code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Tuple = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) __UpperCAmelCase : Any = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __UpperCAmelCase : str = model(__lowercase )["""last_hidden_state"""] __UpperCAmelCase : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice. __UpperCAmelCase : str = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
63
from __future__ import annotations def a ( a ) ->float: '''simple docstring''' SCREAMING_SNAKE_CASE = 0.00 SCREAMING_SNAKE_CASE = 0 for resistor in resistors: if resistor <= 0: SCREAMING_SNAKE_CASE = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(a ) first_sum += 1 / float(a ) index += 1 return 1 / first_sum def a ( a ) ->float: '''simple docstring''' SCREAMING_SNAKE_CASE = 0.00 SCREAMING_SNAKE_CASE = 0 for resistor in resistors: sum_r += resistor if resistor < 0: SCREAMING_SNAKE_CASE = F"""Resistor at index {index} has a negative value!""" raise ValueError(a ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
201
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase_ : Optional[int] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ,cache_dir=__UpperCamelCase ) lowercase_ : Dict = [t[-1] for t in os.walk(os.path.join(__UpperCamelCase ,os.listdir(__UpperCamelCase )[0] ,'snapshots' ) )] lowercase_ : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ) lowercase_ : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 4 lowercase_ : int = jax.device_count() lowercase_ : Optional[int] = num_samples * [prompt] lowercase_ : List[Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : Dict = replicate(__UpperCamelCase ) lowercase_ : Optional[Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = shard(__UpperCamelCase ) lowercase_ : List[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 lowercase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__UpperCamelCase ) == num_samples def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='flax' ,safety_checker=__UpperCamelCase ) lowercase_ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : List[str] = jax.random.PRNGKey(0 ) lowercase_ : Tuple = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : List[Any] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[str] = replicate(__UpperCamelCase ) lowercase_ : Optional[int] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[Any] = shard(__UpperCamelCase ) lowercase_ : Optional[int] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ) lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Dict = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 50 lowercase_ : Tuple = jax.device_count() lowercase_ : Dict = num_samples * [prompt] lowercase_ : Any = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : int = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = shard(__UpperCamelCase ) lowercase_ : List[str] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ) lowercase_ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Union[str, Any] = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : Tuple = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Optional[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = FlaxDDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,set_alpha_to_one=__UpperCamelCase ,steps_offset=1 ,) lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,scheduler=__UpperCamelCase ,safety_checker=__UpperCamelCase ,) lowercase_ : Optional[int] = scheduler.create_state() lowercase_ : List[Any] = scheduler_state lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : str = jax.random.PRNGKey(0 ) lowercase_ : str = 50 lowercase_ : List[Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = shard(__UpperCamelCase ) lowercase_ : str = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Union[str, Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : int = jax.random.split(jax.random.PRNGKey(0 ) ,__UpperCamelCase ) lowercase_ , lowercase_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,) lowercase_ : str = replicate(__UpperCamelCase ) lowercase_ : int = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Tuple = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Union[str, Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,use_memory_efficient_attention=__UpperCamelCase ,) lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : List[Any] = shard(__UpperCamelCase ) lowercase_ : Any = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
477
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __SCREAMING_SNAKE_CASE =random.Random() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=None ): if rng is None: lowercase_ : Union[str, Any] = global_rng lowercase_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=400 ,__UpperCamelCase=2000 ,__UpperCamelCase=10 ,__UpperCamelCase=160 ,__UpperCamelCase=8 ,__UpperCamelCase=0.0 ,__UpperCamelCase=4000 ,__UpperCamelCase=False ,__UpperCamelCase=True ,) -> List[str]: '''simple docstring''' lowercase_ : Tuple = parent lowercase_ : Optional[Any] = batch_size lowercase_ : Optional[int] = min_seq_length lowercase_ : List[Any] = max_seq_length lowercase_ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ : Tuple = padding_value lowercase_ : Dict = sampling_rate lowercase_ : List[str] = return_attention_mask lowercase_ : str = do_normalize lowercase_ : str = feature_size lowercase_ : List[Any] = chunk_length lowercase_ : Optional[int] = hop_length def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCAmelCase ( self ,__UpperCamelCase=False ,__UpperCamelCase=False ) -> Union[str, Any]: '''simple docstring''' def _flatten(__UpperCamelCase ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: lowercase_ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: lowercase_ : int = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = WhisperFeatureExtractor if is_speech_available() else None def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : int = WhisperFeatureExtractionTester(self ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : List[Any] = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) lowercase_ : Optional[Any] = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = feat_extract_first.to_dict() lowercase_ : int = feat_extract_second.to_dict() lowercase_ : List[Any] = feat_extract_first.mel_filters lowercase_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : List[Any] = os.path.join(__UpperCamelCase ,'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCamelCase ) lowercase_ : Dict = self.feature_extraction_class.from_json_file(__UpperCamelCase ) lowercase_ : Optional[Any] = feat_extract_first.to_dict() lowercase_ : Optional[Any] = feat_extract_second.to_dict() lowercase_ : List[str] = feat_extract_first.mel_filters lowercase_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ) ) self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] lowercase_ : str = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase_ : Tuple = feature_extractor(__UpperCamelCase ,padding='max_length' ,return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase_ : List[str] = feature_extractor(speech_inputs[0] ,return_tensors='np' ).input_features lowercase_ : List[str] = feature_extractor(np_speech_inputs[0] ,return_tensors='np' ).input_features self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) # Test batched lowercase_ : Dict = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features lowercase_ : List[str] = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase ,__UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase_ : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase_ : Optional[int] = np.asarray(__UpperCamelCase ) lowercase_ : List[str] = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features lowercase_ : Dict = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase ,__UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) # Test truncation required lowercase_ : List[str] = [floats_list((1, x) )[0] for x in range(200 ,(feature_extractor.n_samples + 500) ,200 )] lowercase_ : Union[str, Any] = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] lowercase_ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase_ : int = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] lowercase_ : Tuple = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features lowercase_ : Optional[Any] = feature_extractor(__UpperCamelCase ,return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase ,__UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' import torch lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[str] = np.random.rand(100 ,32 ).astype(np.floataa ) lowercase_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase_ : Optional[Any] = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase_ : Union[str, Any] = feature_extractor.pad([{'input_features': inputs}] ,return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Optional[int] = load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) # automatic decoding with librispeech lowercase_ : int = ds.sort('id' ).select(range(__UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on lowercase_ : Optional[int] = self._load_datasamples(1 ) lowercase_ : Dict = WhisperFeatureExtractor() lowercase_ : str = feature_extractor(__UpperCamelCase ,return_tensors='pt' ).input_features self.assertEqual(input_features.shape ,(1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] ,__UpperCamelCase ,atol=1e-4 ) ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase_ : List[Any] = self._load_datasamples(1 )[0] lowercase_ : Tuple = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue lowercase_ : Tuple = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
477
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __A : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Optional[int] = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } __A : Optional[Any] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } __A : Any = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ElectraTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_A , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_A ) UpperCAmelCase = do_lower_case def _lowercase ( self , _A , _A=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
130
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 ) -> int: '''simple docstring''' UpperCAmelCase = right or len(UpperCamelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCamelCase__ , UpperCamelCase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowercase : Optional[Any] = '\\n\n' lowercase : int = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' lowercase : List[str] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A : Optional[int] = '''cuda''' else: A : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' A : Union[str, Any] = AutoModelForCausalLM.from_pretrained(A__ ) A : List[Any] = model.to(A__ ) A : Optional[int] = AutoTokenizer.from_pretrained(A__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A : int = model.config.max_length - 1 else: A : Optional[Any] = model.config.max_length A : int = tokenizer( A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , return_tensors='''pt''' , return_attention_mask=A__ , ).to(A__ ) A : Union[str, Any] = encodings['''input_ids'''] A : List[str] = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A : str = [] A : Optional[Any] = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(A__ ) , A__ ) ): A : Optional[int] = min(start_index + batch_size , len(A__ ) ) A : Any = encoded_texts[start_index:end_index] A : List[Any] = attn_masks[start_index:end_index] if add_start_token: A : Any = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A__ ) A : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) A : str = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(A__ ), attn_mask] , dim=1 ) A : str = encoded_batch with torch.no_grad(): A : Optional[int] = model(A__ , attention_mask=A__ ).logits A : str = out_logits[..., :-1, :].contiguous() A : Dict = labels[..., 1:].contiguous() A : Optional[int] = attn_mask[..., 1:].contiguous() A : List[str] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , A__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A__ )}
700
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Dict = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[int] = arr[k - 1], arr[i] else: # k is odd A, A : List[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : Tuple = input('Enter numbers separated by a comma:\n').strip() lowercase : Optional[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
343
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCAmelCase ( self : str )-> int: snake_case = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output snake_case = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) snake_case = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) snake_case = text_generator("""This is a test""" , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ] , ) snake_case = text_generator.model.config.eos_token_id snake_case = """<pad>""" snake_case = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], ] , ) @require_tf def lowerCAmelCase ( self : str )-> Tuple: snake_case = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output snake_case = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) snake_case = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCAmelCase ( self : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Tuple )-> Dict: snake_case = TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def lowerCAmelCase ( self : Dict )-> int: snake_case = """Hello I believe in""" snake_case = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) snake_case = text_generator(__snake_case ) self.assertEqual( __snake_case , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) snake_case = text_generator(__snake_case , stop_sequence=""" fe""" ) self.assertEqual(__snake_case , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCAmelCase ( self : str , __snake_case : int , __snake_case : Dict )-> List[str]: snake_case = text_generator.model snake_case = text_generator.tokenizer snake_case = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) snake_case = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) snake_case = pipeline(task="""text-generation""" , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) snake_case = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) snake_case = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) snake_case = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case = text_generator("""""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_00 , max_new_tokens=20 ) snake_case = text_generator("""This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( """This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : List[Any] )-> List[Any]: import torch # Classic `model_kwargs` snake_case = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCAmelCase ( self : Dict )-> Dict: import torch snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Tuple: import torch snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__snake_case , top_p=0.5 ) def lowerCAmelCase ( self : str )-> Tuple: snake_case = """Hello world""" snake_case = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": snake_case = logging.get_logger("""transformers.generation.tf_utils""" ) else: snake_case = logging.get_logger("""transformers.generation.utils""" ) snake_case = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_length=10 ) self.assertNotIn(__snake_case , cl.out )
369
import cva import numpy as np class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , lowerCAmelCase : float , lowerCAmelCase : int ) -> Tuple: """simple docstring""" if k in (0.04, 0.06): __lowerCAmelCase : List[Any] = k __lowerCAmelCase : str = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Dict ) -> str: """simple docstring""" return str(self.k ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __lowerCAmelCase : List[Any] = cva.imread(lowerCAmelCase , 0 ) __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = img.shape __lowerCAmelCase : list[list[int]] = [] __lowerCAmelCase : Dict = img.copy() __lowerCAmelCase : Any = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB ) __lowerCAmelCase ,__lowerCAmelCase : List[str] = np.gradient(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = dx**2 __lowerCAmelCase : Dict = dy**2 __lowerCAmelCase : Any = dx * dy __lowerCAmelCase : Dict = 0.04 __lowerCAmelCase : List[str] = self.window_size // 2 for y in range(lowerCAmelCase , h - offset ): for x in range(lowerCAmelCase , w - offset ): __lowerCAmelCase : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Optional[Any] = (wxx * wyy) - (wxy**2) __lowerCAmelCase : List[Any] = wxx + wyy __lowerCAmelCase : int = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCAmelCase = HarrisCorner(0.04, 3) __UpperCAmelCase , __UpperCAmelCase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
651
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] ) -> Dict: """simple docstring""" return x + 2 class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Optional[int] = 'x = 3' a : int = {} a : Optional[Any] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3}) a : int = 'x = y' a : Tuple = {'y': 5} a : List[str] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 5, 'y': 5}) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : int = 'y = add_two(x)' a : List[str] = {'x': 3} a : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: a : List[Any] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) assert result is None assert "tried to execute add_two" in out.out def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[Any] = 'x = 3' a : int = {} a : Tuple = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3}) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Optional[int] = 'test_dict = {\'x\': x, \'y\': add_two(x)}' a : Tuple = {'x': 3} a : List[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5}) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Dict = 'x = 3\ny = 5' a : str = {} a : Union[str, Any] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 5}) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : List[Any] = 'text = f\'This is x: {x}.\'' a : Dict = {'x': 3} a : Dict = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'text': 'This is x: 3.'}) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = 'if x <= 3:\n y = 2\nelse:\n y = 5' a : Tuple = {'x': 3} a : int = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 2}) a : Any = {'x': 8} a : Union[str, Any] = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 8, 'y': 5}) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : List[str] = 'test_list = [x, add_two(x)]' a : Any = {'x': 3} a : Optional[Any] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , [3, 5]) self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]}) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = 'y = x' a : List[str] = {'x': 3} a : Any = evaluate(UpperCAmelCase_ , {} , state=UpperCAmelCase_) assert result == 3 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'y': 3}) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : List[Any] = 'test_list = [x, add_two(x)]\ntest_list[1]' a : Any = {'x': 3} a : List[str] = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_list': [3, 5]}) a : Optional[int] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' a : List[Any] = {'x': 3} a : int = evaluate(UpperCAmelCase_ , {'add_two': add_two} , state=UpperCAmelCase_) assert result == 5 self.assertDictEqual(UpperCAmelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = 'x = 0\nfor i in range(3):\n x = i' a : Tuple = {} a : Optional[int] = evaluate(UpperCAmelCase_ , {'range': range} , state=UpperCAmelCase_) assert result == 2 self.assertDictEqual(UpperCAmelCase_ , {'x': 2, 'i': 2})
610
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase : Optional[int] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCamelCase : Union[str, Any] = { """facebook/blenderbot_small-90M""": 512, } class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = BlenderbotSmallTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str="<|endoftext|>" , UpperCAmelCase_ : Tuple="<|endoftext|>" , UpperCAmelCase_ : Optional[Any]="<|endoftext|>" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=True , **UpperCAmelCase_ : Tuple , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase_ , merges=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , ) , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : Optional[Any] = add_prefix_space def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None): """simple docstring""" a : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : int = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
610
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> str: _a : int = parent _a : str = batch_size _a : Any = seq_length _a : Tuple = is_training _a : int = use_input_mask _a : Any = use_token_type_ids _a : List[Any] = use_labels _a : Optional[int] = vocab_size _a : str = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : Tuple = intermediate_size _a : Optional[int] = hidden_act _a : str = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : Dict = type_sequence_label_size _a : List[Any] = initializer_range _a : Optional[Any] = num_labels _a : Dict = num_choices _a : Dict = scope def __UpperCamelCase ( self ) -> Dict: _a : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = None if self.use_input_mask: _a : str = random_attention_mask([self.batch_size, self.seq_length] ) _a : int = None if self.use_token_type_ids: _a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] = None _a : Any = None _a : Optional[Any] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _a : List[Any] = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) _a : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Any: _a : Dict = True _a : Tuple = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) _a : Optional[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) _a : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Dict: _a : Dict = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> str: _a : Optional[Any] = True _a : Tuple = True _a : Optional[int] = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass _a : str = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) _a : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _a : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _a : Any = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['hidden_states'][0] _a : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['hidden_states'][0] # select random slice _a : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a : int = output_from_no_past[:, -3:, random_slice_idx].detach() _a : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __UpperCamelCase ( self ) -> Tuple: _a : Optional[int] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Dict = config_and_inputs _a : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowerCAmelCase : int = (LlamaForCausalLM,) if is_torch_available() else () __lowerCAmelCase : int = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = False def __UpperCamelCase ( self ) -> str: _a : Optional[int] = LlamaModelTester(self ) _a : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7 ) def __UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Union[str, Any]: _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : List[str] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __UpperCamelCase ( self ) -> List[Any]: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = 3 _a : Union[str, Any] = input_dict['input_ids'] _a : List[Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) _a : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a : Any = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> List[str]: _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = 3 _a : List[str] = 'single_label_classification' _a : Union[str, Any] = input_dict['input_ids'] _a : str = input_ids.ne(1 ).to(lowerCamelCase_ ) _a : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a : str = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Tuple: _a , _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Union[str, Any] = 3 _a : str = 'multi_label_classification' _a : Union[str, Any] = input_dict['input_ids'] _a : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) _a : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a : str = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _a : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) -> Optional[int]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> List[str]: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() _a : Union[str, Any] = ids_tensor([1, 1_0] , config.vocab_size ) _a : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _a : int = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() _a : str = original_model(lowerCamelCase_ ).last_hidden_state _a : Union[str, Any] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _a : Optional[Any] = {'type': scaling_type, 'factor': 10.0} _a : Any = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() _a : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state _a : int = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> int: _a : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _a : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) _a : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _a : List[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> Optional[int]: _a : Any = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _a : Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) _a : List[Any] = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 _a : Optional[int] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : List[Any] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def __UpperCamelCase ( self ) -> Any: _a : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _a : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) _a : str = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 _a : int = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _a : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def __UpperCamelCase ( self ) -> Dict: _a : Dict = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _a : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) _a : Dict = model(torch.tensor(lowerCamelCase_ ) ) _a : str = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off _a : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def __UpperCamelCase ( self ) -> Optional[Any]: _a : List[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _a : List[Any] = 'Simply put, the theory of relativity states that ' _a : List[Any] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _a : Any = tokenizer.encode(lowerCamelCase_ , return_tensors='pt' ) _a : Union[str, Any] = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=lowerCamelCase_ ) # greedy generation outputs _a : List[Any] = model.generate(lowerCamelCase_ , max_new_tokens=6_4 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) _a : Dict = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
120
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """sew""" def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_=2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) _a : Optional[int] = hidden_size _a : int = feat_extract_norm _a : Optional[int] = feat_extract_activation _a : str = list(lowerCamelCase_ ) _a : Union[str, Any] = list(lowerCamelCase_ ) _a : List[Any] = list(lowerCamelCase_ ) _a : Union[str, Any] = conv_bias _a : Optional[int] = num_conv_pos_embeddings _a : Dict = num_conv_pos_embedding_groups _a : str = len(self.conv_dim ) _a : Any = num_hidden_layers _a : List[Any] = intermediate_size _a : Tuple = squeeze_factor _a : Tuple = hidden_act _a : Any = num_attention_heads _a : Optional[int] = hidden_dropout _a : List[str] = attention_dropout _a : Optional[Any] = activation_dropout _a : str = feat_proj_dropout _a : str = final_dropout _a : str = layerdrop _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = initializer_range _a : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : str = apply_spec_augment _a : List[Any] = mask_time_prob _a : Optional[Any] = mask_time_length _a : Union[str, Any] = mask_time_min_masks _a : List[str] = mask_feature_prob _a : List[str] = mask_feature_length _a : str = mask_feature_min_masks # ctc loss _a : Any = ctc_loss_reduction _a : Optional[Any] = ctc_zero_infinity # sequence classification _a : List[Any] = use_weighted_layer_sum _a : Tuple = classifier_proj_size @property def __UpperCamelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
120
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A__ : """simple docstring""" def __init__( self : Union[str, Any] , A_ : Union[str, Any] , A_ : Optional[Any]=1_3 , A_ : Dict=7 , A_ : Optional[Any]=True , A_ : Tuple=True , A_ : int=True , A_ : Union[str, Any]=True , A_ : List[str]=9_9 , A_ : Optional[int]=3_2 , A_ : Any=2 , A_ : Tuple=4 , A_ : Dict=3_7 , A_ : Optional[Any]="gelu" , A_ : Optional[Any]=0.1 , A_ : Dict=0.1 , A_ : str=5_1_2 , A_ : str=1_6 , A_ : str=2 , A_ : List[str]=0.02 , A_ : Union[str, Any]=3 , A_ : Optional[int]=4 , A_ : Tuple=None , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : List[str] = 1_3 _lowerCAmelCase : Union[str, Any] = 7 _lowerCAmelCase : str = True _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = 9_9 _lowerCAmelCase : Optional[int] = 3_2 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : List[str] = 4 _lowerCAmelCase : List[str] = 3_7 _lowerCAmelCase : int = "gelu" _lowerCAmelCase : List[str] = 0.1 _lowerCAmelCase : Optional[Any] = 0.1 _lowerCAmelCase : List[str] = 5_1_2 _lowerCAmelCase : Any = 1_6 _lowerCAmelCase : int = 2 _lowerCAmelCase : Dict = 0.02 _lowerCAmelCase : Dict = 3 _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Optional[Any] = None def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[Any] = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Dict , A_ : str , A_ : Any , A_ : List[str] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Any = TFRoFormerModel(config=A_ ) _lowerCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : int = [input_ids, input_mask] _lowerCAmelCase : Tuple = model(A_ ) _lowerCAmelCase : Dict = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : str , A_ : Any , A_ : Dict , A_ : Tuple , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : int , A_ : List[Any] ): '''simple docstring''' _lowerCAmelCase : str = True _lowerCAmelCase : Any = TFRoFormerForCausalLM(config=A_ ) _lowerCAmelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCAmelCase : Union[str, Any] = model(A_ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __magic_name__ ( self : Union[str, Any] , A_ : Union[str, Any] , A_ : Dict , A_ : List[Any] , A_ : List[str] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[Any] ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=A_ ) _lowerCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCAmelCase : List[str] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str] , A_ : str , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : Dict , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : str = TFRoFormerForSequenceClassification(config=A_ ) _lowerCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCAmelCase : str = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[Any] , A_ : List[Any] , A_ : List[str] , A_ : Dict , A_ : Dict , A_ : Dict , A_ : List[str] , A_ : int ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFRoFormerForMultipleChoice(config=A_ ) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : str = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : Optional[Any] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Dict , A_ : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : List[Any] ): '''simple docstring''' _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : Optional[int] = TFRoFormerForTokenClassification(config=A_ ) _lowerCAmelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCAmelCase : str = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple , A_ : Union[str, Any] , A_ : List[str] , A_ : str , A_ : List[str] , A_ : Dict , A_ : str , A_ : List[str] ): '''simple docstring''' _lowerCAmelCase : Tuple = TFRoFormerForQuestionAnswering(config=A_ ) _lowerCAmelCase : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _lowerCAmelCase : Union[str, Any] = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[Any] = config_and_inputs _lowerCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( A , A , unittest.TestCase ): """simple docstring""" _lowercase : str = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _lowercase : Optional[Any] = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Optional[Any] = False _lowercase : List[str] = False def __magic_name__ ( self : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any] , A_ : Optional[int] , A_ : int ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : int = TFRoFormerModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7 ) def __magic_name__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(A_ ) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _lowerCAmelCase : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : Union[str, Any] = model(A_ )[0] # TODO Replace vocab size _lowerCAmelCase : str = 5_0_0_0_0 _lowerCAmelCase : int = [1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCAmelCase : str = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" _lowercase : Union[str, Any] = 1e-4 def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : Tuple = tf.constant([[4, 1_0]] ) _lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _lowerCAmelCase : int = emba(input_ids.shape ) _lowerCAmelCase : Tuple = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCAmelCase : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) _lowerCAmelCase : Tuple = emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" _lowercase : Union[str, Any] = 1e-4 def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCAmelCase : Union[str, Any] = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) _lowerCAmelCase : List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) _lowerCAmelCase : List[Any] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCAmelCase : int = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
503
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> str: """simple docstring""" _lowerCAmelCase : str = tesseract_config if tesseract_config is not None else "" # apply OCR _lowerCAmelCase : List[str] = to_pil_image(SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase : List[str] = pil_image.size _lowerCAmelCase : Union[str, Any] = pytesseract.image_to_data(SCREAMING_SNAKE_CASE , lang=SCREAMING_SNAKE_CASE , output_type="dict" , config=SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates _lowerCAmelCase : Dict = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if not word.strip()] _lowerCAmelCase : Any = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowerCAmelCase : Dict = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowerCAmelCase : Optional[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowerCAmelCase : Optional[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] _lowerCAmelCase : Optional[int] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowerCAmelCase : Union[str, Any] = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowerCAmelCase : Tuple = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes _lowerCAmelCase : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A__ ( A ): """simple docstring""" _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self : Tuple , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : Optional[str] = None , A_ : Optional[str] = "" , **A_ : Dict , ): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : int = size if size is not None else {"height": 2_2_4, "width": 2_2_4} _lowerCAmelCase : Any = get_size_dict(A_ ) _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Any = size _lowerCAmelCase : Dict = resample _lowerCAmelCase : Optional[int] = apply_ocr _lowerCAmelCase : Dict = ocr_lang _lowerCAmelCase : Optional[int] = tesseract_config def __magic_name__ ( self : Dict , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowerCAmelCase : Dict = (size["height"], size["width"]) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Dict , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Dict , ): '''simple docstring''' _lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : str = size if size is not None else self.size _lowerCAmelCase : List[Any] = get_size_dict(A_ ) _lowerCAmelCase : Tuple = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr _lowerCAmelCase : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang _lowerCAmelCase : str = tesseract_config if tesseract_config is not None else self.tesseract_config _lowerCAmelCase : Union[str, Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase : Dict = [to_numpy_array(A_ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = [] for image in images: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = apply_tesseract(A_ , A_ , A_ ) words_batch.append(A_ ) boxes_batch.append(A_ ) if do_resize: _lowerCAmelCase : Union[str, Any] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowerCAmelCase : Optional[int] = [flip_channel_order(A_ ) for image in images] _lowerCAmelCase : List[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCAmelCase : Tuple = BatchFeature(data={"pixel_values": images} , tensor_type=A_ ) if apply_ocr: _lowerCAmelCase : Tuple = words_batch _lowerCAmelCase : Any = boxes_batch return data
503
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class _UpperCAmelCase ( _A ): def __init__( self : Tuple ) -> int: # test for the above condition self.test() def A ( self : int ) -> Optional[Any]: lowercase_ : Dict = 0 lowercase_ : List[str] = False while not completed: if counter == 1: self.reset() lowercase_ : Tuple = self.advance() if not self.does_advance(A ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase_ , lowercase_ , lowercase_ : str = self.update(A ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def A ( self : str ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : Any , A : int ) -> Any: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : int , A : int ) -> Any: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : Tuple ) -> List[Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : str ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : List[Any] , A : Optional[int]=False ) -> Any: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : List[int] ) -> Optional[Any]: super(A , self ).__init__() if not isinstance(A , A ) or len(A ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A , A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowercase_ : List[Any] = token_ids lowercase_ : str = len(self.token_ids ) lowercase_ : Tuple = -1 # the index of the currently fulfilled step lowercase_ : Tuple = False def A ( self : List[str] ) -> Tuple: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def A ( self : str , A : int ) -> List[Any]: if not isinstance(A , A ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def A ( self : List[str] , A : int ) -> Optional[int]: if not isinstance(A , A ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A )}''' ) lowercase_ : Union[str, Any] = False lowercase_ : Optional[Any] = False lowercase_ : int = False if self.does_advance(A ): self.fulfilled_idx += 1 lowercase_ : str = True if self.fulfilled_idx == (self.seqlen - 1): lowercase_ : Any = True lowercase_ : int = completed else: # failed to make progress. lowercase_ : Any = True self.reset() return stepped, completed, reset def A ( self : Optional[int] ) -> str: lowercase_ : str = False lowercase_ : str = 0 def A ( self : int ) -> Optional[Any]: return self.seqlen - (self.fulfilled_idx + 1) def A ( self : int , A : List[Any]=False ) -> List[str]: lowercase_ : Optional[int] = PhrasalConstraint(self.token_ids ) if stateful: lowercase_ : Union[str, Any] = self.seqlen lowercase_ : Any = self.fulfilled_idx lowercase_ : List[Any] = self.completed return new_constraint class _UpperCAmelCase : def __init__( self : Optional[int] , A : List[List[int]] , A : Tuple=True ) -> Optional[Any]: lowercase_ : str = max([len(A ) for one in nested_token_ids] ) lowercase_ : List[str] = {} for token_ids in nested_token_ids: lowercase_ : Optional[Any] = root for tidx, token_id in enumerate(A ): if token_id not in level: lowercase_ : str = {} lowercase_ : int = level[token_id] if no_subsets and self.has_subsets(A , A ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F''' {nested_token_ids}.''' ) lowercase_ : Union[str, Any] = root def A ( self : int , A : List[str] ) -> Optional[int]: lowercase_ : int = self.trie for current_token in current_seq: lowercase_ : Tuple = start[current_token] lowercase_ : Union[str, Any] = list(start.keys() ) return next_tokens def A ( self : Optional[int] , A : Optional[Any] ) -> str: lowercase_ : List[str] = self.next_tokens(A ) return len(A ) == 0 def A ( self : Dict , A : int ) -> Optional[Any]: lowercase_ : Tuple = list(root.values() ) if len(A ) == 0: return 1 else: return sum([self.count_leaves(A ) for nn in next_nodes] ) def A ( self : Union[str, Any] , A : Any , A : int ) -> str: lowercase_ : Dict = self.count_leaves(A ) return len(A ) != leaf_count class _UpperCAmelCase ( _A ): def __init__( self : str , A : List[List[int]] ) -> List[Any]: super(A , self ).__init__() if not isinstance(A , A ) or len(A ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A , A ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A , A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowercase_ : Any = DisjunctiveTrie(A ) lowercase_ : int = nested_token_ids lowercase_ : List[str] = self.trie.max_height lowercase_ : str = [] lowercase_ : int = False def A ( self : Optional[Any] ) -> List[Any]: lowercase_ : int = self.trie.next_tokens(self.current_seq ) if len(A ) == 0: return None else: return token_list def A ( self : Tuple , A : int ) -> str: if not isinstance(A , A ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}''' ) lowercase_ : Union[str, Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def A ( self : List[Any] , A : int ) -> int: if not isinstance(A , A ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}''' ) lowercase_ : Dict = False lowercase_ : List[Any] = False lowercase_ : List[str] = False if self.does_advance(A ): self.current_seq.append(A ) lowercase_ : Optional[int] = True else: lowercase_ : List[str] = True self.reset() lowercase_ : Any = self.trie.reached_leaf(self.current_seq ) lowercase_ : str = completed return stepped, completed, reset def A ( self : Union[str, Any] ) -> int: lowercase_ : str = False lowercase_ : Optional[int] = [] def A ( self : Optional[Any] ) -> int: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def A ( self : int , A : Optional[int]=False ) -> Tuple: lowercase_ : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase_ : Optional[int] = self.seqlen lowercase_ : Dict = self.current_seq lowercase_ : List[Any] = self.completed return new_constraint class _UpperCAmelCase : def __init__( self : List[Any] , A : List[Constraint] ) -> str: lowercase_ : Optional[Any] = constraints # max # of steps required to fulfill a given constraint lowercase_ : Tuple = max([c.seqlen for c in constraints] ) lowercase_ : Union[str, Any] = len(A ) lowercase_ : Union[str, Any] = False self.init_state() def A ( self : Any ) -> Optional[Any]: lowercase_ : Dict = [] lowercase_ : Optional[int] = None lowercase_ : Optional[int] = [constraint.copy(stateful=A ) for constraint in self.constraints] def A ( self : Optional[Any] ) -> Any: lowercase_ : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def A ( self : Any ) -> Any: lowercase_ : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase_ : Optional[int] = constraint.advance() if isinstance(A , A ): token_list.append(A ) elif isinstance(A , A ): token_list.extend(A ) else: lowercase_ : str = self.inprogress_constraint.advance() if isinstance(A , A ): token_list.append(A ) elif isinstance(A , A ): token_list.extend(A ) if len(A ) == 0: return None else: return token_list def A ( self : Dict , A : Optional[List[int]] ) -> List[str]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase_ , lowercase_ : List[Any] = self.add(A ) # the entire list of constraints are fulfilled if self.completed: break def A ( self : Any , A : int ) -> List[str]: if not isinstance(A , A ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowercase_ , lowercase_ : int = False, False if self.completed: lowercase_ : str = True lowercase_ : Tuple = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase_ , lowercase_ , lowercase_ : List[Any] = self.inprogress_constraint.update(A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A ) ) lowercase_ : Union[str, Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase_ : Union[str, Any] = None if len(self.pending_constraints ) == 0: # we're done! lowercase_ : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A ): lowercase_ , lowercase_ , lowercase_ : List[str] = pending_constraint.update(A ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(A ) lowercase_ : Optional[int] = None if not complete and stepped: lowercase_ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase_ : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase_ : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def A ( self : Optional[Any] , A : str=True ) -> Tuple: lowercase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase_ : Dict = [ constraint.copy(stateful=A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase_ : str = self.inprogress_constraint.copy(stateful=A ) lowercase_ : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
231
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "timesformer" def __init__( self : Optional[Any] , A : Tuple=2_24 , A : Optional[int]=16 , A : Any=3 , A : str=8 , A : Optional[Any]=7_68 , A : Dict=12 , A : Optional[int]=12 , A : Optional[Any]=30_72 , A : Optional[Any]="gelu" , A : Union[str, Any]=0.0 , A : Dict=0.0 , A : str=0.02 , A : Union[str, Any]=1e-6 , A : Union[str, Any]=True , A : Dict="divided_space_time" , A : Optional[Any]=0 , **A : List[str] , ) -> Tuple: super().__init__(**A ) lowercase_ : Tuple = image_size lowercase_ : str = patch_size lowercase_ : Tuple = num_channels lowercase_ : Optional[Any] = num_frames lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : List[str] = qkv_bias lowercase_ : Any = attention_type lowercase_ : Dict = drop_path_rate
231
1
import warnings from ..trainer import Trainer from ..utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ ( __SCREAMING_SNAKE_CASE ): def __init__( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _a , ) super().__init__(args=_a , **_a )
720
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: int = AltDiffusionPipeline UpperCAmelCase__: Tuple = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self ): torch.manual_seed(0 ) A__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : List[str] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) A__ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) A__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) A__ : Tuple = CLIPTextModel(A__ ) A__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A__ : Union[str, Any] = 77 A__ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , A__ , A__=0 ): if str(A__ ).startswith("""mps""" ): A__ : Dict = torch.manual_seed(A__ ) else: A__ : str = torch.Generator(device=A__ ).manual_seed(A__ ) A__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __A ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __A ( self ): A__ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] = self.get_dummy_components() torch.manual_seed(0 ) A__ : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder A__ : Tuple = RobertaSeriesModelWithTransformation(A__ ) A__ : Optional[int] = text_encoder A__ : Optional[int] = AltDiffusionPipeline(**A__ ) A__ : str = alt_pipe.to(A__ ) alt_pipe.set_progress_bar_config(disable=A__ ) A__ : List[str] = self.get_dummy_inputs(A__ ) A__ : List[str] = """A photo of an astronaut""" A__ : Optional[int] = alt_pipe(**A__ ) A__ : List[Any] = output.images A__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[Any] = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): A__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] = self.get_dummy_components() A__ : Any = PNDMScheduler(skip_prk_steps=A__ ) torch.manual_seed(0 ) A__ : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder A__ : Optional[Any] = RobertaSeriesModelWithTransformation(A__ ) A__ : List[Any] = text_encoder A__ : Optional[Any] = AltDiffusionPipeline(**A__ ) A__ : Union[str, Any] = alt_pipe.to(A__ ) alt_pipe.set_progress_bar_config(disable=A__ ) A__ : Optional[Any] = self.get_dummy_inputs(A__ ) A__ : Dict = alt_pipe(**A__ ) A__ : str = output.images A__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Dict = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): # make sure here that pndm scheduler skips prk A__ : Any = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=A__ ) A__ : Union[str, Any] = alt_pipe.to(A__ ) alt_pipe.set_progress_bar_config(disable=A__ ) A__ : int = """A painting of a squirrel eating a burger""" A__ : Any = torch.manual_seed(0 ) A__ : List[Any] = alt_pipe([prompt] , generator=A__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) A__ : List[Any] = output.images A__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : int = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): A__ : Optional[Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) A__ : Optional[Any] = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=A__ , safety_checker=A__ ) A__ : Optional[Any] = alt_pipe.to(A__ ) alt_pipe.set_progress_bar_config(disable=A__ ) A__ : Union[str, Any] = """A painting of a squirrel eating a burger""" A__ : Dict = torch.manual_seed(0 ) A__ : List[Any] = alt_pipe([prompt] , generator=A__ , num_inference_steps=2 , output_type="""numpy""" ) A__ : str = output.images A__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : List[str] = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
456
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = RoCBertTokenizer UpperCAmelCase__: Dict = None UpperCAmelCase__: Optional[Any] = False UpperCAmelCase__: Union[str, Any] = True UpperCAmelCase__: Union[str, Any] = filter_non_english def __A ( self ): super().setUp() A__ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] A__ : Union[str, Any] = {} A__ : Dict = {} for i, value in enumerate(A__ ): A__ : Optional[int] = i A__ : Optional[int] = i A__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) A__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(A__ , A__ , ensure_ascii=A__ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(A__ , A__ , ensure_ascii=A__ ) def __A ( self ): A__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : Optional[Any] = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(A__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A__ ) , [5, 6, 2, 5, 7, 8] ) def __A ( self ): A__ : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __A ( self ): A__ : List[str] = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : int = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __A ( self ): A__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : Dict = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : Dict = RoCBertBasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __A ( self ): A__ : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A__ : Any = {} for i, token in enumerate(A__ ): A__ : Optional[int] = i A__ : Optional[Any] = RoCBertWordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __A ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __A ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __A ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __A ( self ): A__ : Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: A__ : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __A ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ : Dict = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" A__ : Union[str, Any] = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) A__ : Any = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False A__ : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __A ( self ): A__ : Union[str, Any] = ["""的""", """人""", """有"""] A__ : List[str] = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ : Any = True A__ : int = self.tokenizer_class.from_pretrained(A__ , **A__ ) A__ : Dict = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : List[str] = tokenizer_p.encode(A__ , add_special_tokens=A__ ) A__ : List[Any] = tokenizer_r.encode(A__ , add_special_tokens=A__ ) A__ : Tuple = tokenizer_r.convert_ids_to_tokens(A__ ) A__ : int = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) A__ : Optional[int] = False A__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : str = self.tokenizer_class.from_pretrained(A__ , **A__ ) A__ : Tuple = tokenizer_r.encode(A__ , add_special_tokens=A__ ) A__ : List[str] = tokenizer_p.encode(A__ , add_special_tokens=A__ ) A__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(A__ ) A__ : Tuple = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : str = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) @slow def __A ( self ): A__ : str = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=A__ ) A__ : List[Any] = tokenizer.encode("""你是谁""" , add_special_tokens=A__ ) A__ : Any = tokenizer.build_inputs_with_special_tokens(A__ ) A__ : Any = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __A ( self ): A__ : List[str] = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): A__ : Optional[int] = """你好,你是谁""" A__ : List[str] = tokenizer.tokenize(A__ ) A__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(A__ ) A__ : str = tokenizer.convert_tokens_to_shape_ids(A__ ) A__ : Optional[int] = tokenizer.convert_tokens_to_pronunciation_ids(A__ ) A__ : Union[str, Any] = tokenizer.prepare_for_model( A__ , A__ , A__ , add_special_tokens=A__ ) A__ : int = tokenizer.encode_plus(A__ , add_special_tokens=A__ ) self.assertEqual(A__ , A__ )
456
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 16384, } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LEDTokenizer a__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str="replace" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=True , **__lowerCamelCase : Union[str, Any] , ) -> Optional[int]: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) A : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: A : Any = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) A : Any = add_prefix_space A : Tuple = pre_tok_class(**__lowerCamelCase ) A : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A : List[str] = "post_processor" A : Union[str, Any] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: A : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: A : str = tuple(state["cls"] ) A : int = False if state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: A : List[Any] = add_prefix_space A : Dict = True if state.get("trim_offsets" , __lowerCamelCase ) != trim_offsets: A : Dict = trim_offsets A : str = True if changes_to_apply: A : int = getattr(__lowerCamelCase , state.pop("type" ) ) A : Dict = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Any ) -> Dict: A : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value A : Tuple = value def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ) -> BatchEncoding: A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ) -> BatchEncoding: A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: A : Optional[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=None ) -> List[str]: A : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: A : str = [self.sep_token_id] A : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ) -> dict: A : Dict = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: A : List[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: A : Any = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": A : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
17
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase : Tuple=[1, 1, 2, 1] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]="relu" , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Union[str, Any]=None , ) -> str: A : Optional[Any] = parent A : Optional[int] = batch_size A : List[str] = image_size A : List[str] = num_channels A : Tuple = embeddings_size A : Optional[int] = hidden_sizes A : Dict = depths A : Optional[int] = is_training A : List[str] = use_labels A : List[Any] = hidden_act A : Optional[int] = num_labels A : int = scope A : List[Any] = len(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[Any] = None if self.use_labels: A : Any = ids_tensor([self.batch_size] , self.num_labels ) A : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Tuple: A : List[str] = TFRegNetModel(config=__lowerCamelCase ) A : str = model(__lowerCamelCase , training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> List[str]: A : List[Any] = self.num_labels A : int = TFRegNetForImageClassification(__lowerCamelCase ) A : str = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: A : Any = self.prepare_config_and_inputs() A , A , A : str = config_and_inputs A : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ): '''simple docstring''' a__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a__ = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: A : Optional[Any] = TFRegNetModelTester(self ) A : int = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Union[str, Any] = model_class(__lowerCamelCase ) A : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: def check_hidden_states_output(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): A : int = model_class(__lowerCamelCase ) A : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase ) A : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : Dict = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A , A : int = self.model_tester.prepare_config_and_inputs_for_common() A : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: A : List[str] = layer_type A : List[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: A , A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]={} ): A : Optional[int] = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ) A : int = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple() def recursive_check(__lowerCamelCase : List[str] , __lowerCamelCase : Any ): if isinstance(__lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ): recursive_check(__lowerCamelCase , __lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase ) for model_class in self.all_model_classes: A : Tuple = model_class(__lowerCamelCase ) A : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Union[str, Any] = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase ( ): A : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: A : List[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A : Optional[int] = self.default_image_processor A : List[Any] = prepare_img() A : str = image_processor(images=__lowerCamelCase , return_tensors="tf" ) # forward pass A : List[Any] = model(**__lowerCamelCase , training=__lowerCamelCase ) # verify the logits A : Dict = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) A : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 )
17
1
lowerCamelCase_ = { '''joule''': 1.0, '''kilojoule''': 10_00, '''megajoule''': 1_00_00_00, '''gigajoule''': 10_00_00_00_00, '''wattsecond''': 1.0, '''watthour''': 36_00, '''kilowatthour''': 3_60_00_00, '''newtonmeter''': 1.0, '''calorie_nutr''': 4186.8, '''kilocalorie_nutr''': 4_18_68_00.00, '''electronvolt''': 1.602_176_634E-19, '''britishthermalunit_it''': 1055.05585, '''footpound''': 1.355818, } def __magic_name__ ( __a : str , __a : str , __a : float ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(snake_case__ )}" ) raise ValueError(snake_case__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
513
from __future__ import annotations import numpy as np def UpperCamelCase_( snake_case__: np.ndarray ) -> tuple[np.ndarray, np.ndarray]: UpperCAmelCase__ , UpperCAmelCase__ = np.shape(snake_case__ ) if rows != columns: UpperCAmelCase__ = ( '\'table\' has to be of square shaped array but got a ' f"{rows}x{columns} array:\n{table}" ) raise ValueError(snake_case__ ) UpperCAmelCase__ = np.zeros((rows, columns) ) UpperCAmelCase__ = np.zeros((rows, columns) ) for i in range(snake_case__ ): for j in range(snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) UpperCAmelCase__ = (table[i][j] - total) / upper[j][j] UpperCAmelCase__ = 1 for j in range(snake_case__ , snake_case__ ): UpperCAmelCase__ = sum(lower[i][k] * upper[k][j] for k in range(snake_case__ ) ) UpperCAmelCase__ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
146
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : List[Any] = """xmod""" def __init__( self : str , UpperCamelCase__ : Optional[Any]=30522 , UpperCamelCase__ : List[Any]=768 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : str=12 , UpperCamelCase__ : List[str]=3072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[Any]=1E-12 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : int=True , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : str=False , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any=("en_XX",) , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any =vocab_size A__ : List[Any] =hidden_size A__ : Tuple =num_hidden_layers A__ : int =num_attention_heads A__ : List[str] =hidden_act A__ : int =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : List[Any] =max_position_embeddings A__ : List[Any] =type_vocab_size A__ : int =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : List[Any] =position_embedding_type A__ : Optional[Any] =use_cache A__ : Tuple =classifier_dropout A__ : int =pre_norm A__ : Optional[int] =adapter_reduction_factor A__ : Union[str, Any] =adapter_layer_norm A__ : str =adapter_reuse_layer_norm A__ : List[Any] =ln_before_adapter A__ : str =list(UpperCamelCase__ ) A__ : Union[str, Any] =default_language class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' @property def _UpperCAmelCase ( self : Union[str, Any] ): if self.task == "multiple-choice": A__ : int ={0: "batch", 1: "choice", 2: "sequence"} else: A__ : int ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
595
"""simple docstring""" __A : int = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowercase ( UpperCamelCase : str ): """simple docstring""" A__ : Union[str, Any] ={"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} A__ : Tuple =0 A__ : List[str] =0 while place < len(UpperCamelCase ): if (place + 1 < len(UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Dict =[] for arabic, roman in ROMAN: ((A__) , (A__)) : Union[str, Any] =divmod(UpperCamelCase , UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
595
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Any = GPTSanJapaneseTokenizer a : Tuple = False a : Optional[Any] = {"do_clean_text": False, "add_prefix_space": False} def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off __lowercase = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __lowercase = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file ,'''w''' ) as emoji_writer: emoji_writer.write(json.dumps(_lowerCamelCase ) ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.get_input_output_texts(_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizer() # Testing tokenization __lowercase = '''こんにちは、世界。 こんばんは、㔺界。''' __lowercase = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) # Testing conversion to ids without special tokens __lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __lowercase = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) # Testing conversion to ids with special tokens __lowercase = tokens + [tokenizer.unk_token] __lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __lowercase = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizer() # Testing tokenization __lowercase = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __lowercase = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __lowercase = tokenizer.encode(_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase = '''こんにちは、世界。''' __lowercase = '''こんばんは、㔺界。😀''' __lowercase = '''こんにちは、世界。こんばんは、世界。😀''' __lowercase = tokenizer.encode(prefix_text + input_text ) __lowercase = tokenizer.encode('''''' ,prefix_text=prefix_text + input_text ) __lowercase = tokenizer.encode(_lowerCamelCase ,prefix_text=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase = '''こんにちは、世界。''' __lowercase = '''こんばんは、㔺界。😀''' __lowercase = len(tokenizer.encode(_lowerCamelCase ) ) - 2 __lowercase = len(tokenizer.encode(_lowerCamelCase ) ) - 2 __lowercase = [1] + [0] * (len_prefix + len_text + 1) __lowercase = [1] * (len_prefix + len_text + 1) + [0] __lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __lowercase = tokenizer(prefix_text + input_text ).token_type_ids __lowercase = tokenizer('''''' ,prefix_text=prefix_text + input_text ).token_type_ids __lowercase = tokenizer(_lowerCamelCase ,prefix_text=_lowerCamelCase ).token_type_ids self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase = tokenizer.encode('''あンいワ''' ) __lowercase = tokenizer.encode('''''' ,prefix_text='''あンいワ''' ) __lowercase = tokenizer.encode('''いワ''' ,prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(_lowerCamelCase ) ,tokenizer.decode(_lowerCamelCase ) ) self.assertEqual(tokenizer.decode(_lowerCamelCase ) ,tokenizer.decode(_lowerCamelCase ) ) self.assertNotEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(x_token_a[1] ,x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] ,x_token_a[3] ) # SEG token @slow def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ) __lowercase = tokenizer.batch_encode_plus(_lowerCamelCase ,padding=_lowerCamelCase ) # fmt: off __lowercase = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids ,_lowerCamelCase ) self.assertListEqual(x_token.token_type_ids ,_lowerCamelCase ) self.assertListEqual(x_token.attention_mask ,_lowerCamelCase ) self.assertListEqual(x_token_a.input_ids ,_lowerCamelCase ) self.assertListEqual(x_token_a.token_type_ids ,_lowerCamelCase ) self.assertListEqual(x_token_a.attention_mask ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass
502
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list[int | str] ): create_state_space_tree(lowerCamelCase_ , [] , 0 , [0 for i in range(len(lowerCamelCase_ ) )] ) def _lowerCAmelCase ( lowerCamelCase_ : list[int | str] , lowerCamelCase_ : list[int | str] , lowerCamelCase_ : int , lowerCamelCase_ : list[int] , ): if index == len(lowerCamelCase_ ): print(lowerCamelCase_ ) return for i in range(len(lowerCamelCase_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __lowercase = True create_state_space_tree(lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_ ) current_sequence.pop() __lowercase = False _SCREAMING_SNAKE_CASE = [3, 1, 2, 4] generate_all_permutations(sequence) _SCREAMING_SNAKE_CASE = ["A", "B", "C"] generate_all_permutations(sequence_a)
502
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase ) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [] if args.gold_data_mode == "qa": __snake_case = pd.read_csv(_lowerCAmelCase , sep="\t" , header=_lowerCAmelCase ) for answer_list in data[1]: __snake_case = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [[reference] for reference in references] __snake_case = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case = 1_00.0 * em / total __snake_case = 1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: __snake_case = args.k __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = set(hypo.split("\t" )[:k] ) __snake_case = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __snake_case = 1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: def strip_title(_UpperCAmelCase ): if title.startswith("\"" ): __snake_case = title[1:] if title.endswith("\"" ): __snake_case = title[:-1] return title __snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )["input_ids"].to(args.device ) __snake_case = rag_model.rag.question_encoder(_lowerCAmelCase ) __snake_case = question_enc_outputs[0] __snake_case = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) __snake_case = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __snake_case = [] for docs in all_docs: __snake_case = [strip_title(_lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCAmelCase ) ) return provenance_strings def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with torch.no_grad(): __snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) __snake_case = inputs_dict.input_ids.to(args.device ) __snake_case = inputs_dict.attention_mask.to(args.device ) __snake_case = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __snake_case = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Q: {} - A: {}".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def __UpperCAmelCase ( ) -> List[str]: __snake_case = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) __snake_case = parser.parse_args() __snake_case = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __UpperCAmelCase ( _UpperCAmelCase ) -> List[Any]: __snake_case = {} if args.model_type is None: __snake_case = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): __snake_case = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration __snake_case = args.n_docs if args.index_name is not None: __snake_case = args.index_name if args.index_path is not None: __snake_case = args.index_path else: __snake_case = BartForConditionalGeneration __snake_case = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCAmelCase ) __snake_case = get_scores if args.eval_mode == "e2e" else get_precision_at_k __snake_case = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): __snake_case = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: __snake_case = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: __snake_case = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: __snake_case = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) + "\n" ) preds_file.flush() __snake_case = [] if len(_lowerCAmelCase ) > 0: __snake_case = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a : Any = get_args() main(args)
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor snake_case__ : Tuple = logging.get_logger(__name__) class snake_case ( _snake_case ): '''simple docstring''' def __init__( self : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->Any: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
392
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
import datasets lowerCAmelCase_ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowerCAmelCase_ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowerCAmelCase_ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __a ( self : Any ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __a ( self : Dict , _A : List[Any] , _A : Optional[Any] ) -> str: """simple docstring""" return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )}
718
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A : _UpperCamelCase : Dict = None @experimental def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return _map_with_joblib(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = num_proc if num_proc <= len(__magic_name__ ) else len(__magic_name__ ) lowercase : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(__magic_name__ ): lowercase : Optional[int] = len(__magic_name__ ) // num_proc lowercase : List[str] = len(__magic_name__ ) % num_proc lowercase : Union[str, Any] = div * index + min(__magic_name__ , __magic_name__ ) lowercase : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__magic_name__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(__magic_name__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(__magic_name__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowercase , lowercase : Optional[int] = None, None if not disable_tqdm: lowercase , lowercase : Any = (RLock(),), tqdm.set_lock with Pool(__magic_name__ , initargs=__magic_name__ , initializer=__magic_name__ ) as pool: lowercase : Tuple = pool.map(__magic_name__ , __magic_name__ ) logger.info(F"""Finished {num_proc} processes""" ) lowercase : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(__magic_name__ )} objects""" ) return mapped def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__magic_name__ ): return joblib.Parallel()( joblib.delayed(__magic_name__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowercase : List[Any] = None
596
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase_ ( __a ) -> List[Tuple[int, ...]]: a__ : Any = [] if isinstance(__a , __a ): for v in tree.values(): shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def UpperCamelCase_ ( __a , __a ) -> Tuple[int, ...]: a__ : Tuple = [] for d in reversed(__a ): idx.append(flat_idx % d ) a__ : Tuple = flat_idx // d return tuple(reversed(__a ) ) @torch.jit.ignore def UpperCamelCase_ ( __a , __a , __a , __a = None , __a = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__a ) -> None: a__ : List[str] = True for i in range(len(__a ) ): a__ : Tuple = -1 * (i + 1) l[reversed_idx] &= tally a__ : Optional[int] = l[reversed_idx] if start_edges is None: a__ : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(__a ) if end_edges is None: a__ : List[Any] = [e == (d - 1) for e, d in zip(__a , __a )] reduce_edge_list(__a ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__a ) == 0: return [()] elif len(__a ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a__ : List[Tuple[slice, ...]] = [] a__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__a , __a ): if s == e: path_list.append(slice(__a , s + 1 ) ) else: break a__ : Tuple[slice, ...] = tuple(__a ) a__ : Optional[int] = len(__a ) # start == end, and we're done if divergence_idx == len(__a ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : str = start[divergence_idx] return tuple( path + (slice(__a , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ : Dict = end[divergence_idx] return tuple( path + (slice(__a , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a__ : Any = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase_ ( __a , __a , __a , __a ) -> torch.Tensor: a__ : str = t.shape[:no_batch_dims] a__ : List[str] = list(_flat_idx_to_idx(__a , __a ) ) # _get_minimal_slice_set is inclusive a__ : Union[str, Any] = list(_flat_idx_to_idx(flat_end - 1 , __a ) ) # Get an ordered list of slices to perform a__ : Tuple = _get_minimal_slice_set( __a , __a , __a , ) a__ : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase_ ( __a , __a , __a , __a , __a = False , __a = None , __a = False , ) -> Any: if not (len(__a ) > 0): raise ValueError("Must provide at least one input" ) a__ : Optional[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__a )] a__ : Optional[int] = tuple([max(__a ) for s in zip(*__a )] ) def _prep_inputs(__a ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a__ : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a__ : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , __a ) a__ : Tuple = None if _out is not None: a__ : Tuple = tensor_tree_map(lambda __a : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a__ : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d a__ : Optional[int] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__a ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a__ : List[str] = 0 a__ : Tuple = prepped_outputs for _ in range(__a ): # Chunk the input if not low_mem: a__ : int = _select_chunk else: a__ : List[str] = partial( _chunk_slice , flat_start=__a , flat_end=min(__a , i + chunk_size ) , no_batch_dims=len(__a ) , ) a__ : Dict[str, Any] = tensor_tree_map(__a , __a ) # Run the layer on the chunk a__ : List[Any] = layer(**__a ) # Allocate space for the output if out is None: a__ : List[str] = tensor_tree_map(lambda __a : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __a ) # Put the chunk in its pre-allocated space if isinstance(__a , __a ): def assign(__a , __a ) -> None: for k, v in da.items(): if isinstance(__a , __a ): assign(__a , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a__ : Optional[Any] = da[k] assign(__a , __a ) elif isinstance(__a , __a ): for xa, xa in zip(__a , __a ): if _add_into_out: xa[i : i + chunk_size] += xa else: a__ : str = xa elif isinstance(__a , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a__ : Union[str, Any] = output_chunk else: raise ValueError("Not supported" ) i += chunk_size a__ : Any = tensor_tree_map(lambda __a : t.view(orig_batch_dims + t.shape[1:] ) , __a ) return out class A__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase__ : int = 512 , ): a__ : Tuple = max_chunk_size a__ : Optional[int] = None a__ : Optional[tuple] = None def _UpperCamelCase( self : str , lowerCamelCase__ : Callable , lowerCamelCase__ : tuple , lowerCamelCase__ : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a__ : int = [c for c in candidates if c > min_chunk_size] a__ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCamelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*lowerCamelCase__ , chunk_size=lowerCamelCase__ ) return True except RuntimeError: return False a__ : List[str] = 0 a__ : Any = len(lowerCamelCase__ ) - 1 while i > min_viable_chunk_size_index: a__ : str = test_chunk_size(candidates[i] ) if not viable: a__ : List[str] = (min_viable_chunk_size_index + i) // 2 else: a__ : Tuple = i a__ : str = (i + len(lowerCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Iterable , lowerCamelCase__ : Iterable ): a__ : Union[str, Any] = True for aa, aa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert type(lowerCamelCase__ ) == type(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : int = [v for _, v in sorted(aa.items() , key=lambda lowerCamelCase__ : x[0] )] a__ : List[str] = [v for _, v in sorted(aa.items() , key=lambda lowerCamelCase__ : x[0] )] consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) else: consistent &= aa == aa return consistent def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Callable , lowerCamelCase__ : tuple , lowerCamelCase__ : int , ): a__ : List[str] = True a__ : tuple = tree_map(lambda lowerCamelCase__ : a.shape if isinstance(lowerCamelCase__ , torch.Tensor ) else a , lowerCamelCase__ , lowerCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCamelCase__ ) a__ : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , lowerCamelCase__ ) else: # Otherwise, we can reuse the precomputed value a__ : Union[str, Any] = False if not consistent: a__ : str = self._determine_favorable_chunk_size( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) a__ : List[str] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
37
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase : Dict = get_tests_dir('fixtures') class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 500 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__snake_case ) as mock_head: lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ ( cls : Any ) -> List[str]: '''simple docstring''' lowerCamelCase = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __snake_case , repo_id='test-feature-extractor' , push_to_hub=__snake_case , use_auth_token=self._token ) lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __snake_case , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__snake_case , use_auth_token=self._token ) lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() lowerCamelCase = CustomFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) lowerCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
246
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( A_ ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , ): '''simple docstring''' super().__init__() self.register_modules(transformer=lowerCamelCase , vae=lowerCamelCase , scheduler=lowerCamelCase ) # create a imagenet -> id dictionary for easier use a__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): a__ = int(lowerCamelCase ) a__ = dict(sorted(self.labels.items() ) ) def _A ( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): a__ = list(lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCamelCase , lowerCamelCase = 4.0 , lowerCamelCase = None , lowerCamelCase = 50 , lowerCamelCase = "pil" , lowerCamelCase = True , ): '''simple docstring''' a__ = len(lowerCamelCase ) a__ = self.transformer.config.sample_size a__ = self.transformer.config.in_channels a__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) a__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a__ = torch.tensor(lowerCamelCase , device=self.device ).reshape(-1 ) a__ = torch.tensor([1000] * batch_size , device=self.device ) a__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a__ = latent_model_input[: len(lowerCamelCase ) // 2] a__ = torch.cat([half, half] , dim=0 ) a__ = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) a__ = t if not torch.is_tensor(lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a__ = latent_model_input.device.type == """mps""" if isinstance(lowerCamelCase , lowerCamelCase ): a__ = torch.floataa if is_mps else torch.floataa else: a__ = torch.intaa if is_mps else torch.intaa a__ = torch.tensor([timesteps] , dtype=lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a__ = self.transformer( lowerCamelCase , timestep=lowerCamelCase , class_labels=lowerCamelCase ).sample # perform guidance if guidance_scale > 1: a__ , a__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a__ , a__ = torch.split(lowerCamelCase , len(lowerCamelCase ) // 2 , dim=0 ) a__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a__ = torch.cat([half_eps, half_eps] , dim=0 ) a__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a__ , a__ = torch.split(lowerCamelCase , lowerCamelCase , dim=1 ) else: a__ = noise_pred # compute previous image: x_t -> x_t-1 a__ = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample if guidance_scale > 1: a__ , a__ = latent_model_input.chunk(2 , dim=0 ) else: a__ = latent_model_input a__ = 1 / self.vae.config.scaling_factor * latents a__ = self.vae.decode(lowerCamelCase ).sample a__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase )
708
def UpperCAmelCase ( lowercase__ : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
412
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a :Any = logging.getLogger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None ): super().__init__( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , index=UpperCAmelCase , init_retrieval=UpperCAmelCase , ) A_ = None def __A ( self : Dict , UpperCAmelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually A_ = self._infer_socket_ifname() # avoid clash with the NCCL port A_ = str(distributed_port + 1 ) A_ = dist.new_group(ranks=UpperCAmelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __A ( self : List[str] ): return dist.get_rank(group=self.process_group ) == 0 def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=torch.floataa ): A_ = torch.empty(UpperCAmelCase , dtype=UpperCAmelCase ) dist.scatter(UpperCAmelCase , src=0 , scatter_list=UpperCAmelCase , group=self.process_group ) return target_tensor def __A ( self : Any ): A_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ = next((addr for addr in addrs if addr.startswith("e" )) , UpperCAmelCase ) return ifname def __A ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : int ): # single GPU training if not dist.is_initialized(): A_ , A_ = self._main_retrieve(UpperCAmelCase , UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase ) # distributed training A_ = dist.get_world_size(group=self.process_group ) # gather logic A_ = None if self._is_main(): A_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCAmelCase )] dist.gather(torch.tensor(UpperCAmelCase ) , dst=0 , gather_list=UpperCAmelCase , group=self.process_group ) # scatter logic A_ = question_hidden_states.shape[0] A_ = [] A_ = [] if self._is_main(): assert len(UpperCAmelCase ) == world_size A_ , A_ = self._main_retrieve(torch.cat(UpperCAmelCase ).numpy() , UpperCAmelCase ) A_ , A_ = torch.tensor(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase )
86
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowercase (UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" _snake_case = "pixel_values" _snake_case = False _snake_case = TimmBackboneConfig def __init__( self , A , **A ) -> Dict: requires_backends(self , """timm""" ) super().__init__(lowerCamelCase__ ) snake_case : Any = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase__ , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) snake_case : Optional[Any] = getattr(lowerCamelCase__ , """use_pretrained_backbone""" , lowerCamelCase__ ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. snake_case : int = config.out_indices if getattr(lowerCamelCase__ , """out_indices""" , lowerCamelCase__ ) is not None else (-1,) snake_case : List[Any] = timm.create_model( config.backbone , pretrained=lowerCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCamelCase__ , **lowerCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case : List[str] = self._backbone.return_layers snake_case : Optional[int] = {layer["module"]: str(lowerCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase__ ) @classmethod def UpperCAmelCase ( cls , A , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig snake_case : Any = kwargs.pop("""config""" , TimmBackboneConfig() ) snake_case : Dict = kwargs.pop("""use_timm_backbone""" , lowerCamelCase__ ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) snake_case : str = kwargs.pop("""num_channels""" , config.num_channels ) snake_case : Dict = kwargs.pop("""features_only""" , config.features_only ) snake_case : str = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) snake_case : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) snake_case : Dict = TimmBackboneConfig( backbone=lowerCamelCase__ , num_channels=lowerCamelCase__ , features_only=lowerCamelCase__ , use_pretrained_backbone=lowerCamelCase__ , out_indices=lowerCamelCase__ , ) return super()._from_config(lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , A ) -> Optional[int]: pass def UpperCAmelCase ( self , A , A=None , A=None , A=None , **A ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: snake_case : Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : Dict = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case : Optional[int] = self._all_layers snake_case : List[str] = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) snake_case : List[Any] = self._return_layers snake_case : Tuple = tuple(hidden_states[i] for i in self.out_indices ) else: snake_case : Any = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) snake_case : Tuple = None snake_case : Dict = tuple(lowerCamelCase__ ) snake_case : Optional[Any] = tuple(lowerCamelCase__ ) if hidden_states is not None else None if not return_dict: snake_case : Dict = (feature_maps,) if output_hidden_states: snake_case : List[str] = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase__ , hidden_states=lowerCamelCase__ , attentions=lowerCamelCase__ )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import enum import shutil import sys __snake_case , __snake_case : List[Any] =shutil.get_terminal_size() __snake_case : Tuple ={'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCamelCase__ ( enum.Enum): '''simple docstring''' snake_case_ =0 snake_case_ =1 def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Optional[Any]=""): '''simple docstring''' sys.stdout.write(str(__UpperCamelCase) + end) sys.stdout.flush() def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : str ,lowerCamelCase_ : str=""): '''simple docstring''' forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" ,__UpperCamelCase) def lowerCAmelCase__ ( ): '''simple docstring''' forceWrite('''\r''') def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : List[Any]): '''simple docstring''' forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""") def lowerCAmelCase__ ( ): '''simple docstring''' forceWrite(''' ''' * TERMINAL_WIDTH) reset_cursor() def lowerCAmelCase__ ( ): '''simple docstring''' reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH)
647
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""hf-internal-testing/tiny-random-t5""" SCREAMING_SNAKE_CASE__ =AutoTokenizer.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer("""This is me""" ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ =model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE__ =model.generate(**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE__ =model_reloaded.generate(**_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ) ) def __A ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""hf-internal-testing/tiny-random-t5""" SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_UpperCamelCase ): model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.reverse_bettertransformer() model.save_pretrained(_UpperCamelCase )
151
0
"""simple docstring""" from functools import lru_cache def a__ ( __lowercase ) -> set: _A = 2 _A = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowercase ) if n > 1: factors.add(__lowercase ) return factors @lru_cache def a__ ( __lowercase ) -> int: return len(unique_prime_factors(__lowercase ) ) def a__ ( __lowercase ) -> bool: return len(set(__lowercase ) ) in (0, 1) def a__ ( __lowercase ) -> list: _A = 2 while True: # Increment each value of a generated range _A = [base + i for i in range(__lowercase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _A = [upf_len(__lowercase ) for x in group] checker.append(__lowercase ) # If all numbers in the list are equal, return the group variable. if equality(__lowercase ): return group # Increment our base variable by 1 base += 1 def a__ ( __lowercase = 4 ) -> int: _A = run(__lowercase ) return results[0] if len(__lowercase ) else None if __name__ == "__main__": print(solution())
621
"""simple docstring""" def a__ ( __lowercase , __lowercase ) -> int: while a != 0: _A , _A = b % a, a return b def a__ ( __lowercase , __lowercase ) -> int: if gcd(__lowercase , __lowercase ) != 1: _A = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__lowercase ) _A , _A , _A = 1, 0, a _A , _A , _A = 0, 1, m while va != 0: _A = ua // va _A , _A , _A , _A , _A , _A = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
621
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase_ =4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase_ =4 lowerCamelCase_ =48 lowerCamelCase_ ='''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase_ =[6, 6, 6, 6] lowerCamelCase_ =60 lowerCamelCase_ =[6, 6, 6, 6] lowerCamelCase_ ='''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase_ =4 lowerCamelCase_ ='''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase_ =1 lowerCamelCase_ =1 lowerCamelCase_ =126 lowerCamelCase_ =7 lowerCamelCase_ =2_5_5.0 lowerCamelCase_ ='''''' return config def a_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> List[Any]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase_ =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ =name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: lowerCamelCase_ =name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: lowerCamelCase_ =name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: lowerCamelCase_ =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase_ =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase_ =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase_ =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase_ =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase_ =name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowerCamelCase_ =name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowerCamelCase_ =name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowerCamelCase_ =name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowerCamelCase_ =name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: lowerCamelCase_ =name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": lowerCamelCase_ ='''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ ='''layernorm.bias''' if "conv_first" in name: lowerCamelCase_ =name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase_ =name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase_ =name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: lowerCamelCase_ =name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: lowerCamelCase_ =name.replace('''upsample.2''' , '''upsample.convolution_1''' ) lowerCamelCase_ ='''upsample.''' + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase_ =name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) lowerCamelCase_ =name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: lowerCamelCase_ ='''swin2sr.''' + name return name def a_ ( __snake_case : Tuple , __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase_ =orig_state_dict.pop(__snake_case ) if "qkv" in key: lowerCamelCase_ =key.split('''.''' ) lowerCamelCase_ =int(key_split[1] ) lowerCamelCase_ =int(key_split[4] ) lowerCamelCase_ =config.embed_dim if "weight" in key: lowerCamelCase_ =val[:dim, :] lowerCamelCase_ =val[dim : dim * 2, :] lowerCamelCase_ =val[-dim:, :] else: lowerCamelCase_ =val[:dim] lowerCamelCase_ =val[dim : dim * 2] lowerCamelCase_ =val[-dim:] pass else: lowerCamelCase_ =val return orig_state_dict def a_ ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int ) -> List[str]: """simple docstring""" lowerCamelCase_ =get_config(__snake_case ) lowerCamelCase_ =SwinaSRForImageSuperResolution(__snake_case ) model.eval() lowerCamelCase_ =torch.hub.load_state_dict_from_url(__snake_case , map_location='''cpu''' ) lowerCamelCase_ =convert_state_dict(__snake_case , __snake_case ) lowerCamelCase_, lowerCamelCase_ =model.load_state_dict(__snake_case , strict=__snake_case ) if len(__snake_case ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(__snake_case ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values lowerCamelCase_ ='''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) lowerCamelCase_ =SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase_ =126 if '''Jpeg''' in checkpoint_url else 256 lowerCamelCase_ =Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCamelCase_ =transforms(__snake_case ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase_ =pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase_ =model(__snake_case ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase_ =torch.Size([1, 3, 512, 512] ) lowerCamelCase_ =torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase_ =torch.Size([1, 3, 1024, 1024] ) lowerCamelCase_ =torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase_ =torch.Size([1, 3, 1024, 1024] ) lowerCamelCase_ =torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase_ =torch.Size([1, 3, 512, 512] ) lowerCamelCase_ =torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase_ =torch.Size([1, 3, 1024, 1024] ) lowerCamelCase_ =torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __snake_case , atol=1e-3 ) print('''Looks ok!''' ) lowerCamelCase_ ={ '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } lowerCamelCase_ =url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__snake_case ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") a_ : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : int = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] ='mvp' lowercase : List[str] =['past_key_values'] lowercase : Dict ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, lowerCAmelCase=50_267, lowerCAmelCase=1_024, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase="gelu", lowerCAmelCase=1_024, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase=True, lowerCAmelCase=2, lowerCAmelCase=2, lowerCAmelCase=False, lowerCAmelCase=100, lowerCAmelCase=800, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =decoder_layerdrop lowerCamelCase_ =classifier_dropout lowerCamelCase_ =use_cache lowerCamelCase_ =encoder_layers lowerCamelCase_ =scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ =use_prompt lowerCamelCase_ =prompt_length lowerCamelCase_ =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, is_encoder_decoder=lowerCAmelCase, decoder_start_token_id=lowerCAmelCase, forced_eos_token_id=lowerCAmelCase, **lowerCAmelCase, ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''', lowerCAmelCase ): lowerCamelCase_ =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
676
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( A__ : Optional[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = checkpoint SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_in.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_in.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.norm_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.norm_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_in.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_in.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.norm_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.norm_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["quant_conv.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["quant_conv.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["post_quant_conv.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(A__ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(A__ ) } for i in range(A__ ): SCREAMING_SNAKE_CASE = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) SCREAMING_SNAKE_CASE = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "encoder.mid.block" in key] SCREAMING_SNAKE_CASE = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "encoder.mid.attn" in key] SCREAMING_SNAKE_CASE = renew_vae_attention_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) for i in range(A__ ): SCREAMING_SNAKE_CASE = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] SCREAMING_SNAKE_CASE = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "decoder.mid.block" in key] SCREAMING_SNAKE_CASE = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "decoder.mid.attn" in key] SCREAMING_SNAKE_CASE = renew_vae_attention_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) return new_checkpoint def __a ( A__ : str , A__ : str , ): # Only support V1 SCREAMING_SNAKE_CASE = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) SCREAMING_SNAKE_CASE = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE = OmegaConf.load(A__ ) SCREAMING_SNAKE_CASE = 512 SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open SCREAMING_SNAKE_CASE = {} with safe_open(A__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE = f.get_tensor(A__ ) else: SCREAMING_SNAKE_CASE = torch.load(A__ , map_location=A__ )["state_dict"] # Convert the VAE model. SCREAMING_SNAKE_CASE = create_vae_diffusers_config(A__ , image_size=A__ ) SCREAMING_SNAKE_CASE = custom_convert_ldm_vae_checkpoint(A__ , A__ ) SCREAMING_SNAKE_CASE = AutoencoderKL(**A__ ) vae.load_state_dict(A__ ) vae.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __A : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=[30, 30] , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=8 , __lowerCAmelCase=10 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = n_targets lowerCAmelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase = num_patches + 1 + self.num_detection_tokens def a_ ( self): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) lowerCAmelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase = [] for i in range(self.batch_size): lowerCAmelCase = {} lowerCAmelCase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__lowerCAmelCase) lowerCAmelCase = torch.rand(self.n_targets , 4 , device=__lowerCAmelCase) labels.append(__lowerCAmelCase) lowerCAmelCase = self.get_config() return config, pixel_values, labels def a_ ( self): """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = YolosModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = YolosForObjectDetection(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(pixel_values=__lowerCAmelCase) lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) lowerCAmelCase = model(pixel_values=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase_ : Any = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[int] = False def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False): """simple docstring""" lowerCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase = [] for i in range(self.model_tester.batch_size): lowerCAmelCase = {} lowerCAmelCase = torch.ones( size=(self.model_tester.n_targets,) , device=__lowerCAmelCase , dtype=torch.long) lowerCAmelCase = torch.ones( self.model_tester.n_targets , 4 , device=__lowerCAmelCase , dtype=torch.float) labels.append(__lowerCAmelCase) lowerCAmelCase = labels return inputs_dict def a_ ( self): """simple docstring""" lowerCAmelCase = YolosModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear)) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) lowerCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True # in YOLOS, the seq_len is different lowerCAmelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) lowerCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) lowerCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase = len(__lowerCAmelCase) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) lowerCAmelCase = 1 self.assertEqual(out_len + added_hidden_states , len(__lowerCAmelCase)) lowerCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def a_ ( self): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase = model_class(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase)) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(__lowerCAmelCase) , __lowerCAmelCase) # YOLOS has a different seq_length lowerCAmelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__lowerCAmelCase) @slow def a_ ( self): """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = YolosModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) def snake_case__ ( ) -> Any: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self): """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""") if is_vision_available() else None @slow def a_ ( self): """simple docstring""" lowerCAmelCase = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""").to(__lowerCAmelCase) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""").to(__lowerCAmelCase) # forward pass with torch.no_grad(): lowerCAmelCase = model(inputs.pixel_values) # verify outputs lowerCAmelCase = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , __lowerCAmelCase) lowerCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__lowerCAmelCase , ) lowerCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4)) # verify postprocessing lowerCAmelCase = image_processor.post_process_object_detection( __lowerCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] lowerCAmelCase = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(__lowerCAmelCase) lowerCAmelCase = [75, 75, 17, 63, 17] lowerCAmelCase = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(__lowerCAmelCase) self.assertEqual(len(results["""scores"""]) , 5) self.assertTrue(torch.allclose(results["""scores"""] , __lowerCAmelCase , atol=1E-4)) self.assertSequenceEqual(results["""labels"""].tolist() , __lowerCAmelCase) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , __lowerCAmelCase))
370
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowercase = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowercase = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __lowercase = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): '''simple docstring''' def a_ ( self): """simple docstring""" if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , ): """simple docstring""" lowerCAmelCase = len(references[0]) if any(len(__lowerCAmelCase) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") lowerCAmelCase = [[refs[i] for refs in references] for i in range(__lowerCAmelCase)] lowerCAmelCase = TER( normalized=__lowerCAmelCase , no_punct=__lowerCAmelCase , asian_support=__lowerCAmelCase , case_sensitive=__lowerCAmelCase , ) lowerCAmelCase = sb_ter.corpus_score(__lowerCAmelCase , __lowerCAmelCase) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
370
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any]=None ): '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Optional[Any] = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase_ (_lowerCAmelCase : List[str] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main __UpperCamelCase : Union[str, Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCAmelCase , id=_lowerCAmelCase )
327
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path __UpperCamelCase : int = quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" , revision=_lowerCAmelCase )
327
1
def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: assert x is not None assert y is not None SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCamelCase__ ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): SCREAMING_SNAKE_CASE : Tuple = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE : Tuple = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE : Dict = "" SCREAMING_SNAKE_CASE : Tuple = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowerCamelCase : Any = "AGGTAB" _lowerCamelCase : str = "GXTXAYB" _lowerCamelCase : List[str] = 4 _lowerCamelCase : Optional[int] = "GTAB" _lowerCamelCase : Optional[int] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
710
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class lowercase : '''simple docstring''' UpperCAmelCase : str UpperCAmelCase : str = None @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : List[str] , snake_case : List[Any] , snake_case : int , snake_case : str , **snake_case : Dict ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : Union[str, Any] , snake_case : List[str] ): '''simple docstring''' raise NotImplementedError def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCamelCase_ ( cls : Tuple ): '''simple docstring''' return f'''`pip install {cls.pip_package or cls.name}`''' class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[Any] = 'optuna' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : str , **snake_case : str ): '''simple docstring''' return run_hp_search_optuna(snake_case , snake_case , snake_case , **snake_case ) def lowerCamelCase_ ( self : List[str] , snake_case : int ): '''simple docstring''' return default_hp_space_optuna(snake_case ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : int = 'ray' UpperCAmelCase : Any = '\'ray[tune]\'' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_ray_available() def lowerCamelCase_ ( self : Union[str, Any] , snake_case : List[str] , snake_case : int , snake_case : str , **snake_case : Any ): '''simple docstring''' return run_hp_search_ray(snake_case , snake_case , snake_case , **snake_case ) def lowerCamelCase_ ( self : str , snake_case : Dict ): '''simple docstring''' return default_hp_space_ray(snake_case ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Tuple = 'sigopt' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[str] , snake_case : int , snake_case : str , **snake_case : str ): '''simple docstring''' return run_hp_search_sigopt(snake_case , snake_case , snake_case , **snake_case ) def lowerCamelCase_ ( self : Dict , snake_case : int ): '''simple docstring''' return default_hp_space_sigopt(snake_case ) class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Any = 'wandb' @staticmethod def lowerCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def lowerCamelCase_ ( self : Optional[Any] , snake_case : List[str] , snake_case : int , snake_case : str , **snake_case : int ): '''simple docstring''' return run_hp_search_wandb(snake_case , snake_case , snake_case , **snake_case ) def lowerCamelCase_ ( self : Optional[Any] , snake_case : Any ): '''simple docstring''' return default_hp_space_wandb(snake_case ) _lowerCamelCase : Dict = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __a ( ) -> str: SCREAMING_SNAKE_CASE : Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : Any = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
308
0
def UpperCamelCase ( _A : int )-> bool: """simple docstring""" A__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
491
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] )-> Any: """simple docstring""" A__ = OmegaConf.load(_A ) A__ = torch.load(_A , map_location="cpu" )["model"] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = "first_stage_model." for key in keys: if key.startswith(_A ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = "model.diffusion_model." for key in keys: if key.startswith(_A ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**_A ).eval() vqvae.load_state_dict(_A ) A__ = UNetLDMModel(**_A ).eval() unet.load_state_dict(_A ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_A , ) A__ = LDMPipeline(_A , _A , _A ) pipeline.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) UpperCAmelCase_ : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
491
1
from __future__ import annotations from math import gcd def A( snake_case_ , snake_case_ = 2 , snake_case_ = 1 , snake_case_ = 3 , ): """simple docstring""" if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(snake_case_ , snake_case_ , snake_case_ ) -> int: return (pow(snake_case_ , 2 ) + step) % modulus for _ in range(snake_case_ ): # These track the position within the cycle detection logic. lowercase__: List[Any] = seed lowercase__: Union[str, Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowercase__: Dict = rand_fn(snake_case_ , snake_case_ , snake_case_ ) lowercase__: str = rand_fn(snake_case_ , snake_case_ , snake_case_ ) lowercase__: Dict = rand_fn(snake_case_ , snake_case_ , snake_case_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowercase__: Dict = gcd(hare - tortoise , snake_case_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowercase__: Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) UpperCamelCase = parser.parse_args() UpperCamelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: UpperCamelCase = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
715
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = """new-model""" if is_tf_available(): class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = NewModelConfig @require_tf class _a ( unittest.TestCase ): '''simple docstring''' @slow def __lowercase ( self) -> int: '''simple docstring''' lowercase__: Tuple = "bert-base-cased" lowercase__: List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: int = TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Dict: '''simple docstring''' lowercase__: Optional[int] = "bert-base-cased" lowercase__: List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> str: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Dict = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: str = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: List[str] = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Dict = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: int = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: str = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: int = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowercase__: Tuple = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_tensorflow_probability def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase__: List[Any] = AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_) lowercase__ , lowercase__: Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: List[Any] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def __lowercase ( self) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def __lowercase ( self) -> Dict: '''simple docstring''' lowercase__: int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowercase__: List[Any] = copy.deepcopy(model.config) lowercase__: Optional[Any] = ["FunnelBaseModel"] lowercase__: Union[str, Any] = TFAutoModel.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowercase__: Union[str, Any] = TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def __lowercase ( self) -> Dict: '''simple docstring''' try: AutoConfig.register("new-model" , UpperCAmelCase_) lowercase__: Any = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__: Tuple = BertModelTester(self).get_config() lowercase__: List[Any] = NewModelConfig(**tiny_config.to_dict()) lowercase__: Optional[int] = auto_class.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowercase__: int = auto_class.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier"): lowercase__: List[str] = TFAutoModel.from_pretrained("bert-base") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): lowercase__: Any = TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="aaaaaa") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): lowercase__: Any = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") def __lowercase ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "Use `from_pt=True` to load this model"): lowercase__: List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: lowercase__: Dict = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint lowercase__: Union[str, Any] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") with RequestCounter() as counter: lowercase__: List[str] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
120
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A__ ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any ): SCREAMING_SNAKE_CASE__: Optional[int]= multiprocessing.Manager() SCREAMING_SNAKE_CASE__: List[str]= manager.list() SCREAMING_SNAKE_CASE__: List[str]= multiprocessing.Process(target=snake_case_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A__ ( snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE__: List[str]= shutil.rmtree SCREAMING_SNAKE_CASE__: Union[str, Any]= os.rmdir SCREAMING_SNAKE_CASE__: List[Any]= os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE__: Tuple= {} with swallow_io(): with time_limit(snake_case_ ): exec(snake_case_ , snake_case_ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. SCREAMING_SNAKE_CASE__: int= rmtree SCREAMING_SNAKE_CASE__: List[Any]= rmdir SCREAMING_SNAKE_CASE__: Any= chdir @contextlib.contextmanager def A__ ( snake_case_ : int ): def signal_handler(snake_case_ : List[str] , snake_case_ : Union[str, Any] ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case_ ) signal.signal(signal.SIGALRM , snake_case_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A__ ( ): SCREAMING_SNAKE_CASE__: List[str]= WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case_ ): with contextlib.redirect_stderr(snake_case_ ): with redirect_stdin(snake_case_ ): yield @contextlib.contextmanager def A__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case_ ): yield dirname class _lowerCamelCase ( UpperCamelCase_ ): pass class _lowerCamelCase ( io.StringIO ): def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> str: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> str: raise OSError def UpperCamelCase_ ( self , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: return False class _lowerCamelCase ( contextlib._RedirectStream ): # type: ignore __a = "stdin" @contextlib.contextmanager def A__ ( snake_case_ : Dict ): if root == ".": yield return SCREAMING_SNAKE_CASE__: Tuple= os.getcwd() os.chdir(snake_case_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case_ ) def A__ ( snake_case_ : Union[str, Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Tuple= None import os SCREAMING_SNAKE_CASE__: Any= '''1''' SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Tuple= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Tuple= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: List[Any]= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: List[Any]= None import shutil SCREAMING_SNAKE_CASE__: List[str]= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Tuple= None import subprocess SCREAMING_SNAKE_CASE__: int= None # type: ignore SCREAMING_SNAKE_CASE__: Optional[int]= None import sys SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: int= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None SCREAMING_SNAKE_CASE__: Union[str, Any]= None
64
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
'''simple docstring''' import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> str: """simple docstring""" UpperCamelCase = multiprocessing.Manager() UpperCamelCase = manager.list() UpperCamelCase = multiprocessing.Process(target=_UpperCamelCase , args=(check_program, result, timeout)) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append('timed out') return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Tuple: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCamelCase = shutil.rmtree UpperCamelCase = os.rmdir UpperCamelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCamelCase = {} with swallow_io(): with time_limit(_UpperCamelCase): exec(_UpperCamelCase , _UpperCamelCase) result.append('passed') except TimeoutException: result.append('timed out') except BaseException as e: result.append(F'failed: {e}') # Needed for cleaning up. UpperCamelCase = rmtree UpperCamelCase = rmdir UpperCamelCase = chdir @contextlib.contextmanager def lowercase__ ( _UpperCamelCase) -> Optional[Any]: """simple docstring""" def signal_handler(_UpperCamelCase , _UpperCamelCase): raise TimeoutException('Timed out!') signal.setitimer(signal.ITIMER_REAL , _UpperCamelCase) signal.signal(signal.SIGALRM , _UpperCamelCase) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0) @contextlib.contextmanager def lowercase__ ( ) -> List[str]: """simple docstring""" UpperCamelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(_UpperCamelCase): with contextlib.redirect_stderr(_UpperCamelCase): with redirect_stdin(_UpperCamelCase): yield @contextlib.contextmanager def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(_UpperCamelCase): yield dirname class A__ ( _UpperCAmelCase ): '''simple docstring''' pass class A__ ( io.StringIO ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int , *_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" raise OSError def _SCREAMING_SNAKE_CASE ( self : Dict , *_SCREAMING_SNAKE_CASE : Dict , **_SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" raise OSError def _SCREAMING_SNAKE_CASE ( self : List[str] , *_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any ): """simple docstring""" raise OSError def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return False class A__ ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' snake_case__ = '''stdin''' @contextlib.contextmanager def lowercase__ ( _UpperCamelCase) -> Tuple: """simple docstring""" if root == ".": yield return UpperCamelCase = os.getcwd() os.chdir(_UpperCamelCase) try: yield except BaseException as exc: raise exc finally: os.chdir(_UpperCamelCase) def lowercase__ ( _UpperCamelCase=None) -> Union[str, Any]: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins UpperCamelCase = None UpperCamelCase = None import os UpperCamelCase = '1' UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None import shutil UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None import subprocess UpperCamelCase = None # type: ignore UpperCamelCase = None import sys UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None
705
__magic_name__ : List[str] = tuple[float, float, float] __magic_name__ : Optional[int] = tuple[float, float, float] def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = end_pointa[0] - end_pointa[0] UpperCamelCase = end_pointa[1] - end_pointa[1] UpperCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return tuple(round(_UpperCamelCase , _UpperCamelCase) for x in vector) == (0, 0, 0) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 10) -> bool: """simple docstring""" UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) return is_zero_vector(get_ad_vectors_cross(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase)
410
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase_ ( nn.Module ): def __init__( self : Tuple , __A : int , __A : int , __A : int , __A : str=0.0 , __A : Optional[int] = None , __A : str = "geglu" , __A : Optional[int] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : str = "layer_norm" , __A : bool = False , ): super().__init__() __A : Any = only_cross_attention __A : Dict = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __A : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __A : str = AdaLayerNorm(__A , __A ) elif self.use_ada_layer_norm_zero: __A : Dict = AdaLayerNormZero(__A , __A ) else: __A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A ) __A : List[str] = Attention( query_dim=__A , heads=__A , dim_head=__A , dropout=__A , bias=__A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __A : Optional[Any] = ( AdaLayerNorm(__A , __A ) if self.use_ada_layer_norm else nn.LayerNorm(__A , elementwise_affine=__A ) ) __A : Any = Attention( query_dim=__A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__A , dim_head=__A , dropout=__A , bias=__A , upcast_attention=__A , ) # is self-attn if encoder_hidden_states is none else: __A : str = None __A : int = None # 3. Feed-forward __A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A ) __A : Dict = FeedForward(__A , dropout=__A , activation_fn=__A , final_dropout=__A ) # let chunk size default to None __A : List[Any] = None __A : Union[str, Any] = 0 def lowerCAmelCase_ ( self : List[str] , __A : Optional[int] , __A : int ): # Sets chunk feed-forward __A : str = chunk_size __A : List[str] = dim def lowerCAmelCase_ ( self : Optional[int] , __A : torch.FloatTensor , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.LongTensor] = None , __A : Dict[str, Any] = None , __A : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __A : Tuple = self.norma(__A , __A ) elif self.use_ada_layer_norm_zero: __A , __A , __A , __A , __A : Union[str, Any] = self.norma( __A , __A , __A , hidden_dtype=hidden_states.dtype ) else: __A : List[str] = self.norma(__A ) __A : Tuple = cross_attention_kwargs if cross_attention_kwargs is not None else {} __A : Optional[int] = self.attna( __A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__A , **__A , ) if self.use_ada_layer_norm_zero: __A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output __A : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __A : Union[str, Any] = ( self.norma(__A , __A ) if self.use_ada_layer_norm else self.norma(__A ) ) __A : Tuple = self.attna( __A , encoder_hidden_states=__A , attention_mask=__A , **__A , ) __A : Union[str, Any] = attn_output + hidden_states # 3. Feed-forward __A : Tuple = self.norma(__A ) if self.use_ada_layer_norm_zero: __A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __A : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __A : List[str] = torch.cat( [self.ff(__A ) for hid_slice in norm_hidden_states.chunk(__A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __A : List[Any] = self.ff(__A ) if self.use_ada_layer_norm_zero: __A : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output __A : Any = ff_output + hidden_states return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Union[str, Any] , __A : int , __A : Optional[int] = None , __A : int = 4 , __A : float = 0.0 , __A : str = "geglu" , __A : bool = False , ): super().__init__() __A : Any = int(dim * mult ) __A : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __A : Tuple = GELU(__A , __A ) if activation_fn == "gelu-approximate": __A : int = GELU(__A , __A , approximate="""tanh""" ) elif activation_fn == "geglu": __A : List[str] = GEGLU(__A , __A ) elif activation_fn == "geglu-approximate": __A : Any = ApproximateGELU(__A , __A ) __A : Optional[int] = nn.ModuleList([] ) # project in self.net.append(__A ) # project dropout self.net.append(nn.Dropout(__A ) ) # project out self.net.append(nn.Linear(__A , __A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__A ) ) def lowerCAmelCase_ ( self : Any , __A : Union[str, Any] ): for module in self.net: __A : List[Any] = module(__A ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] , __A : int , __A : int , __A : str = "none" ): super().__init__() __A : Dict = nn.Linear(__A , __A ) __A : List[Any] = approximate def lowerCAmelCase_ ( self : str , __A : Optional[Any] ): if gate.device.type != "mps": return F.gelu(__A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCAmelCase_ ( self : List[Any] , __A : Optional[int] ): __A : Union[str, Any] = self.proj(__A ) __A : Tuple = self.gelu(__A ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Union[str, Any] , __A : int , __A : int ): super().__init__() __A : Optional[int] = nn.Linear(__A , dim_out * 2 ) def lowerCAmelCase_ ( self : Tuple , __A : Tuple ): if gate.device.type != "mps": return F.gelu(__A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCAmelCase_ ( self : int , __A : Dict ): __A , __A : Dict = self.proj(__A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__A ) class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] , __A : int , __A : int ): super().__init__() __A : Tuple = nn.Linear(__A , __A ) def lowerCAmelCase_ ( self : int , __A : Tuple ): __A : List[str] = self.proj(__A ) return x * torch.sigmoid(1.7_0_2 * x ) class lowerCamelCase_ ( nn.Module ): def __init__( self : int , __A : str , __A : str ): super().__init__() __A : Optional[Any] = nn.Embedding(__A , __A ) __A : Any = nn.SiLU() __A : Optional[Any] = nn.Linear(__A , embedding_dim * 2 ) __A : Optional[int] = nn.LayerNorm(__A , elementwise_affine=__A ) def lowerCAmelCase_ ( self : str , __A : Any , __A : Tuple ): __A : List[Any] = self.linear(self.silu(self.emb(__A ) ) ) __A , __A : Union[str, Any] = torch.chunk(__A , 2 ) __A : str = self.norm(__A ) * (1 + scale) + shift return x class lowerCamelCase_ ( nn.Module ): def __init__( self : Tuple , __A : Union[str, Any] , __A : int ): super().__init__() __A : Any = CombinedTimestepLabelEmbeddings(__A , __A ) __A : Any = nn.SiLU() __A : Tuple = nn.Linear(__A , 6 * embedding_dim , bias=__A ) __A : Union[str, Any] = nn.LayerNorm(__A , elementwise_affine=__A , eps=1e-6 ) def lowerCAmelCase_ ( self : Tuple , __A : Any , __A : Union[str, Any] , __A : Dict , __A : Optional[int]=None ): __A : Tuple = self.linear(self.silu(self.emb(__A , __A , hidden_dtype=__A ) ) ) __A , __A , __A , __A , __A , __A : List[Any] = emb.chunk(6 , dim=1 ) __A : str = self.norm(__A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase_ ( nn.Module ): def __init__( self : Dict , __A : int , __A : int , __A : int , __A : Optional[str] = None , __A : float = 1e-5 ): super().__init__() __A : Optional[Any] = num_groups __A : Tuple = eps if act_fn is None: __A : Union[str, Any] = None else: __A : Tuple = get_activation(__A ) __A : Optional[Any] = nn.Linear(__A , out_dim * 2 ) def lowerCAmelCase_ ( self : List[Any] , __A : List[Any] , __A : Optional[int] ): if self.act: __A : Union[str, Any] = self.act(__A ) __A : List[Any] = self.linear(__A ) __A : Dict = emb[:, :, None, None] __A , __A : str = emb.chunk(2 , dim=1 ) __A : str = F.group_norm(__A , self.num_groups , eps=self.eps ) __A : Any = x * (1 + scale) + shift return x
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
from typing import TYPE_CHECKING from ....utils import _LazyModule __a : int = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
706
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowercase = Features({"""text""": Value("""string""" )} ) lowercase = Features({"""labels""": ClassLabel} ) lowercase = "text" lowercase = "labels" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCamelCase = copy.deepcopy(self ) UpperCamelCase = self.label_schema.copy() UpperCamelCase = features[self.label_column] UpperCamelCase = label_schema return task_template @property def __lowerCAmelCase ( self ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
414
0
def UpperCamelCase( __UpperCamelCase : list ,__UpperCamelCase : list ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): if index == number_of_items: return 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[int] = knapsack(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ : Optional[Any] = values[index] + knapsack( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,max_weight - weights[index] ,index + 1 ) return max(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
171
def UpperCamelCase( __UpperCamelCase : list ,__UpperCamelCase : list ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): if index == number_of_items: return 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Optional[int] = knapsack(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ : Optional[Any] = values[index] + knapsack( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,max_weight - weights[index] ,index + 1 ) return max(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
171
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class a_ ( snake_case ): UpperCAmelCase : Dict = """time_series_transformer""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , a_ : Optional[Union[str, bool]] = "mean" , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 3_2 , a_ : int = 3_2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : bool = True , a_ : str = "gelu" , a_ : int = 6_4 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 1_0_0 , a_ : float = 0.0_2 , a_ : Optional[int]=True , **a_ : Tuple , ) -> Optional[int]: # time series specific configuration snake_case: Dict =prediction_length snake_case: Any =context_length or prediction_length snake_case: str =distribution_output snake_case: List[str] =loss snake_case: Optional[Any] =input_size snake_case: Optional[Any] =num_time_features snake_case: List[str] =lags_sequence snake_case: Union[str, Any] =scaling snake_case: List[str] =num_dynamic_real_features snake_case: Any =num_static_real_features snake_case: Dict =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case: Dict =cardinality else: snake_case: Dict =[0] if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case: List[Any] =embedding_dimension else: snake_case: str =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case: Any =num_parallel_samples # Transformer architecture configuration snake_case: Union[str, Any] =input_size * len(a_ ) + self._number_of_features snake_case: List[Any] =d_model snake_case: int =encoder_attention_heads snake_case: Optional[int] =decoder_attention_heads snake_case: str =encoder_ffn_dim snake_case: List[Any] =decoder_ffn_dim snake_case: str =encoder_layers snake_case: List[str] =decoder_layers snake_case: List[Any] =dropout snake_case: Union[str, Any] =attention_dropout snake_case: Optional[int] =activation_dropout snake_case: str =encoder_layerdrop snake_case: Optional[int] =decoder_layerdrop snake_case: Tuple =activation_function snake_case: List[Any] =init_std snake_case: Union[str, Any] =use_cache super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Tuple ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
347
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') a = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : List[str] = CamembertTokenizer UpperCAmelCase : Dict = CamembertTokenizerFast UpperCAmelCase : List[str] = True UpperCAmelCase : str = True def UpperCamelCase ( self : str ) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case: Dict =CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Tuple ) -> List[Any]: snake_case: Any ='<pad>' snake_case: Dict =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def UpperCamelCase ( self : Optional[Any] ) -> List[str]: snake_case: List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(a_ ) , 1_0_0_4 ) def UpperCamelCase ( self : Dict ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def UpperCamelCase ( self : List[Any] ) -> Dict: snake_case: Tuple =CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) snake_case: List[Any] =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case: str ='I was born in 92000, and this is falsé.' snake_case: Optional[int] =tokenizer.encode(a_ ) snake_case: int =rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) snake_case: Any =tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case: Union[str, Any] =rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case: Any =tokenizer.convert_ids_to_tokens(a_ ) snake_case: int =rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCamelCase ( self : Dict ) -> int: if not self.test_rust_tokenizer: return snake_case: Tuple =self.get_tokenizer() snake_case: Union[str, Any] =self.get_rust_tokenizer() snake_case: Tuple ='I was born in 92000, and this is falsé.' snake_case: Dict =tokenizer.tokenize(a_ ) snake_case: Optional[int] =rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) snake_case: Optional[Any] =tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case: Optional[Any] =rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) snake_case: Any =self.get_rust_tokenizer() snake_case: Union[str, Any] =tokenizer.encode(a_ ) snake_case: List[Any] =rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # fmt: off snake_case: List[Any] ={'input_ids': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case: Any =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=a_ , )
347
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : list[list[int]] = [[0 for _ in range(_lowerCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): _lowerCamelCase : Optional[int] = 1 for n in range(m + 1 ): for k in range(1 , _lowerCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCAmelCase : Optional[Any] = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: _lowerCAmelCase : Dict = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
46
'''simple docstring''' import argparse import os import re import packaging.version A_ = "examples/" A_ = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A_ = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A_ = "README.md" def A_ ( snake_case , snake_case , snake_case ): with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[str] = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE:Tuple = replace.replace("VERSION" , snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = re_pattern.sub(snake_case , snake_case ) with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(snake_case ) def A_ ( snake_case ): for folder, directories, fnames in os.walk(snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(snake_case , snake_case ) , snake_case , pattern="examples" ) def A_ ( snake_case , snake_case=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case , snake_case , snake_case ) if not patch: update_version_in_examples(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:int = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE:int = "1. Want to contribute a new model?" with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE:Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE:str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE:Optional[Any] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(snake_case ) def A_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE:str = f.read() SCREAMING_SNAKE_CASE:Tuple = REPLACE_PATTERNS["init"][0].search(snake_case ).groups()[0] return packaging.version.parse(snake_case ) def A_ ( snake_case=False ): SCREAMING_SNAKE_CASE:Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE:Any = default_version.base_version elif patch: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE:str = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE:Optional[int] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case , patch=snake_case ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def A_ ( ): SCREAMING_SNAKE_CASE:int = get_version() SCREAMING_SNAKE_CASE:int = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE:Optional[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE:Any = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case ) == 0: SCREAMING_SNAKE_CASE:Union[str, Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
143
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : BigBirdConfig lowerCAmelCase__ : jnp.dtype = jnp.floataa lowerCAmelCase__ : bool = True def _UpperCAmelCase ( self: Any ) -> Optional[Any]: '''simple docstring''' super().setup() __UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self: Union[str, Any] , *__lowerCAmelCase: int , **__lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : int = FlaxBigBirdForNaturalQuestionsModule def __lowerCAmelCase ( A_ : int , A_ : List[Any] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Dict ) -> int: def cross_entropy(A_ : List[str] , A_ : int , A_ : List[str]=None ): __UpperCAmelCase = logits.shape[-1] __UpperCAmelCase = (labels[..., None] == jnp.arange(A_ )[None]).astype("f4" ) __UpperCAmelCase = jax.nn.log_softmax(A_ , axis=-1 ) __UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __UpperCAmelCase = reduction(A_ ) return loss __UpperCAmelCase = partial(A_ , reduction=jnp.mean ) __UpperCAmelCase = cross_entropy(A_ , A_ ) __UpperCAmelCase = cross_entropy(A_ , A_ ) __UpperCAmelCase = cross_entropy(A_ , A_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : str = "google/bigbird-roberta-base" lowerCAmelCase__ : int = 3000 lowerCAmelCase__ : int = 1_0500 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 3 lowerCAmelCase__ : int = 1 lowerCAmelCase__ : int = 5 # tx_args lowerCAmelCase__ : float = 3E-5 lowerCAmelCase__ : float = 0.0 lowerCAmelCase__ : int = 2_0000 lowerCAmelCase__ : float = 0.0_095 lowerCAmelCase__ : str = "bigbird-roberta-natural-questions" lowerCAmelCase__ : str = "training-expt" lowerCAmelCase__ : str = "data/nq-training.jsonl" lowerCAmelCase__ : str = "data/nq-validation.jsonl" def _UpperCAmelCase ( self: Tuple ) -> Optional[Any]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__lowerCAmelCase ) __UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) __UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : int lowerCAmelCase__ : int = 4096 # no dynamic padding on TPUs def __call__( self: Any , __lowerCAmelCase: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = self.collate_fn(__lowerCAmelCase ) __UpperCAmelCase = jax.tree_util.tree_map(__lowerCAmelCase , __lowerCAmelCase ) return batch def _UpperCAmelCase ( self: str , __lowerCAmelCase: Optional[int] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self.fetch_inputs(features["input_ids"] ) __UpperCAmelCase = { "input_ids": jnp.array(__lowerCAmelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(__lowerCAmelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: list ) -> str: '''simple docstring''' __UpperCAmelCase = [self._fetch_inputs(__lowerCAmelCase ) for ids in input_ids] return zip(*__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: list ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [1 for _ in range(len(__lowerCAmelCase ) )] while len(__lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowerCAmelCase ( A_ : List[Any] , A_ : Optional[int] , A_ : List[Any]=None ) -> Optional[Any]: if seed is not None: __UpperCAmelCase = dataset.shuffle(seed=A_ ) for i in range(len(A_ ) // batch_size ): __UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A_ ) @partial(jax.pmap , axis_name="batch" ) def __lowerCAmelCase ( A_ : int , A_ : List[Any] , **A_ : int ) -> Optional[Any]: def loss_fn(A_ : List[Any] ): __UpperCAmelCase = model_inputs.pop("start_labels" ) __UpperCAmelCase = model_inputs.pop("end_labels" ) __UpperCAmelCase = model_inputs.pop("pooled_labels" ) __UpperCAmelCase = state.apply_fn(**A_ , params=A_ , dropout_rng=A_ , train=A_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs return state.loss_fn( A_ , A_ , A_ , A_ , A_ , A_ , ) __UpperCAmelCase , __UpperCAmelCase = jax.random.split(A_ ) __UpperCAmelCase = jax.value_and_grad(A_ ) __UpperCAmelCase , __UpperCAmelCase = grad_fn(state.params ) __UpperCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) __UpperCAmelCase = jax.lax.pmean(A_ , "batch" ) __UpperCAmelCase = state.apply_gradients(grads=A_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def __lowerCAmelCase ( A_ : Any , **A_ : Tuple ) -> Optional[Any]: __UpperCAmelCase = model_inputs.pop("start_labels" ) __UpperCAmelCase = model_inputs.pop("end_labels" ) __UpperCAmelCase = model_inputs.pop("pooled_labels" ) __UpperCAmelCase = state.apply_fn(**A_ , params=state.params , train=A_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = outputs __UpperCAmelCase = state.loss_fn(A_ , A_ , A_ , A_ , A_ , A_ ) __UpperCAmelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): """simple docstring""" lowerCAmelCase__ : Callable = struct.field(pytree_node=snake_case ) @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : Args lowerCAmelCase__ : Callable lowerCAmelCase__ : Callable lowerCAmelCase__ : Callable lowerCAmelCase__ : Callable lowerCAmelCase__ : wandb lowerCAmelCase__ : Callable = None def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: Dict , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: List[Any] , __lowerCAmelCase: Tuple=None ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = model.params __UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=__lowerCAmelCase , tx=__lowerCAmelCase , loss_fn=__lowerCAmelCase , ) if ckpt_dir is not None: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = restore_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } __UpperCAmelCase , __UpperCAmelCase = build_tx(**__lowerCAmelCase ) __UpperCAmelCase = train_state.TrainState( step=__lowerCAmelCase , apply_fn=model.__call__ , params=__lowerCAmelCase , tx=__lowerCAmelCase , opt_state=__lowerCAmelCase , ) __UpperCAmelCase = args __UpperCAmelCase = data_collator __UpperCAmelCase = lr __UpperCAmelCase = params __UpperCAmelCase = jax_utils.replicate(__lowerCAmelCase ) return state def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: str , __lowerCAmelCase: List[Any] , __lowerCAmelCase: int ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = self.args __UpperCAmelCase = len(__lowerCAmelCase ) // args.batch_size __UpperCAmelCase = jax.random.PRNGKey(0 ) __UpperCAmelCase = jax.random.split(__lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = get_batched_dataset(__lowerCAmelCase , args.batch_size , seed=__lowerCAmelCase ) __UpperCAmelCase = 0 for batch in tqdm(__lowerCAmelCase , total=__lowerCAmelCase , desc=F'''Running EPOCH-{epoch}''' ): __UpperCAmelCase = self.data_collator(__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.train_step_fn(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: __UpperCAmelCase = jax_utils.unreplicate(state.step ) __UpperCAmelCase = running_loss.item() / i __UpperCAmelCase = self.scheduler_fn(state_step - 1 ) __UpperCAmelCase = self.evaluate(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__lowerCAmelCase ) ) self.logger.log(__lowerCAmelCase , commit=__lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = get_batched_dataset(__lowerCAmelCase , self.args.batch_size ) __UpperCAmelCase = len(__lowerCAmelCase ) // self.args.batch_size __UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) __UpperCAmelCase = 0 for batch in tqdm(__lowerCAmelCase , total=__lowerCAmelCase , desc="Evaluating ... " ): __UpperCAmelCase = self.data_collator(__lowerCAmelCase ) __UpperCAmelCase = self.val_step_fn(__lowerCAmelCase , **__lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: str , __lowerCAmelCase: Optional[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = jax_utils.unreplicate(__lowerCAmelCase ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... " ) self.model_save_fn(__lowerCAmelCase , params=state.params ) with open(os.path.join(__lowerCAmelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__lowerCAmelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(__lowerCAmelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __lowerCAmelCase ) print("DONE" ) def __lowerCAmelCase ( A_ : Optional[int] , A_ : Optional[Any] ) -> Union[str, Any]: print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=" ... " ) with open(os.path.join(A_ , "flax_model.msgpack" ) , "rb" ) as f: __UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(A_ , "opt_state.msgpack" ) , "rb" ) as f: __UpperCAmelCase = from_bytes(state.opt_state , f.read() ) __UpperCAmelCase = joblib.load(os.path.join(A_ , "args.joblib" ) ) __UpperCAmelCase = joblib.load(os.path.join(A_ , "data_collator.joblib" ) ) with open(os.path.join(A_ , "training_state.json" ) , "r" ) as f: __UpperCAmelCase = json.load(A_ ) __UpperCAmelCase = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def __lowerCAmelCase ( A_ : Tuple , A_ : List[str] , A_ : str , A_ : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase = num_train_steps - warmup_steps __UpperCAmelCase = optax.linear_schedule(init_value=A_ , end_value=A_ , transition_steps=A_ ) __UpperCAmelCase = optax.linear_schedule(init_value=A_ , end_value=1e-7 , transition_steps=A_ ) __UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __lowerCAmelCase ( A_ : List[str] , A_ : str , A_ : Dict , A_ : Any , A_ : Any ) -> Optional[Any]: def weight_decay_mask(A_ : str ): __UpperCAmelCase = traverse_util.flatten_dict(A_ ) __UpperCAmelCase = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(A_ ) __UpperCAmelCase = scheduler_fn(A_ , A_ , A_ , A_ ) __UpperCAmelCase = optax.adamw(learning_rate=A_ , weight_decay=A_ , mask=A_ ) return tx, lr
701
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase__ ( snake_case ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( __lowerCAmelCase: ArgumentParser ) -> Tuple: '''simple docstring''' raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self: List[str] ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
286
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase : """simple docstring""" @staticmethod def A__ ( *_lowerCamelCase : Dict , **_lowerCamelCase : Optional[Any] ): pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def A__ ( self : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): A__ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A__ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def A__ ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): A__ = vqa_pipeline(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ [{'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}], [{'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}], ] , ) @require_torch def A__ ( self : Optional[Any] ): A__ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = '''How many cats are there?''' A__ = vqa_pipeline(image=_lowerCamelCase , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [{'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}] ) A__ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( _lowerCamelCase , [{'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase )}] ) @slow @require_torch def A__ ( self : Optional[Any] ): A__ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = '''How many cats are there?''' A__ = vqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) A__ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) A__ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [[{'''score''': 0.8_799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def A__ ( self : Optional[Any] ): pass
571
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __snake_case : Optional[int] = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['ViTFeatureExtractor'] __snake_case : Any = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __lowerCAmelCase =False try: __lowerCAmelCase =_is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class __magic_name__ : def __init__( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str = None ,__SCREAMING_SNAKE_CASE : list = [] ): UpperCAmelCase = 0 UpperCAmelCase = choices UpperCAmelCase = prompt if sys.platform == "win32": UpperCAmelCase = "*" else: UpperCAmelCase = "➔ " def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] ,3_2 ,__SCREAMING_SNAKE_CASE ) else: forceWrite(self.choices[index] ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ): if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(__SCREAMING_SNAKE_CASE ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Direction ,__SCREAMING_SNAKE_CASE : int = 1 ): UpperCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__SCREAMING_SNAKE_CASE ) move_cursor(__SCREAMING_SNAKE_CASE ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def _UpperCAmelCase ( self : Optional[int] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def _UpperCAmelCase ( self : Any ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def _UpperCAmelCase ( self : int ): move_cursor(len(self.choices ) - self.position ,"DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def _UpperCAmelCase ( self : int ): move_cursor(len(self.choices ) - self.position ,"DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__SCREAMING_SNAKE_CASE )] for number in range(1_0 )] ) def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = int(chr(self.current_selection ) ) UpperCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,__SCREAMING_SNAKE_CASE ) else: return else: return def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt ,"\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" ,"\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" ,"\n" ) UpperCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(__SCREAMING_SNAKE_CASE ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position ,"UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase = int(builtins.input() ) except ValueError: UpperCAmelCase = default_choice else: UpperCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,"UP" ) clear_line() self.write_choice(__SCREAMING_SNAKE_CASE ,"\n" ) return choice
405
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if index == r: for j in range(_lowerCAmelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase = arr[i] combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index + 1 , _lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 0 , _lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCAmelCase =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
405
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : List[Any] = LEDConfig UpperCamelCase_ : Tuple = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Union[str, Any]=37 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=20 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Tuple=4 , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : str = eos_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : List[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : Dict = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : int = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : Tuple = prepare_led_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tf.concat( [tf.zeros_like(UpperCAmelCase_ )[:, :-1], tf.ones_like(UpperCAmelCase_ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : int = global_attention_mask return config, inputs_dict def _A ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : str = TFLEDModel(config=UpperCAmelCase_ ).get_decoder() SCREAMING_SNAKE_CASE : str = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : List[str] = input_ids[:1, :] SCREAMING_SNAKE_CASE : Any = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # first forward pass SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : List[str] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Tuple = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase_ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : int = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : int = False UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ ) def _A ( self : Optional[int] ): self.config_tester.run_common_tests() def _A ( self : int ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : List[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = self.model_tester.seq_length SCREAMING_SNAKE_CASE : List[str] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(UpperCAmelCase_ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_decoder_attentions_output(UpperCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _A ( self : List[Any] ): pass def _A ( self : Optional[Any] ): # TODO: Head-masking not yet implement pass def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) snake_case = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : int = (1, 1024, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE : Any = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Optional[int] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Any = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 , rtol=1E-3 )
62
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
226
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" A__ : Any = MODEL_FOR_MASKED_LM_MAPPING A__ : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def snake_case__ ( self ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def snake_case__ ( self ) -> Optional[int]: A__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) A__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"}, ] , ) A__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser", }, ] , ) A__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def snake_case__ ( self ) -> Optional[int]: A__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) A__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) A__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) A__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, ] , ) A__ = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def snake_case__ ( self ) -> Any: A__ = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() A__ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow @require_torch def snake_case__ ( self ) -> Any: A__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(SCREAMING_SNAKE_CASE__ ) @slow @require_tf def snake_case__ ( self ) -> int: A__ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {"sequence": "My name is John", "score": 0.0_0_8, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_0_7, "token": 1573, "token_str": " Chris"}, ] , ) A__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_5_1, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_1_4, "token": 12790, "token_str": " Lyon", }, ] , ) A__ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {"sequence": "My name is Patrick", "score": 0.0_0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_0_0, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_0_0, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def snake_case__ ( self ) -> List[Any]: A__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) A__ = None A__ = None self.run_pipeline_test(SCREAMING_SNAKE_CASE__ , [] ) @require_tf def snake_case__ ( self ) -> Optional[Any]: A__ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) A__ = None A__ = None self.run_pipeline_test(SCREAMING_SNAKE_CASE__ , [] ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) A__ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = fill_masker.tokenizer A__ = fill_masker.model A__ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) A__ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) A__ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(SCREAMING_SNAKE_CASE__ ): fill_masker("This is" ) self.run_test_top_k(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.run_test_targets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.run_test_top_k_targets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.fill_mask_with_duplicate_targets_and_top_k(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.fill_mask_with_multiple_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = tokenizer.get_vocab() A__ = sorted(vocab.keys() )[:2] # Pipeline argument A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , targets=SCREAMING_SNAKE_CASE__ ) A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) A__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE__ ) A__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE__ ) ) # Call argument A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=SCREAMING_SNAKE_CASE__ ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) A__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , SCREAMING_SNAKE_CASE__ ) A__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(SCREAMING_SNAKE_CASE__ ) ) # Score equivalence A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=SCREAMING_SNAKE_CASE__ ) A__ = [top_mask["token_str"] for top_mask in outputs] A__ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ): A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=SCREAMING_SNAKE_CASE__ ) A__ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , nested_simplify(SCREAMING_SNAKE_CASE__ ) ) # Raises with invalid with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="" ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , top_k=2 ) A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ] , ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , nested_simplify(SCREAMING_SNAKE_CASE__ ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = tokenizer.get_vocab() A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # top_k=2, ntargets=3 A__ = sorted(vocab.keys() )[:3] A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=SCREAMING_SNAKE_CASE__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A__ = [el["token_str"] for el in sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x["score"] , reverse=SCREAMING_SNAKE_CASE__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(SCREAMING_SNAKE_CASE__ ).issubset(SCREAMING_SNAKE_CASE__ ): A__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=SCREAMING_SNAKE_CASE__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , nested_simplify(SCREAMING_SNAKE_CASE__ ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.get_vocab() # String duplicates + id duplicates A__ = sorted(vocab.keys() )[:3] A__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A__ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=SCREAMING_SNAKE_CASE__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 3 ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: A__ = FillMaskPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) A__ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ], [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "score": ANY(SCREAMING_SNAKE_CASE__ ), "token": ANY(SCREAMING_SNAKE_CASE__ ), "token_str": ANY(SCREAMING_SNAKE_CASE__ )}, ], ] , )
718
"""simple docstring""" from timeit import timeit UpperCamelCase = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = 0 A__ = len(UpperCAmelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = len(UpperCAmelCase_ ) // 2 A__ = len(UpperCAmelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCAmelCase_ ) ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" if len(UpperCAmelCase_ ) <= 2: return True if s[0] == s[len(UpperCAmelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" return s == s[::-1] def _lowerCamelCase ( UpperCAmelCase_ : str ) -> None: """simple docstring""" A__ = F"""all({name}(key) is value for key, value in test_data.items())""" A__ = F"""from __main__ import test_data, {name}""" A__ = 500000 A__ = timeit(stmt=UpperCAmelCase_, setup=UpperCAmelCase_, number=UpperCAmelCase_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'{key:21} {value}') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
562
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
339
from __future__ import annotations from collections.abc import Callable def _a ( UpperCamelCase_ : Callable[[int | float], int | float] , UpperCamelCase_ : int | float , UpperCamelCase_ : int | float , UpperCamelCase_ : int = 100 , ) -> float: """simple docstring""" lowerCAmelCase__ = x_start lowerCAmelCase__ = fnc(UpperCamelCase_ ) lowerCAmelCase__ = 0.0 for _ in range(UpperCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCAmelCase__ = (x_end - x_start) / steps + xa lowerCAmelCase__ = fnc(UpperCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCAmelCase__ = xa lowerCAmelCase__ = fxa return area if __name__ == "__main__": def _a ( UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') a_ = 10 while i <= 10_0000: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
339
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCamelCase__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' UpperCamelCase__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' UpperCamelCase__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: return float((preds == labels).mean() ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="binary" ) -> Union[str, Any]: UpperCAmelCase__ : Dict = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = float(fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ , average=lowerCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Union[str, Any] = {} for id_pred, label in zip(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : List[str] = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" UpperCAmelCase__ : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCAmelCase__ : int = [(pred, label)] UpperCAmelCase__ , UpperCAmelCase__ : Tuple = [], [] for question, preds_labels in question_map.items(): UpperCAmelCase__ , UpperCAmelCase__ : str = zip(*lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ , average='''macro''' ) fas.append(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCAmelCase__ ) ) ems.append(lowerCAmelCase__ ) UpperCAmelCase__ : Dict = float(sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) ) UpperCAmelCase__ : Any = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = float(fa_score(y_true=lowerCAmelCase__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase_ ( self : Dict , _A : int , _A : int ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_A , _A )} elif self.config_name == "cb": return acc_and_fa(_A , _A , fa_avg='''macro''' ) elif self.config_name == "record": UpperCAmelCase__ : List[str] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] UpperCAmelCase__ : Optional[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_A , _A )[0] elif self.config_name == "multirc": return evaluate_multirc(_A , _A ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_A , _A )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
312
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase__ : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) UpperCAmelCase__ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCAmelCase__ : int = CLIPTextModel(_A ) UpperCAmelCase__ : str = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase__ : Dict = 77 UpperCAmelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Tuple , _A : List[Any] , _A : Dict=0 ): '''simple docstring''' if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Optional[Any] = torch.manual_seed(_A ) else: UpperCAmelCase__ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase__ : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : Dict = RobertaSeriesModelWithTransformation(_A ) UpperCAmelCase__ : str = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**_A ) UpperCAmelCase__ : Any = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase__ : int = '''A photo of an astronaut''' UpperCAmelCase__ : Dict = alt_pipe(**_A ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Union[str, Any] = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : str = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase__ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : Dict = RobertaSeriesModelWithTransformation(_A ) UpperCAmelCase__ : Any = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**_A ) UpperCAmelCase__ : Tuple = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Dict = alt_pipe(**_A ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Optional[int] = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_A ) UpperCAmelCase__ : Dict = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Optional[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Any = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Any = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase__ : Union[str, Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_A , safety_checker=_A ) UpperCAmelCase__ : List[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Optional[int] = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
312
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCAmelCase ( UpperCamelCase_ ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCamelCase_ , """_dynamo""" ): return False return isinstance(UpperCamelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = True ): __SCREAMING_SNAKE_CASE = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __SCREAMING_SNAKE_CASE = is_compiled_module(UpperCamelCase_ ) if is_compiled: __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = model.module if not keep_fpaa_wrapper: __SCREAMING_SNAKE_CASE = getattr(UpperCamelCase_ , """forward""" ) __SCREAMING_SNAKE_CASE = model.__dict__.pop("""_original_forward""" , UpperCamelCase_ ) if original_forward is not None: while hasattr(UpperCamelCase_ , """__wrapped__""" ): __SCREAMING_SNAKE_CASE = forward.__wrapped__ if forward == original_forward: break __SCREAMING_SNAKE_CASE = forward if getattr(UpperCamelCase_ , """_converted_to_transformer_engine""" , UpperCamelCase_ ): convert_model(UpperCamelCase_ , to_transformer_engine=UpperCamelCase_ ) if is_compiled: __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = compiled_model return model def _lowerCAmelCase ( ): PartialState().wait_for_everyone() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase_ , UpperCamelCase_ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase_ , UpperCamelCase_ ) @contextmanager def _lowerCAmelCase ( **UpperCamelCase_ ): for key, value in kwargs.items(): __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCAmelCase ( UpperCamelCase_ ): if not hasattr(UpperCamelCase_ , """__qualname__""" ) and not hasattr(UpperCamelCase_ , """__name__""" ): __SCREAMING_SNAKE_CASE = getattr(UpperCamelCase_ , """__class__""" , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCamelCase_ , """__name__""" ): return obj.__name__ return str(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): for key, value in source.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = destination.setdefault(UpperCamelCase_ , {} ) merge_dicts(UpperCamelCase_ , UpperCamelCase_ ) else: __SCREAMING_SNAKE_CASE = value return destination def _lowerCAmelCase ( UpperCamelCase_ = None ): if port is None: __SCREAMING_SNAKE_CASE = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
155
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''speech_to_text''' __lowercase : List[str] = ['''past_key_values'''] __lowercase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=1_0_0_0_0 , lowerCAmelCase__=1_2 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=6_0_0_0 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=8_0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = max_source_positions __SCREAMING_SNAKE_CASE = max_target_positions __SCREAMING_SNAKE_CASE = num_conv_layers __SCREAMING_SNAKE_CASE = list(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = conv_channels __SCREAMING_SNAKE_CASE = input_feat_per_channel __SCREAMING_SNAKE_CASE = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
155
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase_ : Optional[Any] = 'scheduler_config.json' class UpperCAmelCase__ ( lowerCAmelCase__ ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 3 lowerCAmelCase_ = 4 lowerCAmelCase_ = 5 @dataclass class UpperCAmelCase__ ( lowerCAmelCase__ ): lowerCAmelCase_ = 42 class UpperCAmelCase__ : lowerCAmelCase_ = SCHEDULER_CONFIG_NAME lowerCAmelCase_ = ["dtype"] lowerCAmelCase_ = [] lowerCAmelCase_ = True @classmethod def lowerCamelCase_ ( cls : int,__A : Optional[Any] = None,__A : Union[str, Any] = None,__A : int=False,**__A : Tuple,): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase,subfolder=_lowerCamelCase,return_unused_kwargs=_lowerCamelCase,**_lowerCamelCase,) _lowerCamelCase , _lowerCamelCase : str = cls.from_config(_lowerCamelCase,return_unused_kwargs=_lowerCamelCase,**_lowerCamelCase ) if hasattr(_lowerCamelCase,"create_state" ) and getattr(_lowerCamelCase,"has_state",_lowerCamelCase ): _lowerCamelCase : str = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCamelCase_ ( self : Optional[int],__A : List[Any],__A : Union[str, Any] = False,**__A : Tuple ): self.save_config(save_directory=_lowerCamelCase,push_to_hub=_lowerCamelCase,**_lowerCamelCase ) @property def lowerCamelCase_ ( self : Dict ): return self._get_compatibles() @classmethod def lowerCamelCase_ ( cls : List[Any] ): _lowerCamelCase : int = list(set([cls.__name__] + cls._compatibles ) ) _lowerCamelCase : int = importlib.import_module(__name__.split("." )[0] ) _lowerCamelCase : List[str] = [ getattr(_lowerCamelCase,_lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase,_lowerCamelCase ) ] return compatible_classes def A_ ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : Tuple[int] ): """simple docstring""" assert len(lowerCamelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCamelCase_ ) - x.ndim) ) , lowerCamelCase_ ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0.9_9_9 , _lowerCAmelCase : Union[str, Any]=jnp.floataa ): """simple docstring""" def alpha_bar(_lowerCAmelCase : Any ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 _lowerCamelCase : Tuple = [] for i in range(lowerCamelCase_ ): _lowerCamelCase : Dict = i / num_diffusion_timesteps _lowerCamelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCamelCase_ ) / alpha_bar(lowerCamelCase_ ) , lowerCamelCase_ ) ) return jnp.array(lowerCamelCase_ , dtype=lowerCamelCase_ ) @flax.struct.dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Dict ): _lowerCamelCase : Optional[Any] = scheduler.config if config.trained_betas is not None: _lowerCamelCase : Dict = jnp.asarray(config.trained_betas,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _lowerCamelCase : int = jnp.linspace(config.beta_start,config.beta_end,config.num_train_timesteps,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase : Optional[Any] = ( jnp.linspace( config.beta_start**0.5,config.beta_end**0.5,config.num_train_timesteps,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase : List[str] = betas_for_alpha_bar(config.num_train_timesteps,dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) _lowerCamelCase : int = 1.0 - betas _lowerCamelCase : List[Any] = jnp.cumprod(_lowerCamelCase,axis=0 ) return cls( alphas=_lowerCamelCase,betas=_lowerCamelCase,alphas_cumprod=_lowerCamelCase,) def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase : List[str] = state.alphas_cumprod _lowerCamelCase : Optional[int] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[str] = sqrt_alpha_prod.flatten() _lowerCamelCase : List[Any] = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) _lowerCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() _lowerCamelCase : int = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( snake_case_ : Dict ) -> tuple: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Tuple ) -> np.ndarray: __snake_case = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(a__ , a__ ) # Predict target for test data __snake_case = xgb.predict(a__ ) __snake_case = predictions.reshape(len(a__ ) , 1 ) return predictions def lowerCamelCase__ ( ) -> None: __snake_case = fetch_california_housing() __snake_case , __snake_case = data_handling(a__ ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( a__ , a__ , test_size=0.25 , random_state=1 ) __snake_case = xgboost(a__ , a__ , a__ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(a__ , a__ )}""" ) print(f"""Mean Square Error : {mean_squared_error(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
592
from math import isqrt, loga def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): _UpperCamelCase = False return [i for i in range(2 , a__ ) if is_prime[i]] def lowerCAmelCase__ ( a__ = 800_800 , a__ = 800_800 ) ->int: '''simple docstring''' _UpperCamelCase = degree * loga(a__ ) _UpperCamelCase = int(a__ ) _UpperCamelCase = calculate_prime_numbers(a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
547
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
69
from numpy import exp, pi, sqrt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
69
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case__ : Dict = str(bin(snake_case__ ) ) binary_number += "0" * shift_amount return binary_number def _A ( snake_case__ : int , snake_case__ : int ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case__ : Tuple = str(bin(snake_case__ ) )[2:] if shift_amount >= len(snake_case__ ): return "0b0" snake_case__ : Dict = binary_number[: len(snake_case__ ) - shift_amount] return "0b" + shifted_binary_number def _A ( snake_case__ : int , snake_case__ : int ): if number >= 0: # Get binary representation of positive number snake_case__ : Optional[Any] = '''0''' + str(bin(snake_case__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number snake_case__ : Tuple = len(bin(snake_case__ )[3:] ) # Find 2's complement of number snake_case__ : Optional[Any] = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] snake_case__ : Optional[Any] = ( '''1''' + '''0''' * (binary_number_length - len(snake_case__ )) + binary_number ) if shift_amount >= len(snake_case__ ): return "0b" + binary_number[0] * len(snake_case__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
261
0
from __future__ import annotations def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
604
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = 20 lowerCAmelCase__ = self._get_uniform_logits(batch_size=2 ,length=a_ ) # tweak scores to not be uniform anymore lowerCAmelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase__ = jax.nn.softmax(a_ ,axis=-1 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_sharper(a_ ,scores.copy() ,cur_len=a_ ) ,axis=-1 ) lowerCAmelCase__ = jax.nn.softmax(temp_dist_warper_smoother(a_ ,scores.copy() ,cur_len=a_ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create ramp distribution lowerCAmelCase__ = np.broadcast_to(np.arange(a_ )[None, :] ,(batch_size, vocab_size) ).copy() lowerCAmelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = top_k_warp(a_ ,a_ ,cur_len=a_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCAmelCase__ = np.broadcast_to(np.arange(a_ )[None, :] ,(batch_size, length) ).copy() lowerCAmelCase__ = top_k_warp_safety_check(a_ ,a_ ,cur_len=a_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = 10 lowerCAmelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase__ = np.exp(top_p_warp(a_ ,a_ ,cur_len=a_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(a_ ,a_ ,atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase__ = np.broadcast_to(np.arange(a_ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCAmelCase__ = top_p_warp(a_ ,a_ ,cur_len=a_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=a_ ) # check that min length is applied at length 5 lowerCAmelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCAmelCase__ = 5 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = min_dist_processor(a_ ,a_ ,cur_len=a_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = 15 lowerCAmelCase__ = min_dist_processor(a_ ,a_ ,cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCAmelCase__ = 1 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = logits_processor(a_ ,a_ ,cur_len=a_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = logits_processor(a_ ,a_ ,cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 20 lowerCAmelCase__ = 4 lowerCAmelCase__ = 0 lowerCAmelCase__ = 5 lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ ,eos_token_id=a_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCAmelCase__ = 4 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = logits_processor(a_ ,a_ ,cur_len=a_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase__ = 3 lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = logits_processor(a_ ,a_ ,cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) ,a_ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=a_ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ ,eos_token_id=a_ ) lowerCAmelCase__ = 10 # no processor list lowerCAmelCase__ = temp_dist_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = top_k_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = top_p_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = min_dist_proc(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = bos_dist_proc(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = eos_dist_proc(a_ ,a_ ,cur_len=a_ ) # with processor list lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(a_ ,a_ ,cur_len=a_ ) # scores should be equal self.assertTrue(jnp.allclose(a_ ,a_ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 4 lowerCAmelCase__ = 10 lowerCAmelCase__ = 15 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 lowerCAmelCase__ = 15 # dummy input_ids and scores lowerCAmelCase__ = ids_tensor((batch_size, sequence_length) ,a_ ) lowerCAmelCase__ = input_ids.copy() lowerCAmelCase__ = self._get_uniform_logits(a_ ,a_ ) lowerCAmelCase__ = scores.copy() # instantiate all dist processors lowerCAmelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase__ = FlaxTopKLogitsWarper(3 ) lowerCAmelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=a_ ) lowerCAmelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) lowerCAmelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ ,eos_token_id=a_ ) lowerCAmelCase__ = 10 # no processor list def run_no_processor_list(a_ ,a_ ,a_ ): lowerCAmelCase__ = temp_dist_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = top_k_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = top_p_warp(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = min_dist_proc(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = bos_dist_proc(a_ ,a_ ,cur_len=a_ ) lowerCAmelCase__ = eos_dist_proc(a_ ,a_ ,cur_len=a_ ) return scores # with processor list def run_processor_list(a_ ,a_ ,a_ ): lowerCAmelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase__ = processor(a_ ,a_ ,cur_len=a_ ) return scores lowerCAmelCase__ = jax.jit(a_ ) lowerCAmelCase__ = jax.jit(a_ ) lowerCAmelCase__ = jitted_run_no_processor_list(a_ ,a_ ,a_ ) lowerCAmelCase__ = jitted_run_processor_list(a_ ,a_ ,a_ ) # scores should be equal self.assertTrue(jnp.allclose(a_ ,a_ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
604
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowerCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __A ( ): lowerCAmelCase : str = Github(os.environ["GITHUB_TOKEN"] ) lowerCAmelCase : Any = g.get_repo("huggingface/transformers" ) lowerCAmelCase : Optional[Any] = repo.get_issues(state="open" ) for issue in open_issues: lowerCAmelCase : str = sorted([comment for comment in issue.get_comments()] ,key=lambda a_ : i.created_at ,reverse=a_ ) lowerCAmelCase : List[str] = comments[0] if len(a_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
525
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase = random.Random() def __A ( a_ : Union[str, Any] ,a_ : Tuple=1.0 ,a_ : Optional[int]=None ,a_ : Union[str, Any]=None ): if rng is None: lowerCAmelCase : str = global_rng lowerCAmelCase : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , a_ , a_=7 , a_=400 , a_=2_000 , a_=1 , a_=0.0 , a_=16_000 , a_=True , a_=True , ): lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = min_seq_length lowerCAmelCase : Dict = max_seq_length lowerCAmelCase : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : Union[str, Any] = feature_size lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Dict = sampling_rate lowerCAmelCase : int = return_attention_mask lowerCAmelCase : Optional[Any] = do_normalize def _lowerCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , a_=False , a_=False ): def _flatten(a_ ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCAmelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : List[str] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs class lowerCamelCase ( _A , unittest.TestCase ): snake_case_ = WavaVecaFeatureExtractor def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def _lowerCamelCase ( self , a_ ): self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Dict = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase : Optional[int] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase : Any = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCAmelCase : Any = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase : int = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase : Tuple = np.asarray(a_ ) lowerCAmelCase : int = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase : Union[str, Any] = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def _lowerCamelCase ( self ): lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : Optional[int] = [None, 1_600, None] for max_length, padding in zip(a_ , a_ ): lowerCAmelCase : List[Any] = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors="np" ) lowerCAmelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Optional[int] = range(800 , 1_400 , 200 ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase : str = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : Any = [None, 1_600, None] for max_length, padding in zip(a_ , a_ ): lowerCAmelCase : Dict = feat_extract(a_ , max_length=a_ , padding=a_ ) lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Dict = feat_extract( a_ , truncation=a_ , max_length=1_000 , padding="max_length" , return_tensors="np" ) lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = feat_extract( a_ , truncation=a_ , max_length=1_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = feat_extract( a_ , truncation=a_ , max_length=2_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) @require_torch def _lowerCamelCase ( self ): import torch lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : List[Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowerCamelCase ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(a_ ) lowerCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(a_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
525
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowerCAmelCase = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) _lowerCAmelCase = "sshleifer/student_marian_en_ro_6_1" _lowerCAmelCase = "sshleifer/tiny-mbart" @require_torch class A ( _lowerCamelCase ): '''simple docstring''' def a_ (self , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , ) -> Optional[Any]: __UpperCamelCase : Any = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) __UpperCamelCase : List[Any] = TrainerState.load_from_json(os.path.join(A__ , "trainer_state.json" ) ).log_history if not do_eval: return __UpperCamelCase : Optional[Any] = [log for log in logs if "eval_loss" in log.keys()] __UpperCamelCase : int = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __UpperCamelCase : Any = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , A__ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def a_ (self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def a_ (self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def a_ (self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def a_ (self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def a_ (self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def a_ (self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=A__ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def a_ (self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def a_ (self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def a_ (self , _UpperCAmelCase ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __UpperCamelCase : Optional[Any] = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } __UpperCamelCase : Tuple = experiments[experiment_id] __UpperCamelCase : Any = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} __UpperCamelCase : Any = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["extra_args_str"] ) __UpperCamelCase : Tuple = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["n_matches"] ) @slow def a_ (self ) -> Any: __UpperCamelCase : Union[str, Any] = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=A__ , ) # Check metrics __UpperCamelCase : Optional[int] = TrainerState.load_from_json(os.path.join(A__ , "trainer_state.json" ) ).log_history __UpperCamelCase : Optional[Any] = [log for log in logs if "eval_loss" in log.keys()] __UpperCamelCase : Optional[int] = eval_metrics[0] __UpperCamelCase : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , A__ ) # test if do_predict saves generations and metrics __UpperCamelCase : Tuple = os.listdir(A__ ) __UpperCamelCase : Tuple = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def a_ (self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(_UpperCAmelCase ) -> Tuple[int, float]: __UpperCamelCase : Dict = "--skip_memory_metrics 0" __UpperCamelCase : str = self.run_trainer( max_len=1_2_8 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics __UpperCamelCase : int = TrainerState.load_from_json(Path(A__ , "trainer_state.json" ) ).log_history __UpperCamelCase : str = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**2_0 ) __UpperCamelCase : Any = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**2_0 ) __UpperCamelCase : Any = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __UpperCamelCase : List[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __UpperCamelCase : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig __UpperCamelCase : Any = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __UpperCamelCase : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __UpperCamelCase : Dict = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 3E-3 , _UpperCAmelCase = "adafactor" , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , ) -> Dict: __UpperCamelCase : Optional[Any] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() __UpperCamelCase : List[str] = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() __UpperCamelCase : str = "\n --do_predict\n ".split() __UpperCamelCase : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __UpperCamelCase : Optional[Any] = get_gpu_count() __UpperCamelCase : str = get_torch_dist_unique_port() __UpperCamelCase : int = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() __UpperCamelCase : Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: __UpperCamelCase : Optional[int] = ["run_translation.py"] + args with patch.object(A__ , "argv" , A__ ): main() return output_dir
700
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) __UpperCamelCase : List[Any] = hex_num[0] == "-" if is_negative: __UpperCamelCase : str = hex_num[1:] try: __UpperCamelCase : Optional[int] = int(snake_case__ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) __UpperCamelCase : Tuple = "" while int_num > 0: __UpperCamelCase : Union[str, Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
399
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class _a ( __a ): """simple docstring""" A_ = '''fnet''' def __init__( self : Optional[int] , lowercase_ : Optional[Any]=32_000 , lowercase_ : Dict=768 , lowercase_ : Dict=12 , lowercase_ : str=3_072 , lowercase_ : Union[str, Any]="gelu_new" , lowercase_ : int=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[Any]=4 , lowercase_ : Any=0.0_2 , lowercase_ : List[str]=1e-12 , lowercase_ : str=False , lowercase_ : Dict=512 , lowercase_ : int=3 , lowercase_ : Any=1 , lowercase_ : List[Any]=2 , **lowercase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = initializer_range lowercase_ = type_vocab_size lowercase_ = layer_norm_eps lowercase_ = use_tpu_fourier_optimizations lowercase_ = tpu_short_seq_length
451
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class _a ( __a ): """simple docstring""" A_ = '''camembert''' def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any]=30_522 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Dict=12 , lowercase_ : Tuple=3_072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[Any]=512 , lowercase_ : Optional[int]=2 , lowercase_ : str=0.0_2 , lowercase_ : int=1e-12 , lowercase_ : str=1 , lowercase_ : List[str]=0 , lowercase_ : int=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=None , **lowercase_ : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = classifier_dropout class _a ( __a ): """simple docstring""" @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
451
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) ->Union[str, Any]: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=lowerCamelCase , ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Tuple: '''simple docstring''' __a = OpenLlamaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) ->Optional[int]: '''simple docstring''' __a = True __a = OpenLlamaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) ->Union[str, Any]: '''simple docstring''' __a = OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) ->Union[str, Any]: '''simple docstring''' __a = True __a = True __a = OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )['hidden_states'][0] __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )['hidden_states'][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __a =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __a =(OpenLlamaForCausalLM,) if is_torch_available() else () __a =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __a =False __a =False def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = OpenLlamaModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*lowerCamelCase ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict['input_ids'] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = 'single_label_classification' __a = input_dict['input_ids'] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = 'multi_label_classification' __a = input_dict['input_ids'] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCamelCase ( self , lowerCamelCase ) ->int: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size ) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = OpenLlamaModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() __a = original_model(lowerCamelCase ).last_hidden_state __a = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = {'type': scaling_type, 'factor': 10.0} __a = OpenLlamaModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() __a = scaled_model(lowerCamelCase ).last_hidden_state __a = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Tuple = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : List[str], lowerCamelCase : Any=13, lowerCamelCase : Any=7, lowerCamelCase : List[Any]=True, lowerCamelCase : List[str]=True, lowerCamelCase : List[Any]=True, lowerCamelCase : str=True, lowerCamelCase : Union[str, Any]=99, lowerCamelCase : List[str]=32, lowerCamelCase : int=2, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Tuple=37, lowerCamelCase : int="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : Tuple=0.1, lowerCamelCase : Dict=512, lowerCamelCase : Optional[Any]=16, lowerCamelCase : str=2, lowerCamelCase : List[str]=0.02, lowerCamelCase : int=3, lowerCamelCase : Any=4, lowerCamelCase : Tuple=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 384 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = 128 lowercase__ = 2 lowercase__ = 9 lowercase__ = 1 lowercase__ = None def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCamelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = TFConvBertModel(config=lowerCamelCase ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : Any, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : int ): '''simple docstring''' lowercase__ = TFConvBertForMaskedLM(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForSequenceClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : Any, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFConvBertForMultipleChoice(config=lowerCamelCase ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : str, lowerCamelCase : List[Any], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForTokenClassification(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str], lowerCamelCase : int, lowerCamelCase : Optional[int], lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFConvBertForQuestionAnswering(config=lowerCamelCase ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = TFConvBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = True if hasattr(lowerCamelCase, '''use_cache''' ): lowercase__ = True lowercase__ = getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, '''key_length''', lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase ) lowercase__ = model_class(lowerCamelCase ) lowercase__ = len(model(lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase, saved_model=lowerCamelCase ) lowercase__ = os.path.join(lowerCamelCase, '''saved_model''', '''1''' ) lowercase__ = tf.keras.models.load_model(lowerCamelCase ) lowercase__ = model(lowerCamelCase ) if self.is_encoder_decoder: lowercase__ = outputs['''encoder_hidden_states'''] lowercase__ = outputs['''encoder_attentions'''] else: lowercase__ = outputs['''hidden_states'''] lowercase__ = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, '''key_length''', lowerCamelCase ) lowercase__ = getattr(self.model_tester, '''key_length''', lowerCamelCase ) def check_decoder_attentions_output(lowerCamelCase : Union[str, Any] ): lowercase__ = len(lowerCamelCase ) self.assertEqual(out_len % 2, 0 ) lowercase__ = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(lowerCamelCase : Optional[int] ): lowercase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states, lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) self.assertEqual(config.output_hidden_states, lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) self.assertEqual(config.output_hidden_states, lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCamelCase ) lowercase__ = model(self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states, lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(lowerCamelCase )[0] lowercase__ = [1, 6, 768] self.assertEqual(output.shape, lowerCamelCase ) lowercase__ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCamelCase, atol=1E-4 )
183
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : Dict=13, lowerCamelCase : Optional[int]=7, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : List[Any]=99, lowerCamelCase : Any=32, lowerCamelCase : List[str]=5, lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Union[str, Any]=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : List[str]=0.1, lowerCamelCase : Optional[Any]=512, lowerCamelCase : int=16, lowerCamelCase : str=2, lowerCamelCase : int=0.02, lowerCamelCase : int=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = True lowercase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] lowercase__ = [1, 11, 50_265] self.assertEqual(list(output.shape ), lowerCamelCase ) # compare the actual values for a slice. lowercase__ = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) ) @slow def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=lowerCamelCase ) lowercase__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) lowercase__ = model(lowerCamelCase )[0] # compare the actual values for a slice. lowercase__ = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], lowerCamelCase, atol=1E-4 ) )
183
1
'''simple docstring''' from scipy.stats import pearsonr import datasets _UpperCamelCase : int = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _UpperCamelCase : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _UpperCamelCase : int = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class snake_case__ ( datasets.Metric): def A ( self : str ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def A ( self : str , _A : str , _A : List[str] , _A : Optional[int]=False ) -> Tuple: if return_pvalue: UpperCAmelCase_ : List[Any] = pearsonr(_A , _A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A , _A )[0] )}
216
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _UpperCamelCase : List[Any] = 0 _UpperCamelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCamelCase : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _UpperCamelCase : List[str] = tuple[int, int] class snake_case__ : def __init__( self : Dict , _A : int , _A : int , _A : int , _A : int , _A : int , _A : Node | None , ) -> None: UpperCAmelCase_ : str = pos_x UpperCAmelCase_ : Union[str, Any] = pos_y UpperCAmelCase_ : int = (pos_y, pos_x) UpperCAmelCase_ : Tuple = goal_x UpperCAmelCase_ : List[Any] = goal_y UpperCAmelCase_ : List[str] = g_cost UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[str] = self.calculate_heuristic() UpperCAmelCase_ : str = self.g_cost + self.h_cost def A ( self : Union[str, Any] ) -> float: UpperCAmelCase_ : List[str] = self.pos_x - self.goal_x UpperCAmelCase_ : Dict = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_A ) + abs(_A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , _A : Node ) -> bool: return self.f_cost < other.f_cost class snake_case__ : def __init__( self : List[Any] , _A : TPosition , _A : TPosition ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _A ) UpperCAmelCase_ : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _A ) UpperCAmelCase_ : Dict = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : List[Any] = False def A ( self : Optional[int] ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_A ) self.closed_nodes.append(_A ) UpperCAmelCase_ : Optional[Any] = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase_ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) return [self.start.pos] def A ( self : Any , _A : Node ) -> list[Node]: UpperCAmelCase_ : Optional[Any] = [] for action in delta: UpperCAmelCase_ : List[str] = parent.pos_x + action[1] UpperCAmelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A , _A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _A , ) ) return successors def A ( self : List[Any] , _A : Node | None ) -> list[TPosition]: UpperCAmelCase_ : List[Any] = node UpperCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[Any] = current_node.parent path.reverse() return path class snake_case__ : def __init__( self : int , _A : TPosition , _A : TPosition ) -> None: UpperCAmelCase_ : Any = AStar(_A , _A ) UpperCAmelCase_ : Dict = AStar(_A , _A ) UpperCAmelCase_ : Union[str, Any] = False def A ( self : Union[str, Any] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : Optional[Any] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : Optional[int] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _A , _A ) self.fwd_astar.closed_nodes.append(_A ) self.bwd_astar.closed_nodes.append(_A ) UpperCAmelCase_ : int = current_bwd_node UpperCAmelCase_ : int = current_fwd_node UpperCAmelCase_ : List[Any] = { self.fwd_astar: self.fwd_astar.get_successors(_A ), self.bwd_astar: self.bwd_astar.get_successors(_A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase_ : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_A ) else: astar.open_nodes.append(_A ) return [self.fwd_astar.start.pos] def A ( self : List[Any] , _A : Node , _A : Node ) -> list[TPosition]: UpperCAmelCase_ : Dict = self.fwd_astar.retrace_path(_A ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _UpperCamelCase : Optional[int] = (0, 0) _UpperCamelCase : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _UpperCamelCase : str = time.time() _UpperCamelCase : int = AStar(init, goal) _UpperCamelCase : Any = a_star.search() _UpperCamelCase : str = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _UpperCamelCase : Union[str, Any] = time.time() _UpperCamelCase : Dict = BidirectionalAStar(init, goal) _UpperCamelCase : List[str] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
216
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase ( __lowerCamelCase : int ) ->bool: _SCREAMING_SNAKE_CASE = int(number**0.5 ) return number == sq * sq def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) ->tuple[int, int]: _SCREAMING_SNAKE_CASE = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _SCREAMING_SNAKE_CASE = x_den * y_den * z_den _SCREAMING_SNAKE_CASE = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase ( __lowerCamelCase : int = 35 ) ->int: _SCREAMING_SNAKE_CASE = set() _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = Fraction(0 ) _SCREAMING_SNAKE_CASE = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _SCREAMING_SNAKE_CASE = x_num * y_den + x_den * y_num _SCREAMING_SNAKE_CASE = x_den * y_den _SCREAMING_SNAKE_CASE = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 _SCREAMING_SNAKE_CASE = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _SCREAMING_SNAKE_CASE = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = int(sqrt(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = int(sqrt(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 _SCREAMING_SNAKE_CASE = x_num * y_num _SCREAMING_SNAKE_CASE = x_den * y_num + x_num * y_den _SCREAMING_SNAKE_CASE = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 _SCREAMING_SNAKE_CASE = x_num * x_num * y_num * y_num _SCREAMING_SNAKE_CASE = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = int(sqrt(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = int(sqrt(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _SCREAMING_SNAKE_CASE = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
314
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if len(__lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) _SCREAMING_SNAKE_CASE = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->Dict: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->Any: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def lowerCamelCase ( __lowerCamelCase : list ) ->tuple[list, list, list, list]: if len(__lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_length // 2 _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = [ [a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase ) ] _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase ( __lowerCamelCase : list ) ->tuple[int, int]: return len(__lowerCamelCase ), len(matrix[0] ) def lowerCamelCase ( __lowerCamelCase : list ) ->None: print("""\n""".join(str(__lowerCamelCase ) for line in matrix ) ) def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if matrix_dimensions(__lowerCamelCase ) == (2, 2): return default_matrix_multiplication(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = split_matrix(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = split_matrix(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = matrix_addition(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) # construct the new matrix from our 4 quadrants _SCREAMING_SNAKE_CASE = [] for i in range(len(__lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if matrix_dimensions(__lowerCamelCase )[1] != matrix_dimensions(__lowerCamelCase )[0]: _SCREAMING_SNAKE_CASE = ( """Unable to multiply these matrices, please check the dimensions.\n""" F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_dimensions(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_dimensions(__lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _SCREAMING_SNAKE_CASE = max(*__lowerCamelCase , *__lowerCamelCase ) _SCREAMING_SNAKE_CASE = int(math.pow(2 , math.ceil(math.loga(__lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE = matrixa _SCREAMING_SNAKE_CASE = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , __lowerCamelCase ) # Removing the additional zeros for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
314
1
"""simple docstring""" from collections import defaultdict from math import gcd def __lowerCamelCase ( lowerCAmelCase__ = 150_0000 ): A__ = defaultdict(lowerCAmelCase__ ) A__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,lowerCAmelCase__ ,2 ): if gcd(lowerCAmelCase__ ,lowerCAmelCase__ ) > 1: continue A__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCAmelCase__ ,limit + 1 ,lowerCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
554
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return 1 if input_a == input_a else 0 def __lowerCamelCase ( ): assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
554
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase( lowercase__ ): '''simple docstring''' __a : List[Any] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __a , __a ): __lowerCamelCase : str = False super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase : List[Any] = self.tokenizer __lowerCamelCase : List[str] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __lowerCamelCase : Any = self.image_processor(__a , return_tensors=__a ) if text is not None: __lowerCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __lowerCamelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case_ ( self ): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase( lowercase__ ): '''simple docstring''' __a : int = (DDPMParallelScheduler,) def snake_case_ ( self , **__a ): __lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__a ) return config def snake_case_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def snake_case_ ( self ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def snake_case_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def snake_case_ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a ) def snake_case_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def snake_case_ ( self ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case_ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=__a ) def snake_case_ ( self ): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config() __lowerCamelCase : Any = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def snake_case_ ( self ): __lowerCamelCase : Tuple = self.scheduler_classes[0] __lowerCamelCase : Optional[int] = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : Any = len(__a ) __lowerCamelCase : Dict = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[Any] = self.dummy_sample_deter + 0.1 __lowerCamelCase : Any = self.dummy_sample_deter - 0.1 __lowerCamelCase : Optional[Any] = samplea.shape[0] __lowerCamelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCamelCase : Optional[int] = torch.arange(__a )[0:3, None].repeat(1 , __a ) __lowerCamelCase : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCamelCase : Dict = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Dict = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : Union[str, Any] = scheduler_class(**__a ) __lowerCamelCase : Optional[Any] = len(__a ) __lowerCamelCase : int = self.dummy_model() __lowerCamelCase : Dict = self.dummy_sample_deter __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual __lowerCamelCase : List[str] = model(__a , __a ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : List[str] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample __lowerCamelCase : int = pred_prev_sample __lowerCamelCase : Dict = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Any = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : List[str] = self.scheduler_classes[0] __lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCamelCase : Tuple = scheduler_class(**__a ) __lowerCamelCase : Tuple = len(__a ) __lowerCamelCase : str = self.dummy_model() __lowerCamelCase : Dict = self.dummy_sample_deter __lowerCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual __lowerCamelCase : str = model(__a , __a ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step(__a , __a , __a , generator=__a ).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config() __lowerCamelCase : Tuple = scheduler_class(**__a ) __lowerCamelCase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a ) __lowerCamelCase : str = scheduler.timesteps for i, timestep in enumerate(__a ): if i == len(__a ) - 1: __lowerCamelCase : Tuple = -1 else: __lowerCamelCase : Dict = timesteps[i + 1] __lowerCamelCase : Optional[Any] = scheduler.previous_timestep(__a ) __lowerCamelCase : Dict = prev_t.item() self.assertEqual(__a , __a ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : Dict = scheduler_class(**__a ) __lowerCamelCase : Any = [100, 87, 50, 51, 0] with self.assertRaises(__a , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__a ) def snake_case_ ( self ): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : Dict = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : List[str] = [100, 87, 50, 1, 0] __lowerCamelCase : Dict = len(__a ) with self.assertRaises(__a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__a )
594
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __lowercase : int ="""3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Optional[Any] ={ """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] =[ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowercase : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
550
0
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self , snake_case_=None ) -> int: _UpperCAmelCase = data _UpperCAmelCase = None def __repr__( self ) -> Tuple: _UpperCAmelCase = [] _UpperCAmelCase = self while temp: string_rep.append(F"""{temp.data}""" ) _UpperCAmelCase = temp.next return "->".join(__a ) def A__ ( A__ ) -> Optional[int]: '''simple docstring''' if not elements_list: raise Exception("The Elements List is empty" ) _UpperCAmelCase = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = Node(elements_list[i] ) _UpperCAmelCase = current.next return head def A__ ( A__ ) -> None: '''simple docstring''' if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def A__ ( ) -> List[Any]: '''simple docstring''' from doctest import testmod testmod() _UpperCAmelCase = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_UpperCAmelCase ) print("Elements in Reverse:" ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
426
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = ['''image_processor''', '''tokenizer'''] A__ = '''CLIPImageProcessor''' A__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __a : str=None , __a : List[Any]=None , **__a : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __a , ) __snake_case : List[str] = kwargs.pop('feature_extractor' ) __snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__a , __a ) def __call__( self : List[Any] , __a : Optional[int]=None , __a : Optional[int]=None , __a : Union[str, Any]=None , **__a : Union[str, Any] ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __snake_case : Any = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: __snake_case : str = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: __snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def A_ ( self : List[Any] , *__a : Dict , **__a : Dict ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def A_ ( self : str , *__a : Tuple , **__a : List[str] ) -> int: '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Any ) -> Any: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , ) return self.image_processor_class @property def A_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , ) return self.image_processor
286
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any=13 , lowerCamelCase__ : str=30 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[int]=32 , lowerCamelCase__ : int=5 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : int="gelu" , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : Any=0.0_2 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Dict=2 , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Dict = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = scope _UpperCAmelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCAmelCase : Tuple = num_patches + 2 def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Any ) ->Dict: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = DeiTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = DeiTForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : int = 1 _UpperCAmelCase : Optional[int] = DeiTForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = self.type_sequence_label_size _UpperCAmelCase : Optional[Any] = DeiTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Tuple = DeiTForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Optional[int] = config_and_inputs _UpperCAmelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Tuple = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase : Optional[Any] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCAmelCase : Tuple = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = DeiTModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowerCAmelCase__ ( self : int ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(lowerCamelCase__ ) _UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Tuple = [*signature.parameters.keys()] _UpperCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str]=False ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : int = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _UpperCAmelCase : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Any = model(**lowerCamelCase__ ).loss loss.backward() def lowerCAmelCase__ ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase : int = False _UpperCAmelCase : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _UpperCAmelCase : str = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() _UpperCAmelCase : str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = model(**lowerCamelCase__ ).loss loss.backward() def lowerCAmelCase__ ( self : List[str] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): _UpperCAmelCase : Any = problem_type["title"] _UpperCAmelCase : Dict = problem_type["num_labels"] _UpperCAmelCase : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: _UpperCAmelCase : List[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) _UpperCAmelCase : Union[str, Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: _UpperCAmelCase : Union[str, Any] = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = DeiTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Dict = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : int = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : Any = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCAmelCase__ ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCAmelCase : Optional[int] = self.default_image_processor _UpperCAmelCase : int = prepare_img() _UpperCAmelCase : Dict = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) _UpperCAmelCase : Any = inputs.pixel_values.to(lowerCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ )
702
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
40
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , __lowercase=0 , ) -> Dict: __UpperCamelCase :Optional[Any] = parent __UpperCamelCase :str = batch_size __UpperCamelCase :int = seq_length __UpperCamelCase :List[str] = is_training __UpperCamelCase :Any = use_input_mask __UpperCamelCase :Optional[int] = use_token_type_ids __UpperCamelCase :Union[str, Any] = use_labels __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :str = hidden_size __UpperCamelCase :Tuple = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :Tuple = intermediate_size __UpperCamelCase :Any = hidden_act __UpperCamelCase :Tuple = hidden_dropout_prob __UpperCamelCase :Optional[Any] = attention_probs_dropout_prob __UpperCamelCase :Optional[Any] = max_position_embeddings __UpperCamelCase :Union[str, Any] = type_vocab_size __UpperCamelCase :Optional[Any] = type_sequence_label_size __UpperCamelCase :Optional[int] = initializer_range __UpperCamelCase :Any = num_labels __UpperCamelCase :List[Any] = num_choices __UpperCamelCase :str = scope __UpperCamelCase :int = projection_dim def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Any = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __UpperCamelCase :int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :List[Any] = None if self.use_token_type_ids: __UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCamelCase :str = None __UpperCamelCase :str = None __UpperCamelCase :Optional[int] = None if self.use_labels: __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) __UpperCamelCase :Optional[Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :int = TFDPRContextEncoder(config=__lowercase) __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) __UpperCamelCase :Optional[Any] = model(__lowercase , token_type_ids=__lowercase) __UpperCamelCase :Any = model(__lowercase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :List[str] = TFDPRQuestionEncoder(config=__lowercase) __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) __UpperCamelCase :Optional[int] = model(__lowercase , token_type_ids=__lowercase) __UpperCamelCase :str = model(__lowercase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :List[Any] = TFDPRReader(config=__lowercase) __UpperCamelCase :int = model(__lowercase , attention_mask=__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[str] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Dict = config_and_inputs __UpperCamelCase :Tuple = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : str = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a__ : str = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} a__ : Any = False a__ : int = False a__ : Dict = False a__ : Any = False a__ : List[str] = False def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Tuple = TFDPRModelTester(self) __UpperCamelCase :Tuple = ConfigTester(self , config_class=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> int: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowercase) @slow def UpperCamelCase__ ( self) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :str = TFDPRContextEncoder.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Optional[int] = TFDPRContextEncoder.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Tuple = TFDPRQuestionEncoder.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Dict = TFDPRReader.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :str = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') __UpperCamelCase :int = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]]) # [CLS] hello, is my dog cute? [SEP] __UpperCamelCase :Optional[int] = model(__lowercase)[0] # embedding shape = (1, 768) # compare the actual values for a slice. __UpperCamelCase :List[str] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4))
167
import argparse import json import subprocess def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = [] __UpperCamelCase :Dict = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) __UpperCamelCase :Optional[Any] = subprocess.run(SCREAMING_SNAKE_CASE , shell=SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) __UpperCamelCase :Union[str, Any] = output.stdout.decode('''utf-8''' ) __UpperCamelCase :List[Any] = json.loads(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Union[str, Any] = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return values.split(''',''' ) __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __lowercase = parser.parse_args() get_runner_status(args.target_runners, args.token)
167
1
"""simple docstring""" class lowerCamelCase__ : def __init__( self : Tuple , A_ : int , A_ : List[str] , A_ : Optional[int] ): '''simple docstring''' __lowercase = name __lowercase = value __lowercase = weight def __repr__( self : Tuple ): '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return self.value def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return self.name def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self.weight def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return self.value / self.weight def lowerCAmelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __lowercase = [] for i in range(len(UpperCamelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ): """simple docstring""" __lowercase = sorted(UpperCamelCase__ , key=UpperCamelCase__ , reverse=UpperCamelCase__ ) __lowercase = [] __lowercase , __lowercase = 0.0, 0.0 for i in range(len(UpperCamelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCAmelCase_ ( ): """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCAmelCase__ =12_8022 UpperCAmelCase__ =12_8028 @require_sentencepiece class lowerCamelCase__ ( _a , unittest.TestCase ): a : Dict = MaMaaaTokenizer a : Optional[int] = False a : str = False a : Any = True def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(A_ , range(len(A_ ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(A_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __lowercase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **A_ : List[Any] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[int] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(A_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [2, 3, 4, 5, 6] , ) __lowercase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) __lowercase = tokenizer.convert_tokens_to_string(A_ ) self.assertEqual(A_ , """This is a test""" ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = {"""input_ids""": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): a : Optional[int] = """facebook/m2m100_418M""" a : str = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] a : int = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off a : Optional[int] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str ): '''simple docstring''' __lowercase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) __lowercase = 1 return cls def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 1_2_8_0_6_3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.tokenizer.get_vocab() self.assertEqual(len(A_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' self.assertIn(A_ , self.tokenizer.all_special_ids ) # fmt: off __lowercase = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __lowercase = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A_ ) __lowercase = MaMaaaTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.lang_token_to_id , A_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = """fr""" __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors="""pt""" ) __lowercase = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowercase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowercase = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowercase = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(A_ ) , { # en_XX, A, test, EOS """input_ids""": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 1_2_8_0_0_6, } , )
442
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase : Any = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *A_ : Tuple , **A_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
70
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = Dict[str, Any] lowerCamelCase : Dict = List[Prediction] @add_end_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , *A_ : int , **A_ : int ) -> Optional[int]: """simple docstring""" super().__init__(*A_ , **A_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a__ ( self : Union[str, Any] , **A_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = {} if "threshold" in kwargs: lowerCamelCase_ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : str , *A_ : Optional[int] , **A_ : Tuple ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = load_image(A_ ) lowerCamelCase_ = torch.IntTensor([[image.height, image.width]] ) lowerCamelCase_ = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCamelCase_ = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCamelCase_ = target_size return inputs def a__ ( self : Union[str, Any] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_inputs.pop('target_size' ) lowerCamelCase_ = self.model(**A_ ) lowerCamelCase_ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCamelCase_ = model_inputs['bbox'] return model_outputs def a__ ( self : str , A_ : Any , A_ : Tuple=0.9 ) -> str: """simple docstring""" lowerCamelCase_ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase_ , lowerCamelCase_ = target_size[0].tolist() def unnormalize(A_ : Dict ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCamelCase_ , lowerCamelCase_ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCamelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase_ = [unnormalize(A_ ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [dict(zip(A_ , A_ ) ) for vals in zip(scores.tolist() , A_ , A_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase_ = self.image_processor.post_process_object_detection(A_ , A_ , A_ ) lowerCamelCase_ = raw_annotations[0] lowerCamelCase_ = raw_annotation['scores'] lowerCamelCase_ = raw_annotation['labels'] lowerCamelCase_ = raw_annotation['boxes'] lowerCamelCase_ = scores.tolist() lowerCamelCase_ = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase_ = [self._get_bounding_box(A_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [ dict(zip(A_ , A_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def a__ ( self : Union[str, Any] , A_ : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = box.int().tolist() lowerCamelCase_ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
70
1
'''simple docstring''' import numpy as np def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : int = int(np.ceil((x_end - xa) / h ) ) _lowerCamelCase : str = np.zeros((n + 1,) ) _lowerCamelCase : Tuple = ya _lowerCamelCase : Tuple = xa for k in range(_lowerCAmelCase ): _lowerCamelCase : Any = f(_lowerCAmelCase , y[k] ) _lowerCamelCase : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _lowerCamelCase : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _lowerCamelCase : Optional[int] = f(x + h , y[k] + h * ka ) _lowerCamelCase : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , ): A : Any = {} if train_file is not None: A : Any = [train_file] if eval_file is not None: A : Any = [eval_file] if test_file is not None: A : str = [test_file] A : int = datasets.load_dataset('''csv''' , data_files=lowerCamelCase_ ) A : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) A : Optional[int] = features_name.pop(lowerCamelCase_ ) A : Union[str, Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) A : Any = {label: i for i, label in enumerate(lowerCamelCase_ )} A : Optional[Any] = tokenizer.model_input_names A : Optional[Any] = {} if len(lowerCamelCase_ ) == 1: for k in files.keys(): A : List[Any] = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' ) , batched=lowerCamelCase_ , ) elif len(lowerCamelCase_ ) == 2: for k in files.keys(): A : Tuple = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' , ) , batched=lowerCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A : Any = {k: v for k, v in ex.items() if k in input_names} A : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A : Dict = {k: v for k, v in ex.items() if k in input_names} A : Dict = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A : List[str] = {k: v for k, v in ex.items() if k in input_names} A : int = labelaid[ex[label_name]] yield (d, label) A : Optional[Any] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A : str = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A : Optional[int] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowercase : int = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" UpperCAmelCase_ : int = field(metadata={'''help''': '''Which column contains the label'''} ) UpperCAmelCase_ : str = field(default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The path of the training file'''} ) UpperCAmelCase_ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The path of the development file'''} ) UpperCAmelCase_ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The path of the test file'''} ) UpperCAmelCase_ : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase_ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class __lowercase : """simple docstring""" UpperCAmelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase_ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase_ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase_ : bool = field(default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase_ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def snake_case__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A , A , A , A : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) A : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): A : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase_ ) -> Dict: A : Optional[int] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A : Optional[int] = TFTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A : str = trainer.evaluate() A : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowerCamelCase_ ) return results if __name__ == "__main__": main()
542
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = "x" , lowerCamelCase_ = 10**-10 , lowerCamelCase_ = 1 , ): A : int = symbols(lowerCamelCase_ ) A : List[str] = lambdify(lowerCamelCase_ , lowerCamelCase_ ) A : Tuple = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) ) A : Optional[int] = starting_point while True: if diff_function(lowerCamelCase_ ) != 0: A : Union[str, Any] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function( lowerCamelCase_ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess A : Tuple = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
542
1
'''simple docstring''' import os def lowercase__ ( __lowercase : str = "input.txt" ) -> str: """simple docstring""" with open(os.path.join(os.path.dirname(__lowercase ) , __lowercase ) ) as input_file: __UpperCamelCase = [ [int(__lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(matrix[0] ) __UpperCamelCase = [[-1 for _ in range(__lowercase )] for _ in range(__lowercase )] for i in range(__lowercase ): __UpperCamelCase = matrix[i][0] for j in range(1 , __lowercase ): for i in range(__lowercase ): __UpperCamelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowercase ): __UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __UpperCamelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
717
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case : """simple docstring""" def __init__( self : str , __A : List[str] , __A : Optional[Any]=1_3 , __A : Any=2 , __A : List[Any]=2_4 , __A : List[str]=1_6 , __A : Tuple=True , __A : int=True , __A : Tuple=3_2 , __A : int=5 , __A : Dict=4 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : List[Any]=0.1 , __A : str=0.1 , __A : Dict=1_0 , __A : Any=0.02 , __A : Optional[Any]=None , __A : Dict=2 , __A : Optional[int]=2 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = patch_size __UpperCamelCase = max_length __UpperCamelCase = num_mel_bins __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = frequency_stride __UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase = frequency_out_dimension * time_out_dimension __UpperCamelCase = num_patches + 2 def _lowerCamelCase ( self : int ): __UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, input_values, labels def _lowerCamelCase ( self : str ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowerCamelCase ( self : List[str] , __A : str , __A : Dict , __A : Union[str, Any] ): __UpperCamelCase = ASTModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] =( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Dict =False def _lowerCamelCase ( self : Dict , __A : Optional[int] , __A : Optional[int] , __A : Tuple , __A : Optional[int] , __A : Optional[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ASTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _lowerCamelCase ( self : int ): pass def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def _lowerCamelCase ( self : Tuple ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ASTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase = torchaudio.load(__lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : Tuple ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.default_feature_extractor __UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__A ) __UpperCamelCase = self.default_feature_extractor __UpperCamelCase , __UpperCamelCase = prepare_audio() __UpperCamelCase = audio.squeeze().numpy() __UpperCamelCase = feature_extractor(__A , sampling_rate=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__A ) # verify the logits __UpperCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
434
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE :Dict = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "esm" def __init__( self : List[str] ,A : Dict=None ,A : Tuple=None ,A : Any=None ,A : Optional[Any]=7_68 ,A : Tuple=12 ,A : List[str]=12 ,A : Tuple=30_72 ,A : List[str]=0.1 ,A : List[Any]=0.1 ,A : int=10_26 ,A : List[str]=0.02 ,A : Union[str, Any]=1E-12 ,A : List[Any]="absolute" ,A : List[Any]=True ,A : Union[str, Any]=None ,A : Optional[int]=False ,A : Dict=False ,A : Tuple=None ,A : Optional[int]=None ,**A : List[Any] ,): super().__init__(pad_token_id=A ,mask_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache __A = emb_layer_norm_before __A = token_dropout __A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __A = EsmFoldConfig() elif isinstance(A ,A ): __A = EsmFoldConfig(**A ) __A = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __A = get_default_vocab_list() else: __A = vocab_list else: __A = None __A = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,A ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def UpperCamelCase_ ( self : Optional[int] ): __A = super().to_dict() if isinstance(self.esmfold_config ,A ): __A = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = None snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = 128 snake_case_ = None def UpperCamelCase_ ( self : List[Any] ): if self.trunk is None: __A = TrunkConfig() elif isinstance(self.trunk ,A ): __A = TrunkConfig(**self.trunk ) def UpperCamelCase_ ( self : Optional[Any] ): __A = asdict(self ) __A = self.trunk.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 48 snake_case_ = 1024 snake_case_ = 128 snake_case_ = 32 snake_case_ = 32 snake_case_ = 32 snake_case_ = 0 snake_case_ = 0 snake_case_ = False snake_case_ = 4 snake_case_ = 128 snake_case_ = None def UpperCamelCase_ ( self : List[Any] ): if self.structure_module is None: __A = StructureModuleConfig() elif isinstance(self.structure_module ,A ): __A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) __A = self.sequence_state_dim // self.sequence_head_width __A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCamelCase_ ( self : Tuple ): __A = asdict(self ) __A = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 384 snake_case_ = 128 snake_case_ = 16 snake_case_ = 128 snake_case_ = 12 snake_case_ = 4 snake_case_ = 8 snake_case_ = 0.1 snake_case_ = 8 snake_case_ = 1 snake_case_ = 2 snake_case_ = 7 snake_case_ = 10 snake_case_ = 1E-8 snake_case_ = 1E5 def UpperCamelCase_ ( self : Union[str, Any] ): return asdict(self ) def UpperCAmelCase ( ) -> int: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __a , unittest.TestCase): '''simple docstring''' __magic_name__ : List[str] = DDIMPipeline __magic_name__ : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __magic_name__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } __magic_name__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __magic_name__ : Any = False def lowercase_ ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) a_ =UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) a_ =DDIMScheduler() a_ ={"unet": unet, "scheduler": scheduler} return components def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_=0) -> Union[str, Any]: """simple docstring""" if str(lowerCAmelCase_).startswith("mps"): a_ =torch.manual_seed(lowerCAmelCase_) else: a_ =torch.Generator(device=lowerCAmelCase_).manual_seed(lowerCAmelCase_) a_ ={ "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase_ ( self) -> List[str]: """simple docstring""" a_ ="cpu" a_ =self.get_dummy_components() a_ =self.pipeline_class(**lowerCAmelCase_) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) a_ =self.get_dummy_inputs(lowerCAmelCase_) a_ =pipe(**lowerCAmelCase_).images a_ =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3)) a_ =np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]) a_ =np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3) def lowercase_ ( self) -> Optional[int]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def lowercase_ ( self) -> Any: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3) def lowercase_ ( self) -> Optional[int]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3) def lowercase_ ( self) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' def lowercase_ ( self) -> Dict: """simple docstring""" a_ ="google/ddpm-cifar10-32" a_ =UNetaDModel.from_pretrained(lowerCAmelCase_) a_ =DDIMScheduler() a_ =DDIMPipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_) ddim.to(lowerCAmelCase_) ddim.set_progress_bar_config(disable=lowerCAmelCase_) a_ =torch.manual_seed(0) a_ =ddim(generator=lowerCAmelCase_ , eta=0.0 , output_type="numpy").images a_ =image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) a_ =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self) -> Dict: """simple docstring""" a_ ="google/ddpm-ema-bedroom-256" a_ =UNetaDModel.from_pretrained(lowerCAmelCase_) a_ =DDIMScheduler.from_pretrained(lowerCAmelCase_) a_ =DDIMPipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_) ddpm.to(lowerCAmelCase_) ddpm.set_progress_bar_config(disable=lowerCAmelCase_) a_ =torch.manual_seed(0) a_ =ddpm(generator=lowerCAmelCase_ , output_type="numpy").images a_ =image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) a_ =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
41
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a_ =torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 a_ =model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple a_ =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a_ =logits[0, masked_index, :] a_ =logits.softmax(dim=0 ) a_ , a_ =prob.topk(k=lowercase__ , dim=0 ) a_ =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) a_ =tokenizer.mask_token a_ =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a_ =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Any = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
from math import factorial def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) a__ = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__ = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
335
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a_ ( _A , _A , _A ) -> Dict: """simple docstring""" snake_case__ = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') snake_case__ = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(_A ): os.makedirs(_A ) snake_case__ = model.state_dict() def to_tf_var_name(_A ): for patt, repl in iter(_A ): snake_case__ = name.replace(_A , _A ) return f'''bert/{name}''' def create_tf_var(_A , _A , _A ): snake_case__ = tf.dtypes.as_dtype(tensor.dtype ) snake_case__ = tf.get_variable(dtype=_A , shape=tensor.shape , name=_A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case__ = to_tf_var_name(_A ) snake_case__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case__ = torch_tensor.T snake_case__ = create_tf_var(tensor=_A , name=_A , session=_A ) tf.keras.backend.set_value(_A , _A ) snake_case__ = session.run(_A ) print(f'''Successfully created {tf_name}: {np.allclose(_A , _A )}''' ) snake_case__ = tf.train.Saver(tf.trainable_variables() ) saver.save(_A , os.path.join(_A , model_name.replace('-' , '_' ) + '.ckpt' ) ) def a_ ( _A=None ) -> List[Any]: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_A , required=_A , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=_A , default=_A , required=_A , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=_A , required=_A , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=_A , required=_A , help='Directory in which to save tensorflow model' ) snake_case__ = parser.parse_args(_A ) snake_case__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
372
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : int = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
372
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> float: """simple docstring""" __UpperCAmelCase : List[Any] = 0 while len(UpperCamelCase ) > 1: __UpperCAmelCase : Optional[int] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __UpperCAmelCase : Dict = files.index(min(UpperCamelCase ) ) temp += files[min_index] files.pop(UpperCamelCase ) files.append(UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
77
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =set() # Replace all the whitespace in our sentence _UpperCAmelCase : Dict =input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCamelCase ) == 2_6 def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Tuple =[False] * 2_6 for char in input_str: if char.islower(): _UpperCAmelCase : Dict =True elif char.isupper(): _UpperCAmelCase : List[str] =True return all(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit _UpperCAmelCase : List[Any] ='from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_faster()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_fastest()' , setup=__lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
446
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a : int = 16 a : Tuple = 32 def A__ ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 , _UpperCAmelCase : str = "bert-base-cased" ) -> Any: __snake_case = AutoTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __snake_case = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def A__ ( _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> str: model.eval() __snake_case = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __snake_case , __snake_case = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_UpperCAmelCase ) - 1: __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __snake_case = metric.compute() return eval_metric["accuracy"] def A__ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Union[str, Any]: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config["lr"] __snake_case = int(config["num_epochs"] ) __snake_case = int(config["seed"] ) __snake_case = int(config["batch_size"] ) __snake_case = args.model_name_or_path set_seed(_UpperCAmelCase ) __snake_case , __snake_case = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __snake_case = 1 __snake_case = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=0 , num_training_steps=_UpperCAmelCase , ) else: __snake_case = DummyScheduler(_UpperCAmelCase , total_num_steps=_UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 __snake_case = evaluate.load("glue" , "mrpc" ) __snake_case = num_epochs if args.partial_train_epoch is not None: __snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __snake_case = args.resume_from_checkpoint.split("epoch_" )[1] __snake_case = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __snake_case = int(_UpperCAmelCase ) + 1 __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.print("resumed checkpoint performance:" , _UpperCAmelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , "r" ) as f: __snake_case = json.load(_UpperCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __snake_case = {} for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __snake_case = F'''epoch_{epoch}''' __snake_case = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = accuracy __snake_case = lr_scheduler.get_lr()[0] __snake_case = optimizer.param_groups[0]["lr"] __snake_case = epoch __snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def A__ ( ) -> Tuple: __snake_case = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=_UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_UpperCAmelCase , default=2 , help="Number of train epochs." , ) __snake_case = parser.parse_args() __snake_case = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance snake_case : Tuple = 6_3_7_8_1_3_7.0 snake_case : Any = 6_3_5_6_7_5_2.3_1_4_2_4_5 snake_case : int = 6_3_7_8_1_3_7 def A ( __snake_case: float , __snake_case: float , __snake_case: float , __snake_case: float ) -> Union[str, Any]: """simple docstring""" __magic_name__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __magic_name__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) __magic_name__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __magic_name__ = haversine_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / EQUATORIAL_RADIUS # Intermediate P and Q values __magic_name__ = (b_lata + b_lata) / 2 __magic_name__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __magic_name__ = (sin(_SCREAMING_SNAKE_CASE ) ** 2) * (cos(_SCREAMING_SNAKE_CASE ) ** 2) __magic_name__ = cos(sigma / 2 ) ** 2 __magic_name__ = (sigma - sin(_SCREAMING_SNAKE_CASE )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __magic_name__ = (cos(_SCREAMING_SNAKE_CASE ) ** 2) * (sin(_SCREAMING_SNAKE_CASE ) ** 2) __magic_name__ = sin(sigma / 2 ) ** 2 __magic_name__ = (sigma + sin(_SCREAMING_SNAKE_CASE )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
545
'''simple docstring''' from math import isqrt def __lowercase (_SCREAMING_SNAKE_CASE :int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def __lowercase (_SCREAMING_SNAKE_CASE :int = 10**6 ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
507
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''pixel_values'''] def __init__( self , _a = True , _a = None , _a = 0.9 , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = 1 / 255 , _a = True , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) lowerCAmelCase_ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase_ = get_size_dict(_a , param_name="crop_size" ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = crop_pct lowerCAmelCase_ = resample lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __a ( self , _a , _a , _a = None , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase_ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase_ = int(size["height"] / crop_pct ) else: lowerCAmelCase_ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(_a ) ) lowerCAmelCase_ = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) else: if "shortest_edge" in size: lowerCAmelCase_ = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) elif "height" in size and "width" in size: lowerCAmelCase_ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(_a ) ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def __a ( self , _a , _a , _a = None , **_a , ) -> Union[str, Any]: return rescale(_a , scale=_a , data_format=_a , **_a ) def __a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_a , default_to_square=_a ) lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(_a , param_name="crop_size" ) lowerCAmelCase_ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_a ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_center_crop: lowerCAmelCase_ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_a , _a ) for image in images] lowerCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a )
715
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
0
import requests lowerCAmelCase : Optional[Any] = '''''' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase : int = '''https://api.openweathermap.org/data/2.5/''' def _lowercase ( __UpperCamelCase : str = "Chicago" , __UpperCamelCase : str = APPID ): return requests.get(URL_BASE + """weather""" , params=locals() ).json() def _lowercase ( __UpperCamelCase : str = "Kolkata, India" , __UpperCamelCase : str = APPID ): return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def _lowercase ( __UpperCamelCase : float = 5_5.6_8 , __UpperCamelCase : float = 1_2.5_7 , __UpperCamelCase : str = APPID ): return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase : List[Any] = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
214
from dataclasses import dataclass, field from typing import Optional @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) UpperCamelCase__ : Optional[str] = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase__ : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) UpperCamelCase__ : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) UpperCamelCase__ : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) UpperCamelCase__ : Optional[int] = field( default=1_0_0_0_0 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) UpperCamelCase__ : Optional[float] = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) UpperCamelCase__ : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) UpperCamelCase__ : Optional[int] = field( default=7_5_0 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) UpperCamelCase__ : Optional[int] = field( default=1_6 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) UpperCamelCase__ : Optional[bool] = field( default=__a , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) UpperCamelCase__ : Optional[int] = field(default=5_0_0_0_0 , metadata={'''help''': '''Maximum number of training steps.'''} ) UpperCamelCase__ : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase__ : Optional[int] = field(default=1_0_2_4 , metadata={'''help''': '''Sequence lengths used for training.'''} ) UpperCamelCase__ : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} ) UpperCamelCase__ : Optional[int] = field( default=1_0_2_4 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) UpperCamelCase__ : Optional[str] = field( default=__a , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) UpperCamelCase__ : Optional[bool] = field(default=__a , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase__ : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) UpperCamelCase__ : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase__ : Optional[int] = field(default=1_0_2_4 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) UpperCamelCase__ : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase__ : Optional[int] = field(default=__a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) UpperCamelCase__ : Optional[int] = field( default=__a , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) UpperCamelCase__ : Optional[bool] = field( default=__a , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) UpperCamelCase__ : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) UpperCamelCase__ : Optional[int] = field(default=2_5_6 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) UpperCamelCase__ : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) UpperCamelCase__ : Optional[float] = field(default=0.9_5 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) UpperCamelCase__ : Optional[int] = field(default=1_0 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) UpperCamelCase__ : Optional[int] = field( default=2_0_0 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) UpperCamelCase__ : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase__ : Optional[str] = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase__ : Optional[str] = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) UpperCamelCase__ : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[int] = field( default=__a , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) UpperCamelCase__ : Optional[str] = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) UpperCamelCase__ : Optional[int] = field( default=1_0_0_0_0_0 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) UpperCamelCase__ : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase__ : Optional[float] = field( default=1_0_0_0 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) UpperCamelCase__ : Optional[float] = field( default=1_0_0 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.2_5 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) UpperCamelCase__ : Optional[float] = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) UpperCamelCase__ : Optional[bool] = field( default=__a , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.8_5 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) UpperCamelCase__ : Optional[str] = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) UpperCamelCase__ : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase__ : Optional[int] = field(default=2_0_0_0_0_0 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) UpperCamelCase__ : Optional[int] = field( default=3_2_7_6_8 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) UpperCamelCase__ : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) UpperCamelCase__ : Optional[bool] = field(default=__a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) UpperCamelCase__ : Optional[str] = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) UpperCamelCase__ : Optional[int] = field(default=__a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' UpperCamelCase__ : Optional[str] = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) UpperCamelCase__ : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) UpperCamelCase__ : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) UpperCamelCase__ : Optional[bool] = field(default=__a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
214
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : List[Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a ( __lowerCamelCase ): """simple docstring""" UpperCAmelCase = 'vit_msn' def __init__( self: Union[str, Any] , UpperCamelCase: Any=7_68 , UpperCamelCase: str=12 , UpperCamelCase: Dict=12 , UpperCamelCase: int=30_72 , UpperCamelCase: Optional[int]="gelu" , UpperCamelCase: Tuple=0.0 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Optional[Any]=0.02 , UpperCamelCase: List[str]=1e-0_6 , UpperCamelCase: Union[str, Any]=2_24 , UpperCamelCase: int=16 , UpperCamelCase: Optional[Any]=3 , UpperCamelCase: Dict=True , **UpperCamelCase: Dict , ): """simple docstring""" super().__init__(**UpperCamelCase_ ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias
714
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase ( self: Any ): """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.dummy_uncond_unet A__ = PNDMScheduler() A__ = PNDMPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pndm.to(UpperCamelCase ) pndm.set_progress_bar_config(disable=UpperCamelCase ) A__ = torch.manual_seed(0 ) A__ = pndm(generator=UpperCamelCase , num_inference_steps=20 , output_type="""numpy""" ).images A__ = torch.manual_seed(0 ) A__ = pndm(generator=UpperCamelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCamelCase )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = """google/ddpm-cifar10-32""" A__ = UNetaDModel.from_pretrained(UpperCamelCase ) A__ = PNDMScheduler() A__ = PNDMPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pndm.to(UpperCamelCase ) pndm.set_progress_bar_config(disable=UpperCamelCase ) A__ = torch.manual_seed(0 ) A__ = pndm(generator=UpperCamelCase , output_type="""numpy""" ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
500
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ]) return rename_keys def lowerCamelCase( a__ ,a__): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE =state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight") _SCREAMING_SNAKE_CASE =in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE =in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE =in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCamelCase( a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =dct.pop(a__) _SCREAMING_SNAKE_CASE =val def lowerCamelCase( a__): if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE ='''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE ='''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(a__ ,stream=a__).raw).convert('''RGB''') return im @torch.no_grad() def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =ViTConfig(image_size=384 ,qkv_bias=a__) _SCREAMING_SNAKE_CASE =TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE =768 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE =1024 _SCREAMING_SNAKE_CASE =4096 _SCREAMING_SNAKE_CASE =24 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''') # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE ='''relu''' _SCREAMING_SNAKE_CASE =1024 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False # load HuggingFace model _SCREAMING_SNAKE_CASE =ViTModel(a__ ,add_pooling_layer=a__) _SCREAMING_SNAKE_CASE =TrOCRForCausalLM(a__) _SCREAMING_SNAKE_CASE =VisionEncoderDecoderModel(encoder=a__ ,decoder=a__) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(a__ ,map_location='''cpu''' ,check_hash=a__)['''model'''] _SCREAMING_SNAKE_CASE =create_rename_keys(a__ ,a__) for src, dest in rename_keys: rename_key(a__ ,a__ ,a__) read_in_q_k_v(a__ ,a__) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE =state_dict.pop(a__) if key.startswith('''decoder''') and "output_projection" not in key: _SCREAMING_SNAKE_CASE =val else: _SCREAMING_SNAKE_CASE =val # load state dict model.load_state_dict(a__) # Check outputs on an image _SCREAMING_SNAKE_CASE =ViTImageProcessor(size=encoder_config.image_size) _SCREAMING_SNAKE_CASE =RobertaTokenizer.from_pretrained('''roberta-large''') _SCREAMING_SNAKE_CASE =TrOCRProcessor(a__ ,a__) _SCREAMING_SNAKE_CASE =processor(images=prepare_img(a__) ,return_tensors='''pt''').pixel_values # verify logits _SCREAMING_SNAKE_CASE =torch.tensor([[model.config.decoder.decoder_start_token_id]]) _SCREAMING_SNAKE_CASE =model(pixel_values=a__ ,decoder_input_ids=a__) _SCREAMING_SNAKE_CASE =outputs.logits _SCREAMING_SNAKE_CASE =torch.Size([1, 1, 5_0265]) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE =torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE =torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170]) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE =torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE =torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] ,a__ ,atol=1e-3), "First elements of logits not as expected" Path(a__).mkdir(exist_ok=a__) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a__) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a__) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case_ : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
691
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = LEDConfig _lowerCamelCase = {} _lowerCamelCase = '''gelu''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_3 ,lowerCamelCase_=7 ,lowerCamelCase_=True ,lowerCamelCase_=False ,lowerCamelCase_=9_9 ,lowerCamelCase_=3_2 ,lowerCamelCase_=2 ,lowerCamelCase_=4 ,lowerCamelCase_=3_7 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=2_0 ,lowerCamelCase_=2 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=4 ,) -> Optional[int]: A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id A = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after A = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests A = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase__ ( self ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) A = tf.concat([input_ids, eos_tensor] ,axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) A = prepare_led_inputs_dict(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = tf.concat( [tf.zeros_like(lowerCamelCase_ )[:, :-1], tf.ones_like(lowerCamelCase_ )[:, -1:]] ,axis=-1 ,) A = global_attention_mask return config, inputs_dict def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = TFLEDModel(config=lowerCamelCase_ ).get_decoder() A = inputs_dict["""input_ids"""] A = input_ids[:1, :] A = inputs_dict["""attention_mask"""][:1, :] A = 1 # first forward pass A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,use_cache=lowerCamelCase_ ) A , A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] ,axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0] A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1E-3 ) def _A ( _a : str , _a : List[Any] , _a : Tuple , _a : str=None , _a : Union[str, Any]=None , _a : Optional[int]=None , _a : str=None , ): """simple docstring""" if attention_mask is None: A = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase__ ( self ) -> List[Any]: A = TFLEDModelTester(self ) A = ConfigTester(self ,config_class=lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = tf.zeros_like(inputs_dict["""attention_mask"""] ) A = 2 A = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict["""global_attention_mask"""] ,) A = True A = self.model_tester.seq_length A = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase_ ): A = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(lowerCamelCase_ ): A = [t.numpy() for t in outputs.encoder_attentions] A = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: A = True A = False A = False A = model_class(lowerCamelCase_ ) A = model(self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) A = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states ,lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: A = model_class(lowerCamelCase_ ) A = model(self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states ,lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A = True A = model_class(lowerCamelCase_ ) A = model(self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states ,lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine A = True A = True A = model_class(lowerCamelCase_ ) A = model(self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states ,lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass def UpperCamelCase__ ( self ) -> Optional[int]: # TODO: Head-masking not yet implement pass def _A ( _a : Dict ): """simple docstring""" return tf.constant(_a , dtype=tf.intaa ) UpperCAmelCase =1E-4 @slow @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Optional[Any]: A = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here A = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) A = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) A = prepare_led_inputs_dict(model.config ,lowerCamelCase_ ,lowerCamelCase_ ) A = model(**lowerCamelCase_ )[0] A = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape ,lowerCamelCase_ ) # change to expected output here A = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowerCamelCase_ ,atol=1E-3 ) def UpperCamelCase__ ( self ) -> str: A = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here A = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) A = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) A = prepare_led_inputs_dict(model.config ,lowerCamelCase_ ,lowerCamelCase_ ) A = model(**lowerCamelCase_ )[0] A = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape ,lowerCamelCase_ ) # change to expected output here A = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowerCamelCase_ ,atol=1E-3 ,rtol=1E-3 )
721
"""simple docstring""" def _A ( _a : int , _a : int ): """simple docstring""" while a != 0: A , A = b % a, a return b def _A ( _a : int , _a : int ): """simple docstring""" if gcd(_a , _a ) != 1: A = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_a ) A , A , A = 1, 0, a A , A , A = 0, 1, m while va != 0: A = ua // va A , A , A , A , A , A = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
255
0
'''simple docstring''' def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): __UpperCAmelCase = len(lowerCAmelCase ) __UpperCAmelCase = [] for i in range(len(lowerCAmelCase ) - pat_len + 1 ): __UpperCAmelCase = True for j in range(lowerCAmelCase ): if s[i + j] != pattern[j]: __UpperCAmelCase = False break if match_found: position.append(lowerCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
396
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _UpperCamelCase : str = logging.get_logger(__name__) class _lowercase( _lowerCamelCase ): """simple docstring""" def __init__( self: List[Any] ,*a: Dict ,**a: Union[str, Any] ): warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' ,a ,) super().__init__(*a ,**a )
396
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( snake_case__ : str , snake_case__ : str , **snake_case__ : Optional[int] ): snake_case__ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) snake_case__ : Optional[Any] = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
721
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 42 class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase = 65536 , lowerCamelCase = None , lowerCamelCase = 2 , lowerCamelCase = 2 , lowerCamelCase = 0 , lowerCamelCase = "fourier" , lowerCamelCase = True , lowerCamelCase = False , lowerCamelCase = 0.0 , lowerCamelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase = "UNetMidBlock1D" , lowerCamelCase = None , lowerCamelCase = (32, 32, 64) , lowerCamelCase = None , lowerCamelCase = 8 , lowerCamelCase = 1 , lowerCamelCase = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) snake_case__ : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) snake_case__ : Dict = block_out_channels[0] if use_timestep_embedding: snake_case__ : Any = block_out_channels[0] * 4 snake_case__ : Optional[Any] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) snake_case__ : Dict = nn.ModuleList([] ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = nn.ModuleList([] ) snake_case__ : List[str] = None # down snake_case__ : Tuple = in_channels for i, down_block_type in enumerate(lowerCamelCase ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : List[Any] = i == len(lowerCamelCase ) - 1 snake_case__ : Dict = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid snake_case__ : Optional[int] = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up snake_case__ : Union[str, Any] = list(reversed(lowerCamelCase ) ) snake_case__ : Any = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : List[Any] = out_channels else: snake_case__ : Dict = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): snake_case__ : List[str] = output_channel snake_case__ : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) snake_case__ : List[str] = i == len(lowerCamelCase ) - 1 snake_case__ : str = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = output_channel # out snake_case__ : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case__ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[UNetaDOutput, Tuple]: """simple docstring""" snake_case__ : str = timestep if not torch.is_tensor(lowerCamelCase ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: snake_case__ : Optional[Any] = timesteps[None].to(sample.device ) snake_case__ : Any = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: snake_case__ : Tuple = self.time_mlp(lowerCamelCase ) else: snake_case__ : Union[str, Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case__ : List[Any] = () for downsample_block in self.down_blocks: snake_case__ ,snake_case__ : Optional[int] = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Any = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case__ : str = down_block_res_samples[-1:] snake_case__ : int = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: snake_case__ : Dict = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
694
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __lowercase ( unittest.TestCase ): @slow def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ : Optional[int] = """The dog is cute and lives in the garden house""" UpperCAmelCase__ : Optional[int] = jnp.array([tokenizer.encode(A )] ) UpperCAmelCase__ : str = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : List[str] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) UpperCAmelCase__ : List[str] = model(A )["""last_hidden_state"""] self.assertEqual(output.shape ,A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,A ,atol=1e-3 ) )
65
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __A : int = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Tuple ): '''simple docstring''' inspect_dataset(A__ , A__ ) lowerCAmelCase_ : Any = path + """.py""" assert script_name in os.listdir(A__ ) assert "__pycache__" not in os.listdir(A__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def UpperCamelCase_ ( A__ : Tuple , A__ : str ): '''simple docstring''' inspect_metric(A__ , A__ ) lowerCAmelCase_ : Any = path + """.py""" assert script_name in os.listdir(A__ ) assert "__pycache__" not in os.listdir(A__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase_ ( A__ : List[str] , A__ : List[str] , A__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase_ : List[Any] = get_dataset_config_info(A__ , config_name=A__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase_ ( A__ : List[str] , A__ : List[str] , A__ : int ): '''simple docstring''' with pytest.raises(A__ ): get_dataset_config_info(A__ , config_name=A__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def UpperCamelCase_ ( A__ : str , A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : Dict = get_dataset_config_names(A__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase_ ( A__ : List[Any] , A__ : Dict , A__ : Optional[int] ): '''simple docstring''' lowerCAmelCase_ : Tuple = get_dataset_infos(A__ ) assert list(infos.keys() ) == expected_configs lowerCAmelCase_ : Optional[int] = expected_configs[0] assert expected_config in infos lowerCAmelCase_ : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def UpperCamelCase_ ( A__ : List[str] , A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Dict = get_dataset_infos(A__ ) assert expected_config in infos lowerCAmelCase_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def UpperCamelCase_ ( A__ : List[str] , A__ : Any , A__ : Dict ): '''simple docstring''' with pytest.raises(A__ ): get_dataset_split_names(A__ , config_name=A__ )
275
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 1_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = n + 1 # maximum limit for a in range(2 , __UpperCamelCase ): for b in range(2 , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = a**b # calculates the current power collect_powers.add(__UpperCamelCase ) # adds the result to the set return len(__UpperCamelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
379
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> float: """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(__UpperCamelCase ) / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
379
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A ( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) -> List[Any]: A__ = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) A__ = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
9
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a__ ( unittest.TestCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=5, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class a__ ( _a , unittest.TestCase ): snake_case_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("albert-base-v2" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) lowercase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] lowercase__ = (1, 11, 768) self.assertEqual(output.shape, _UpperCAmelCase ) lowercase__ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1E-4 ) )
668
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
1
from itertools import permutations def _lowerCamelCase ( __lowerCamelCase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase__ : str = [7, 11, 13, 17] for i, test in enumerate(__lowerCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _lowerCamelCase ( __lowerCamelCase = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(__lowerCamelCase , __lowerCamelCase ) ) ) for num in permutations(range(__lowerCamelCase ) ) if is_substring_divisible(__lowerCamelCase ) ) if __name__ == "__main__": print(f'''{solution() = }''')
79
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
442
0
def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Tuple = len(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCamelCase__ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": _A : Union[str, Any] = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
709
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[str] = LEDTokenizer _UpperCAmelCase : Dict = LEDTokenizerFast _UpperCAmelCase : str = True def __lowerCamelCase ( self : int ) ->Dict: super().setUp() lowerCamelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase__ : Union[str, Any] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase__ : List[str] = {'''unk_token''': '''<unk>'''} lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def __lowerCamelCase ( self : List[Any] , **A : Optional[Any] ) ->Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def __lowerCamelCase ( self : List[Any] , **A : Optional[int] ) ->int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def __lowerCamelCase ( self : Dict , A : List[Any] ) ->Dict: return "lower newer", "lower newer" @cached_property def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __lowerCamelCase ( self : Optional[int] ) ->Optional[int]: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __lowerCamelCase ( self : List[str] ) ->Optional[Any]: lowerCamelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase__ : Tuple = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : str = tokenizer(A , max_length=len(A ) , padding=A , return_tensors='''pt''' ) self.assertIsInstance(A , A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase__ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(A , A ) @require_torch def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : int = tokenizer(A , padding=A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , A ) self.assertIn('''attention_mask''' , A ) self.assertNotIn('''labels''' , A ) self.assertNotIn('''decoder_attention_mask''' , A ) @require_torch def __lowerCamelCase ( self : str ) ->Union[str, Any]: lowerCamelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : Dict = tokenizer(text_target=A , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def __lowerCamelCase ( self : List[str] ) ->Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=A , truncation=A , return_tensors='''pt''' ) self.assertIsInstance(A , A ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __lowerCamelCase ( self : int ) ->List[str]: lowerCamelCase__ : List[str] = ['''A long paragraph for summarization.'''] lowerCamelCase__ : int = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : Union[str, Any] = tokenizer(A , return_tensors='''pt''' ) lowerCamelCase__ : Union[str, Any] = tokenizer(text_target=A , return_tensors='''pt''' ) lowerCamelCase__ : Tuple = inputs['''input_ids'''] lowerCamelCase__ : Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCamelCase ( self : List[Any] ) ->Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase__ : Any = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase__ : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase__ : Any = tokenizer(A , padding=A ) lowerCamelCase__ : List[Any] = [[0] * len(A ) for x in encoded_output['''input_ids''']] lowerCamelCase__ : List[Any] = tokenizer.pad(A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , A ) def __lowerCamelCase ( self : int ) ->str: pass def __lowerCamelCase ( self : str ) ->Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : Tuple = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : List[Any] = '''A, <mask> AllenNLP sentence.''' lowerCamelCase__ : Dict = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) lowerCamelCase__ : Optional[Any] = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase__ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
130
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 4 ) -> list[list[int]]: _A = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> list[list[int]]: _A = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] ) -> None: for i in matrix: print(*_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) UpperCAmelCase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
2
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class lowerCAmelCase ( lowercase_ , lowercase_ ): __lowerCamelCase = 'bit' __lowerCamelCase = ['preactivation', 'bottleneck'] __lowerCamelCase = ['SAME', 'VALID'] def __init__( self :Dict , _lowercase :List[Any]=3 , _lowercase :List[Any]=64 , _lowercase :int=[2_56, 5_12, 10_24, 20_48] , _lowercase :int=[3, 4, 6, 3] , _lowercase :Dict="preactivation" , _lowercase :Optional[int]="relu" , _lowercase :Optional[Any]=None , _lowercase :List[str]=32 , _lowercase :str=0.0 , _lowercase :str=False , _lowercase :Union[str, Any]=32 , _lowercase :Dict=1 , _lowercase :Union[str, Any]=None , _lowercase :List[Any]=None , **_lowercase :Optional[Any] , ): '''simple docstring''' super().__init__(**_lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase__ = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) lowercase__ = num_channels lowercase__ = embedding_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = layer_type lowercase__ = hidden_act lowercase__ = global_padding lowercase__ = num_groups lowercase__ = drop_path_rate lowercase__ = embedding_dynamic_padding lowercase__ = output_stride lowercase__ = width_factor lowercase__ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(_lowercase ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
611
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase_ )} , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCamelCase = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __lowerCamelCase = field( default=lowercase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def UpperCAmelCase ( self :Any ): '''simple docstring''' if self.train_file is not None: lowercase__ = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase__ = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _A ( __magic_name__ , __magic_name__ ): with open(__magic_name__ , "r" , encoding="utf-8" ) as f: lowercase__ = [json.loads(__magic_name__ ) for line in f.read().splitlines() if (len(__magic_name__ ) > 0 and not line.isspace())] assert len(__magic_name__ ) == len(__magic_name__ ) lowercase__ = {c: dataset[c] for c in dataset.column_names} lowercase__ = refs return Dataset.from_dict(__magic_name__ ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowercase__ = {} if data_args.train_file is not None: lowercase__ = data_args.train_file if data_args.validation_file is not None: lowercase__ = data_args.validation_file lowercase__ = data_args.train_file.split("." )[-1] if extension == "txt": lowercase__ = "text" lowercase__ = load_dataset(__magic_name__ , data_files=__magic_name__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ = AutoConfig.from_pretrained(model_args.config_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) lowercase__ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowercase__ = AutoModelForMaskedLM.from_config(__magic_name__ ) model.resize_token_embeddings(len(__magic_name__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase__ = datasets["train"].column_names else: lowercase__ = datasets["validation"].column_names lowercase__ = "text" if "text" in column_names else column_names[0] lowercase__ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(__magic_name__ ): # Remove empty lines lowercase__ = [line for line in examples["text"] if len(__magic_name__ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=__magic_name__ , truncation=__magic_name__ , max_length=data_args.max_seq_length ) lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase__ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase__ = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase__ = False # Data collator # This one will take care of randomly masking the tokens. lowercase__ = DataCollatorForWholeWordMask(tokenizer=__magic_name__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase__ = model_args.model_name_or_path else: lowercase__ = None lowercase__ = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase__ = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate() lowercase__ = math.exp(eval_output["eval_loss"] ) lowercase__ = perplexity lowercase__ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
611
1
'''simple docstring''' from __future__ import annotations import math a__ : int = '2020.9.26' a__ : Optional[Any] = 'xcodz-dot, cclaus, dhruvmanila' def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in locals().values() ): UpperCAmelCase = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = ((x * distance) / (z + distance)) * scale UpperCAmelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __snake_case ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase = locals() del input_variables["axis"] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ) for val in input_variables.values() ): UpperCAmelCase = ( '''Input values except axis must either be float or int: ''' f"{list(input_variables.values() )}" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase = x * math.cos(SCREAMING_SNAKE_CASE_ ) - y * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = y * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = z elif axis == "x": UpperCAmelCase = y * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = z * math.cos(SCREAMING_SNAKE_CASE_ ) + y * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = x elif axis == "y": UpperCAmelCase = x * math.cos(SCREAMING_SNAKE_CASE_ ) - z * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = z * math.cos(SCREAMING_SNAKE_CASE_ ) + x * math.sin(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCAmelCase ( a_ ): """simple docstring""" def a__ ( self ) -> str: _lowerCamelCase : Any = tempfile.mkdtemp() _lowerCamelCase : List[Any] = 5 # Realm tok _lowerCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCamelCase : int = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) _lowerCamelCase : Any = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) def a__ ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def a__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> str: _lowerCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def a__ ( self ) -> int: _lowerCamelCase : Dict = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_lowercase , ) return block_records def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a__ ( self ) -> int: _lowerCamelCase : int = self.get_config() _lowerCamelCase : Optional[Any] = self.get_dummy_retriever() _lowerCamelCase : Union[str, Any] = retriever.tokenizer _lowerCamelCase : Any = np.array([0, 3] , dtype='''long''' ) _lowerCamelCase : Any = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : str = tokenizer( ['''the fourth'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : List[str] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(len(_lowercase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def a__ ( self ) -> int: _lowerCamelCase : str = self.get_config() _lowerCamelCase : Union[str, Any] = self.get_dummy_retriever() _lowerCamelCase : str = retriever.tokenizer _lowerCamelCase : List[str] = np.array([0, 3, 5] , dtype='''long''' ) _lowerCamelCase : List[Any] = tokenizer(['''Test question'''] ).input_ids _lowerCamelCase : List[str] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , ).input_ids _lowerCamelCase : Optional[Any] = config.reader_seq_len _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = retriever( _lowercase , _lowercase , answer_ids=_lowercase , max_length=_lowercase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _lowercase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowercase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowercase ) def a__ ( self ) -> int: _lowerCamelCase : Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _lowerCamelCase : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _lowerCamelCase : Optional[Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase : List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
434
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Union[str, Any], a_: Tuple=13, a_: Dict=32, a_: Optional[Any]=3, a_: Optional[Any]=4, a_: Optional[int]=[10, 20, 30, 40], a_: Any=[2, 2, 3, 2], a_: Dict=True, a_: Dict=True, a_: List[str]=37, a_: Dict="gelu", a_: List[str]=10, a_: Union[str, Any]=0.02, a_: Any=["stage2", "stage3", "stage4"], a_: Optional[int]=3, a_: Tuple=None, ): '''simple docstring''' _snake_case : Dict = parent _snake_case : Dict = batch_size _snake_case : Optional[Any] = image_size _snake_case : int = num_channels _snake_case : Tuple = num_stages _snake_case : int = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : List[str] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = out_features _snake_case : Dict = num_labels _snake_case : int = scope _snake_case : Dict = num_stages def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=a_, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=a_, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Dict, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() _snake_case : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[Any] = config_and_inputs _snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = UperNetModelTester(self ) _snake_case : Dict = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(a_ ) _snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self: str ): '''simple docstring''' def check_hidden_states_output(a_: Dict, a_: List[str], a_: Optional[int] ): _snake_case : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(a_, a_ ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : List[str] = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(a_, a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(a_ ) _snake_case : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case : List[Any] = Image.open(snake_case__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(a_ ) _snake_case : Dict = prepare_img() _snake_case : str = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Tuple = model(**a_ ) _snake_case : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : int = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(a_ ) _snake_case : List[str] = prepare_img() _snake_case : Tuple = processor(images=a_, return_tensors="""pt""" ).to(a_ ) with torch.no_grad(): _snake_case : Optional[Any] = model(**a_ ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], a_, atol=1E-4 ) )
28
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0 ): """simple docstring""" _snake_case : Optional[Any] = [] for old_item in old_list: _snake_case : Union[str, Any] = old_item.replace("""in_layers.0""" , """norm1""" ) _snake_case : List[Any] = new_item.replace("""in_layers.2""" , """conv1""" ) _snake_case : Tuple = new_item.replace("""out_layers.0""" , """norm2""" ) _snake_case : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) _snake_case : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) _snake_case : Optional[Any] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) _snake_case : str = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict=0 ): """simple docstring""" _snake_case : Dict = [] for old_item in old_list: _snake_case : Dict = old_item _snake_case : int = new_item.replace("""norm.weight""" , """group_norm.weight""" ) _snake_case : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) _snake_case : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) _snake_case : Optional[Any] = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : str=None , snake_case__ : List[str]=None ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _snake_case : Union[str, Any] = old_checkpoint[path] _snake_case : Optional[int] = old_tensor.shape[0] // 3 _snake_case : List[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _snake_case : Union[str, Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 _snake_case : Any = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _snake_case , _snake_case , _snake_case : List[str] = old_tensor.split(channels // num_heads , dim=1 ) _snake_case : Union[str, Any] = query.reshape(snake_case__ ) _snake_case : Tuple = key.reshape(snake_case__ ) _snake_case : Any = value.reshape(snake_case__ ) for path in paths: _snake_case : List[Any] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _snake_case : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) _snake_case : str = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) _snake_case : Any = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: _snake_case : int = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _snake_case : Dict = old_checkpoint[path["""old"""]][:, :, 0] else: _snake_case : Optional[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : List[str] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = checkpoint["""time_embed.0.weight"""] _snake_case : List[str] = checkpoint["""time_embed.0.bias"""] _snake_case : List[str] = checkpoint["""time_embed.2.weight"""] _snake_case : Tuple = checkpoint["""time_embed.2.bias"""] _snake_case : Dict = checkpoint["""input_blocks.0.0.weight"""] _snake_case : List[Any] = checkpoint["""input_blocks.0.0.bias"""] _snake_case : List[Any] = checkpoint["""out.0.weight"""] _snake_case : Any = checkpoint["""out.0.bias"""] _snake_case : Any = checkpoint["""out.2.weight"""] _snake_case : List[str] = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only _snake_case : List[str] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) _snake_case : Any = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only _snake_case : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) _snake_case : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only _snake_case : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) _snake_case : List[Any] = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): _snake_case : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) _snake_case : int = (i - 1) % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] _snake_case : str = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: _snake_case : Union[str, Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] _snake_case : Dict = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue _snake_case : Optional[int] = renew_resnet_paths(snake_case__ ) _snake_case : int = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} _snake_case : Tuple = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : List[str] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : Optional[int] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) _snake_case : int = middle_blocks[0] _snake_case : List[str] = middle_blocks[1] _snake_case : Any = middle_blocks[2] _snake_case : Dict = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Any = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) _snake_case : Dict = renew_attention_paths(snake_case__ ) _snake_case : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): _snake_case : Optional[Any] = i // (config["""num_res_blocks"""] + 1) _snake_case : Dict = i % (config["""num_res_blocks"""] + 1) _snake_case : List[str] = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] _snake_case : Any = {} for layer in output_block_layers: _snake_case , _snake_case : Any = layer.split(""".""" )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: _snake_case : str = [layer_name] if len(snake_case__ ) > 1: _snake_case : Dict = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] _snake_case : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] _snake_case : List[Any] = renew_resnet_paths(snake_case__ ) _snake_case : int = renew_resnet_paths(snake_case__ ) _snake_case : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _snake_case : str = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) _snake_case : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] _snake_case : Optional[int] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: _snake_case : Any = [] if len(snake_case__ ): _snake_case : str = renew_attention_paths(snake_case__ ) _snake_case : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } _snake_case : int = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case__ , ) else: _snake_case : Optional[Any] = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _snake_case : Optional[Any] = """.""".join(["""output_blocks""", str(snake_case__ ), path["""old"""]] ) _snake_case : Optional[int] = """.""".join(["""up_blocks""", str(snake_case__ ), """resnets""", str(snake_case__ ), path["""new"""]] ) _snake_case : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') A_ = parser.parse_args() A_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: A_ = json.loads(f.read()) A_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A_ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) A_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
28
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowercase_ = get_logger(__name__) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with FSDP.state_dict_type( __UpperCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __A = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __A = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Saving model to {output_model_file}' ) torch.save(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __A = os.path.join(__UpperCamelCase , f'{MODEL_NAME}_{model_index}' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) logger.info(f'Saving model to {ckpt_dir}' ) __A = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__UpperCamelCase , storage_writer=dist_cp.FileSystemWriter(__UpperCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return __A = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Loading model from {input_model_file}' ) __A = torch.load(__UpperCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __A = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Loading model from {input_model_file}' ) __A = torch.load(__UpperCamelCase ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __A = ( os.path.join(__UpperCamelCase , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __A = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCamelCase , storage_reader=dist_cp.FileSystemReader(__UpperCamelCase ) , planner=DefaultLoadPlanner() , ) __A = state_dict['''model'''] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with FSDP.state_dict_type( __UpperCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __A = FSDP.optim_state_dict(__UpperCamelCase , __UpperCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __A = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __A = os.path.join(__UpperCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(__UpperCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __A = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __A = os.path.join(__UpperCamelCase , __UpperCamelCase ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __A = torch.load(__UpperCamelCase ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __A = ( os.path.join(__UpperCamelCase , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(__UpperCamelCase ) , ) __A = optim_state['''optimizer'''] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __A = FSDP.optim_state_dict_to_load(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) optimizer.load_state_dict(__UpperCamelCase )
215
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = original_name.split('''.''' )[0] __A = key.split('''.''' ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) __A = orig_block_num - offset __A = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = OrderedDict() __A , __A = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): __A = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 __A = key[: key.find('''proj''' )] __A = key.replace(__UpperCamelCase , f'patch_embeddings.{total_embed_found}.' ) __A = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: __A = '''poolformer.encoder.''' + key if "mlp.fc1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: __A = key.replace('''head''' , '''classifier''' ) __A = value return new_state_dict def lowerCAmelCase ( ): """simple docstring""" __A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __A = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = PoolFormerConfig() # set attributes based on model_name __A = '''huggingface/label-files''' __A = model_name[-3:] __A = 1_0_0_0 __A = '''imagenet-1k-id2label.json''' __A = (1, 1_0_0_0) # set config attributes __A = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} if size == "s12": __A = [2, 2, 6, 2] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s24": __A = [4, 4, 1_2, 4] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s36": __A = [6, 6, 1_8, 6] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 1e-6 __A = 0.9 elif size == "m36": __A = [6, 6, 1_8, 6] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 elif size == "m48": __A = [8, 8, 2_4, 8] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image __A = prepare_img() __A = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) # rename keys __A = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict __A = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) __A = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass __A = model(__UpperCamelCase ) __A = outputs.logits # define expected logit slices for different models if size == "s12": __A = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __A = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __A = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __A = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __A = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
215
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : List[str] = ['pixel_values'] def __init__( self :Tuple ,_UpperCamelCase :bool = True ,_UpperCamelCase :Dict[str, int] = None ,_UpperCamelCase :PILImageResampling = PILImageResampling.BICUBIC ,_UpperCamelCase :bool = True ,_UpperCamelCase :Dict[str, int] = None ,_UpperCamelCase :bool = True ,_UpperCamelCase :Union[int, float] = 1 / 2_5_5 ,_UpperCamelCase :bool = True ,_UpperCamelCase :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,_UpperCamelCase :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**_UpperCamelCase :Tuple ,): super().__init__(**_UpperCamelCase ) snake_case_ : Dict = size if size is not None else {"""shortest_edge""": 2_2_4} snake_case_ : List[Any] = get_size_dict(_UpperCamelCase ,default_to_square=_UpperCamelCase ) snake_case_ : Tuple = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case_ : Optional[int] = get_size_dict(_UpperCamelCase ,param_name="""crop_size""" ) snake_case_ : List[str] = do_resize snake_case_ : Tuple = size snake_case_ : int = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : str = crop_size snake_case_ : Dict = do_rescale snake_case_ : str = rescale_factor snake_case_ : Optional[Any] = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a__ ( self :Optional[int] ,_UpperCamelCase :np.ndarray ,_UpperCamelCase :Dict[str, int] ,_UpperCamelCase :PILImageResampling = PILImageResampling.BICUBIC ,_UpperCamelCase :Optional[Union[str, ChannelDimension]] = None ,**_UpperCamelCase :List[str] ,): snake_case_ : Tuple = get_size_dict(_UpperCamelCase ,default_to_square=_UpperCamelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case_ : List[str] = int((2_5_6 / 2_2_4) * size["""shortest_edge"""] ) snake_case_ : int = get_resize_output_image_size(_UpperCamelCase ,size=_UpperCamelCase ,default_to_square=_UpperCamelCase ) snake_case_ : Union[str, Any] = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _UpperCamelCase ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=_UpperCamelCase ,data_format=_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :str ,_UpperCamelCase :np.ndarray ,_UpperCamelCase :Dict[str, int] ,_UpperCamelCase :Optional[Union[str, ChannelDimension]] = None ,**_UpperCamelCase :Dict ,): snake_case_ : Tuple = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_UpperCamelCase ,size=(size["""height"""], size["""width"""]) ,data_format=_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :np.ndarray ,_UpperCamelCase :Union[int, float] ,_UpperCamelCase :Optional[Union[str, ChannelDimension]] = None ,**_UpperCamelCase :Tuple ,): return rescale(_UpperCamelCase ,scale=_UpperCamelCase ,data_format=_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :np.ndarray ,_UpperCamelCase :Union[float, List[float]] ,_UpperCamelCase :Union[float, List[float]] ,_UpperCamelCase :Optional[Union[str, ChannelDimension]] = None ,**_UpperCamelCase :List[Any] ,): return normalize(_UpperCamelCase ,mean=_UpperCamelCase ,std=_UpperCamelCase ,data_format=_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :ImageInput ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[Dict[str, int]] = None ,_UpperCamelCase :PILImageResampling = None ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[Dict[str, int]] = None ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[float] = None ,_UpperCamelCase :Optional[bool] = None ,_UpperCamelCase :Optional[Union[float, Iterable[float]]] = None ,_UpperCamelCase :Optional[Union[float, Iterable[float]]] = None ,_UpperCamelCase :Optional[TensorType] = None ,_UpperCamelCase :ChannelDimension = ChannelDimension.FIRST ,**_UpperCamelCase :Optional[int] ,): snake_case_ : Tuple = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Dict = image_mean if image_mean is not None else self.image_mean snake_case_ : str = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_UpperCamelCase ,default_to_square=_UpperCamelCase ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Dict = get_size_dict(_UpperCamelCase ,param_name="""crop_size""" ) snake_case_ : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : List[str] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: snake_case_ : Tuple = [self.resize(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) for image in images] if do_center_crop: snake_case_ : Dict = [self.center_crop(_UpperCamelCase ,_UpperCamelCase ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(_UpperCamelCase ,_UpperCamelCase ) for image in images] if do_normalize: snake_case_ : Any = [self.normalize(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_UpperCamelCase ,_UpperCamelCase ) for image in images] snake_case_ : Any = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase ,tensor_type=_UpperCamelCase )
334
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCamelCase ( lowercase__ , lowercase__ ): lowercase : Tuple = 1 @register_to_config def __init__( self :Optional[Any] ,_UpperCamelCase :Tuple=2_0_0_0 ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :Optional[int]=2_0 ,_UpperCamelCase :Any=1E-3 ): snake_case_ : int = None snake_case_ : Tuple = None snake_case_ : Optional[Any] = None def a__ ( self :Tuple ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, torch.device] = None ): snake_case_ : List[Any] = torch.linspace(1 ,self.config.sampling_eps ,_UpperCamelCase ,device=_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple=None ): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ : Union[str, Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ : Tuple = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ : Dict = std.unsqueeze(-1 ) snake_case_ : Tuple = -score / std # compute snake_case_ : Any = -1.0 / len(self.timesteps ) snake_case_ : Union[str, Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ : Any = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ : Optional[int] = beta_t.unsqueeze(-1 ) snake_case_ : List[str] = -0.5 * beta_t * x snake_case_ : Tuple = torch.sqrt(_UpperCamelCase ) snake_case_ : Any = drift - diffusion**2 * score snake_case_ : List[str] = x + drift * dt # add noise snake_case_ : List[Any] = randn_tensor(x.shape ,layout=x.layout ,generator=_UpperCamelCase ,device=x.device ,dtype=x.dtype ) snake_case_ : int = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): return self.config.num_train_timesteps
334
1
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : list ) -> list: if len(UpperCAmelCase_ ) <= 1: return [tuple(UpperCAmelCase_ )] lowerCAmelCase__ = [] def generate(UpperCAmelCase_ : int , UpperCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ ,lowerCAmelCase__ = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ ,lowerCAmelCase__ = arr[k - 1], arr[0] generate(k - 1 , UpperCAmelCase_ ) generate(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) return res if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
211
'''simple docstring''' import math def _lowerCAmelCase( UpperCAmelCase_ : int ) -> bool: return math.sqrt(UpperCAmelCase_ ) * math.sqrt(UpperCAmelCase_ ) == num def _lowerCAmelCase( UpperCAmelCase_ : int ) -> bool: lowerCAmelCase__ = 0 lowerCAmelCase__ = n while left <= right: lowerCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase__ = mid - 1 else: lowerCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
211
1
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:int = """Hello, World!""" SCREAMING_SNAKE_CASE_:List[Any] = """en_XX""" def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Optional[int] = Path("""data_bin""" ) A : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCAmelCase ).parent ) , checkpoint_file=Path(_lowerCAmelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowerCAmelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowerCAmelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowerCAmelCase ) A : Any = xmod.model.encoder.sentence_encoder A : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowerCAmelCase ) A : int = XmodForSequenceClassification(_lowerCAmelCase ) if classification_head else XmodForMaskedLM(_lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings A : Any = xmod_sent_encoder.embed_tokens.weight A : int = xmod_sent_encoder.embed_positions.weight A : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A : Dict = xmod_sent_encoder.layernorm_embedding.weight A : int = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A : str = model.roberta.encoder.layer[i] A : Tuple = xmod_sent_encoder.layers[i] # self attention A : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) A : List[str] = xmod_layer.self_attn.q_proj.weight A : Optional[int] = xmod_layer.self_attn.q_proj.bias A : List[Any] = xmod_layer.self_attn.k_proj.weight A : Union[str, Any] = xmod_layer.self_attn.k_proj.bias A : Optional[int] = xmod_layer.self_attn.v_proj.weight A : Dict = xmod_layer.self_attn.v_proj.bias # self-attention output A : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) A : Optional[Any] = xmod_layer.self_attn.out_proj.weight A : Dict = xmod_layer.self_attn.out_proj.bias A : Union[str, Any] = xmod_layer.self_attn_layer_norm.weight A : str = xmod_layer.self_attn_layer_norm.bias # intermediate A : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) A : Optional[int] = xmod_layer.fca.weight A : Optional[int] = xmod_layer.fca.bias # output A : Dict = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) A : Union[str, Any] = xmod_layer.fca.weight A : int = xmod_layer.fca.bias A : List[str] = xmod_layer.final_layer_norm.weight A : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A : str = xmod_layer.adapter_layer_norm.weight A : str = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A : Optional[int] = bert_output.adapter_modules[lang_code] A : int = xmod_layer.adapter_modules[lang_code] A : Optional[Any] = from_adapter.fca.weight A : Optional[Any] = from_adapter.fca.bias A : List[str] = from_adapter.fca.weight A : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A : Dict = xmod_sent_encoder.layer_norm.weight A : int = xmod_sent_encoder.layer_norm.bias if classification_head: A : int = xmod.model.classification_heads["""mnli"""].dense.weight A : Optional[Any] = xmod.model.classification_heads["""mnli"""].dense.bias A : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight A : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head A : Any = xmod.model.encoder.lm_head.dense.weight A : Tuple = xmod.model.encoder.lm_head.dense.bias A : Any = xmod.model.encoder.lm_head.layer_norm.weight A : List[str] = xmod.model.encoder.lm_head.layer_norm.bias A : Union[str, Any] = xmod.model.encoder.lm_head.weight A : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A : Optional[int] = xmod.encode(_lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowerCAmelCase ) A : List[str] = model(_lowerCAmelCase )[0] if classification_head: A : Dict = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowerCAmelCase ) ) else: A : Optional[Any] = xmod.model(_lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A : Optional[Any] = torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowerCAmelCase ).mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE_:Optional[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
662
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Dict=13 ,__lowerCAmelCase: Optional[int]=30 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: Optional[int]=4 ,__lowerCAmelCase: Tuple=37 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: List[str]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Optional[int]=0.6 ,__lowerCAmelCase: str=None ,): '''simple docstring''' _lowerCamelCase : Tuple = parent _lowerCamelCase : int = batch_size _lowerCamelCase : List[str] = image_size _lowerCamelCase : Any = patch_size _lowerCamelCase : int = num_channels _lowerCamelCase : Any = is_training _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Tuple = mask_ratio _lowerCamelCase : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def _lowercase ( self: Any ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFViTMAEModel(config=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFViTMAEForPreTraining(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) # expected sequence length = num_patches _lowerCamelCase : int = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : Any = 1 _lowerCamelCase : str = TFViTMAEForPreTraining(__lowerCAmelCase ) _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Dict = model(__lowerCAmelCase ,training=__lowerCAmelCase ) _lowerCamelCase : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() (_lowerCamelCase) : str = config_and_inputs _lowerCamelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCAmelCase__ = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFViTMAEModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Layer ) ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Tuple = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : Any = copy.deepcopy(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs_dict[0].numpy() _lowerCamelCase : List[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def _lowercase ( self: Any ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowerCAmelCase: Dict ): _lowerCamelCase : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowerCAmelCase ): _lowerCamelCase : int = v.numpy() else: _lowerCamelCase : Tuple = np.array(__lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = prepare_numpy_arrays(__lowerCAmelCase ) _lowerCamelCase : Dict = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : str = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _lowerCamelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : str = tf.constant(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Any = tf_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowerCAmelCase ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__lowerCAmelCase ,__lowerCAmelCase ),) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowerCAmelCase ,"_keras_serializable" ,__lowerCAmelCase ) } _lowerCamelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Any = tf.convert_to_tensor(__lowerCAmelCase ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: _lowerCamelCase : List[Any] = main_layer_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _lowerCamelCase : Dict = tf.keras.Model(__lowerCAmelCase ,outputs=main_layer(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"keras_model.h5" ) model.save(__lowerCAmelCase ) _lowerCamelCase : List[str] = tf.keras.models.load_model( __lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowerCAmelCase ,tf.keras.Model ) _lowerCamelCase : int = model(__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: str ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCamelCase : Any = outputs.last_hidden_state.numpy() _lowerCamelCase : Optional[Any] = 0 else: _lowerCamelCase : str = outputs.logits.numpy() _lowerCamelCase : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ,saved_model=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": _lowerCamelCase : List[str] = after_outputs["last_hidden_state"].numpy() _lowerCamelCase : Optional[int] = 0 else: _lowerCamelCase : List[str] = after_outputs["logits"].numpy() _lowerCamelCase : str = 0 _lowerCamelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) def _lowercase ( self: Tuple ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) _lowerCamelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,noise=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowerCAmelCase ) _lowerCamelCase : Dict = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _lowerCamelCase : Optional[int] = model_class.from_config(model.config ) _lowerCamelCase : List[str] = new_model(__lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) _lowerCamelCase : Optional[Any] = new_model(__lowerCAmelCase ,noise=__lowerCAmelCase ) self.assert_outputs_same(__lowerCAmelCase ,__lowerCAmelCase ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: List[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : str = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=__lowerCAmelCase ,return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Union[str, Any] = ViTMAEConfig() _lowerCamelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass _lowerCamelCase : Tuple = model(**__lowerCAmelCase ,noise=__lowerCAmelCase ) # verify the logits _lowerCamelCase : str = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowerCAmelCase ,atol=1e-4 )
703
"""simple docstring""" import argparse import json from tqdm import tqdm def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=_lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=_lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=_lowerCamelCase , help="where to store parsed gold_data_path file" , ) _lowerCamelCase : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _lowerCamelCase : Union[str, Any] = json.load(_lowerCamelCase ) for dpr_record in tqdm(_lowerCamelCase ): _lowerCamelCase : Tuple = dpr_record["question"] _lowerCamelCase : List[str] = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(_lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
386
0