.set_timesteps(lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCAmelCase_): # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 192.7_614) < 1E-2 assert abs(result_mean.item() - 0.2_510) < 1E-3 def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [1_0_6, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_) lowercase_ = scheduler.timesteps lowercase_ = torch.manual_seed(0) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict noise residual lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_) # 3. predict previous sample x_t-1 lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowerCAmelCase_)) lowercase_ = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 347.6_357) < 1E-2 assert abs(result_mean.item() - 0.4_527) < 1E-3 def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [3_9, 3_0, 1_2, 1, 0] lowercase_ = len(lowerCAmelCase_) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowerCAmelCase_) lowercase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_)
567
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=False): try: UpperCamelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase_ = default else: # KEY is set, convert it to True or False. try: UpperCamelCase_ = strtobool(_lowerCAmelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""") return _value UpperCAmelCase : Dict =parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase : List[Any] =parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase : Dict =parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase : Tuple =parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase : Optional[int] =pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase : Any =pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase : Union[str, Any] =pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase : int =pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase : Optional[int] =pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase : Union[str, Any] =pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase : Union[str, Any] =pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def _lowerCAmelCase (_lowerCAmelCase): try: import faiss # noqa except ImportError: UpperCamelCase_ = unittest.skip("test requires faiss")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import regex # noqa except ImportError: UpperCamelCase_ = unittest.skip("test requires regex")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import elasticsearch # noqa except ImportError: UpperCamelCase_ = unittest.skip("test requires elasticsearch")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import sqlalchemy # noqa except ImportError: UpperCamelCase_ = unittest.skip("test requires sqlalchemy")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not config.TORCH_AVAILABLE: UpperCamelCase_ = unittest.skip("test requires PyTorch")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not config.TF_AVAILABLE: UpperCamelCase_ = unittest.skip("test requires TensorFlow")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not config.JAX_AVAILABLE: UpperCamelCase_ = unittest.skip("test requires JAX")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not config.PIL_AVAILABLE: UpperCamelCase_ = unittest.skip("test requires Pillow")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers")(_lowerCAmelCase) else: return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken")(_lowerCAmelCase) else: return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy")(_lowerCAmelCase) else: return test_case def _lowerCAmelCase (_lowerCAmelCase): def _require_spacy_model(_lowerCAmelCase): try: import spacy # noqa F401 spacy.load(_lowerCAmelCase) except ImportError: return unittest.skip("test requires spacy")(_lowerCAmelCase) except OSError: return unittest.skip("test requires spacy model '{}'".format(_lowerCAmelCase))(_lowerCAmelCase) else: return test_case return _require_spacy_model def _lowerCAmelCase (_lowerCAmelCase): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark")(_lowerCAmelCase) else: return test_case def _lowerCAmelCase (_lowerCAmelCase): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark")(_lowerCAmelCase) else: return test_case def _lowerCAmelCase (_lowerCAmelCase): if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase_ = unittest.skip("test is slow")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not _run_local_tests or _run_local_tests == 0: UpperCamelCase_ = unittest.skip("test is local")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase_ = unittest.skip("test is packaged")(_lowerCAmelCase) return test_case def _lowerCAmelCase (_lowerCAmelCase): if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase_ = unittest.skip("test requires remote")(_lowerCAmelCase) return test_case def _lowerCAmelCase (*_lowerCAmelCase): def decorate(cls): for name, fn in cls.__dict__.items(): if callable(_lowerCAmelCase) and name.startswith("test"): for decorator in decorators: UpperCamelCase_ = decorator(_lowerCAmelCase) setattr(cls , _lowerCAmelCase , _lowerCAmelCase) return cls return decorate class _lowercase (a_ ): '''simple docstring''' pass class _lowercase (a_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = 1 lowercase__ = 2 @contextmanager def _lowerCAmelCase (_lowerCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , _lowerCAmelCase=1e-16): UpperCamelCase_ = requests.Session().request def timeout_request(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase): # Change the url to an invalid url so that the connection hangs UpperCamelCase_ = "https://10.255.255.1" if kwargs.get("timeout") is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""") UpperCamelCase_ = timeout try: return online_request(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase_ = url UpperCamelCase_ = e.args[0] UpperCamelCase_ = (max_retry_error.args[0].replace("10.255.255.1" , f"""OfflineMock[{url}]"""),) UpperCamelCase_ = (max_retry_error,) raise def raise_connection_error(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase): raise requests.ConnectionError("Offline mode is enabled." , request=_lowerCAmelCase) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowerCAmelCase): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowerCAmelCase): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCAmelCase): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum.") @contextmanager def _lowerCAmelCase (*_lowerCAmelCase , **_lowerCAmelCase): UpperCamelCase_ = str(Path().resolve()) with tempfile.TemporaryDirectory(*_lowerCAmelCase , **_lowerCAmelCase) as tmp_dir: try: os.chdir(_lowerCAmelCase) yield finally: os.chdir(_lowerCAmelCase) @contextmanager def _lowerCAmelCase (): import gc gc.collect() UpperCamelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowerCAmelCase (): import gc gc.collect() UpperCamelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): return deepcopy(_lowerCAmelCase).integers(0 , 1_00 , 10).tolist() == deepcopy(_lowerCAmelCase).integers(0 , 1_00 , 10).tolist() def _lowerCAmelCase (_lowerCAmelCase): import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase): try: return func(*_lowerCAmelCase , **_lowerCAmelCase) except HTTPError as err: if str(_lowerCAmelCase).startswith("500") or str(_lowerCAmelCase).startswith("502"): pytest.xfail(str(_lowerCAmelCase)) raise err return decorator.decorator(_wrapper , _lowerCAmelCase) class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = returncode UpperCamelCase_ = stdout UpperCamelCase_ = stderr async def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): while True: UpperCamelCase_ = await stream.readline() if line: callback(_lowerCAmelCase) else: break async def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False): if echo: print("\nRunning: " , " ".join(_lowerCAmelCase)) UpperCamelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase_ = [] UpperCamelCase_ = [] def tee(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=""): UpperCamelCase_ = line.decode("utf-8").rstrip() sink.append(_lowerCAmelCase) if not quiet: print(_lowerCAmelCase , _lowerCAmelCase , file=_lowerCAmelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCAmelCase: tee(_lowerCAmelCase , _lowerCAmelCase , sys.stdout , label="stdout:")), _read_stream(p.stderr , lambda _lowerCAmelCase: tee(_lowerCAmelCase , _lowerCAmelCase , sys.stderr , label="stderr:")), ] , timeout=_lowerCAmelCase , ) return _RunOutput(await p.wait() , _lowerCAmelCase , _lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1_80 , _lowerCAmelCase=False , _lowerCAmelCase=True): UpperCamelCase_ = asyncio.get_event_loop() UpperCamelCase_ = loop.run_until_complete( _stream_subprocess(_lowerCAmelCase , env=_lowerCAmelCase , stdin=_lowerCAmelCase , timeout=_lowerCAmelCase , quiet=_lowerCAmelCase , echo=_lowerCAmelCase)) UpperCamelCase_ = " ".join(_lowerCAmelCase) if result.returncode > 0: UpperCamelCase_ = "\n".join(result.stderr) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""") # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""") return result def _lowerCAmelCase (): UpperCamelCase_ = os.environ.get("PYTEST_XDIST_WORKER" , "gw0") UpperCamelCase_ = re.sub(r"^gw" , "" , _lowerCAmelCase , 0 , re.M) return int(_lowerCAmelCase) def _lowerCAmelCase (): UpperCamelCase_ = 2_95_00 UpperCamelCase_ = pytest_xdist_worker_id() return port + uniq_delta
504
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase : Optional[Any] =pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = path + ".py" assert script_name in os.listdir(_lowerCAmelCase) assert "__pycache__" not in os.listdir(_lowerCAmelCase) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path" , ["accuracy"]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): inspect_metric(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = path + ".py" assert script_name in os.listdir(_lowerCAmelCase) assert "__pycache__" not in os.listdir(_lowerCAmelCase) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): with pytest.raises(_lowerCAmelCase): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_dataset_config_names(_lowerCAmelCase) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_dataset_infos(_lowerCAmelCase) assert list(infos.keys()) == expected_configs UpperCamelCase_ = expected_configs[0] assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = get_dataset_infos(_lowerCAmelCase) assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): with pytest.raises(_lowerCAmelCase): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase)
504
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=None , __UpperCAmelCase=2 , )-> Tuple: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 1 def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = ViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Any: '''simple docstring''' lowerCAmelCase__ = ViTForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, unittest.TestCase ): a_ =( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ =( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = ViTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' pass def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCAmelCase__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase ( self )-> str: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _a ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(lowerCAmelCase__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowerCAmelCase__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(lowerCAmelCase__ ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) lowerCAmelCase__ = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ ) lowerCAmelCase__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) lowerCAmelCase__ = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ = model(lowerCAmelCase__ )
339
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """microsoft/speecht5_tts""" _UpperCAmelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _UpperCAmelCase = """text_reader""" _UpperCAmelCase = SpeechTaProcessor _UpperCAmelCase = SpeechTaForTextToSpeech _UpperCAmelCase = SpeechTaHifiGan _UpperCAmelCase = ["""text"""] _UpperCAmelCase = ["""audio"""] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: SCREAMING_SNAKE_CASE_ : List[Any] = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.pre_processor(text=lowerCAmelCase__ , return_tensors='pt' , truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(embeddings_dataset[7_3_0_5]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
101
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowerCAmelCase : lowercase = MBartConfig lowercase = {} lowercase = "gelu" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_mbart_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TFMBartModel(config=__UpperCAmelCase ).get_decoder() __UpperCamelCase = inputs_dict['input_ids'] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict['attention_mask'][:1, :] __UpperCamelCase = inputs_dict['head_mask'] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() __UpperCamelCase = past_key_values[1] def A ( snake_case :List[Any] , snake_case :str , snake_case :List[str] , snake_case :List[Any]=None , snake_case :List[Any]=None , snake_case :Optional[int]=None , snake_case :List[str]=None , snake_case :int=None , ) -> Dict: if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFMBartModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): lowercase = [ " UN Chief Says There Is No Military Solution in Syria", ] lowercase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowercase = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.translate_src_text(**__UpperCAmelCase ) self.assertListEqual(self.expected_text , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.tokenizer(self.src_text , **__UpperCAmelCase , return_tensors='tf' ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __UpperCamelCase = self.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) return generated_words @slow def UpperCAmelCase ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
293
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = KandinskyInpaintPipeline lowercase = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] lowercase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] lowercase = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase = False @property def UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase ( self ): '''simple docstring''' return 100 @property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __UpperCamelCase = MultilingualCLIP(__UpperCAmelCase ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCamelCase = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def UpperCAmelCase ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCAmelCase , ) __UpperCamelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase = 0 if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**__UpperCAmelCase ) __UpperCamelCase = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) __UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __UpperCamelCase = np.ones((768, 768) , dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = 'a hat' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __UpperCamelCase = pipeline( __UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
293
1
"""simple docstring""" def a_ ( _lowerCAmelCase : int = 400_0000 ): '''simple docstring''' lowercase__ : Optional[int] = [] lowercase__ , lowercase__ : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowerCAmelCase ) lowercase__ , lowercase__ : str = b, a + b return sum(_lowerCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
599
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase : str = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = ["PerceiverFeatureExtractor"] _UpperCamelCase : Optional[int] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
1
def lowerCAmelCase_ ( __A : int ): '''simple docstring''' assert ( isinstance(__A , __A ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 snake_case: Tuple = 1, 1 for _ in range(number_of_steps - 1 ): snake_case: List[str] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
215
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __snake_case : List[Any] = get_logger(__name__) class lowerCamelCase : '''simple docstring''' __snake_case = 'dummy_data' __snake_case = 'datasets' __snake_case = False def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[Version, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[List[Callable]] = None , ) -> str: '''simple docstring''' A__ : List[str] =0 A__ : int =dataset_name A__ : Optional[int] =cache_dir A__ : Optional[int] =use_local_dummy_data A__ : Optional[Any] =config # download_callbacks take a single url as input A__ : List[Callable] =download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A__ : Any =load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A__ : List[str] =str(lowerCAmelCase_ ) # to be downloaded A__ : Union[str, Any] =None A__ : List[str] =None @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' if self._dummy_file is None: A__ : Tuple =self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self : str ) -> int: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A__ : List[str] =cached_path( lowerCAmelCase_ , cache_dir=self.cache_dir , extract_compressed_file=lowerCAmelCase_ , force_extract=lowerCAmelCase_ ) return os.path.join(lowerCAmelCase_ , self.dummy_file_name ) @property def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self._bucket_url is None: A__ : Any =hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested A__ : int =self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A__ : Optional[int] =self.dummy_file_name # special case when data_url is a dict if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.create_dummy_data_dict(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , (list, tuple) ): return self.create_dummy_data_list(lowerCAmelCase_ , lowerCAmelCase_ ) else: return self.create_dummy_data_single(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , *lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return self.download_and_extract(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.download_and_extract(lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' return path def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return {} def lowercase__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Union[str, Any] ={} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for single_url in single_urls: download_callback(lowerCAmelCase_ ) else: A__ : str =single_urls download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =[os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) for x in single_urls] else: A__ : List[str] =single_urls A__ : Optional[int] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(Path(lowerCAmelCase_ ).name ) ) A__ : Tuple =value # make sure that values are unique if all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A__ : int ={key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =[] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A__ : str =all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , lowerCAmelCase_ ) ) for url in data_url ) A__ : List[Any] =all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A__ : List[str] =[data_url[0]] * len(lowerCAmelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ : Optional[int] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(lowerCAmelCase_ ) return dummy_data_list def lowercase__ ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowerCAmelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ : List[Any] =os.path.join(lowerCAmelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(lowerCAmelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' def _iter_archive_members(lowerCAmelCase_ : int ): # this preserves the order of the members inside the ZIP archive A__ : Dict =Path(self.dummy_file ).parent A__ : List[str] =path.relative_to(lowerCAmelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A__ : int =zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowerCAmelCase_ ) A__ : Dict =Path(lowerCAmelCase_ ) A__ : Union[str, Any] =_iter_archive_members(lowerCAmelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(lowerCAmelCase_ ).as_posix(), file_path.open("""rb""" ) def lowercase__ ( self : int , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : str =[paths] for path in paths: if os.path.isfile(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowerCAmelCase_ ): if os.path.basename(lowerCAmelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(lowerCAmelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
215
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase : Any = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any]): """simple docstring""" a : int = TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-model-flax') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org') except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Dict = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) a : List[str] = FlaxBertModel(UpperCAmelCase_) model.push_to_hub('test-model-flax' , use_auth_token=self._token) a : Tuple = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""") a : Optional[int] = flatten_dict(unfreeze(model.params)) a : int = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): a : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1e-3 , msg=f"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='test-model-flax') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id='test-model-flax' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) a : Tuple = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""") a : str = flatten_dict(unfreeze(model.params)) a : int = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): a : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1e-3 , msg=f"""{key} not identical""") def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) a : Optional[Any] = FlaxBertModel(UpperCAmelCase_) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token) a : List[Any] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') a : Optional[Any] = flatten_dict(unfreeze(model.params)) a : Optional[int] = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): a : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1e-3 , msg=f"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) a : str = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org') a : List[Any] = flatten_dict(unfreeze(model.params)) a : Any = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): a : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1e-3 , msg=f"""{key} not identical""") def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : str ) -> Optional[int]: """simple docstring""" a : Optional[Any] = True a : Tuple = flatten_dict(modela.params ) a : List[Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: a : List[str] = False return models_are_equal @require_flax class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : int = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') a : Union[str, Any] = FlaxBertModel(UpperCAmelCase_) a : Optional[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_)) with self.assertRaises(UpperCAmelCase_): a : List[Any] = FlaxBertModel.from_pretrained(UpperCAmelCase_) a : Dict = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only') a : Tuple = FlaxBertModel(UpperCAmelCase_) a : Dict = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_) , max_shard_size='10KB') with self.assertRaises(UpperCAmelCase_): a : List[str] = FlaxBertModel.from_pretrained(UpperCAmelCase_) a : Optional[Any] = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = 'bert' a : Tuple = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(UpperCAmelCase_): a : List[Any] = FlaxBertModel.from_pretrained(UpperCAmelCase_) a : Dict = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = 'bert' a : str = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(UpperCAmelCase_): a : List[Any] = FlaxBertModel.from_pretrained(UpperCAmelCase_) a : Tuple = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_)
610
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : str = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase : Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } UpperCamelCase : List[str] = { """camembert-base""": 512, } UpperCamelCase : List[Any] = """▁""" class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : int="<unk>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : int=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token a : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) a : Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> a : str = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} a : Optional[Any] = len(self.fairseq_tokens_to_ids) a : List[str] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : Optional[int] = [self.cls_token_id] a : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : List[Any] = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : int = {self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase_) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[Any]): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[Any]): """simple docstring""" a : List[str] = [] a : List[str] = '' a : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_) + token a : Tuple = True a : Optional[Any] = [] else: current_sub_tokens.append(UpperCAmelCase_) a : int = False out_string += self.sp_model.decode(UpperCAmelCase_) return out_string.strip() def __getstate__( self : Union[str, Any]): """simple docstring""" a : str = self.__dict__.copy() a : List[Any] = None return state def __setstate__( self : List[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a : Tuple = {} a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , 'wb') as fi: a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,)
610
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class snake_case ( UpperCamelCase_ ): lowercase_ = 'perceiver' def __init__( self : List[Any] , a_ : List[Any]=256 , a_ : List[Any]=1280 , a_ : str=768 , a_ : List[Any]=1 , a_ : Tuple=26 , a_ : Optional[Any]=8 , a_ : str=8 , a_ : int=None , a_ : Dict=None , a_ : Dict="kv" , a_ : List[Any]=1 , a_ : Dict=1 , a_ : Dict="gelu" , a_ : Dict=0.1 , a_ : Optional[Any]=0.02 , a_ : Dict=1e-1_2 , a_ : Union[str, Any]=True , a_ : Optional[int]=262 , a_ : str=2048 , a_ : List[str]=56 , a_ : Dict=[368, 496] , a_ : int=16 , a_ : str=1920 , a_ : List[str]=16 , a_ : List[str]=[1, 16, 224, 224] , **a_ : Union[str, Any] , )-> Tuple: """simple docstring""" super().__init__(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = num_latents SCREAMING_SNAKE_CASE__ : Dict = d_latents SCREAMING_SNAKE_CASE__ : Optional[Any] = d_model SCREAMING_SNAKE_CASE__ : str = num_blocks SCREAMING_SNAKE_CASE__ : Tuple = num_self_attends_per_block SCREAMING_SNAKE_CASE__ : List[str] = num_self_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = num_cross_attention_heads SCREAMING_SNAKE_CASE__ : Any = qk_channels SCREAMING_SNAKE_CASE__ : Tuple = v_channels SCREAMING_SNAKE_CASE__ : Any = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE__ : List[str] = self_attention_widening_factor SCREAMING_SNAKE_CASE__ : Dict = cross_attention_widening_factor SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : str = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE__ : List[Any] = image_size # flow attributes SCREAMING_SNAKE_CASE__ : Dict = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE__ : Tuple = num_frames SCREAMING_SNAKE_CASE__ : int = audio_samples_per_frame SCREAMING_SNAKE_CASE__ : Union[str, Any] = samples_per_patch SCREAMING_SNAKE_CASE__ : Optional[int] = output_shape class snake_case ( UpperCamelCase_ ): @property def __lowercase( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def __lowercase( self : Tuple )-> float: """simple docstring""" return 1e-4 def __lowercase( self : List[str] , a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a_ : int = -1 , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , )-> Mapping[str, Any]: """simple docstring""" # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(a_ , a_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Any = preprocessor.num_special_tokens_to_add(a_ ) SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : Union[str, Any] = [' '.join(['a'] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Tuple = dict(preprocessor(a_ , return_tensors=a_ ) ) SCREAMING_SNAKE_CASE__ : Dict = inputs.pop('input_ids' ) return inputs elif isinstance(a_ , a_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Dict = compute_effective_axis_dimension(a_ , fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._generate_dummy_images(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = dict(preprocessor(images=a_ , return_tensors=a_ ) ) SCREAMING_SNAKE_CASE__ : str = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
85
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = "Hello world! cécé herlolip" SCREAMING_SNAKE_CASE__ : Dict = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = BertAbsConfig( temp_dir='.' , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder='bert' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage ) SCREAMING_SNAKE_CASE__ : Any = AbsSummarizer(lowercase__ , torch.device('cpu' ) , lowercase__ ) original.eval() SCREAMING_SNAKE_CASE__ : List[Any] = BertAbsSummarizer(lowercase__ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) SCREAMING_SNAKE_CASE__ : Any = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(lowercase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor(lowercase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE__ : int = encoder_input_ids SCREAMING_SNAKE_CASE__ : Any = decoder_input_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE__ : Optional[Any] = original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = original.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = new_model( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = new_model.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
85
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ): __a = 1 @register_to_config def __init__( self , lowerCAmelCase = 1000 , lowerCAmelCase = None ) -> Optional[Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__: Optional[int]= 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE__: Optional[Any]= 4 # running values SCREAMING_SNAKE_CASE__: Optional[Any]= [] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> int: SCREAMING_SNAKE_CASE__: Tuple= num_inference_steps SCREAMING_SNAKE_CASE__: List[str]= torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] SCREAMING_SNAKE_CASE__: List[str]= torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE__: List[Any]= torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE__: Optional[int]= torch.sin(steps * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE__: Union[str, Any]= (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE__: Optional[Any]= (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE__: str= timesteps.to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= [] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE__: Optional[int]= timestep_index + 1 SCREAMING_SNAKE_CASE__: Optional[Any]= sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase ) if len(self.ets ) == 1: SCREAMING_SNAKE_CASE__: Any= self.ets[-1] elif len(self.ets ) == 2: SCREAMING_SNAKE_CASE__: List[str]= (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: SCREAMING_SNAKE_CASE__: int= (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE__: Tuple= (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE__: Dict= self._get_prev_sample(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) -> torch.FloatTensor: return sample def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[Any]= self.alphas[timestep_index] SCREAMING_SNAKE_CASE__: List[str]= self.betas[timestep_index] SCREAMING_SNAKE_CASE__: List[Any]= self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE__: Optional[Any]= self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE__: List[str]= (sample - sigma * ets) / max(lowerCAmelCase , 1e-8 ) SCREAMING_SNAKE_CASE__: int= next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
107
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ : str = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class _lowerCamelCase : __a = 42 __a = None __a = None __a = None __a = None def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Dict: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def UpperCamelCase_ ( self ) -> List[str]: return self.major, self.minor, self.patch def UpperCamelCase_ ( self , lowerCAmelCase ) -> Dict: if isinstance(lowerCAmelCase , lowerCAmelCase ): return Version(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): return other raise TypeError(f'{other} (type {type(lowerCAmelCase )}) cannot be compared to version.' ) def __eq__( self , lowerCAmelCase ) -> Optional[int]: try: SCREAMING_SNAKE_CASE__: List[str]= self._validate_operand(lowerCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__: Optional[Any]= self._validate_operand(lowerCAmelCase ) return self.tuple < other.tuple def __hash__( self ) -> List[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase_ ( cls , lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__: Dict= {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase_ ( self ) -> str: return self.version_str def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[Any]= _VERSION_REG.match(snake_case_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def A__ ( snake_case_ : Union[str, Any] ): return ".".join(str(snake_case_ ) for v in version_tuple )
107
1
import math import sys import cva import numpy as np def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float ): # For applying gaussian function for each element in matrix. __UpperCAmelCase : int = math.sqrt(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): __UpperCAmelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float ): # Creates a gaussian kernel of given dimension. __UpperCAmelCase : Union[str, Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): __UpperCAmelCase : str = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int , ): __UpperCAmelCase : Optional[Any] = np.zeros(img.shape ) __UpperCAmelCase : int = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __UpperCAmelCase : int = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2] __UpperCAmelCase : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) __UpperCAmelCase : List[Any] = val return imga def lowerCamelCase__ ( __lowerCamelCase : list ): __UpperCAmelCase : List[str] = args[1] if args[1:] else """../image_data/lena.jpg""" __UpperCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0 __UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: __UpperCAmelCase : Optional[int] = int(args[4] ) __UpperCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: __UpperCAmelCase : int = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a ,a ,a ,a : Optional[Any] = parse_args(sys.argv) a : Optional[int] = cva.imread(filename, 0) cva.imshow("input image", img) a : int = img / 255 a : Union[str, Any] = out.astype("float32") a : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Optional[int] = out * 255 a : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
63
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' __a : List[Any] =["""image_processor""", """tokenizer"""] __a : Dict ="""AutoImageProcessor""" __a : Tuple ="""AutoTokenizer""" def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ): lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase_ , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase = self.image_processor lowerCAmelCase = False def __call__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase = kwargs.pop('''images''' , UpperCAmelCase_ ) lowerCAmelCase = kwargs.pop('''text''' , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCAmelCase = self.image_processor(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: lowerCAmelCase = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase = encodings['''input_ids'''] return inputs def __snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @contextmanager def __snake_case ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCAmelCase = True lowerCAmelCase = self.tokenizer yield lowerCAmelCase = self.image_processor lowerCAmelCase = False def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=None ): if added_vocab is None: lowerCAmelCase = self.tokenizer.get_added_vocab() lowerCAmelCase = {} while tokens: lowerCAmelCase = re.search(r'''<s_(.*?)>''' , UpperCAmelCase_ , re.IGNORECASE ) if start_token is None: break lowerCAmelCase = start_token.group(1 ) lowerCAmelCase = re.search(rF"""</s_{key}>""" , UpperCAmelCase_ , re.IGNORECASE ) lowerCAmelCase = start_token.group() if end_token is None: lowerCAmelCase = tokens.replace(UpperCAmelCase_ , '''''' ) else: lowerCAmelCase = end_token.group() lowerCAmelCase = re.escape(UpperCAmelCase_ ) lowerCAmelCase = re.escape(UpperCAmelCase_ ) lowerCAmelCase = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCAmelCase_ , re.IGNORECASE ) if content is not None: lowerCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCAmelCase = self.tokenajson(UpperCAmelCase_ , is_inner_value=UpperCAmelCase_ , added_vocab=UpperCAmelCase_ ) if value: if len(UpperCAmelCase_ ) == 1: lowerCAmelCase = value[0] lowerCAmelCase = value else: # leaf nodes lowerCAmelCase = [] for leaf in content.split(r'''<sep/>''' ): lowerCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(UpperCAmelCase_ ) if len(output[key] ) == 1: lowerCAmelCase = output[key][0] lowerCAmelCase = tokens[tokens.find(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase_ , added_vocab=UpperCAmelCase_ ) if len(UpperCAmelCase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __snake_case ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase_ , ) return self.image_processor_class @property def __snake_case ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase_ , ) return self.image_processor
714
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __a : Any =BertJapaneseTokenizer __a : Optional[int] =False __a : int =True def __snake_case ( self ): super().setUp() lowerCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = '''こんにちは、世界。 \nこんばんは、世界。''' lowerCAmelCase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase , lowerCAmelCase = self.get_input_output_texts(UpperCAmelCase_ ) lowerCAmelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class(self.vocab_file ) lowerCAmelCase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCAmelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCAmelCase_ ) lowerCAmelCase = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase_ , '''wb''' ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , '''rb''' ) as handle: lowerCAmelCase = pickle.load(UpperCAmelCase_ ) lowerCAmelCase = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __snake_case ( self ): lowerCAmelCase = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: lowerCAmelCase = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: lowerCAmelCase = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): lowerCAmelCase = MecabTokenizer(do_lower_case=UpperCAmelCase_ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: lowerCAmelCase = MecabTokenizer( do_lower_case=UpperCAmelCase_ , normalize_text=UpperCAmelCase_ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __snake_case ( self ): lowerCAmelCase = MecabTokenizer(normalize_text=UpperCAmelCase_ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCAmelCase_ ) lowerCAmelCase = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase_ , '''wb''' ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , '''rb''' ) as handle: lowerCAmelCase = pickle.load(UpperCAmelCase_ ) lowerCAmelCase = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(do_lower_case=UpperCAmelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(normalize_text=UpperCAmelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): lowerCAmelCase = SudachiTokenizer(trim_whitespace=UpperCAmelCase_ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCAmelCase_ ) lowerCAmelCase = '''こんにちは、世界。\nこんばんは、世界。''' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCAmelCase_ , '''wb''' ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , '''rb''' ) as handle: lowerCAmelCase = pickle.load(UpperCAmelCase_ ) lowerCAmelCase = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = JumanppTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = JumanppTokenizer(normalize_text=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = JumanppTokenizer(trim_whitespace=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __snake_case ( self ): lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowerCAmelCase = {} for i, token in enumerate(UpperCAmelCase_ ): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __snake_case ( self ): lowerCAmelCase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowerCAmelCase = tokenizer.subword_tokenizer lowerCAmelCase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowerCAmelCase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowerCAmelCase = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __a : Union[str, Any] =BertJapaneseTokenizer __a : Optional[int] =False def __snake_case ( self ): super().setUp() lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , **UpperCAmelCase_ ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCAmelCase_ ) def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = '''こんにちは、世界。 \nこんばんは、世界。''' lowerCAmelCase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) lowerCAmelCase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCAmelCase_ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __snake_case ( self ): lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowerCAmelCase = {} for i, token in enumerate(UpperCAmelCase_ ): lowerCAmelCase = i lowerCAmelCase = CharacterTokenizer(vocab=UpperCAmelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __snake_case ( self ): lowerCAmelCase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowerCAmelCase = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCAmelCase_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): lowerCAmelCase = '''cl-tohoku/bert-base-japanese''' lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): lowerCAmelCase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowerCAmelCase = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
33
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Any=True , __magic_name__ : Optional[int]=True , __magic_name__ : Tuple=False , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=32 , __magic_name__ : str=5 , __magic_name__ : int=4 , __magic_name__ : Dict=37 , __magic_name__ : Tuple="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Dict=16 , __magic_name__ : Any=2 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : List[str]=4 , __magic_name__ : Union[str, Any]=None , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , use_stable_embedding=__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = OpenLlamaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ ) lowerCAmelCase__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , ) lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = OpenLlamaForCausalLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() # first forward pass lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , use_cache=__magic_name__ , ) lowerCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0] lowerCAmelCase__ = model( __magic_name__ , attention_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , output_hidden_states=__magic_name__ , )["hidden_states"][0] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) snake_case__ :Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () snake_case__ :List[str] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ :List[str] = False snake_case__ :Any = False def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = OpenLlamaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ = type self.model_tester.create_and_check_model(*__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = "single_label_classification" lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = "multi_label_classification" lowerCAmelCase__ = input_dict["input_ids"] lowerCAmelCase__ = input_ids.ne(1 ).to(__magic_name__ ) lowerCAmelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ = OpenLlamaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCAmelCase__ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) original_model.to(__magic_name__ ) original_model.eval() lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state lowerCAmelCase__ = original_model(__magic_name__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ = {"type": scaling_type, "factor": 10.0} lowerCAmelCase__ = OpenLlamaModel(__magic_name__ ) scaled_model.to(__magic_name__ ) scaled_model.eval() lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state lowerCAmelCase__ = scaled_model(__magic_name__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) )
48
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( __lowerCamelCase ): _lowercase : List[str] = (EulerDiscreteScheduler,) _lowercase : Tuple = 10 def UpperCamelCase ( self : Any , **lowerCamelCase__ : int ) -> Any: """simple docstring""" A_ = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCamelCase__ ) return config def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Any: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) A_ = model(lowerCamelCase__ , lowerCamelCase__ ) A_ = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(lowerCamelCase__ ) ) A_ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase ( self : int ) -> int: """simple docstring""" A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) A_ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) A_ = model(lowerCamelCase__ , lowerCamelCase__ ) A_ = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(lowerCamelCase__ ) ) A_ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(lowerCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) A_ = model(lowerCamelCase__ , lowerCamelCase__ ) A_ = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(lowerCamelCase__ ) ) A_ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**lowerCamelCase__ , use_karras_sigmas=lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(lowerCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) A_ = model(lowerCamelCase__ , lowerCamelCase__ ) A_ = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(lowerCamelCase__ ) ) A_ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
563
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _lowercase ( __lowerCamelCase ): _lowercase : Optional[int] = 'Wav2Vec2FeatureExtractor' _lowercase : int = 'AutoTokenizer' def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) A_ = self.feature_extractor A_ = False @classmethod def UpperCamelCase ( cls : Optional[int] , lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" try: return super().from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) except OSError: warnings.warn( F"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , lowerCamelCase__ , ) A_ = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) A_ = WavaVecaCTCTokenizer.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) return cls(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) def __call__( self : Union[str, Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : Any ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A_ = kwargs.pop('''raw_speech''' ) else: A_ = kwargs.pop('''audio''' , lowerCamelCase__ ) A_ = kwargs.pop('''sampling_rate''' , lowerCamelCase__ ) A_ = kwargs.pop('''text''' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A_ = args[0] A_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A_ = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: A_ = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: A_ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self : Any , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) A_ = kwargs.pop('''input_features''' , lowerCamelCase__ ) A_ = kwargs.pop('''labels''' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A_ = args[0] A_ = args[1:] if input_features is not None: A_ = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: A_ = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: A_ = labels['''input_ids'''] return input_features def UpperCamelCase ( self : Optional[int] , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCamelCase ( self : Any , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A_ = True A_ = self.tokenizer yield A_ = self.feature_extractor A_ = False
563
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' if b == 0: return (1, 0) ((_UpperCAmelCase) , (_UpperCAmelCase)) = extended_euclid(A , a % b ) _UpperCAmelCase = a // b return (y, x - k * y) def UpperCAmelCase ( A : int , A : int , A : int , A : int ): '''simple docstring''' ((_UpperCAmelCase) , (_UpperCAmelCase)) = extended_euclid(A , A ) _UpperCAmelCase = na * na _UpperCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' ((_UpperCAmelCase) , (_UpperCAmelCase)) = extended_euclid(A , A ) if b < 0: _UpperCAmelCase = (b % n + n) % n return b def UpperCAmelCase ( A : int , A : int , A : int , A : int ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = invert_modulo(A , A ), invert_modulo(A , A ) _UpperCAmelCase = na * na _UpperCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
573
"""simple docstring""" from __future__ import annotations from random import choice def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' return choice(A ) def UpperCAmelCase ( A : list[int] , A : int ): '''simple docstring''' _UpperCAmelCase = random_pivot(A ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(A ) < k - 1: return kth_number(A , k - len(A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
573
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase :str = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Tuple = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Dict = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from jiwer import compute_measures import datasets lowerCamelCase :int = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCamelCase :int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCamelCase :Optional[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _a (self , lowercase=None , lowercase=None , lowercase=False ): if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: A_ : List[Any] = 0 A_ : Optional[int] = 0 for prediction, reference in zip(lowercase , lowercase ): A_ : Any = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: # load base model SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : Any = load_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : Dict = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Tuple = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Any = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Dict = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(__lowerCAmelCase ) > -1: try: SCREAMING_SNAKE_CASE : List[Any] = curr_layer.__getattr__(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = layer_infos.pop(0 ) elif len(__lowerCAmelCase ) == 0: break except Exception: if len(__lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__lowerCAmelCase ) else: pair_keys.append(__lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : List[Any] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(__lowerCAmelCase ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.base_model_path _lowerCamelCase : str = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Any = args.lora_prefix_unet _lowerCamelCase : List[Any] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
352
from datetime import datetime import requests def __a ( __lowerCAmelCase ) -> bytes: SCREAMING_SNAKE_CASE : int = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' SCREAMING_SNAKE_CASE : Any = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": _lowerCamelCase : List[Any] = input("""Enter Video/IGTV url: """).strip() _lowerCamelCase : int = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
352
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" lowercase = TextToVideoSDPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def lowerCamelCase ( self : int ): torch.manual_seed(0 ) snake_case__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) snake_case__ : Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) snake_case__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) snake_case__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) snake_case__ : Dict = CLIPTextModel(_lowercase ) snake_case__ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Tuple=0 ): if str(_lowercase ).startswith("""mps""" ): snake_case__ : Tuple = torch.manual_seed(_lowercase ) else: snake_case__ : List[str] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case__ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case__ : List[str] = self.get_dummy_components() snake_case__ : int = TextToVideoSDPipeline(**_lowercase ) snake_case__ : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ : Optional[Any] = self.get_dummy_inputs(_lowercase ) snake_case__ : Any = 'np' snake_case__ : Union[str, Any] = sd_pipe(**_lowercase ).frames snake_case__ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case__ : List[str] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self : int ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase ( self : Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : str ): return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[int] ): snake_case__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case__ : List[str] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case__ : int = pipe.to("""cuda""" ) snake_case__ : int = 'Spiderman is surfing' snake_case__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : int = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type="""pt""" ).frames snake_case__ : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case__ : Union[str, Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case__ : List[str] = pipe.to("""cuda""" ) snake_case__ : str = 'Spiderman is surfing' snake_case__ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ : List[str] = pipe(_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""pt""" ).frames snake_case__ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = """dpt""" def __init__( self : List[Any] , UpperCamelCase__ : List[str]=768 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1E-12 , UpperCamelCase__ : str=384 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=True , UpperCamelCase__ : int=[2, 5, 8, 11] , UpperCamelCase__ : Optional[int]="project" , UpperCamelCase__ : List[Any]=[4, 2, 1, 0.5] , UpperCamelCase__ : Dict=[96, 192, 384, 768] , UpperCamelCase__ : Dict=256 , UpperCamelCase__ : int=-1 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Union[str, Any]=0.4 , UpperCamelCase__ : Tuple=255 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=[1, 1024, 24, 24] , UpperCamelCase__ : Optional[int]=[0, 1] , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Any , ) -> Tuple: super().__init__(**UpperCamelCase__ ) _UpperCamelCase =hidden_size _UpperCamelCase =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCamelCase ={ '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCamelCase =BitConfig(**UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCamelCase =BitConfig(**UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): _UpperCamelCase =backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _UpperCamelCase =backbone_featmap_shape _UpperCamelCase =neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =[] _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =initializer_range _UpperCamelCase =layer_norm_eps _UpperCamelCase =image_size _UpperCamelCase =patch_size _UpperCamelCase =num_channels _UpperCamelCase =qkv_bias _UpperCamelCase =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _UpperCamelCase =readout_type _UpperCamelCase =reassemble_factors _UpperCamelCase =neck_hidden_sizes _UpperCamelCase =fusion_hidden_size _UpperCamelCase =head_in_index _UpperCamelCase =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCamelCase =use_auxiliary_head _UpperCamelCase =auxiliary_loss_weight _UpperCamelCase =semantic_loss_ignore_index _UpperCamelCase =semantic_classifier_dropout def UpperCamelCase__ ( self : List[Any] ) -> Tuple: _UpperCamelCase =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCamelCase =self.backbone_config.to_dict() _UpperCamelCase =self.__class__.model_type return output
404
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCamelCase : List[str] = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(__SCREAMING_SNAKE_CASE ) , version.parse(__SCREAMING_SNAKE_CASE ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" _UpperCamelCase =f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , __SCREAMING_SNAKE_CASE ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =requirement, None, None else: _UpperCamelCase =re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , __SCREAMING_SNAKE_CASE ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase =match[0] _UpperCamelCase =want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase ={} for w in want_range: _UpperCamelCase =re.findall(r'''^([\s!=<>]{1,2})(.+)''' , __SCREAMING_SNAKE_CASE ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase =match[0] _UpperCamelCase =want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase ='''.'''.join([str(__SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return # check if any version is installed try: _UpperCamelCase =importlib.metadata.version(__SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase ='''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
404
1
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A__ ( A_ , A_ , A_ ) -> Dict: # Initialise PyTorch model _lowercase = RemBertConfig.from_json_file(A_ ) print("Building PyTorch model from configuration: {}".format(str(A_ ) ) ) _lowercase = RemBertModel(A_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A_ , A_ , A_ ) # Save pytorch-model print("Save PyTorch model to {}".format(A_ ) ) torch.save(model.state_dict() , A_ ) if __name__ == "__main__": __magic_name__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ : str = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
602
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __magic_name__ : List[Any] = logging.get_logger(__name__) def A__ ( A_ , A_ , A_ , A_=None , A_=None ) -> Tuple: # Recurse if needed if "." in tensor_name: _lowercase = tensor_name.split("." ) for split in splits[:-1]: _lowercase = getattr(A_ , A_ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) _lowercase = new_module _lowercase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) _lowercase = tensor_name in module._buffers _lowercase = getattr(A_ , A_ ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) _lowercase = False _lowercase = False if is_buffer or not is_bitsandbytes_available(): _lowercase = False _lowercase = False else: _lowercase = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowercase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowercase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowercase = old_value.to(A_ ) elif isinstance(A_ , torch.Tensor ): _lowercase = value.to("cpu" ) if value.dtype == torch.inta: _lowercase = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: _lowercase = torch.tensor(A_ , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A_ ) and fpaa_statistics is None: _lowercase = new_value.T _lowercase = old_value.__dict__ if is_abit: _lowercase = bnb.nn.IntaParams(A_ , requires_grad=A_ , **A_ ).to(A_ ) elif is_abit: _lowercase = bnb.nn.Paramsabit(A_ , requires_grad=A_ , **A_ ).to(A_ ) _lowercase = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(A_ ) ) else: if value is None: _lowercase = old_value.to(A_ ) elif isinstance(A_ , torch.Tensor ): _lowercase = value.to(A_ ) else: _lowercase = torch.tensor(A_ , device=A_ ) if is_buffer: _lowercase = new_value else: _lowercase = nn.Parameter(A_ , requires_grad=old_value.requires_grad ) _lowercase = new_value def A__ ( A_ , A_=None , A_=None , A_=None , A_=False ) -> Union[str, Any]: for name, module in model.named_children(): if current_key_name is None: _lowercase = [] current_key_name.append(A_ ) if (isinstance(A_ , nn.Linear ) or isinstance(A_ , A_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(A_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A_ , A_ ): _lowercase , _lowercase = module.weight.shape else: _lowercase = module.in_features _lowercase = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowercase = bnb.nn.LinearabitLt( A_ , A_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowercase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowercase = bnb.nn.Linearabit( A_ , A_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowercase = True # Store the module class in case we need to transpose the weight later _lowercase = type(A_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A_ ) if len(list(module.children() ) ) > 0: _lowercase , _lowercase = _replace_with_bnb_linear( A_ , A_ , A_ , A_ , has_been_replaced=A_ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A__ ( A_ , A_=None , A_=None , A_=None ) -> List[Any]: _lowercase = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert _lowercase , _lowercase = _replace_with_bnb_linear( A_ , A_ , A_ , A_ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A__ ( *A_ , **A_ ) -> int: warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , A_ , ) return replace_with_bnb_linear(*A_ , **A_ ) def A__ ( *A_ , **A_ ) -> Tuple: warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , A_ , ) return set_module_quantized_tensor_to_device(*A_ , **A_ ) def A__ ( A_ ) -> Tuple: _lowercase = deepcopy(A_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowercase = find_tied_parameters(A_ ) # For compatibility with Accelerate < 0.18 if isinstance(A_ , A_ ): _lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowercase = sum(A_ , [] ) _lowercase = len(A_ ) > 0 # Check if it is a base model _lowercase = not hasattr(A_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowercase = list(model.named_children() ) _lowercase = [list_modules[-1][0]] # add last module together with tied weights _lowercase = set(A_ ) - set(A_ ) _lowercase = list(set(A_ ) ) + list(A_ ) # remove ".weight" from the keys _lowercase = [".weight", ".bias"] _lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowercase = name.replace(A_ , "" ) filtered_module_names.append(A_ ) return filtered_module_names
602
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square(__lowercase : int , __lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCAmelCase = update_area_of_max_square(lowerCAmelCase__ , col + 1 ) _UpperCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) _UpperCAmelCase = update_area_of_max_square(row + 1 , lowerCAmelCase__ ) if mat[row][col]: _UpperCAmelCase = 1 + min([right, diagonal, down] ) _UpperCAmelCase = max(largest_square_area[0] , lowerCAmelCase__ ) return sub_problem_sol else: return 0 _UpperCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( __lowercase : int , __lowercase : int , __lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCAmelCase = update_area_of_max_square_using_dp_array(lowerCAmelCase__ , col + 1 , lowerCAmelCase__ ) _UpperCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase__ ) _UpperCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) if mat[row][col]: _UpperCAmelCase = 1 + min([right, diagonal, down] ) _UpperCAmelCase = max(largest_square_area[0] , lowerCAmelCase__ ) _UpperCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCAmelCase = [0] _UpperCAmelCase = [[-1] * cols for _ in range(lowerCAmelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase__ ) return largest_square_area[0] def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : list[list[int]] ) -> int: '''simple docstring''' _UpperCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase = dp_array[row][col + 1] _UpperCAmelCase = dp_array[row + 1][col + 1] _UpperCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCAmelCase = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = max(dp_array[row][col] , lowerCAmelCase__ ) else: _UpperCAmelCase = 0 return largest_square_area def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : list[list[int]] ) -> int: '''simple docstring''' _UpperCAmelCase = [0] * (cols + 1) _UpperCAmelCase = [0] * (cols + 1) _UpperCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase = current_row[col + 1] _UpperCAmelCase = next_row[col + 1] _UpperCAmelCase = next_row[col] if mat[row][col] == 1: _UpperCAmelCase = 1 + min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = max(current_row[col] , lowerCAmelCase__ ) else: _UpperCAmelCase = 0 _UpperCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
236
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } A = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' _lowercase : Tuple = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) _lowercase : Optional[int] = bs[:] _lowercase : Optional[Any] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCAmelCase__) cs.append(2**8 + n) n += 1 _lowercase : int = [chr(lowerCAmelCase__) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__)) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict) -> List[str]: '''simple docstring''' _lowercase : List[Any] = set() _lowercase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) _lowercase : List[Any] = char return pairs class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,UpperCamelCase : List[Any] ,UpperCamelCase : Optional[Any] ,UpperCamelCase : Optional[Any]="replace" ,UpperCamelCase : Optional[Any]="<s>" ,UpperCamelCase : Optional[Any]="</s>" ,UpperCamelCase : Optional[Any]="</s>" ,UpperCamelCase : Union[str, Any]="<s>" ,UpperCamelCase : List[str]="<unk>" ,UpperCamelCase : Optional[int]="<pad>" ,UpperCamelCase : Optional[int]="<mask>" ,UpperCamelCase : List[Any]=False ,**UpperCamelCase : Dict ,) -> int: _lowercase : Tuple = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else bos_token _lowercase : Any = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else eos_token _lowercase : List[str] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else sep_token _lowercase : Any = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else cls_token _lowercase : Tuple = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else unk_token _lowercase : int = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : int = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase ,bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,add_prefix_space=UpperCamelCase ,**UpperCamelCase ,) with open(UpperCamelCase ,encoding='utf-8' ) as vocab_handle: _lowercase : Union[str, Any] = json.load(UpperCamelCase ) _lowercase : str = {v: k for k, v in self.encoder.items()} _lowercase : Tuple = errors # how to handle errors in decoding _lowercase : List[Any] = bytes_to_unicode() _lowercase : Any = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase ,encoding='utf-8' ) as merges_handle: _lowercase : List[str] = merges_handle.read().split('\n' )[1:-1] _lowercase : Dict = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Optional[Any] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) _lowercase : List[str] = {} _lowercase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : int = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return len(self.encoder ) def _lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : Optional[int] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] _lowercase : Optional[int] = tuple(UpperCamelCase ) _lowercase : Optional[int] = get_pairs(UpperCamelCase ) if not pairs: return token while True: _lowercase : Optional[int] = min(UpperCamelCase ,key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : int = bigram _lowercase : Optional[Any] = [] _lowercase : Optional[Any] = 0 while i < len(UpperCamelCase ): try: _lowercase : Union[str, Any] = word.index(UpperCamelCase ,UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Dict = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Optional[Any] = tuple(UpperCamelCase ) _lowercase : List[str] = new_word if len(UpperCamelCase ) == 1: break else: _lowercase : int = get_pairs(UpperCamelCase ) _lowercase : Optional[int] = ' '.join(UpperCamelCase ) _lowercase : Any = word return word def _lowerCamelCase ( self : Tuple ,UpperCamelCase : List[Any] ) -> Optional[int]: _lowercase : Optional[int] = [] for token in re.findall(self.pat ,UpperCamelCase ): _lowercase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(' ' ) ) return bpe_tokens def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Optional[Any] ) -> Dict: return self.encoder.get(UpperCamelCase ,self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : Dict ,UpperCamelCase : int ) -> str: return self.decoder.get(UpperCamelCase ) def _lowerCamelCase ( self : Tuple ,UpperCamelCase : Union[str, Any] ) -> Any: _lowercase : str = ''.join(UpperCamelCase ) _lowercase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : str ,UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Dict = os.path.join( UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : List[str] = os.path.join( UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=UpperCamelCase ,ensure_ascii=UpperCamelCase ) + '\n' ) _lowercase : Optional[int] = 0 with open(UpperCamelCase ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase : List[Any] = token_index writer.write(' '.join(UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ,UpperCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCamelCase ( self : List[Any] ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : int ,UpperCamelCase : str=False ,**UpperCamelCase : Union[str, Any] ) -> str: _lowercase : List[Any] = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): _lowercase : Optional[int] = ' ' + text return (text, kwargs) def _lowerCamelCase ( self : Tuple ,UpperCamelCase : List[int] ,UpperCamelCase : Optional[List[int]] = None ) -> List[Any]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : "Conversation" ) -> List[int]: _lowercase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase ) _lowercase : Dict = ' '.join(UpperCamelCase ) _lowercase : Optional[Any] = self.encode(UpperCamelCase ) if len(UpperCamelCase ) > self.model_max_length: _lowercase : str = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
125
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _A = logging.get_logger(__name__) _A = {'vocab_file': 'spiece.model'} _A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _A = 0 _A = 1 _A = 2 _A = 3 _A = 4 class _lowercase ( __UpperCAmelCase ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = 'left' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase : str = 3 lowerCamelCase : Optional[Any] = do_lower_case lowerCamelCase : Optional[Any] = remove_space lowerCamelCase : Dict = keep_accents lowerCamelCase : Dict = vocab_file lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _UpperCamelCase ( self ) -> List[Any]: return len(self.sp_model ) def _UpperCamelCase ( self ) -> str: lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: lowerCamelCase : Any = self.__dict__.copy() lowerCamelCase : str = None return state def __setstate__( self , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCamelCase : Optional[int] = {} lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> str: if self.remove_space: lowerCamelCase : Optional[int] = ' '.join(inputs.strip().split() ) else: lowerCamelCase : List[str] = inputs lowerCamelCase : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCamelCase : List[str] = unicodedata.normalize('NFKD' , UpperCAmelCase_ ) lowerCamelCase : Any = ''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase : Any = outputs.lower() return outputs def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[str]: lowerCamelCase : Tuple = self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCamelCase : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : Optional[int] = cur_pieces[1:] else: lowerCamelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Tuple: return self.sp_model.PieceToId(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Tuple: return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Union[str, Any]: lowerCamelCase : Optional[int] = ''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ' ' ).strip() return out_string def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ) -> str: lowerCamelCase : Dict = kwargs.pop('use_source_tokenizer' , UpperCAmelCase_ ) lowerCamelCase : List[Any] = self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase : Dict = [] lowerCamelCase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase : Tuple = [] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase : Union[str, Any] = ''.join(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase : int = self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : List[str] = [self.sep_token_id] lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : Tuple = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , 'wb' ) as fi: lowerCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
133
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' try: lowerCamelCase : List[str] = float(a_ ) except ValueError: raise ValueError('Please enter a valid number' ) lowerCamelCase : Dict = decimal - int(a_ ) if fractional_part == 0: return int(a_ ), 1 else: lowerCamelCase : Tuple = len(str(a_ ).split('.' )[1] ) lowerCamelCase : int = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase : List[str] = 10**number_of_frac_digits lowerCamelCase , lowerCamelCase : int = denominator, numerator while True: lowerCamelCase : Tuple = dividend % divisor if remainder == 0: break lowerCamelCase , lowerCamelCase : Union[str, Any] = divisor, remainder lowerCamelCase , lowerCamelCase : Any = numerator / divisor, denominator / divisor return int(a_ ), int(a_ ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
133
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[str] = (UniPCMultistepScheduler,) __UpperCamelCase : Optional[Any] = (("num_inference_steps", 25),) def __UpperCAmelCase ( self :int , **SCREAMING_SNAKE_CASE :int ) -> Tuple: '''simple docstring''' _a : Any ={ """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**SCREAMING_SNAKE_CASE ) return config def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict=0 , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[str]: '''simple docstring''' _a : int =dict(self.forward_default_kwargs ) _a : Tuple =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : str =self.dummy_sample _a : Dict =0.1 * sample _a : Any =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : str =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : List[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : Optional[Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : List[str] =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals _a : List[str] =dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a : Tuple =sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): _a : List[Any] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : str =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :int=0 , **SCREAMING_SNAKE_CASE :List[Any] ) -> Optional[int]: '''simple docstring''' _a : str =dict(self.forward_default_kwargs ) _a : List[Any] =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) _a : Optional[int] =self.dummy_sample _a : Union[str, Any] =0.1 * sample _a : Optional[Any] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : Tuple =self.get_scheduler_config() _a : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) _a : int =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) _a : Optional[int] =scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) _a : List[str] =dummy_past_residuals[: new_scheduler.config.solver_order] _a : str =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : List[Any] =new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[Any]=None , **SCREAMING_SNAKE_CASE :str ) -> Tuple: '''simple docstring''' if scheduler is None: _a : Tuple =self.scheduler_classes[0] _a : Tuple =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : int =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : Tuple =self.scheduler_classes[0] _a : List[str] =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =1_0 _a : Dict =self.dummy_model() _a : Dict =self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : Any =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[Any] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : Union[str, Any] =dict(self.forward_default_kwargs ) _a : List[Any] =kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: _a : str =self.get_scheduler_config() _a : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : int =self.dummy_sample _a : Any =0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , """set_timesteps""" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , """set_timesteps""" ): _a : List[str] =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a : str =[residual + 0.2, residual + 0.15, residual + 0.10] _a : Optional[int] =dummy_past_residuals[: scheduler.config.solver_order] _a : Any =scheduler.timesteps[5] _a : Any =scheduler.timesteps[6] _a : Dict =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample _a : Union[str, Any] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults _a : Optional[Any] =UniPCMultistepScheduler(**self.get_scheduler_config() ) _a : List[str] =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : Any =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 _a : Union[str, Any] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a : Dict =DEISMultistepScheduler.from_config(scheduler.config ) _a : List[str] =DPMSolverMultistepScheduler.from_config(scheduler.config ) _a : Optional[Any] =UniPCMultistepScheduler.from_config(scheduler.config ) _a : Optional[int] =self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) _a : str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) _a : Optional[int] =self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __UpperCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' _a : List[str] =self.full_loop() _a : str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : int =self.full_loop(prediction_type="""v_prediction""" ) _a : Tuple =torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : Optional[int] =self.scheduler_classes[0] _a : Union[str, Any] =self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) _a : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE ) _a : str =1_0 _a : str =self.dummy_model() _a : Optional[Any] =self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): _a : List[Any] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[Any] =scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __UpperCAmelCase ( self :int , **SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' for scheduler_class in self.scheduler_classes: _a : Optional[Any] =self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
694
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Distribution , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :List[Any]=0 ) -> List[str]: '''simple docstring''' _a : int =1.0 if scale is None else scale _a : Optional[Any] =0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE )] ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE :Dict ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =args_dim _a : Tuple =nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for dim in args_dim.values()] ) _a : Dict =domain_map def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' _a : Tuple =[proj(SCREAMING_SNAKE_CASE ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE ) class A__ ( nn.Module ): def __init__( self :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> int: '''simple docstring''' super().__init__() _a : List[Any] =function def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[int] , *SCREAMING_SNAKE_CASE :int ) -> List[Any]: '''simple docstring''' return self.function(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) class A__ : __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__( self :Any , SCREAMING_SNAKE_CASE :int = 1 ) -> None: '''simple docstring''' _a : Any =dim _a : List[Any] ={k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' _a : str =self._base_distribution(SCREAMING_SNAKE_CASE ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE , loc=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self :Any ) -> int: '''simple docstring''' return len(self.event_shape ) @property def __UpperCAmelCase ( self :Any ) -> float: '''simple docstring''' return 0.0 def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=SCREAMING_SNAKE_CASE , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self :int , *SCREAMING_SNAKE_CASE :torch.Tensor ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE ) + 4.0 )) / 2.0 class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def __UpperCAmelCase ( cls :int , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Union[str, Any]: '''simple docstring''' _a : Tuple =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) _a : Optional[Any] =2.0 + cls.squareplus(SCREAMING_SNAKE_CASE ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Dict: '''simple docstring''' _a : List[str] =cls.squareplus(SCREAMING_SNAKE_CASE ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def __UpperCAmelCase ( cls :List[Any] , SCREAMING_SNAKE_CASE :torch.Tensor , SCREAMING_SNAKE_CASE :torch.Tensor ) -> Optional[int]: '''simple docstring''' _a : int =cls.squareplus(SCREAMING_SNAKE_CASE ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Distribution: '''simple docstring''' _a , _a : Any =distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE ) , 1 ) def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE :Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' _a , _a : Optional[int] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ): '''simple docstring''' A_ : List[str] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(""" """ ) else {} A_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ): '''simple docstring''' A_ : Tuple = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ): super().__init__() A_ : List[str] = Path(lowercase ).joinpath(type_path + """.source""" ) A_ : Any = Path(lowercase ).joinpath(type_path + """.target""" ) A_ : int = self.get_char_lens(self.src_file ) A_ : Dict = max_source_length A_ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' A_ : Any = tokenizer A_ : List[Any] = prefix if n_obs is not None: A_ : int = self.src_lens[:n_obs] A_ : List[Any] = src_lang A_ : Tuple = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowercase ): A_ : Optional[int] = index + 1 # linecache starts at 1 A_ : Dict = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("""\n""" ) A_ : int = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("""\n""" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) A_ : int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer A_ : int = encode_line(lowercase , lowercase , self.max_source_length , """right""" ) A_ : int = encode_line(lowercase , lowercase , self.max_target_length , """right""" ) A_ : List[str] = source_inputs["""input_ids"""].squeeze() A_ : Any = target_inputs["""input_ids"""].squeeze() A_ : Dict = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a (lowercase ): return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def _a (self , lowercase ): A_ : Any = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Tuple = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) A_ : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) A_ : str = trim_batch(lowercase , lowercase ) A_, A_ : Tuple = trim_batch(lowercase , lowercase , attention_mask=lowercase ) A_ : Any = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowerCamelCase :int = getLogger(__name__) def a ( lowerCamelCase__ ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """git_log.json""" ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def a ( ): '''simple docstring''' A_ : int = git.Repo(search_parent_directories=lowerCamelCase__ ) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """wb""" ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' def remove_articles(lowerCamelCase__ ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): A_ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = normalize_answer(lowerCamelCase__ ).split() A_ : Dict = normalize_answer(lowerCamelCase__ ).split() A_ : Optional[Any] = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) A_ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase__ ) A_ : int = 1.0 * num_same / len(lowerCamelCase__ ) A_ : int = (2 * precision * recall) / (precision + recall) return fa def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) A_ : Tuple = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def a ( lowerCamelCase__ ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : List[str] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue A_ : Tuple = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
686
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class snake_case : """simple docstring""" def __init__( self, _lowercase ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = data SCREAMING_SNAKE_CASE_ = [0x6_7_4_5_2_3_0_1, 0xe_f_c_d_a_b_8_9, 0x9_8_b_a_d_c_f_e, 0x1_0_3_2_5_4_7_6, 0xc_3_d_2_e_1_f_0] @staticmethod def a__ ( _lowercase, _lowercase ) -> List[str]: return ((n << b) | (n >> (32 - b))) & 0xf_f_f_f_f_f_f_f def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) SCREAMING_SNAKE_CASE_ = self.data + padding + struct.pack('>Q', 8 * len(self.data ) ) return padded_data def a__ ( self ) -> Optional[Any]: return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def a__ ( self, _lowercase ) -> int: SCREAMING_SNAKE_CASE_ = list(struct.unpack('>16L', _lowercase ) ) + [0] * 64 for i in range(16, 80 ): SCREAMING_SNAKE_CASE_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.padding() SCREAMING_SNAKE_CASE_ = self.split_blocks() for block in self.blocks: SCREAMING_SNAKE_CASE_ = self.expand_block(_lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.h for i in range(0, 80 ): if 0 <= i < 20: SCREAMING_SNAKE_CASE_ = (b & c) | ((~b) & d) SCREAMING_SNAKE_CASE_ = 0x5_a_8_2_7_9_9_9 elif 20 <= i < 40: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0x6_e_d_9_e_b_a_1 elif 40 <= i < 60: SCREAMING_SNAKE_CASE_ = (b & c) | (b & d) | (c & d) SCREAMING_SNAKE_CASE_ = 0x8_f_1_b_b_c_d_c elif 60 <= i < 80: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0xc_a_6_2_c_1_d_6 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.rotate(_lowercase, 5 ) + f + e + k + expanded_block[i] & 0xf_f_f_f_f_f_f_f, a, self.rotate(_lowercase, 30 ), c, d, ) SCREAMING_SNAKE_CASE_ = ( self.h[0] + a & 0xf_f_f_f_f_f_f_f, self.h[1] + b & 0xf_f_f_f_f_f_f_f, self.h[2] + c & 0xf_f_f_f_f_f_f_f, self.h[3] + d & 0xf_f_f_f_f_f_f_f, self.h[4] + e & 0xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def _UpperCamelCase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = B'Test String' assert SHAaHash(lowerCAmelCase__ ).final_hash() == hashlib.shaa(lowerCAmelCase__ ).hexdigest() # noqa: S324 def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' ,dest='input_string' ,default='Hello World!! Welcome to Cryptography' ,help='Hash the string' ,) parser.add_argument('--file' ,dest='input_file' ,help='Hash contents of a file' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() else: SCREAMING_SNAKE_CASE_ = bytes(lowerCAmelCase__ ,'utf-8' ) print(SHAaHash(lowerCAmelCase__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
294
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def _UpperCamelCase ( ) -> List[Any]: # Get the sagemaker specific mp parameters from smp_options variable. SCREAMING_SNAKE_CASE_ = os.getenv('SM_HP_MP_PARAMETERS' ,'{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. SCREAMING_SNAKE_CASE_ = json.loads(lowerCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. SCREAMING_SNAKE_CASE_ = os.getenv('SM_FRAMEWORK_PARAMS' ,'{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". SCREAMING_SNAKE_CASE_ = json.loads(lowerCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' ,lowerCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class snake_case ( lowercase_ ): """simple docstring""" _a = field( default="""""", metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""}, ) def a__ ( self ) -> Union[str, Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.', _lowercase, ) @cached_property def a__ ( self ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: SCREAMING_SNAKE_CASE_ = torch.device('cpu' ) SCREAMING_SNAKE_CASE_ = 0 elif is_sagemaker_model_parallel_available(): SCREAMING_SNAKE_CASE_ = smp.local_rank() SCREAMING_SNAKE_CASE_ = torch.device('cuda', _lowercase ) SCREAMING_SNAKE_CASE_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp', timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE_ = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) SCREAMING_SNAKE_CASE_ = torch.device('cuda', self.local_rank ) SCREAMING_SNAKE_CASE_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 SCREAMING_SNAKE_CASE_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE_ = torch.device('cuda', self.local_rank ) SCREAMING_SNAKE_CASE_ = 1 if device.type == "cuda": torch.cuda.set_device(_lowercase ) return device @property def a__ ( self ) -> Optional[Any]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def a__ ( self ) -> Optional[Any]: return not is_sagemaker_model_parallel_available() @property def a__ ( self ) -> Tuple: return False
294
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
98
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def _snake_case ( A , A , A = 16000 ) -> Any: lowerCAmelCase__ = int(round(sample_rate * max_length ) ) if len(A ) <= sample_length: return wav lowerCAmelCase__ = randint(0 , len(A ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a__ : '''simple docstring''' lowercase__ : Optional[str] = field(default=a__ , metadata={"help": "Name of a dataset from the datasets package"} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "A file containing the training audio paths and labels."} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "A file containing the validation audio paths and labels."} ) lowercase__ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowercase__ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowercase__ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) lowercase__ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase__ : float = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class a__ : '''simple docstring''' lowercase__ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) lowercase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase__ : Optional[str] = field( default=a__ , metadata={"help": "Name or path of preprocessor config."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) lowercase__ : bool = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase__ : Optional[bool] = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , lowerCamelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def _snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , A , A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowerCAmelCase__ = DatasetDict() lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCAmelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCAmelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCAmelCase__ = feature_extractor.model_input_names[0] def train_transforms(A ): lowerCAmelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCAmelCase__ = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(A ) lowerCAmelCase__ = feature_extractor(A , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ = {model_input_name: inputs.get(A )} lowerCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(A ): lowerCAmelCase__ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCAmelCase__ = feature_extractor(A , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase__ = {model_input_name: inputs.get(A )} lowerCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase__ = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCAmelCase__ , lowerCAmelCase__ = {}, {} for i, label in enumerate(A ): lowerCAmelCase__ = str(A ) lowerCAmelCase__ = label # Load the accuracy metric from the datasets package lowerCAmelCase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(A ): lowerCAmelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=A , references=eval_pred.label_ids ) lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A ) , labelaid=A , idalabel=A , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(A , output_all_columns=A ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(A , output_all_columns=A ) # Initialize our trainer lowerCAmelCase__ = Trainer( model=A , args=A , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=A , tokenizer=A , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase__ = trainer.evaluate() trainer.log_metrics('''eval''' , A ) trainer.save_metrics('''eval''' , A ) # Write model card and (optionally) push to hub lowerCAmelCase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
98
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowerCAmelCase : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) __lowerCAmelCase : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) __lowerCAmelCase : str = "question" __lowerCAmelCase : str = "context" __lowerCAmelCase : str = "answers" @property def _a ( self ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
102
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) if n == 0: return 0 UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase_ ) ) return max_revue def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase_ , UpperCamelCase_ ) , ) UpperCamelCase = max_revenue return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] UpperCamelCase = 0 for i in range(1 , n + 1 ): UpperCamelCase = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase = max(UpperCamelCase_ , prices[j - 1] + max_rev[i - j] ) UpperCamelCase = max_revenue_i return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' if n < 0: UpperCamelCase = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(UpperCamelCase_ ) if n > len(UpperCamelCase_ ): UpperCamelCase = ( """Each integral piece of rod must have a corresponding price. """ f"""Got n = {n} but length of prices = {len(UpperCamelCase_ )}""" ) raise ValueError(UpperCamelCase_ ) def lowercase( ) -> str: '''simple docstring''' UpperCamelCase = [6, 10, 12, 15, 20, 23] UpperCamelCase = len(UpperCamelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase = 36 UpperCamelCase = top_down_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = bottom_up_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = naive_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
537
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case: int = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: Any = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: Dict = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 a_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
460
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : int ) -> List[Any]: _a : List[Any] = tempfile.mkdtemp() _a : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] _a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a : List[Any] = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } _a : Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__snake_case , __snake_case ) def snake_case_ ( self : Any , **__snake_case : List[str] ) -> Optional[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case_ ( self : Tuple , **__snake_case : List[str] ) -> Optional[Any]: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case_ ( self : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[int]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : Tuple ) -> Dict: _a : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : Tuple = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Any ) -> Union[str, Any]: _a : Dict = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = self.get_image_processor() _a : Any = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _a : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) _a : Optional[Any] = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _a : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def snake_case_ ( self : List[Any] ) -> int: _a : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Optional[Any] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) _a : Dict = self.get_image_processor(do_normalize=__snake_case ) _a : Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def snake_case_ ( self : Optional[Any] ) -> List[str]: _a : Optional[Any] = self.get_image_processor() _a : Optional[int] = self.get_tokenizer() _a : Dict = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _a : List[Any] = self.prepare_image_inputs() _a : List[str] = image_processor(__snake_case , return_tensors='''np''' ) _a : str = processor(images=__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Optional[int] ) -> str: _a : Any = self.get_image_processor() _a : Tuple = self.get_tokenizer() _a : List[str] = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _a : Optional[int] = "Alexandra,T-shirt的价格是15便士。" _a : int = processor(text=__snake_case ) _a : List[str] = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[Any] ) -> Dict: _a : Any = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Tuple = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _a : Any = "Alexandra,T-shirt的价格是15便士。" _a : Tuple = self.prepare_image_inputs() _a : Optional[Any] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def snake_case_ ( self : Tuple ) -> Tuple: _a : Tuple = self.get_image_processor() _a : Tuple = self.get_tokenizer() _a : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _a : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Tuple = processor.batch_decode(__snake_case ) _a : Optional[Any] = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[Any] = self.get_image_processor() _a : Optional[int] = self.get_tokenizer() _a : Optional[Any] = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _a : Optional[int] = "Alexandra,T-shirt的价格是15便士。" _a : Optional[Any] = self.prepare_image_inputs() _a : Union[str, Any] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
471
import random from typing import Any def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Union[str, Any] = random.randint(0 ,len(SCREAMING_SNAKE_CASE_ ) - 1 ) lowercase__ : str = random.randint(0 ,len(SCREAMING_SNAKE_CASE_ ) - 1 ) lowercase__ , lowercase__ : Any = data[b], data[a] return data if __name__ == "__main__": __a : Tuple = [0, 1, 2, 3, 4, 5, 6, 7] __a : str = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
397
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } A_ = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self: Dict, a_: str, a_: Union[str, Any]=False, a_: Any=False, a_: Tuple=False, a_: Tuple=None, a_: str=None, a_: List[Any]=None, a_: Optional[Any]=None, a_: Optional[Dict[str, Any]] = None, **a_: Union[str, Any], ): '''simple docstring''' _snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case : Tuple = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) _snake_case : str = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _snake_case : Tuple = """<|endoftext|>""" if eos_token is None else eos_token _snake_case : str = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _snake_case : List[Any] = unk_token if pad_token is None else pad_token _snake_case : Union[str, Any] = eos_token if bos_token is None else bos_token else: _snake_case : str = """<pad>""" if pad_token is None else pad_token _snake_case : List[str] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=a_, remove_space=a_, keep_accents=a_, bos_token=a_, eos_token=a_, unk_token=a_, pad_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) _snake_case : Dict = do_lower_case _snake_case : Any = remove_space _snake_case : Optional[int] = keep_accents _snake_case : Optional[int] = vocab_file _snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) # Used for whitespace normalization in input texts # fmt : off _snake_case : str = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _snake_case : Union[str, Any] = re.compile( f"[{''.join(map(a_, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8_203] ) )}]" ) def __getstate__( self: Any ): '''simple docstring''' _snake_case : Tuple = self.__dict__.copy() _snake_case : int = None return state def __setstate__( self: Any, a_: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): _snake_case : Union[str, Any] = {} _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' _snake_case : Dict = self.non_printing_characters_re.sub("""""", a_ ) # Normalize whitespaces _snake_case : Any = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization _snake_case : Optional[Any] = unicodedata.normalize("""NFC""", a_ ) return text def UpperCamelCase_ ( self: str, a_: str, **a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = self.preprocess_text(a_ ) return self.sp_model.encode(a_, out_type=a_ ) def UpperCamelCase_ ( self: List[Any], a_: str ): '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCamelCase_ ( self: Tuple, a_: int ): '''simple docstring''' return self.sp_model.IdToPiece(a_ ) @staticmethod def UpperCamelCase_ ( a_: str ): '''simple docstring''' return out_string def UpperCamelCase_ ( self: Tuple, a_: List[str] ): '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[Any] = """""" _snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token _snake_case : int = True _snake_case : int = [] else: current_sub_tokens.append(a_ ) _snake_case : Union[str, Any] = False out_string += self.sp_model.decode(a_ ) return out_string def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : Optional[Any] = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, """wb""" ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCamelCase_ ( self: Any, a_: Union[str, List[str]], a_: Union[str, bool] = False ): '''simple docstring''' if isinstance(a_, a_ ): _snake_case : str = self.preprocess_text(a_ ) _snake_case : Optional[Any] = self.sp_model.encode(a_ ) else: _snake_case : int = [self.preprocess_text(a_ ) for t in text] _snake_case : List[Any] = self.sp_model.encode(a_ ) if return_tensors is True or return_tensors == "pt": _snake_case : List[str] = torch.tensor(a_ ) return token_ids def UpperCamelCase_ ( self: Optional[int], a_: Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(a_ ) def UpperCamelCase_ ( self: Tuple, a_: "Conversation" ): '''simple docstring''' _snake_case : Union[str, Any] = [f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] _snake_case : List[str] = ( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(a_ ) + f"{self.bos_token}Bot:" ) return self.encode(text=a_ )
704
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( lowercase_ ): """simple docstring""" a_ = ['''image_processor''', '''tokenizer'''] a_ = '''FlavaImageProcessor''' a_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) a_ : List[str] = kwargs.pop("""feature_extractor""" ) a_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Tuple = self.image_processor def __call__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: a_ : Optional[Any] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: a_ : Optional[Any] = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = self.tokenizer.model_input_names a_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def _lowerCAmelCase ( self ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
577
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE_ = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''albert''' def __init__( self : List[Any] , snake_case : str=30000 , snake_case : Optional[int]=128 , snake_case : List[Any]=4096 , snake_case : str=12 , snake_case : str=1 , snake_case : Dict=64 , snake_case : Optional[Any]=16384 , snake_case : int=1 , snake_case : Any="gelu_new" , snake_case : List[str]=0 , snake_case : Any=0 , snake_case : List[str]=512 , snake_case : Optional[Any]=2 , snake_case : int=0.02 , snake_case : Tuple=1e-12 , snake_case : str=0.1 , snake_case : Optional[Any]="absolute" , snake_case : List[str]=0 , snake_case : List[Any]=2 , snake_case : Optional[int]=3 , **snake_case : str , ): """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) _snake_case : Optional[Any] = vocab_size _snake_case : int = embedding_size _snake_case : List[str] = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Optional[Any] = num_hidden_groups _snake_case : Tuple = num_attention_heads _snake_case : Any = inner_group_num _snake_case : Union[str, Any] = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : Dict = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : str = classifier_dropout_prob _snake_case : Union[str, Any] = position_embedding_type class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": _snake_case : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
517
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = int(lowerCamelCase__ ) assert noofclusters < len(lowerCamelCase__ ) # Find out the dimensionality lowerCAmelCase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCAmelCase__ = list(range(len(lowerCamelCase__ ) ) ) shuffle(lowerCamelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCAmelCase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCAmelCase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCAmelCase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowerCamelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCAmelCase__ = tf.placeholder("""float64""" , [dim] ) lowerCAmelCase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(lowerCamelCase__ , lowerCamelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCAmelCase__ = [tf.Variable(0 ) for i in range(len(lowerCamelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCAmelCase__ = tf.placeholder("""int32""" ) lowerCAmelCase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowerCamelCase__ , lowerCamelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCAmelCase__ = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCAmelCase__ = tf.reduce_mean(lowerCamelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCAmelCase__ = tf.placeholder("""float""" , [dim] ) lowerCAmelCase__ = tf.placeholder("""float""" , [dim] ) lowerCAmelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCamelCase__ , lowerCamelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCAmelCase__ = tf.placeholder("""float""" , [noofclusters] ) lowerCAmelCase__ = tf.argmin(lowerCamelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCAmelCase__ = tf.initialize_all_variables() # Initialize all variables sess.run(lowerCamelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCAmelCase__ = 100 for _ in range(lowerCamelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowerCamelCase__ ) ): lowerCAmelCase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCAmelCase__ = [ sess.run(lowerCamelCase__ , feed_dict={va: vect, va: sess.run(lowerCamelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCAmelCase__ = sess.run( lowerCamelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowerCamelCase__ ): # Collect all the vectors assigned to this cluster lowerCAmelCase__ = [ vectors[i] for i in range(len(lowerCamelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCAmelCase__ = sess.run( lowerCamelCase__ , feed_dict={mean_input: array(lowerCamelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCAmelCase__ = sess.run(lowerCamelCase__ ) lowerCAmelCase__ = sess.run(lowerCamelCase__ ) return centroids, assignments
715
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """philschmid/bart-large-cnn-samsum""" UpperCAmelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCAmelCase__ = """summarizer""" UpperCAmelCase__ = AutoTokenizer UpperCAmelCase__ = AutoModelForSeqaSeqLM UpperCAmelCase__ = ["""text"""] UpperCAmelCase__ = ["""text"""] def A_ ( self : Tuple , UpperCAmelCase : List[Any] ) -> List[str]: return self.pre_processor(UpperCAmelCase , return_tensors='pt' , truncation=UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : Dict ) -> str: return self.model.generate(**UpperCAmelCase )[0] def A_ ( self : Tuple , UpperCAmelCase : List[Any] ) -> Union[str, Any]: return self.pre_processor.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
295
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : List[str]=18 , UpperCAmelCase : Dict=30 , UpperCAmelCase : List[Any]=400 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , ) -> List[str]: lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : str = image_size lowerCamelCase__ : List[Any] = min_resolution lowerCamelCase__ : int = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : int = size if size is not None else {'height': 18, 'width': 20} lowerCamelCase__ : Tuple = do_thumbnail lowerCamelCase__ : str = do_align_axis lowerCamelCase__ : str = do_pad lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : List[str] = image_mean lowerCamelCase__ : Dict = image_std def A_ ( self : str ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = DonutImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) -> int: lowerCamelCase__ : Union[str, Any] = DonutImageProcessingTester(self ) @property def A_ ( self : Dict ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_thumbnail' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowerCamelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowerCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def A_ ( self : Optional[Any] ) -> List[str]: pass @is_flaky() def A_ ( self : List[str] ) -> Any: # Initialize image_processing lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def A_ ( self : int ) -> Tuple: # Initialize image_processing lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCamelCase__ : Tuple = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def A_ ( self : Any ) -> Tuple: # Initialize image_processing lowerCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCamelCase__ : Dict = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
295
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.2 , snake_case__=0.2 ): """simple docstring""" lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : Any = bp_numa lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : Tuple = conva_get[:2] lowerCAmelCase : Dict = conva_get[2] lowerCAmelCase : Optional[int] = size_pa lowerCAmelCase : List[str] = rate_w lowerCAmelCase : List[Any] = rate_t lowerCAmelCase : Any = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(snake_case__ , "wb" ) as f: pickle.dump(snake_case__ , snake_case__ ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls , snake_case__ ): """simple docstring""" with open(snake_case__ , "rb" ) as f: lowerCAmelCase : Union[str, Any] = pickle.load(snake_case__ ) # noqa: S301 lowerCAmelCase : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowerCAmelCase : Any = model_dic.get("size_pooling1" ) lowerCAmelCase : List[Any] = model_dic.get("num_bp1" ) lowerCAmelCase : Optional[int] = model_dic.get("num_bp2" ) lowerCAmelCase : Optional[Any] = model_dic.get("num_bp3" ) lowerCAmelCase : Tuple = model_dic.get("rate_weight" ) lowerCAmelCase : Any = model_dic.get("rate_thre" ) # create model instance lowerCAmelCase : Any = CNN(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # modify model parameter lowerCAmelCase : Any = model_dic.get("w_conv1" ) lowerCAmelCase : Tuple = model_dic.get("wkj" ) lowerCAmelCase : List[Any] = model_dic.get("vji" ) lowerCAmelCase : int = model_dic.get("thre_conv1" ) lowerCAmelCase : List[Any] = model_dic.get("thre_bp2" ) lowerCAmelCase : Union[str, Any] = model_dic.get("thre_bp3" ) return conv_ins def lowercase__ ( self , snake_case__ ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self , snake_case__ ): """simple docstring""" return round(snake_case__ , 3 ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = convs[0] lowerCAmelCase : int = convs[1] lowerCAmelCase : Optional[Any] = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): lowerCAmelCase : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase : Dict = [] lowerCAmelCase : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowerCAmelCase : List[str] = [] for i_focus in range(len(snake_case__ ) ): lowerCAmelCase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowerCAmelCase : int = np.asmatrix(snake_case__ ).reshape( snake_case__ , snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowerCAmelCase : str = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowerCAmelCase : str = np.asarray(snake_case__ ) return focus_list, data_featuremap def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__="average_pool" ): """simple docstring""" lowerCAmelCase : int = len(featuremaps[0] ) lowerCAmelCase : Optional[int] = int(size_map / size_pooling ) lowerCAmelCase : str = [] for i_map in range(len(snake_case__ ) ): lowerCAmelCase : Optional[int] = featuremaps[i_map] lowerCAmelCase : int = [] for i_focus in range(0 , snake_case__ , snake_case__ ): for j_focus in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowerCAmelCase : str = np.asmatrix(snake_case__ ).reshape(snake_case__ , snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = [] for i in range(len(snake_case__ ) ): lowerCAmelCase : str = np.shape(data[i] ) lowerCAmelCase : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCAmelCase : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowerCAmelCase : List[str] = np.asarray(snake_case__ ) return data_expanded def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = np.asarray(snake_case__ ) lowerCAmelCase : Dict = np.shape(snake_case__ ) lowerCAmelCase : Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : int = [] lowerCAmelCase : str = 0 for i_map in range(snake_case__ ): lowerCAmelCase : int = np.ones((size_map, size_map) ) for i in range(0 , snake_case__ , snake_case__ ): for j in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : str = pd_pool[ i_pool ] lowerCAmelCase : List[str] = i_pool + 1 lowerCAmelCase : Tuple = np.multiply( snake_case__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=bool ): """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(snake_case__ )) ) print((" - - Shape: Teach_Data ", np.shape(snake_case__ )) ) lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = [] lowerCAmelCase : Tuple = 10_000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase : str = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase : Dict = np.asmatrix(datas_train[p] ) lowerCAmelCase : str = np.asarray(datas_teach[p] ) lowerCAmelCase , lowerCAmelCase : int = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Union[str, Any] = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Tuple = np.shape(snake_case__ ) lowerCAmelCase : Optional[int] = self._expand(snake_case__ ) lowerCAmelCase : Optional[int] = data_bp_input lowerCAmelCase : int = np.dot(snake_case__ , self.vji.T ) - self.thre_bpa lowerCAmelCase : Tuple = self.sig(snake_case__ ) lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.wkj.T ) - self.thre_bpa lowerCAmelCase : Optional[Any] = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase : Union[str, Any] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.multiply( np.dot(snake_case__ , self.wkj ) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.dot(snake_case__ , self.vji ) lowerCAmelCase : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase : List[Any] = pd_conva_pooled.T.getA().tolist() lowerCAmelCase : int = self._calculate_gradient_from_pool( snake_case__ , snake_case__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase : Optional[Any] = self.rate_weight * np.dot(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase : int = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase : Union[str, Any] = rp + 1 lowerCAmelCase : Dict = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowerCAmelCase : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__ , "+-" ) plt.plot(snake_case__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(snake_case__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowerCAmelCase : str = np.asmatrix(datas_test[p] ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : List[str] = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Dict = self._expand(snake_case__ ) lowerCAmelCase : Union[str, Any] = data_bp_input lowerCAmelCase : List[str] = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase : int = self.sig(snake_case__ ) lowerCAmelCase : Tuple = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase : Dict = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase : Union[str, Any] = [list(map(self.do_round , snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = np.asmatrix(snake_case__ ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : str = self.pooling(snake_case__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] ) -> Dict: if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE_ : List[str] =version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCAmelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCAmelCase , **__lowerCAmelCase ) return wrapper
443
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=18 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : int=400 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : int=False , ): SCREAMING_SNAKE_CASE = size if size is not None else {"height": 20, "width": 20} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_reduce_labels def _snake_case ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __a ( ): SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(dataset[0]["file"] ) SCREAMING_SNAKE_CASE = Image.open(dataset[1]["file"] ) return image, map def __a ( ): SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE = Image.open(ds[1]["file"] ) SCREAMING_SNAKE_CASE = Image.open(ds[2]["file"] ) SCREAMING_SNAKE_CASE = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BeitImageProcessor if is_vision_available() else None def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = BeitImageProcessingTester(self ) @property def _snake_case ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCamelCase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) def _snake_case ( self : Dict ): pass def _snake_case ( self : List[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : Tuple ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def _snake_case ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1