code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Dict , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Any , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' UpperCAmelCase_ = self.unet.config.sample_size UpperCAmelCase_ = (batch_size, 3, img_size, img_size) UpperCAmelCase_ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) UpperCAmelCase_ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper UpperCAmelCase_ = self.scheduler.schedule[t] UpperCAmelCase_ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat UpperCAmelCase_ , UpperCAmelCase_ = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev UpperCAmelCase_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample UpperCAmelCase_ = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output["derivative"] , ) UpperCAmelCase_ = step_output.prev_sample UpperCAmelCase_ = (sample / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
82
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AudioLDMPipeline SCREAMING_SNAKE_CASE__ = TEXT_TO_AUDIO_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_AUDIO_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCAmelCase_ (self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) UpperCamelCase__ = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase__ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 2_56 UpperCamelCase__ = audio[:10] UpperCamelCase__ = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 3 * [inputs["""prompt"""]] # forward UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 3 * [inputs.pop("""prompt""" )] UpperCamelCase__ = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase__ = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase__ = prompt_embeds # forward UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 3 * ["""this is a negative prompt"""] UpperCamelCase__ = negative_prompt UpperCamelCase__ = 3 * [inputs["""prompt"""]] # forward UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 3 * [inputs.pop("""prompt""" )] UpperCamelCase__ = [] for p in [prompt, negative_prompt]: UpperCamelCase__ = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase__ = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = embeds # forward UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """egg cracking""" UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 2_56 UpperCamelCase__ = audio[:10] UpperCamelCase__ = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase__ = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def UpperCAmelCase_ (self ): UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase__ = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ["""hey"""] UpperCamelCase__ = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase__ = output.audios.shape assert audio_shape == (1, 2_56) UpperCamelCase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase__ = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def UpperCAmelCase_ (self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase_ (self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 1_28, 16) ) UpperCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 25 UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_19_20 UpperCamelCase__ = audio[7_72_30:7_72_40] UpperCamelCase__ = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCAmelCase_ (self ): UpperCamelCase__ = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase__ = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_19_20 UpperCamelCase__ = audio[2_77_80:2_77_90] UpperCamelCase__ = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
513
0
import math def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) lowercase__ : Optional[Any] = 0 while arr[min(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) - 1] < x: lowercase__ : List[str] = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase__ : Dict = prev + 1 if prev == min(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __a : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() __a : Tuple = [int(item) for item in user_input.split(''',''')] __a : List[str] = int(input('''Enter the number to be searched:\n''')) __a : Tuple = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'Number {x} is at index {res}')
298
__a : Union[str, Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 __a : int = True __a : int = False def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ : Tuple = chain(next_number(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : int = number_chain while number < 10_00_00_00: lowercase__ : Any = number_chain number *= 10 return number_chain def snake_case_ ( SCREAMING_SNAKE_CASE_ = 10_00_00_00 ) -> int: for i in range(1 ,SCREAMING_SNAKE_CASE_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
298
1
def _UpperCAmelCase ( a__ , a__): '''simple docstring''' return int(input_a == input_a == 0) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""") print("""| Input 1 | Input 2 | Output |""") print(f'''| 0 | 0 | {nor_gate(0 , 0)} |''') print(f'''| 0 | 1 | {nor_gate(0 , 1)} |''') print(f'''| 1 | 0 | {nor_gate(1 , 0)} |''') print(f'''| 1 | 1 | {nor_gate(1 , 1)} |''') if __name__ == "__main__": import doctest doctest.testmod() main()
540
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __snake_case : Optional[Any] = 10 def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' for i in range(a__ , a__): if array[i] == target: return i return -1 def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : Any = 0 a_ : List[str] = len(a__) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__) a_ : Dict = (left + right) // 3 + 1 a_ : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: a_ : int = one_third - 1 elif array[two_third] < target: a_ : Any = two_third + 1 else: a_ : Optional[int] = one_third + 1 a_ : int = two_third - 1 else: return -1 def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__) a_ : Optional[int] = (left + right) // 3 + 1 a_ : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Optional[int] = input("""Enter numbers separated by comma:\n""").strip() __snake_case : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __snake_case : int = int(input("""Enter the number to be found in the list:\n""").strip()) __snake_case : List[Any] = ite_ternary_search(collection, target) __snake_case : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
540
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "vit" def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=224 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=16 , **UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias lowercase_ = encoder_stride class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A__ ( self ) -> float: '''simple docstring''' return 1e-4
601
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[int] , __lowerCamelCase: list[int] , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [0] * no_of_processes lowercase_ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCamelCase ): lowercase_ = burst_time[i] lowercase_ = [] lowercase_ = 0 lowercase_ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase_ = [] lowercase_ = -1 for i in range(__lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowercase_ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase_ = i total_time += burst_time[target_process] completed += 1 lowercase_ = 0 lowercase_ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] ): '''simple docstring''' lowercase_ = [0] * no_of_processes for i in range(__lowerCamelCase ): lowercase_ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE__ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE__ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
601
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def a ( self : int ): """simple docstring""" _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase , 'depth_multiplier' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Tuple=0.2_5 , __lowerCAmelCase : Any=8 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=1024 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Dict="relu6" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : List[Any]=0.0_2 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[str]=10 , __lowerCAmelCase : Optional[Any]=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = depth_multiplier _lowerCAmelCase = min_depth _lowerCAmelCase = tf_padding _lowerCAmelCase = int(last_hidden_size * depth_multiplier ) _lowerCAmelCase = output_stride _lowerCAmelCase = hidden_act _lowerCAmelCase = classifier_dropout_prob _lowerCAmelCase = use_labels _lowerCAmelCase = is_training _lowerCAmelCase = num_labels _lowerCAmelCase = initializer_range _lowerCAmelCase = scope def a ( self : str ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self : Optional[int] ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCAmelCase = MobileNetVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = MobileNetVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): """simple docstring""" __A = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __A = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def a ( self : int ): """simple docstring""" _lowerCAmelCase = MobileNetVaModelTester(self ) _lowerCAmelCase = MobileNetVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def a ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def a ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def a ( self : Optional[Any] ): """simple docstring""" pass def a ( self : Any ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a ( self : str ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): _lowerCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = 26 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def a ( self : Any ): """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MobileNetVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def A_ ( ): _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : int ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def a ( self : str ): """simple docstring""" _lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(__lowerCAmelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__lowerCAmelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCAmelCase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) )
309
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def a ( self : int , __lowerCAmelCase : int ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _lowerCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__lowerCAmelCase ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCAmelCase , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Dict ): """simple docstring""" _lowerCAmelCase = 'sgugger/tiny-distilbert-classification' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , only_pretrain_model=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCAmelCase , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase , [config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): """simple docstring""" _lowerCAmelCase = 'patrickvonplaten/t5-tiny-random' _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def a ( self : Any ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCAmelCase , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__lowerCAmelCase , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Dict ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCAmelCase , save_to_csv=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCAmelCase , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(__lowerCAmelCase , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(__lowerCAmelCase , 'env.csv' ) , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCAmelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCAmelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCAmelCase , 'env.csv' ) ).exists() ) def a ( self : Dict ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__lowerCAmelCase : Dict ): self.assertTrue(hasattr(__lowerCAmelCase , 'sequential' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'cumulative' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'current' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCAmelCase , 'log.txt' ) , log_print=__lowerCAmelCase , trace_memory_line_by_line=__lowerCAmelCase , eager_mode=__lowerCAmelCase , multi_process=__lowerCAmelCase , ) _lowerCAmelCase = TensorFlowBenchmark(__lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__lowerCAmelCase , 'log.txt' ) ).exists() )
309
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase = logging.get_logger(__name__) class _A ( UpperCAmelCase_ ): def __init__( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , **lowerCamelCase__ : Tuple ): """simple docstring""" __UpperCamelCase : Tuple = feature_size __UpperCamelCase : Dict = sampling_rate __UpperCamelCase : int = padding_value __UpperCamelCase : List[Any] = kwargs.pop("""padding_side""" , """right""" ) __UpperCamelCase : Optional[Any] = kwargs.pop("""return_attention_mask""" , lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) def a ( self : Union[str, Any] , lowerCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = True , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , ): """simple docstring""" if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __UpperCamelCase : Any = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) __UpperCamelCase : Optional[int] = processed_features[self.model_input_names[0]] __UpperCamelCase : Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase__ ) == 0: if return_attention_mask: __UpperCamelCase : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __UpperCamelCase : List[str] = required_input[0] if isinstance(lowerCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __UpperCamelCase : Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase__ ): __UpperCamelCase : Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase__ ): __UpperCamelCase : Tuple = """tf""" elif is_torch_tensor(lowerCamelCase__ ): __UpperCamelCase : Dict = """pt""" elif isinstance(lowerCamelCase__ , (int, float, list, tuple, np.ndarray) ): __UpperCamelCase : Any = """np""" else: raise ValueError( f'type of {first_element} unknown: {type(lowerCamelCase__ )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __UpperCamelCase : Any = to_numpy(lowerCamelCase__ ) else: __UpperCamelCase : Tuple = [to_numpy(lowerCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy __UpperCamelCase : Dict = self._get_padding_strategies(padding=lowerCamelCase__ , max_length=lowerCamelCase__ ) __UpperCamelCase : Tuple = processed_features[self.model_input_names[0]] __UpperCamelCase : List[str] = len(lowerCamelCase__ ) if not all(len(lowerCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __UpperCamelCase : Dict = [] for i in range(lowerCamelCase__ ): __UpperCamelCase : Dict = {k: v[i] for k, v in processed_features.items()} # truncation __UpperCamelCase : Any = self._truncate( lowerCamelCase__ , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) truncated_inputs.append(lowerCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __UpperCamelCase : Tuple = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __UpperCamelCase : Optional[int] = PaddingStrategy.MAX_LENGTH __UpperCamelCase : List[str] = {} for i in range(lowerCamelCase__ ): # padding __UpperCamelCase : int = self._pad( truncated_inputs[i] , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: __UpperCamelCase : Any = [] if value.dtype is np.dtype(np.floataa ): __UpperCamelCase : Optional[int] = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase__ ) return BatchFeature(lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def a ( self : List[Any] , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): """simple docstring""" __UpperCamelCase : Tuple = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __UpperCamelCase : Union[str, Any] = len(lowerCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __UpperCamelCase : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __UpperCamelCase : Optional[int] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __UpperCamelCase : List[str] = np.ones(len(lowerCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: __UpperCamelCase : Union[str, Any] = max_length - len(lowerCamelCase__ ) if self.padding_side == "right": if return_attention_mask: __UpperCamelCase : Dict = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __UpperCamelCase : List[str] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __UpperCamelCase : Optional[int] = np.pad( lowerCamelCase__ , lowerCamelCase__ , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __UpperCamelCase : Tuple = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __UpperCamelCase : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __UpperCamelCase : List[Any] = np.pad( lowerCamelCase__ , lowerCamelCase__ , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def a ( self : Dict , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __UpperCamelCase : str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __UpperCamelCase : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __UpperCamelCase : int = len(lowerCamelCase__ ) > max_length if needs_to_be_truncated: __UpperCamelCase : Optional[int] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __UpperCamelCase : Optional[int] = processed_features["""attention_mask"""][:max_length] return processed_features def a ( self : Union[str, Any] , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Optional[int]=None ): """simple docstring""" if padding is not False: if padding is True: __UpperCamelCase : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : Optional[int] = PaddingStrategy(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : Union[str, Any] = padding else: __UpperCamelCase : int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
718
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] ) -> List[str]: __UpperCamelCase : Any = [x.strip() for x in open(__lowerCAmelCase ).readlines()] __UpperCamelCase : Dict = [x.strip() for x in open(__lowerCAmelCase ).readlines()][: len(__lowerCAmelCase )] __UpperCamelCase : Optional[Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) if save_path is not None: save_json(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
515
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase : def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict=1_3 , snake_case__ : List[Any]=7 , snake_case__ : List[str]=True , snake_case__ : Tuple=True , snake_case__ : List[str]=True , snake_case__ : Any=True , snake_case__ : List[Any]=9_9 , snake_case__ : Tuple=3_2 , snake_case__ : Optional[int]=2 , snake_case__ : int=4 , snake_case__ : Dict=3_7 , snake_case__ : List[str]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : Optional[Any]=1_6 , snake_case__ : List[Any]=2 , snake_case__ : List[str]=0.02 , snake_case__ : Any=3 , snake_case__ : int=4 , snake_case__ : Any=None , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 1_3 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 9_9 SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 3_7 SCREAMING_SNAKE_CASE = "gelu" SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 5_1_2 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Tuple , snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModel(config=snake_case__ ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(snake_case__ ) SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=snake_case__ ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self : Dict , snake_case__ : Any , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=snake_case__ ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : int , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=snake_case__ ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=snake_case__ ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( __A , __A , unittest.TestCase ): __UpperCamelCase =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase =( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int , snake_case__ : Any , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[Any] ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def UpperCamelCase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(snake_case__ ) @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(snake_case__ )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE = 5_0_0_0_0 SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1E-4 ) @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =1e-4 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.constant([[4, 1_0]] ) SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE = emba(input_ids.shape ) SCREAMING_SNAKE_CASE = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =1e-4 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) SCREAMING_SNAKE_CASE = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance )
439
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Dict = "https://openaipublic.azureedge.net/jukebox/models/" snake_case_ : Optional[int] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __a ( __UpperCAmelCase : Any ) -> Dict: """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : Any = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : List[Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : Dict = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowerCamelCase_ : Union[str, Any] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowerCamelCase_ : Optional[Any] = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ : str = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowerCamelCase_ : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def __a ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = {} import re lowerCamelCase_ : Optional[int] = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : Dict = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : str = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : List[str] = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : str = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Union[str, Any] = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Optional[int] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : str = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Optional[Any] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_encoder_block_conv_in.match(__UpperCAmelCase ) lowerCamelCase_ : Any = regex_match.groups() lowerCamelCase_ : str = int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ : str = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : Dict = re_encoder_block_conv_in.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = re_encoder_block_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : str = regex_match.groups() lowerCamelCase_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ : Any = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Optional[int] = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." lowerCamelCase_ : Union[str, Any] = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Dict = prefix + resnet_block lowerCamelCase_ : Optional[int] = re_encoder_block_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_encoder_block_proj_out.match(__UpperCAmelCase ) lowerCamelCase_ : str = regex_match.groups() lowerCamelCase_ : Any = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" lowerCamelCase_ : List[Any] = re_encoder_block_proj_out.sub(__UpperCAmelCase , __UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = re_decoder_block_conv_out.match(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = regex_match.groups() lowerCamelCase_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ : List[str] = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : Union[str, Any] = re_decoder_block_conv_out.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : int = re_decoder_block_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ : List[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Optional[Any] = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." lowerCamelCase_ : List[str] = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Optional[Any] = prefix + resnet_block lowerCamelCase_ : str = re_decoder_block_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : str = re_decoder_block_proj_in.match(__UpperCAmelCase ) lowerCamelCase_ : Tuple = regex_match.groups() lowerCamelCase_ : Dict = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" lowerCamelCase_ : List[Any] = re_decoder_block_proj_in.sub(__UpperCAmelCase , __UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = re_prior_cond_conv_out.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ : str = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : int = re_prior_cond_conv_out.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : List[Any] = re_prior_cond_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ : Tuple = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Any = f"conditioner_blocks.upsampler.upsample_block.{block_index}." lowerCamelCase_ : Any = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Optional[int] = prefix + resnet_block lowerCamelCase_ : Optional[Any] = re_prior_cond_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_prior_cond_proj_in.match(__UpperCAmelCase ) lowerCamelCase_ : Any = regex_match.groups() lowerCamelCase_ : str = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}" lowerCamelCase_ : Any = re_prior_cond_proj_in.sub(__UpperCAmelCase , __UpperCAmelCase ) # keep original key else: lowerCamelCase_ : Tuple = original_key lowerCamelCase_ : int = replace_key(__UpperCAmelCase ) if f"{key_prefix}.{key}" not in model_state_dict or key is None: print(f"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape: lowerCamelCase_ : str = model_state_dict[f"{key_prefix}.{key}"] print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) lowerCamelCase_ : List[Any] = original_key lowerCamelCase_ : Tuple = original_key lowerCamelCase_ : Optional[Any] = value return new_dict @torch.no_grad() def __a ( __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): lowerCamelCase_ : Dict = requests.get(f"{PREFIX}{file}" , allow_redirects=__UpperCAmelCase ) os.makedirs(f"{pytorch_dump_folder_path}/" , exist_ok=__UpperCAmelCase ) open(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) lowerCamelCase_ : Any = MODEL_MAPPING[model_name.split("/" )[-1]] lowerCamelCase_ : Tuple = JukeboxConfig.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = JukeboxModel(__UpperCAmelCase ) lowerCamelCase_ : str = [] lowerCamelCase_ : Union[str, Any] = {} for i, dict_name in enumerate(__UpperCAmelCase ): lowerCamelCase_ : str = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] lowerCamelCase_ : Dict = {} for k in old_dic.keys(): if k.endswith(".b" ): lowerCamelCase_ : Optional[int] = old_dic[k] elif k.endswith(".w" ): lowerCamelCase_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ : Optional[int] = old_dic[k] else: lowerCamelCase_ : int = old_dic[k] lowerCamelCase_ : Optional[Any] = "vqvae" if i == 0 else f"priors.{3 - i}" lowerCamelCase_ : Dict = fix_jukebox_keys(__UpperCAmelCase , model.state_dict() , __UpperCAmelCase , __UpperCAmelCase ) weight_dict.append(__UpperCAmelCase ) lowerCamelCase_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) with open(f"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) return weight_dict if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) snake_case_ : Dict = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
488
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase : Optional[Any] = logging.getLogger(__name__) def A ( snake_case :Dict , snake_case :Optional[int] ) -> Optional[Any]: return (preds == labels).mean() @dataclass class __lowerCAmelCase : lowercase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase = field( default=snake_case__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase = field( default=snake_case__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase = field( default=snake_case__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCAmelCase : lowercase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) lowercase = field(metadata={"help": "Should contain the data files for the task."} ) lowercase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase = field( default=snake_case__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A ( ) -> Tuple: __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: __UpperCamelCase = processors[data_args.task_name]() __UpperCamelCase = processor.get_labels() __UpperCamelCase = len(__SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case :int ) -> Dict: __UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator __UpperCamelCase = DataCollatorWithPadding(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(__SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(__SCREAMING_SNAKE_CASE ) return results def A ( snake_case :Optional[Any] ) -> int: main() if __name__ == "__main__": main()
704
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def A ( snake_case :Optional[int] ) -> str: __UpperCamelCase = torch.exp(snake_case ) __UpperCamelCase = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) __UpperCamelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = config.output_attentions __UpperCamelCase = config.output_hidden_states __UpperCamelCase = nn.ModuleList([BertLayer(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = nn.ModuleList([BertHighway(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if (type(__UpperCAmelCase ) is float) or (type(__UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase = x else: __UpperCamelCase = x def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = () __UpperCamelCase = () __UpperCamelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = layer_module( __UpperCAmelCase , __UpperCAmelCase , head_mask[i] , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = layer_outputs[0] if self.output_attentions: __UpperCamelCase = all_attentions + (layer_outputs[1],) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = current_outputs + (all_attentions,) __UpperCamelCase = self.highway[i](__UpperCAmelCase ) # logits, pooled_output if not self.training: __UpperCamelCase = highway_exit[0] __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__UpperCAmelCase , i + 1 ) else: __UpperCamelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = outputs + (all_attentions,) __UpperCamelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config __UpperCamelCase = BertEmbeddings(__UpperCAmelCase ) __UpperCamelCase = DeeBertEncoder(__UpperCAmelCase ) __UpperCamelCase = BertPooler(__UpperCAmelCase ) self.init_weights() def UpperCAmelCase ( self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase ( self ): '''simple docstring''' return self.embeddings.word_embeddings def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = value def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__UpperCAmelCase ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __UpperCamelCase = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if encoder_attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if token_type_ids is None: __UpperCamelCase = torch.zeros(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase = encoder_attention_mask[:, None, None, :] __UpperCamelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase = self.get_head_mask(__UpperCAmelCase , self.config.num_hidden_layers ) __UpperCamelCase = self.embeddings( input_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase ) __UpperCamelCase = self.encoder( __UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) __UpperCamelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = message __UpperCamelCase = exit_layer # start from 1! class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = BertPooler(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) # "return" pooler_output # BertModel __UpperCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase = bmodel_output[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeBertModel(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=-1 , __UpperCAmelCase=False , ): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.bert( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
293
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
277
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Tuple = 'efficientnet' def __init__( self : int , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 600 , __lowerCAmelCase : float = 2.0 , __lowerCAmelCase : float = 3.1 , __lowerCAmelCase : int = 8 , __lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase : List[int] = [] , __lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : float = 0.25 , __lowerCAmelCase : str = "swish" , __lowerCAmelCase : int = 2560 , __lowerCAmelCase : str = "mean" , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : float = 0.001 , __lowerCAmelCase : float = 0.99 , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : float = 0.2 , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(__lowerCAmelCase ) * 4 class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5
277
1
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _UpperCamelCase : Any =logging.getLogger(__name__) _UpperCamelCase : Any ="pytorch_model.bin" @dataclasses.dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE_ = dataclasses.field( default=UpperCamelCase , metadata={'help': 'Random seed for initialization.'} , ) def lowerCamelCase_ ( A_ , A_ , A_ , A_ , A_ , A_ ): __lowerCamelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __lowerCamelCase = dataset.filter(lambda A_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __lowerCamelCase = int(eval_result * len(A_ ) ) print(A_ ) __lowerCamelCase = dataset.sort('''probability''' , reverse=A_ ) __lowerCamelCase = dataset.select(range(A_ ) ) __lowerCamelCase = dataset.remove_columns(['''label''', '''probability'''] ) __lowerCamelCase = dataset.rename_column('''prediction''' , '''label''' ) __lowerCamelCase = dataset.map(lambda A_ : {"label": idalabel[example["label"]]} ) __lowerCamelCase = dataset.shuffle(seed=args.seed ) __lowerCamelCase = os.path.join(A_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(A_ , index=A_ ) else: dataset.to_json(A_ ) def lowerCamelCase_ ( A_ , A_ , A_ , A_ , **A_ ): __lowerCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __lowerCamelCase = STModelArguments(model_name_or_path=A_ ) __lowerCamelCase = STDataArguments(train_file=A_ , infer_file=A_ ) __lowerCamelCase = STTrainingArguments(output_dir=A_ ) __lowerCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A_ ).items(): setattr(A_ , A_ , A_ ) for key, value in kwargs.items(): if hasattr(A_ , A_ ): setattr(A_ , A_ , A_ ) # Sanity checks __lowerCamelCase = {} __lowerCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __lowerCamelCase = args.train_file __lowerCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __lowerCamelCase = args.eval_file for key in data_files: __lowerCamelCase = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __lowerCamelCase = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) __lowerCamelCase = f'''{args.output_dir}/self-train_iter-{{}}'''.format __lowerCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A_ ) os.makedirs(A_ , exist_ok=A_ ) accelerator.wait_for_everyone() __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = 0 __lowerCamelCase = False # Show the progress bar __lowerCamelCase = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __lowerCamelCase = data_dir_format(A_ ) assert os.path.exists(A_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __lowerCamelCase = os.path.join(A_ , '''stage-1''' ) __lowerCamelCase = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A_ , A_ ): arguments_dict.update({key: value} ) __lowerCamelCase = os.path.join(A_ , '''best-checkpoint''' , A_ ) if os.path.exists(A_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , A_ , A_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , A_ ) finetune(**A_ ) accelerator.wait_for_everyone() assert os.path.exists(A_ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , A_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __lowerCamelCase = os.path.join(A_ , '''best-checkpoint''' ) __lowerCamelCase = os.path.join(A_ , '''stage-2''' ) # Update arguments_dict __lowerCamelCase = model_path __lowerCamelCase = data_files['''train'''] __lowerCamelCase = current_output_dir __lowerCamelCase = os.path.join(A_ , '''best-checkpoint''' , A_ ) if os.path.exists(A_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , A_ , A_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , A_ ) finetune(**A_ ) accelerator.wait_for_everyone() assert os.path.exists(A_ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , A_ ) __lowerCamelCase = iteration __lowerCamelCase = data_dir_format(iteration + 1 ) __lowerCamelCase = AutoConfig.from_pretrained(os.path.join(A_ , '''best-checkpoint''' ) ) __lowerCamelCase = config.idalabel __lowerCamelCase = os.path.join(A_ , '''eval_results_best-checkpoint.json''' ) __lowerCamelCase = os.path.join(A_ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(A_ ) with open(A_ , '''r''' ) as f: __lowerCamelCase = float(json.load(A_ )[args.eval_metric] ) __lowerCamelCase = os.path.join(A_ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(A_ ) # Loading the dataset from local csv or json files. __lowerCamelCase = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] __lowerCamelCase = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(A_ , exist_ok=A_ ) shutil.copy(A_ , os.path.join(A_ , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(A_ ): shutil.copy(A_ , os.path.join(A_ , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(A_ , A_ , A_ , A_ , A_ , A_ ) accelerator.wait_for_everyone() __lowerCamelCase = os.path.join(A_ , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __lowerCamelCase = eval_result if best_iteration is None: __lowerCamelCase = new_iteration __lowerCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __lowerCamelCase = new_iteration __lowerCamelCase = new_eval_result __lowerCamelCase = 0 else: if new_eval_result == best_eval_result: __lowerCamelCase = new_iteration __lowerCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __lowerCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , A_ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , A_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A_ , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(A_ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , A_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A_ , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(A_ , '''eval_results_best-iteration.json''' ) , )
575
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TransfoXLTokenizer SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCamelCase ( self ): """simple docstring""" super().setUp() __lowerCamelCase = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" __lowerCamelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = '''<unk> UNwanted , running''' __lowerCamelCase = '''<unk> unwanted, running''' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_snake_case ) __lowerCamelCase = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(_snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [0, 4, 8, 7] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = TransfoXLTokenizer(lower_case=_snake_case ) __lowerCamelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __lowerCamelCase = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_snake_case ) , _snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = len(_snake_case ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
575
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( UpperCamelCase__): _lowercase : int = 0 _lowercase : bool = False _lowercase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Tuple: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : List[Any] =GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() a__ : Union[str, Any] =Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) a__ : int =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCAmelCase__ ) @require_multi_gpu def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase : Dict = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase : Tuple = torch.nn.Linear(100, 200) UpperCAmelCase : Tuple = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase : str = """""" UpperCAmelCase : Optional[int] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
563
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase : Optional[int] = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
563
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : str = CodeGenTokenizer SCREAMING_SNAKE_CASE__ : Any = CodeGenTokenizerFast SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Tuple = {'''add_prefix_space''': True} SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :int ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __SCREAMING_SNAKE_CASE : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def __magic_name__( self :List[str] , **lowerCAmelCase__ :str ) -> str: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :int , **lowerCAmelCase__ :List[Any] ) -> str: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[int] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = '''lower newer''' __SCREAMING_SNAKE_CASE : Tuple = '''lower newer''' return input_text, output_text def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' __SCREAMING_SNAKE_CASE : int = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Tuple: if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''lower newer''' # Testing tokenization __SCREAMING_SNAKE_CASE : str = tokenizer.tokenize(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing conversion to ids without special tokens __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing conversion to ids with special tokens __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing the unknown token __SCREAMING_SNAKE_CASE : Union[str, Any] = tokens + [rust_tokenizer.unk_token] __SCREAMING_SNAKE_CASE : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :Optional[int] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Dict ) -> str: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Any=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # Simple input __SCREAMING_SNAKE_CASE : int = '''This is a simple input''' __SCREAMING_SNAKE_CASE : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] __SCREAMING_SNAKE_CASE : Dict = ('''This is a simple input''', '''This is a pair''') __SCREAMING_SNAKE_CASE : int = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , ) def __magic_name__( self :Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input __SCREAMING_SNAKE_CASE : int = '''This is a simple input''' __SCREAMING_SNAKE_CASE : str = ['''This is a simple input looooooooong''', '''This is a simple input'''] __SCREAMING_SNAKE_CASE : str = ('''This is a simple input''', '''This is a pair''') __SCREAMING_SNAKE_CASE : Optional[Any] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id __SCREAMING_SNAKE_CASE : str = tokenizer(lowerCAmelCase__ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : Dict = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncate=lowerCAmelCase__ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : str = tokenizer(*lowerCAmelCase__ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncate=lowerCAmelCase__ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = '''$$$''' __SCREAMING_SNAKE_CASE : Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase__ , add_bos_token=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = '''This is a simple input''' __SCREAMING_SNAKE_CASE : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] __SCREAMING_SNAKE_CASE : str = tokenizer.bos_token_id __SCREAMING_SNAKE_CASE : List[str] = tokenizer(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __SCREAMING_SNAKE_CASE : str = tokenizer.decode(out_s.input_ids ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__( self :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : int = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' __SCREAMING_SNAKE_CASE : Dict = '''\nif len_a > len_b: result = a\nelse: result = b''' __SCREAMING_SNAKE_CASE : str = tokenizer.encode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(lowerCAmelCase__ , truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Union[str, Any]: pass
700
class _lowercase : '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :list[int] ) -> None: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = [0] * len_array if len_array > 0: __SCREAMING_SNAKE_CASE : List[Any] = array[0] for i in range(1 , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = self.prefix_sum[i - 1] + array[i] def __magic_name__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __magic_name__( self :List[Any] , lowerCAmelCase__ :int ) -> bool: __SCREAMING_SNAKE_CASE : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
260
0
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ) -> float: """simple docstring""" return 10 - x * x def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float: """simple docstring""" if equation(lowerCAmelCase_ ) * equation(lowerCAmelCase_ ) >= 0: raise ValueError('Wrong space!' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE_ : List[Any] =(a + b) / 2 # Check if middle point is root if equation(lowerCAmelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCAmelCase_ ) * equation(lowerCAmelCase_ ) < 0: SCREAMING_SNAKE_CASE_ : List[str] =c else: SCREAMING_SNAKE_CASE_ : Optional[Any] =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
220
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE_ : Dict =name.replace('img_encoder.pos_embed' ,'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : int =name.replace('img_encoder.patch_embed.proj' ,'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : Dict =name.replace('img_encoder.patch_embed.norm' ,'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('img_encoder.layers' ,'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE_ : str =name.replace('blocks' ,'layers' ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('attn' ,'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('proj' ,'out_proj' ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('pre_assign_attn.attn.proj' ,'pre_assign_attn.attn.out_proj' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('norm1' ,'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE_ : str =name.replace('norm2' ,'layer_norm2' ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('img_encoder.norm' ,'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE_ : Dict =name.replace('text_encoder.token_embedding' ,'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('text_encoder.positional_embedding' ,'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE_ : Tuple =name.replace('text_encoder.transformer.resblocks.' ,'text_model.encoder.layers.' ) if "ln_1" in name: SCREAMING_SNAKE_CASE_ : Tuple =name.replace('ln_1' ,'layer_norm1' ) if "ln_2" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('ln_2' ,'layer_norm2' ) if "c_fc" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('c_fc' ,'fc1' ) if "c_proj" in name: SCREAMING_SNAKE_CASE_ : int =name.replace('c_proj' ,'fc2' ) if "text_encoder" in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('text_encoder' ,'text_model' ) if "ln_final" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('ln_final' ,'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE_ : Tuple =name.replace('img_projector.linear_hidden.' ,'visual_projection.' ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE_ : str =name.replace('img_projector.linear_out.' ,'visual_projection.3.' ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('text_projector.linear_hidden' ,'text_projection' ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE_ : Any =name.replace('text_projector.linear_out' ,'text_projection.3' ) return name def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : int =orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ : Tuple =key.split('.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE_ : Optional[int] =config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ : List[str] =val[:dim, :] SCREAMING_SNAKE_CASE_ : Dict =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : List[str] =val[-dim:, :] else: SCREAMING_SNAKE_CASE_ : List[str] =val[:dim] SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE_ : int =key.split('.' ) SCREAMING_SNAKE_CASE_ : int =int(key_split[3] ) SCREAMING_SNAKE_CASE_ : int =config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ : Optional[int] =val[:dim, :] SCREAMING_SNAKE_CASE_ : List[str] =val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_ : Optional[int] =val[-dim:, :] else: SCREAMING_SNAKE_CASE_ : str =val[:dim] SCREAMING_SNAKE_CASE_ : Union[str, Any] =val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : Dict =val[-dim:] else: SCREAMING_SNAKE_CASE_ : int =rename_key(lowerCAmelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE_ : List[str] =val.squeeze_() else: SCREAMING_SNAKE_CASE_ : List[str] =val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ : Union[str, Any] =Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : str="groupvit-gcc-yfcc" ,lowerCAmelCase_ : Any=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =GroupViTConfig() SCREAMING_SNAKE_CASE_ : Union[str, Any] =GroupViTModel(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.load(lowerCAmelCase_ ,map_location='cpu' )['model'] SCREAMING_SNAKE_CASE_ : Union[str, Any] =convert_state_dict(lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase_ ) == 0) # verify result SCREAMING_SNAKE_CASE_ : Optional[Any] =CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE_ : List[Any] =prepare_img() SCREAMING_SNAKE_CASE_ : Optional[int] =processor(text=['a photo of a cat', 'a photo of a dog'] ,images=lowerCAmelCase_ ,padding=lowerCAmelCase_ ,return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(**lowerCAmelCase_ ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE_ : Tuple =torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image ,lowerCAmelCase_ ,atol=1e-3 ) processor.save_pretrained(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print('Successfully saved processor and model to' ,lowerCAmelCase_ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(lowerCAmelCase_ ,organization='nielsr' ) model.push_to_hub(lowerCAmelCase_ ,organization='nielsr' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
220
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=3,__lowerCamelCase=7,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=True,__lowerCamelCase=99,__lowerCamelCase=32,__lowerCamelCase=5,__lowerCamelCase=4,__lowerCamelCase=37,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=512,__lowerCamelCase=16,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=3,__lowerCamelCase=4,__lowerCamelCase=None,): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def UpperCamelCase ( self ): A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = ids_tensor([self.batch_size],self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self ): return FalconConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=_a,initializer_range=self.initializer_range,pad_token_id=1,new_decoder_architecture=_a,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = FalconModel(config=_a ) model.to(_a ) model.eval() A__ = model(_a,attention_mask=_a ) A__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = True A__ = FalconModel(_a ) model.to(_a ) model.eval() A__ = model( _a,attention_mask=_a,encoder_hidden_states=_a,encoder_attention_mask=_a,) A__ = model( _a,attention_mask=_a,encoder_hidden_states=_a,) A__ = model(_a,attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = FalconForCausalLM(config=_a ) model.to(_a ) model.eval() A__ = model(_a,attention_mask=_a,labels=_a ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = True A__ = True A__ = FalconForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass A__ = model( _a,attention_mask=_a,encoder_hidden_states=_a,encoder_attention_mask=_a,use_cache=_a,) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3),config.vocab_size ) A__ = ids_tensor((self.batch_size, 3),vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens],dim=-1 ) A__ = torch.cat([input_mask, next_mask],dim=-1 ) A__ = model( _a,attention_mask=_a,encoder_hidden_states=_a,encoder_attention_mask=_a,output_hidden_states=_a,)['''hidden_states'''][0] A__ = model( _a,attention_mask=_a,encoder_hidden_states=_a,encoder_attention_mask=_a,past_key_values=_a,output_hidden_states=_a,)['''hidden_states'''][0] # select random slice A__ = ids_tensor((1,),output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a,_a,atol=1E-3 ) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = (FalconForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ): A__ = FalconModelTester(self ) A__ = ConfigTester(self,config_class=_a,hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCamelCase ( self ): A__ , *A__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A__ = alibi self.model_tester.create_and_check_model(_a,*_a ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1 ).to(_a ) A__ = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) A__ = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() A__ = model(_a,attention_mask=_a,labels=_a ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = '''single_label_classification''' A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1 ).to(_a ) A__ = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size ) A__ = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() A__ = model(_a,attention_mask=_a,labels=_a ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = input_dict['''input_ids'''] A__ = FalconForCausalLM(_a ) model.to(_a ) model.eval() A__ = model(_a,use_cache=_a ) A__ = input_ids.shape[0] A__ = model._convert_to_rw_cache(result.past_key_values ) A__ = model._convert_cache_to_standard_format(_a,_a ) for layer in range(len(_a ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCamelCase ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = '''multi_label_classification''' A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1 ).to(_a ) A__ = ids_tensor( [self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float ) A__ = FalconForSequenceClassification(_a ) model.to(_a ) model.eval() A__ = model(_a,attention_mask=_a,labels=_a ) self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase ( self ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_a,'''use_cache''' ): return A__ = model_class(_a ).to(_a ) if "use_cache" not in inputs: A__ = True A__ = model(**_a ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A__ = ( getattr(_a,'''decoder_layers''',_a ) or getattr(_a,'''num_decoder_layers''',_a ) or config.num_hidden_layers ) A__ = getattr(_a,'''num_kv_heads''',config.num_attention_heads ) A__ = getattr(_a,'''d_model''',config.hidden_size ) A__ = embed_dim // num_attention_heads A__ = outputs['''past_key_values'''] self.assertEqual(len(_a ),_a ) A__ , A__ = inputs['''input_ids'''].shape for i in range(_a ): if config.new_decoder_architecture: A__ = config.num_attention_heads elif config.multi_query: A__ = 1 self.assertEqual(len(past_kv[0] ),2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): A__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) A__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(_a ) A__ = tokenizer('''My favorite food is''',return_tensors='''pt''' ).to(_a ) A__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) A__ = model.generate(**_a,do_sample=_a,max_new_tokens=19 ) A__ = tokenizer.batch_decode(_a )[0] self.assertEqual(_a,_a ) @slow def UpperCamelCase ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A__ = AutoTokenizer.from_pretrained(_a ) A__ = FalconForCausalLM.from_pretrained(_a ) model.eval() model.to(_a ) A__ = tokenizer('''My favorite food is''',return_tensors='''pt''' ).to(_a ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_a,do_sample=_a,max_new_tokens=4 ) model.generate(**_a,do_sample=_a,max_new_tokens=4 ) model.generate(**_a,num_beams=2,max_new_tokens=4 ) @slow def UpperCamelCase ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A__ = AutoTokenizer.from_pretrained(_a ) A__ = FalconForCausalLM.from_pretrained(_a ) model.eval() model.to(device=_a ) A__ = tokenizer('''My favorite food is''',return_tensors='''pt''' ).to(_a ) # Test results are the same with and without cache A__ = model.generate(**_a,do_sample=_a,max_new_tokens=20,use_cache=_a ) A__ = model.generate(**_a,do_sample=_a,max_new_tokens=20,use_cache=_a ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
721
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__: Any = random.Random() def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : str=1.0 , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None )->Any: if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self,__lowerCamelCase,__lowerCamelCase=7,__lowerCamelCase=400,__lowerCamelCase=2000,__lowerCamelCase=2048,__lowerCamelCase=128,__lowerCamelCase=1,__lowerCamelCase=512,__lowerCamelCase=30,__lowerCamelCase=4_4100,): A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = spectrogram_length A__ = feature_size A__ = num_audio_channels A__ = hop_length A__ = chunk_length A__ = sampling_rate def UpperCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase ( self,__lowerCamelCase=False,__lowerCamelCase=False ): def _flatten(__lowerCamelCase ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: A__ = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = TvltFeatureExtractor def UpperCamelCase ( self ): A__ = TvltFeatureExtractionTester(self ) def UpperCamelCase ( self ): A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCamelCase,'''spectrogram_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''feature_size''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''num_audio_channels''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''hop_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''chunk_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase,'''sampling_rate''' ) ) def UpperCamelCase ( self ): A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(__lowerCamelCase )[0] check_json_file_has_correct_format(__lowerCamelCase ) A__ = self.feature_extraction_class.from_pretrained(__lowerCamelCase ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('''mel_filters''' ) A__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(__lowerCamelCase,'''feat_extract.json''' ) feat_extract_first.to_json_file(__lowerCamelCase ) A__ = self.feature_extraction_class.from_json_file(__lowerCamelCase ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('''mel_filters''' ) A__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self ): # Initialize feature_extractor A__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(800,1400,200 )] A__ = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input A__ = feature_extractor(np_speech_inputs[0],return_tensors='''np''',sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ = feature_extractor(__lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ = feature_extractor( __lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100,mask_audio=__lowerCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ = np.asarray(__lowerCamelCase ) A__ = feature_extractor(__lowerCamelCase,return_tensors='''np''',sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''','''clean''',split='''validation''' ) # automatic decoding with librispeech A__ = ds.sort('''id''' ).select(range(__lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase ( self ): A__ = self._load_datasamples(1 ) A__ = TvltFeatureExtractor() A__ = feature_extractor(__lowerCamelCase,return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape,(1, 1, 192, 128) ) A__ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2],__lowerCamelCase,atol=1E-4 ) )
212
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): _A = [] for line in lines: _A = re.sub(R'#.*' , '' , SCREAMING_SNAKE_CASE__ ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE__ ) _A = '\n'.join(SCREAMING_SNAKE_CASE__ ) # Make a hash from all this code _A = full_str.encode('utf-8' ) return shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # get importable module names and hash for caching _UpperCAmelCase : Union[str, Any] = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _UpperCAmelCase : Tuple = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _UpperCAmelCase : Any = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name _UpperCAmelCase : Optional[int] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
107
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCamelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCamelCase = get_tests_dir('fixtures/vocab.json') lowerCamelCase = get_tests_dir('fixtures') class A ( unittest.TestCase ): UpperCamelCase__ : Dict =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =0 def lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : int =WavaVecaConfig() _lowerCamelCase : Dict =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) _lowerCamelCase : Any =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : List[str] =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : str =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Optional[int] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : Tuple =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : Dict =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write('{}' ) _lowerCamelCase : int =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) _lowerCamelCase : List[str] =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) _lowerCamelCase : int =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) _lowerCamelCase : Optional[int] =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ , use_fast=lowercase_ ) _lowerCamelCase : Optional[int] =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : str =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : str =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : List[Any] =CustomTokenizer(lowercase_ ) _lowerCamelCase : Optional[int] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" class A ( UpperCamelCase_ ): UpperCamelCase__ : Optional[Any] =False class A ( UpperCamelCase_ ): UpperCamelCase__ : int =False class A ( UpperCamelCase_ ): UpperCamelCase__ : Union[str, Any] ='AutoFeatureExtractor' UpperCamelCase__ : str ='AutoTokenizer' UpperCamelCase__ : List[Any] =False try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCamelCase : str =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : Any =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCamelCase ( cls : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] =TOKEN HfFolder.save_token(lowercase_ ) @classmethod def lowerCamelCase ( cls : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCamelCase : Tuple =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor' ) , push_to_hub=lowercase_ , use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] =WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : int =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor-org' ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization='valid_org' , ) _lowerCamelCase : str =WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCamelCase : Optional[Any] =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Any =CustomTokenizer(lowercase_ ) _lowerCamelCase : List[Any] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) _lowerCamelCase : List[str] =Repository(lowercase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_processing.py' ) ) ) repo.push_to_hub() _lowerCamelCase : Tuple =AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
464
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase : _lowerCAmelCase : CommonSchedulerState # setable values _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : jnp.ndarray _lowerCAmelCase : Optional[int] = None @classmethod def A( cls , lowercase__ , lowercase__ , lowercase__): return cls(common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__) @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : DDPMSchedulerState class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCAmelCase : jnp.dtype @property def A( self): return True @register_to_config def __init__( self , lowercase__ = 1_0_0_0 , lowercase__ = 0.0_0_0_1 , lowercase__ = 0.0_2 , lowercase__ = "linear" , lowercase__ = None , lowercase__ = "fixed_small" , lowercase__ = True , lowercase__ = "epsilon" , lowercase__ = jnp.floataa , ): __UpperCAmelCase : Tuple = dtype def A( self , lowercase__ = None): if common is None: __UpperCAmelCase : Any = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution __UpperCAmelCase : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype) __UpperCAmelCase : str = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ , ) def A( self , lowercase__ , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ , lowercase__ = ()): __UpperCAmelCase : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Tuple = (jnp.arange(0 , lowercase__) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase__ , timesteps=lowercase__ , ) def A( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None): __UpperCAmelCase : List[str] = state.common.alphas_cumprod[t] __UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCAmelCase : List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCAmelCase : Optional[int] = jnp.clip(lowercase__ , a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCAmelCase : List[Any] = jnp.log(jnp.clip(lowercase__ , a_min=1e-20)) elif variance_type == "fixed_large": __UpperCAmelCase : Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCAmelCase : str = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCAmelCase : Optional[Any] = variance __UpperCAmelCase : Optional[Any] = state.common.betas[t] __UpperCAmelCase : Union[str, Any] = (predicted_variance + 1) / 2 __UpperCAmelCase : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = True , ): __UpperCAmelCase : int = timestep if key is None: __UpperCAmelCase : Any = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCAmelCase , __UpperCAmelCase : List[Any] = jnp.split(lowercase__ , sample.shape[1] , axis=1) else: __UpperCAmelCase : Dict = None # 1. compute alphas, betas __UpperCAmelCase : Dict = state.common.alphas_cumprod[t] __UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) __UpperCAmelCase : Tuple = 1 - alpha_prod_t __UpperCAmelCase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCAmelCase : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''') # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCAmelCase : Any = jnp.clip(lowercase__ , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCAmelCase : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCAmelCase : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCAmelCase : Optional[Any] = jax.random.split(lowercase__ , num=1) __UpperCAmelCase : str = jax.random.normal(lowercase__ , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(lowercase__ , lowercase__ , predicted_variance=lowercase__) ** 0.5) * noise __UpperCAmelCase : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) __UpperCAmelCase : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase__ , state=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): return add_noise_common(state.common , lowercase__ , lowercase__ , lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): return get_velocity_common(state.common , lowercase__ , lowercase__ , lowercase__) def __len__( self): return self.config.num_train_timesteps
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : Optional[int] = logging.getLogger() def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _lowerCamelCase : Dict = parser.parse_args() return args.f class A_ ( _a ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,"run_glue_deebert.py" ) with patch.object(__lowerCAmelCase ,"argv" ,__lowerCAmelCase ): _lowerCamelCase : Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCAmelCase ,0.6_66 ) @slow @require_torch_non_multi_gpu def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(__lowerCAmelCase ) _lowerCamelCase : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__lowerCAmelCase )
46
from __future__ import annotations from typing import Any def A__ ( _a : list[Any] ): '''simple docstring''' create_state_space_tree(_a , [] , 0 ) def A__ ( _a : list[Any] , _a : list[Any] , _a : int ): '''simple docstring''' if index == len(_a ): print(_a ) return create_state_space_tree(_a , _a , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_a , _a , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
385
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = SpeechTaTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : Any = SpeechTaTokenizer(a_ ) a_ : Optional[int] = AddedToken("<mask>" , lstrip=a_ , rstrip=a_ ) a_ : Any = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Tuple = "this is a test" a_ : Any = "this is a test" return input_text, output_text def snake_case_ ( self , a_ , a_=False , a_=2_0 , a_=5 ): a_ , a_ : Optional[Any] = self.get_input_output_texts(a_ ) a_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) a_ : Dict = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) return text, ids def snake_case_ ( self ): a_ : List[Any] = "<pad>" a_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def snake_case_ ( self ): a_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(a_ ) , 8_1 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def snake_case_ ( self ): a_ : Any = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): a_ : Dict = tokenizer.vocab_size a_ : List[str] = len(a_ ) self.assertNotEqual(a_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a_ : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] a_ : int = tokenizer.add_tokens(a_ ) a_ : List[Any] = tokenizer.vocab_size a_ : Tuple = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size + len(a_ ) ) a_ : str = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a_ : Tuple = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} a_ : Dict = tokenizer.add_special_tokens(a_ ) a_ : Optional[Any] = tokenizer.vocab_size a_ : Any = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size_a + len(a_ ) ) a_ : Any = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): a_ : Union[str, Any] = self.get_tokenizer() a_ : Any = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(a_ , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) a_ : Tuple = tokenizer.convert_tokens_to_ids(a_ ) # fmt: off self.assertListEqual(a_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a_ : Tuple = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def snake_case_ ( self ): # Use custom sequence because this tokenizer does not handle numbers. a_ : List[Any] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off a_ : Tuple = { "input_ids": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=a_ , )
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case_ ( a_ ): __lowerCAmelCase = "blenderbot-small" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a_=5_0_2_6_5 , a_=5_1_2 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=8 , a_=2_0_4_8 , a_=1_6 , a_=0.0 , a_=0.0 , a_=True , a_=True , a_="gelu" , a_=5_1_2 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=1 , a_=False , a_=0 , a_=1 , a_=2 , a_=2 , **a_ , ): a_ : int = vocab_size a_ : Any = max_position_embeddings a_ : Optional[int] = d_model a_ : Tuple = encoder_ffn_dim a_ : List[Any] = encoder_layers a_ : Optional[int] = encoder_attention_heads a_ : Optional[int] = decoder_ffn_dim a_ : List[str] = decoder_layers a_ : Dict = decoder_attention_heads a_ : List[str] = dropout a_ : List[Any] = attention_dropout a_ : List[str] = activation_dropout a_ : Optional[Any] = activation_function a_ : List[Any] = init_std a_ : int = encoder_layerdrop a_ : Optional[int] = decoder_layerdrop a_ : List[str] = use_cache a_ : Optional[int] = encoder_layers a_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) class snake_case_ ( a_ ): @property def snake_case_ ( self ): if self.task in ["default", "seq2seq-lm"]: a_ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a_ : Tuple = {0: "batch"} a_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a_ : List[str] = {0: "batch", 1: "decoder_sequence"} a_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. a_ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: a_ , a_ : Optional[int] = self.num_layers for i in range(a_ ): a_ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: a_ : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def snake_case_ ( self ): if self.task in ["default", "seq2seq-lm"]: a_ : List[Any] = super().outputs else: a_ : Tuple = super(a_ , self ).outputs if self.use_past: a_ , a_ : Dict = self.num_layers for i in range(a_ ): a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} a_ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): a_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) # Generate decoder inputs a_ : Optional[int] = seq_length if not self.use_past else 1 a_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) a_ : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} a_ : Tuple = dict(**a_ , **a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a_ , a_ : Optional[int] = common_inputs["input_ids"].shape a_ : str = common_inputs["decoder_input_ids"].shape[1] a_ , a_ : Dict = self.num_attention_heads a_ : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : Optional[Any] = decoder_seq_length + 3 a_ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a_ : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a_ , a_ )] , dim=1 ) a_ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a_ , a_ : Tuple = self.num_layers a_ : str = min(a_ , a_ ) a_ : Dict = max(a_ , a_ ) - min_num_layers a_ : Union[str, Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a_ ): common_inputs["past_key_values"].append( ( torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), torch.zeros(a_ ), ) ) # TODO: test this. a_ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a_ , a_ ): common_inputs["past_key_values"].append((torch.zeros(a_ ), torch.zeros(a_ )) ) return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): a_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , a_ , a_ , a_ , a_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a_ , a_ : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values a_ : int = seqlen + 2 a_ , a_ : Optional[int] = self.num_layers a_ , a_ : Optional[int] = self.num_attention_heads a_ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ : str = common_inputs["attention_mask"].dtype a_ : Tuple = torch.cat( [common_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) a_ : Optional[int] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(a_ ) ] return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ : Optional[Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ : Tuple = tokenizer.num_special_tokens_to_add(a_ ) a_ : Union[str, Any] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence a_ : Union[str, Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size a_ : str = dict(tokenizer(a_ , return_tensors=a_ ) ) return common_inputs def snake_case_ ( self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): if self.task in ["default", "seq2seq-lm"]: a_ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) elif self.task == "causal-lm": a_ : List[Any] = self._generate_dummy_inputs_for_causal_lm( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) else: a_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) return common_inputs def snake_case_ ( self , a_ , a_ , a_ , a_ ): if self.task in ["default", "seq2seq-lm"]: a_ : Optional[int] = super()._flatten_past_key_values_(a_ , a_ , a_ , a_ ) else: a_ : int = super(a_ , self )._flatten_past_key_values_( a_ , a_ , a_ , a_ )
370
1
import os from collections.abc import Iterator def __UpperCamelCase (_SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_SCREAMING_SNAKE_CASE ): lowercase__ = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"): yield os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).lstrip('./' ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: return F"""{i * " "}*""" if i else "\n##" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(_SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}""" ) return new_path def __UpperCamelCase (_SCREAMING_SNAKE_CASE = "." ) -> None: lowercase__ = '' for filepath in sorted(good_file_paths(_SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = os.path.split(_SCREAMING_SNAKE_CASE ) if filepath != old_path: lowercase__ = print_path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase__ = F"""{filepath}/{filename}""".replace(' ' , '%20' ) lowercase__ = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F"""{md_prefix(_SCREAMING_SNAKE_CASE )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
235
import requests lowercase_ = """YOUR API KEY""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: lowercase__ = '+'.join(query.split() ) lowercase__ = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
235
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ : Tuple = logging.get_logger(__name__) UpperCamelCase_ : Any = torch.device("""cpu""") def _lowerCAmelCase (): """simple docstring""" a__ = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def _lowerCAmelCase (_lowercase ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = dct.pop(_lowercase ) a__ = val def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = [] for k in state_dict.keys(): a__ = k if ".pwconv" in k: a__ = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: a__ = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: a__ = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: a__ = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: a__ = k_new.split("." ) if ls[2].isdigit(): a__ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: a__ = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ = 10_00 a__ = "huggingface/label-files" a__ = "imagenet-1k-id2label.json" a__ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) a__ = {int(_lowercase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ = [3, 3, 6, 4] a__ = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": a__ = [3, 3, 9, 6] a__ = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": a__ = [4, 3, 10, 5] a__ = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": a__ = [4, 4, 12, 6] a__ = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): a__ = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" , check_hash=_lowercase ) else: a__ = torch.load(_lowercase , map_location="cpu" ) a__ = checkpoint a__ = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model a__ = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs a__ = prepare_img() a__ = ViTImageProcessor.from_pretrained("preprocessor_config" ) a__ = processor(images=_lowercase , return_tensors="pt" ) # compare outputs from both models a__ = get_expected_output(_lowercase ) a__ = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") UpperCamelCase_ : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
704
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ : Optional[int] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = random.randint(0 , len(_lowercase ) - 1 ) a__ = parent_a[:random_slice] + parent_a[random_slice:] a__ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__ = random.choice(_lowercase ) return "".join(_lowercase ) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , ): """simple docstring""" a__ = [] # Generate more children proportionally to the fitness score. a__ = int(parent_a[1] * 1_00 ) + 1 a__ = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): a__ = population_score[random.randint(0 , _lowercase )][0] a__ , a__ = crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def _lowerCAmelCase (_lowercase , _lowercase , _lowercase = True ): """simple docstring""" if N_POPULATION < N_SELECTED: a__ = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. a__ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__ = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowercase ) # Generate random starting population. a__ = [] for _ in range(_lowercase ): population.append("".join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__ = [evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. a__ = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. a__ = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCamelCase_ : int = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[int] = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
394
0
import math def _snake_case ( __snake_case = 100 ): _UpperCamelCase = sum(i * i for i in range(1 , n + 1 ) ) _UpperCamelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCAmelCase = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' _lowerCamelCase = 42 _lowerCamelCase = None _lowerCamelCase = None def _SCREAMING_SNAKE_CASE ( ) -> Node | None: _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) return tree def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Sequence[Node | None]: _UpperCAmelCase = [] if root is None: return output _UpperCAmelCase = deque([root] ) while process_queue: _UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Sequence[Node | None]: _UpperCAmelCase = [] def populate_output(__snake_case , __snake_case ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Sequence[Node | None]: _UpperCAmelCase = [] def populate_output(__snake_case , __snake_case ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) _UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) _UpperCAmelCase = 0 return output def _SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. _UpperCAmelCase = make_tree() print(f"""In-order Traversal: {inorder(__snake_case )}""" ) print(f"""Pre-order Traversal: {preorder(__snake_case )}""" ) print(f"""Post-order Traversal: {postorder(__snake_case )}""" , """\n""" ) print(f"""Height of Tree: {height(__snake_case )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__snake_case ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__snake_case ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
108
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase__ ( _snake_case ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ): super().__init__(**__snake_case ) _SCREAMING_SNAKE_CASE : int = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE : Any = get_size_dict(__snake_case , default_to_square=__snake_case , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Union[str, Any] = size _SCREAMING_SNAKE_CASE : List[str] = resample _SCREAMING_SNAKE_CASE : str = do_center_crop _SCREAMING_SNAKE_CASE : Optional[Any] = crop_size _SCREAMING_SNAKE_CASE : Tuple = do_rescale _SCREAMING_SNAKE_CASE : Dict = rescale_factor _SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize _SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE : Optional[int] = do_convert_rgb def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : int = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(__snake_case , size=size["""shortest_edge"""] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ): return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def UpperCAmelCase_ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ): _SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Any = size if size is not None else self.size _SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__snake_case , param_name="""size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__snake_case , param_name="""crop_size""" , default_to_square=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE : Optional[int] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : str = [to_numpy_array(__snake_case ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[Any] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : Tuple = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : List[Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : Dict = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] _SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _SCREAMING_SNAKE_CASE : int = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
533
0
from datetime import datetime import requests def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> bytes: _UpperCAmelCase : Any = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" _UpperCAmelCase : Tuple = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase ).content if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter Video/IGTV url: ').strip() SCREAMING_SNAKE_CASE_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
701
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( UpperCAmelCase ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
467
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase_ ( _snake_case : str , _snake_case : List[str] ) -> np.array: '''simple docstring''' __magic_name__ : str = F'''{sampling_rate}''' __magic_name__ : Optional[Any] = "1" __magic_name__ : Optional[Any] = "f32le" __magic_name__ : Any = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(snake_case_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __magic_name__ : List[str] = ffmpeg_process.communicate(snake_case_ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __magic_name__ : Optional[int] = output_stream[0] __magic_name__ : Any = np.frombuffer(snake_case_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Optional[int] = "f32le" , ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[Any] = F'''{sampling_rate}''' __magic_name__ : Dict = "1" if format_for_conversion == "s16le": __magic_name__ : int = 2 elif format_for_conversion == "f32le": __magic_name__ : List[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __magic_name__ : Optional[Any] = platform.system() if system == "Linux": __magic_name__ : Dict = "alsa" __magic_name__ : int = "default" elif system == "Darwin": __magic_name__ : Any = "avfoundation" __magic_name__ : str = ":0" elif system == "Windows": __magic_name__ : Tuple = "dshow" __magic_name__ : Tuple = "default" __magic_name__ : int = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __magic_name__ : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __magic_name__ : str = _ffmpeg_stream(snake_case_ , snake_case_ ) for item in iterator: yield item def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Any , _snake_case : int = None , _snake_case : str = None , _snake_case : List[Any] = "f32le" , ) -> Optional[Any]: '''simple docstring''' if stream_chunk_s is not None: __magic_name__ : List[Any] = stream_chunk_s else: __magic_name__ : List[str] = chunk_length_s __magic_name__ : Optional[int] = ffmpeg_microphone(snake_case_ , snake_case_ , format_for_conversion=snake_case_ ) if format_for_conversion == "s16le": __magic_name__ : Optional[Any] = np.intaa __magic_name__ : Dict = 2 elif format_for_conversion == "f32le": __magic_name__ : int = np.floataa __magic_name__ : Optional[int] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __magic_name__ : Dict = chunk_length_s / 6 __magic_name__ : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(snake_case_ , (int, float) ): __magic_name__ : List[Any] = [stride_length_s, stride_length_s] __magic_name__ : int = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __magic_name__ : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __magic_name__ : Tuple = datetime.datetime.now() __magic_name__ : Tuple = datetime.timedelta(seconds=snake_case_ ) for item in chunk_bytes_iter(snake_case_ , snake_case_ , stride=(stride_left, stride_right) , stream=snake_case_ ): # Put everything back in numpy scale __magic_name__ : List[str] = np.frombuffer(item["raw"] , dtype=snake_case_ ) __magic_name__ : Any = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __magic_name__ : List[Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any = False ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Optional[int] = B"" __magic_name__ , __magic_name__ : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __magic_name__ : int = 0 for raw in iterator: acc += raw if stream and len(snake_case_ ) < chunk_len: __magic_name__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(snake_case_ ) >= chunk_len: # We are flushing the accumulator __magic_name__ : List[Any] = (_stride_left, stride_right) __magic_name__ : Union[str, Any] = {"raw": acc[:chunk_len], "stride": stride} if stream: __magic_name__ : List[Any] = False yield item __magic_name__ : List[str] = stride_left __magic_name__ : str = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(snake_case_ ) > stride_left: __magic_name__ : Dict = {"raw": acc, "stride": (_stride_left, 0)} if stream: __magic_name__ : Optional[int] = False yield item def lowerCAmelCase_ ( _snake_case : str , _snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = 2**24 # 16Mo try: with subprocess.Popen(snake_case_ , stdout=subprocess.PIPE , bufsize=snake_case_ ) as ffmpeg_process: while True: __magic_name__ : str = ffmpeg_process.stdout.read(snake_case_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
124
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] a = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } a = f"""{src_lang}-{tgt_lang}""" a = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=snake_case_, exist_ok=snake_case_ ) a = os.path.join(snake_case_, '''README.md''' ) print(f"""Generating {path}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project UpperCamelCase__ : Tuple = Path(__file__).resolve().parent.parent.parent UpperCamelCase__ : Union[str, Any] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase__ : Union[str, Any] = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
387
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Any = 16 lowerCamelCase : Optional[Any] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): __lowercase : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : str ): # max_length=None => use the model max length (it's actually the default) __lowercase : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : str = 16 elif accelerator.mixed_precision != "no": __lowercase : Union[str, Any] = 8 else: __lowercase : Any = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ ) __lowercase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): # Initialize accelerator __lowercase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Any = config["""lr"""] __lowercase : Union[str, Any] = int(config["""num_epochs"""] ) __lowercase : Optional[int] = int(config["""seed"""] ) __lowercase : Optional[Any] = int(config["""batch_size"""] ) __lowercase : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowercase : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase : List[str] = batch_size // MAX_GPU_BATCH_SIZE __lowercase : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) __lowercase : List[str] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Any = model.to(accelerator.device ) # Instantiate optimizer __lowercase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler __lowercase : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase : List[str] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase : Optional[int] = model(**lowerCAmelCase_ ) __lowercase : Any = outputs.loss __lowercase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : List[str] = model(**lowerCAmelCase_ ) __lowercase : int = outputs.logits.argmax(dim=-1 ) __lowercase : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase : List[Any] = parser.parse_args() __lowercase : List[str] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
"""simple docstring""" import os import sys _a : str = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a : Tuple = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : str ) -> Union[str, Any]: return AutoConfig.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Tuple ,**_lowerCamelCase : Tuple ) -> Optional[Any]: return AutoTokenizer.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Tuple ,**_lowerCamelCase : str ) -> str: return AutoModel.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Any ,**_lowerCamelCase : Optional[int] ) -> Tuple: return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Optional[int] ,**_lowerCamelCase : str ) -> Tuple: return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Optional[int] ,**_lowerCamelCase : str ) -> int: return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : str ) -> Dict: return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
213
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000 ) -> int: _lowerCAmelCase : Optional[int] = 2**power _lowerCAmelCase : str = str(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = list(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": _a : str = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _a : Tuple = solution(power) print('Sum of the digits is: ', result)
213
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __A ={ 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __A ={ 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off __A =['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _snake_case ( a__ ): lowerCAmelCase :List[str] = VOCAB_FILES_NAMES lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase :Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCAmelCase :int = MBartTokenizer lowerCAmelCase :List[int] = [] lowerCAmelCase :List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : List[str] = vocab_file UpperCAmelCase__ : Optional[Any] = False if not self.vocab_file else True UpperCAmelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens}) UpperCAmelCase__ : List[str] = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase__ : Optional[int] = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase__ : Optional[Any] = self.convert_tokens_to_ids(self._src_lang) UpperCAmelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def snake_case__ ( self): return self._src_lang @src_lang.setter def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") UpperCAmelCase__ : Optional[int] = src_lang UpperCAmelCase__ : Union[str, Any] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : Optional[int] = self.convert_tokens_to_ids(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = tgt_lang_id return inputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ): UpperCAmelCase__ : Optional[int] = src_lang UpperCAmelCase__ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.set_src_lang_special_tokens(self.src_lang) def snake_case__ ( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[str] = self.convert_tokens_to_ids(_lowerCamelCase) UpperCAmelCase__ : str = [] UpperCAmelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase__ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase__ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase__ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.convert_tokens_to_ids(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[str] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase__ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(_lowerCamelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''') return UpperCAmelCase__ : str = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase): copyfile(self.vocab_file , _lowerCamelCase) return (out_vocab_file,)
113
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A =logging.get_logger(__name__) __A =Dict[str, Any] __A =List[Prediction] @add_end_docstrings(a__ ) class _snake_case ( a__ ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase): super().__init__(*_lowerCamelCase , **_lowerCamelCase) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , """vision""") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def snake_case__ ( self , **_lowerCamelCase): UpperCAmelCase__ : int = {} if "threshold" in kwargs: UpperCAmelCase__ : List[str] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *_lowerCamelCase , **_lowerCamelCase): return super().__call__(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[Any] = load_image(_lowerCamelCase) UpperCAmelCase__ : Dict = torch.IntTensor([[image.height, image.width]]) UpperCAmelCase__ : str = self.image_processor(images=[image] , return_tensors="""pt""") if self.tokenizer is not None: UpperCAmelCase__ : Tuple = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""") UpperCAmelCase__ : str = target_size return inputs def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = model_inputs.pop("""target_size""") UpperCAmelCase__ : Optional[Any] = self.model(**_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = outputs.__class__({"""target_size""": target_size, **outputs}) if self.tokenizer is not None: UpperCAmelCase__ : int = model_inputs["""bbox"""] return model_outputs def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=0.9): UpperCAmelCase__ : Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = target_size[0].tolist() def unnormalize(_lowerCamelCase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = model_outputs["""logits"""].squeeze(0).softmax(dim=-1).max(dim=-1) UpperCAmelCase__ : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase__ : Tuple = [unnormalize(_lowerCamelCase) for bbox in model_outputs["""bbox"""].squeeze(0)] UpperCAmelCase__ : Tuple = ["""score""", """label""", """box"""] UpperCAmelCase__ : Dict = [dict(zip(_lowerCamelCase , _lowerCamelCase)) for vals in zip(scores.tolist() , _lowerCamelCase , _lowerCamelCase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase__ : Union[str, Any] = self.image_processor.post_process_object_detection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : int = raw_annotations[0] UpperCAmelCase__ : Any = raw_annotation["""scores"""] UpperCAmelCase__ : List[str] = raw_annotation["""labels"""] UpperCAmelCase__ : str = raw_annotation["""boxes"""] UpperCAmelCase__ : Tuple = scores.tolist() UpperCAmelCase__ : int = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase__ : int = [self._get_bounding_box(_lowerCamelCase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase__ : Dict = ["""score""", """label""", """box"""] UpperCAmelCase__ : Optional[int] = [ dict(zip(_lowerCamelCase , _lowerCamelCase)) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""]) ] return annotation def snake_case__ ( self , _lowerCamelCase): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""") UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = box.int().tolist() UpperCAmelCase__ : Dict = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
113
1
import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=10_00 ) -> Dict: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ : List[str] = n - 1 lowercase__ : str = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ : int = 0 while count < prec: lowercase__ : Tuple = random.randint(2 ,n - 1 ) lowercase__ : str = bin_exp_mod(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if b != 1: lowercase__ : List[str] = True for _ in range(SCREAMING_SNAKE_CASE_ ): if b == n - 1: lowercase__ : Union[str, Any] = False break lowercase__ : Dict = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __a : Union[str, Any] = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
397
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Optional[Any] = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
397
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): A_ : Any = ['image_processor', 'tokenizer'] A_ : Dict = 'AutoImageProcessor' A_ : List[Any] = 'AutoTokenizer' def __init__(self : Tuple , a__ : Dict , a__ : List[str] ): """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ ) __snake_case = self.image_processor def __call__(self : Union[str, Any] , a__ : int=None , a__ : List[Any]=None , a__ : Any=None , **a__ : Any ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: __snake_case = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def a (self : Union[str, Any] , *a__ : str , **a__ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def a (self : Optional[Any] , *a__ : Any , **a__ : Any ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def a (self : Optional[int] ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
388
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _lowerCamelCase (__lowerCamelCase : Optional[int] ) -> Optional[Any]: # picklable for multiprocessing return x.sum() def _lowerCamelCase (__lowerCamelCase : List[str] ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @dataclass class UpperCamelCase__ : lowerCAmelCase__ : int = 42 lowerCAmelCase__ : Optional[int] = 42 class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): def __a ( self : List[str] ): '''simple docstring''' a__ = {} a__ = [] a__ = 1 a__ = [1, 2] a__ = {"a": 1, "b": 2} a__ = {"a": [1, 2], "b": [3, 4]} a__ = {"a": {"1": 1}, "b": 2} a__ = {"a": 1, "b": 2, "c": 3, "d": 4} a__ = {} a__ = [] a__ = 2 a__ = [2, 3] a__ = {"a": 2, "b": 3} a__ = {"a": [2, 3], "b": [4, 5]} a__ = {"a": {"1": 2}, "b": 3} a__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) a__ = 2 self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) a__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} a__ = {"a": 2, "b": 0, "c": 2} a__ = { "a": np.eye(2 ).astype(lowerCamelCase ), "b": np.zeros(3 ).astype(lowerCamelCase ), "c": np.ones(2 ).astype(lowerCamelCase ), } self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , map_numpy=lowerCamelCase ) , lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase , lowerCamelCase , map_numpy=lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCamelCase , lowerCamelCase , map_numpy=lowerCamelCase , num_proc=lowerCamelCase ) , lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase , lowerCamelCase , map_numpy=lowerCamelCase , num_proc=lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCamelCase ): # can't pickle a local lambda map_nested(lambda lowerCamelCase : x + 1 , lowerCamelCase , num_proc=lowerCamelCase ) def __a ( self : Dict ): '''simple docstring''' a__ = {"a": 1, "b": 2} a__ = {"a": 3, "b": 4} a__ = {"a": 5, "b": 6} a__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) , lowerCamelCase ) def __a ( self : Optional[int] ): '''simple docstring''' class UpperCamelCase__ : lowerCAmelCase__ : str = "bar" a__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(lowerCamelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _lowerCamelCase (__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str ) -> List[str]: with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: a__ = {f'''{i}''': i for i in range(__UpperCamelCase )} a__ = map_nested(lambda __lowerCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): @require_tf def __a ( self : Optional[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers a__ = layers.Dense(2 ) def gen_random_output(): a__ = tf.random.uniform((1, 3) ) return model(lowerCamelCase ).numpy() with temp_seed(4_2 , set_tensorflow=lowerCamelCase ): a__ = gen_random_output() with temp_seed(4_2 , set_tensorflow=lowerCamelCase ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(lowerCamelCase , lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __a ( self : str ): '''simple docstring''' import torch def gen_random_output(): a__ = torch.nn.Linear(3 , 2 ) a__ = torch.rand(1 , 3 ) return model(lowerCamelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=lowerCamelCase ): a__ = gen_random_output() with temp_seed(4_2 , set_pytorch=lowerCamelCase ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(lowerCamelCase , lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __a ( self : Optional[int] ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): a__ = gen_random_output() with temp_seed(4_2 ): a__ = gen_random_output() a__ = gen_random_output() np.testing.assert_equal(lowerCamelCase , lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _lowerCamelCase (__lowerCamelCase : Optional[Any] ) -> List[str]: a__ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _lowerCamelCase (__lowerCamelCase : Optional[int] , __lowerCamelCase : Any ) -> str: a__ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def _lowerCamelCase () -> Dict: a__ = A(x=1 , y="foobar" ) a__ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output a__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} a__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y="foo" )] ) def _lowerCamelCase (__lowerCamelCase : Tuple ) -> int: return text.split() def _lowerCamelCase (__lowerCamelCase : Tuple ) -> Optional[Any]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _lowerCamelCase () -> List[Any]: with Pool(2 ) as pool: a__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: a__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: a__ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
489
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def a__ ( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
140
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __A : List[Any] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' __magic_name__ : List[Any] = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __magic_name__ : Dict = field( default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) __magic_name__ : Optional[Any] = field( default=UpperCamelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __magic_name__ : int = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __magic_name__ : Optional[int] = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __magic_name__ : Dict = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __magic_name__ : Tuple = field( default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) __magic_name__ : Optional[Any] = field( default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""}) __magic_name__ : Dict = field( default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""}) __magic_name__ : Optional[int] = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __magic_name__ : Optional[Any] = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) __magic_name__ : Dict = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __magic_name__ : List[str] = field( default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) __magic_name__ : Tuple = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __magic_name__ : List[str] = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __magic_name__ : Any = field( default=UpperCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __magic_name__ : str = field( default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase ( ): """simple docstring""" A__ : Any =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ : int =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ : Any =training_args.get_process_log_level() logger.setLevel(UpperCamelCase ) datasets.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.set_verbosity(UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A__ : List[Any] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : Tuple =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A__ : Any =load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A__ : int =load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ : Optional[Any] =train_dataset.features['label'].names if training_args.do_eval: A__ : Any =load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ : Any =eval_dataset.features['label'].names if training_args.do_predict: A__ : Any =load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ : str =predict_dataset.features['label'].names # Labels A__ : Dict =len(UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : List[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase , idalabel={str(UpperCamelCase ): label for i, label in enumerate(UpperCamelCase )} , labelaid={label: i for i, label in enumerate(UpperCamelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ : Tuple =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A__ : List[Any] ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A__ : int =False def preprocess_function(UpperCamelCase : List[str] ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=UpperCamelCase , max_length=data_args.max_seq_length , truncation=UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: A__ : Tuple =min(len(UpperCamelCase ) , data_args.max_train_samples ) A__ : Dict =train_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): A__ : int =train_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ : Optional[int] =min(len(UpperCamelCase ) , data_args.max_eval_samples ) A__ : Optional[int] =eval_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): A__ : Dict =eval_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A__ : Dict =min(len(UpperCamelCase ) , data_args.max_predict_samples ) A__ : Optional[Any] =predict_dataset.select(range(UpperCamelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): A__ : Union[str, Any] =predict_dataset.map( UpperCamelCase , batched=UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function A__ : Optional[int] =evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase : EvalPrediction ): A__ : List[str] =p.predictions[0] if isinstance(p.predictions , UpperCamelCase ) else p.predictions A__ : Optional[Any] =np.argmax(UpperCamelCase , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A__ : int =default_data_collator elif training_args.fpaa: A__ : Any =DataCollatorWithPadding(UpperCamelCase , pad_to_multiple_of=8 ) else: A__ : Tuple =None # Initialize our Trainer A__ : Dict =Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: A__ : Dict =None if training_args.resume_from_checkpoint is not None: A__ : Optional[Any] =training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ : int =last_checkpoint A__ : List[str] =trainer.train(resume_from_checkpoint=UpperCamelCase ) A__ : Union[str, Any] =train_result.metrics A__ : Any =( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase ) ) A__ : List[Any] =min(UpperCamelCase , len(UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , UpperCamelCase ) trainer.save_metrics("train" , UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ : List[str] =trainer.evaluate(eval_dataset=UpperCamelCase ) A__ : Tuple =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase ) A__ : Optional[Any] =min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics("eval" , UpperCamelCase ) trainer.save_metrics("eval" , UpperCamelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) A__ : str =trainer.predict(UpperCamelCase , metric_key_prefix="predict" ) A__ : int =( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase ) ) A__ : Union[str, Any] =min(UpperCamelCase , len(UpperCamelCase ) ) trainer.log_metrics("predict" , UpperCamelCase ) trainer.save_metrics("predict" , UpperCamelCase ) A__ : Union[str, Any] =np.argmax(UpperCamelCase , axis=1 ) A__ : Optional[int] =os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(UpperCamelCase ): A__ : List[Any] =label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
717
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __A : Any = "facebook/wmt19-en-de" __A : List[str] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __A : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __A : List[Any] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __A : Tuple = tokenizer(["Making tiny model"], return_tensors="pt") __A : int = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save __A : Any = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
595
0
from math import pow def UpperCamelCase_( snake_case__: int , snake_case__: int , snake_case__: int , snake_case__: int , snake_case__: int , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase__ = int(pow(snake_case__ , snake_case__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase__ , UpperCAmelCase__ = backtrack( snake_case__ , snake_case__ , current_number + 1 , snake_case__ , snake_case__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase__ , UpperCAmelCase__ = backtrack( snake_case__ , snake_case__ , current_number + 1 , snake_case__ , snake_case__ ) return current_sum, solutions_count def UpperCamelCase_( snake_case__: int , snake_case__: int ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(snake_case__ , snake_case__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
146
import os import jsonlines import numpy as np from tqdm import tqdm _UpperCamelCase = 2048 _UpperCamelCase = 4096 _UpperCamelCase = 42 _UpperCamelCase = os.environ.pop('''PROCESS_TRAIN''', '''false''') _UpperCamelCase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def UpperCamelCase_( snake_case__: Any ) -> List[Any]: def choose_first(snake_case__: List[Any] , snake_case__: Any=False ): assert isinstance(snake_case__ , snake_case__ ) if len(snake_case__ ) == 1: UpperCAmelCase__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a UpperCAmelCase__ = {'id': example['id']} UpperCAmelCase__ = example['annotations'] UpperCAmelCase__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase__ = ['yes'] if 1 in yes_no_answer else ['no'] UpperCAmelCase__ = UpperCAmelCase__ = [] UpperCAmelCase__ = UpperCAmelCase__ = [] UpperCAmelCase__ = ['<cls>'] else: UpperCAmelCase__ = ['short'] UpperCAmelCase__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available UpperCAmelCase__ = ['long'] UpperCAmelCase__ = choose_first(annotation['long_answer'] , is_long_answer=snake_case__ ) UpperCAmelCase__ = [] answer.update(snake_case__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase__ = True else: UpperCAmelCase__ = False UpperCAmelCase__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , snake_case__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def UpperCamelCase_( snake_case__: Any , snake_case__: Optional[int]=False ) -> Dict: UpperCAmelCase__ = _get_single_answer(snake_case__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ = example['document']['tokens'] UpperCAmelCase__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(snake_case__ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase__ = example['document']['tokens'] UpperCAmelCase__ = answer['start_token'] UpperCAmelCase__ = answer['end_token'] UpperCAmelCase__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase__ = doc['is_html'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ = doc['token'][answer['start_token'] : answer['end_token']] UpperCAmelCase__ = ' '.join([old[i] for i in range(len(snake_case__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , snake_case__ , end='\n' ) print('Old:' , snake_case__ , end='\n\n' ) return { "context": " ".join(snake_case__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: Optional[Any] , snake_case__: List[Any]=20_48 , snake_case__: Optional[int]=40_96 , snake_case__: Union[str, Any]=True ) -> Dict: # overlap will be of doc_stride - q_len UpperCAmelCase__ = get_context_and_ans(snake_case__ , assertion=snake_case__ ) UpperCAmelCase__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase__ = tokenizer(example['question']['text'] , out['context'] ).input_ids UpperCAmelCase__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = input_ids[:q_len] UpperCAmelCase__ = range(snake_case__ , len(snake_case__ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase__ = i + max_length - q_len UpperCAmelCase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(snake_case__ ), "end_token": [-1_00] * len(snake_case__ ), "category": category, }, } UpperCAmelCase__ = out['context'].split() UpperCAmelCase__ = splitted_context[answer['end_token']] UpperCAmelCase__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=snake_case__ , ).input_ids ) UpperCAmelCase__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=snake_case__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase__ = len(tokenizer(snake_case__ , add_special_tokens=snake_case__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive UpperCAmelCase__ = answer['start_token'] UpperCAmelCase__ = answer['end_token'] if assertion: UpperCAmelCase__ = tokenizer.decode(snake_case__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , snake_case__ , end='\n\n' ) if len(snake_case__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase__ = input_ids[:q_len] UpperCAmelCase__ = range(snake_case__ , len(snake_case__ ) , max_length - doc_stride ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase__ = i + max_length - q_len UpperCAmelCase__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase__ = start_token - i + q_len UpperCAmelCase__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: UpperCAmelCase__ = -1_00 UpperCAmelCase__ = -1_00 answers_category.append('null' ) UpperCAmelCase__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(snake_case__ ) answers_end_token.append(snake_case__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(snake_case__ ) ) print('Old:' , tokenizer.decode(snake_case__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCamelCase_( snake_case__: List[Any] , snake_case__: Optional[int] , snake_case__: List[Any]=20_48 , snake_case__: Tuple=40_96 , snake_case__: Optional[int]=False ) -> str: UpperCAmelCase__ = get_strided_contexts_and_ans( snake_case__ , snake_case__ , doc_stride=snake_case__ , max_length=snake_case__ , assertion=snake_case__ , ) return example def UpperCamelCase_( snake_case__: List[Any] , snake_case__: str ) -> Tuple: with jsonlines.open(snake_case__ , 'a' ) as writer: for example in tqdm(snake_case__ , total=len(snake_case__ ) , desc='Saving samples ... ' ): UpperCAmelCase__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _UpperCamelCase = load_dataset('''natural_questions''') _UpperCamelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _UpperCamelCase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _UpperCamelCase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _UpperCamelCase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _UpperCamelCase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
146
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = "sshleifer/mar_enro_6_3_student" class A ( a ): def __lowerCAmelCase ( self ) -> str: super().setUp() _a = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=snake_case_ , ) _a = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> Dict: MarianMTModel.from_pretrained(snake_case_ ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> List[str]: _a = { "$MAX_LEN": 6_4, "$BS": 6_4, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script _a = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _a = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _a = ["finetune.py"] + bash_script.split() + args with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationModule.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() _a = main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class A ( a ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def __lowerCAmelCase ( self ) -> int: _a = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _a = { "--fp16_opt_level=O1": "", "$MAX_LEN": 1_2_8, "$BS": 1_6, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script _a = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) _a = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) _a = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): _a = bash_script.replace(snake_case_ , str(snake_case_ ) ) _a = self.get_auto_remove_tmp_dir() _a = bash_script.replace("--fp16" , "" ) _a = 6 _a = ( ["distillation.py"] + bash_script.split() + [ F'''--output_dir={output_dir}''', "--gpus=1", "--learning_rate=1e-3", F'''--num_train_epochs={epochs}''', "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(snake_case_ , "argv" , snake_case_ ): _a = argparse.ArgumentParser() _a = pl.Trainer.add_argparse_args(snake_case_ ) _a = SummarizationDistiller.add_model_specific_args(snake_case_ , os.getcwd() ) _a = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _a = distill_main(snake_case_ ) # Check metrics _a = load_json(model.metrics_save_path ) _a = metrics["val"][0] _a = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , snake_case_ ) # check lightning ckpt can be loaded and has a reasonable statedict _a = os.listdir(snake_case_ ) _a = [x for x in contents if x.endswith(".ckpt" )][0] _a = os.path.join(args.output_dir , snake_case_ ) _a = torch.load(snake_case_ , map_location="cpu" ) _a = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _a = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
691
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __snake_case : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _lowercase ( lowerCamelCase__ : List[Any] ): _a = {} state_dict.pop("pixel_mean", lowerCamelCase__ ) state_dict.pop("pixel_std", lowerCamelCase__ ) _a = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a = key.replace(lowerCamelCase__, lowerCamelCase__ ) if re.match(lowerCamelCase__, lowerCamelCase__ ): _a = int(re.match(lowerCamelCase__, lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: _a = key.replace("layers.0", "proj_in" ) elif layer_nb == 1: _a = key.replace("layers.1", "layers.0" ) elif layer_nb == 2: _a = key.replace("layers.2", "proj_out" ) _a = value _a = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : str="ybelkada/segment-anything" ): _a = hf_hub_download(lowerCamelCase__, F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _a = SamConfig() elif "sam_vit_l" in model_name: _a = SamVisionConfig( hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) _a = SamConfig( vision_config=lowerCamelCase__, ) elif "sam_vit_h" in model_name: _a = SamVisionConfig( hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) _a = SamConfig( vision_config=lowerCamelCase__, ) _a = torch.load(lowerCamelCase__, map_location="cpu" ) _a = replace_keys(lowerCamelCase__ ) _a = SamImageProcessor() _a = SamProcessor(image_processor=lowerCamelCase__ ) _a = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) _a = hf_model.to("cuda" ) _a = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _a = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ).convert("RGB" ) _a = [[[400, 650]]] _a = [[1]] _a = processor(images=np.array(lowerCamelCase__ ), return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _a = ((75, 275, 1_725, 850),) _a = processor(images=np.array(lowerCamelCase__ ), input_boxes=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _a = [[[400, 650], [800, 650]]] _a = [[1, 1]] _a = processor( images=np.array(lowerCamelCase__ ), input_points=lowerCamelCase__, input_labels=lowerCamelCase__, return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _a = hf_model(**lowerCamelCase__ ) _a = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() __snake_case : Optional[Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __snake_case : str = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase :int = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def lowerCamelCase ( lowerCAmelCase : str = "mumbai" ): """simple docstring""" __magic_name__ : Optional[int] = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __magic_name__ : List[Any] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __magic_name__ : Optional[int] = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
561
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase :Any = logging.get_logger(__name__) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __magic_name__ : Dict = json.loads(lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __magic_name__ : List[Any] = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __magic_name__ : List[Any] = json.loads(lowerCAmelCase ) if not mpi_options.get('sagemaker_mpi_enabled' , lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _A , ) @cached_property def __lowerCAmelCase ( self : Dict ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: __magic_name__ : Any = torch.device('cpu' ) __magic_name__ : List[str] = 0 elif is_sagemaker_model_parallel_available(): __magic_name__ : Any = smp.local_rank() __magic_name__ : List[Any] = torch.device('cuda' , _A ) __magic_name__ : List[str] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) __magic_name__ : Optional[Any] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) __magic_name__ : Dict = torch.device('cuda' , self.local_rank ) __magic_name__ : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __magic_name__ : Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __magic_name__ : str = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) __magic_name__ : List[str] = torch.device('cuda' , self.local_rank ) __magic_name__ : Union[str, Any] = 1 if device.type == "cuda": torch.cuda.set_device(_A ) return device @property def __lowerCAmelCase ( self : Tuple ) -> int: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __lowerCAmelCase ( self : Optional[int] ) -> Dict: return not is_sagemaker_model_parallel_available() @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return False
561
1
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase_ ( a : int = 3 ): if isinstance(a , a ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) a__ = QuantumRegister(a , 'qr' ) a__ = ClassicalRegister(a , 'cr' ) a__ = QuantumCircuit(a , a ) a__ = number_of_qubits for i in range(a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , a , a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a , a ) # simulate with 10000 shots a__ = Aer.get_backend('qasm_simulator' ) a__ = execute(a , a , shots=10000 ) return job.result().get_counts(a ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
715
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : int = get_tests_dir('fixtures') __A : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __A : List[Any] = get_tests_dir('fixtures/dummy-config.json') class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" a__ = 0 def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: a__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally a__ = AutoFeatureExtractor.from_pretrained(_a ).to_dict() config_dict.pop('feature_extractor_type' ) a__ = WavaVecaFeatureExtractor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a ) # make sure private variable is not incorrectly saved a__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , 'bert-base is not a local folder and is not a valid model identifier' ): a__ = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): a__ = AutoFeatureExtractor.from_pretrained(_a , revision='aaaaaa' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): a__ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase__ ( self ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def lowercase__ ( self ): """simple docstring""" try: AutoConfig.register('custom' , _a ) AutoFeatureExtractor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoFeatureExtractor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API a__ = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) a__ = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self ): """simple docstring""" class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = True try: AutoConfig.register('custom' , _a ) AutoFeatureExtractor.register(_a , _a ) # If remote code is not set, the default is to use local a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub a__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
126
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCamelCase__ : Dict = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase__ : List[str] = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } UpperCamelCase__ : Optional[int] = F"""{src_lang}-{tgt_lang}""" UpperCamelCase__ : Tuple = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , 'README.md' ) print(F"""Generating {path}""" ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(__SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase__ : Any = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Optional[Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase__ : List[str] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
410
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase_ : '''simple docstring''' def __init__( self , UpperCamelCase , UpperCamelCase=2 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=10 , UpperCamelCase=3 , UpperCamelCase=32 * 4 , UpperCamelCase=32 * 6 , UpperCamelCase=4 , UpperCamelCase=32 , ) -> str: UpperCamelCase__ : int = parent UpperCamelCase__ : Union[str, Any] = batch_size UpperCamelCase__ : Dict = is_training UpperCamelCase__ : Optional[int] = use_auxiliary_loss UpperCamelCase__ : List[str] = num_queries UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : str = min_size UpperCamelCase__ : Union[str, Any] = max_size UpperCamelCase__ : int = num_labels UpperCamelCase__ : int = mask_feature_size def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCamelCase) UpperCamelCase__ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase) UpperCamelCase__ : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase) > 0.5 ).float() UpperCamelCase__ : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase) > 0.5).long() UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self) -> int: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase__ : Optional[int] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> str: UpperCamelCase__ : int = output.encoder_hidden_states UpperCamelCase__ : Union[str, Any] = output.pixel_decoder_hidden_states UpperCamelCase__ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase) , config.decoder_config.decoder_layers) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False) -> List[str]: with torch.no_grad(): UpperCamelCase__ : List[str] = MaskFormerModel(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() UpperCamelCase__ : Union[str, Any] = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase) UpperCamelCase__ : Any = model(UpperCamelCase , output_hidden_states=UpperCamelCase) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase , UpperCamelCase) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) -> List[str]: UpperCamelCase__ : Tuple = MaskFormerForInstanceSegmentation(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() def comm_check_on_output(UpperCamelCase): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): UpperCamelCase__ : Any = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase) UpperCamelCase__ : Optional[Any] = model(UpperCamelCase) comm_check_on_output(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = model( pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase) comm_check_on_output(UpperCamelCase) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Tuple = MaskFormerModelTester(self) UpperCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase) def lowerCAmelCase__ ( self) -> Dict: UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def lowerCAmelCase__ ( self) -> List[str]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def lowerCAmelCase__ ( self) -> Optional[Any]: pass @unittest.skip(reason='MaskFormer is not a generative model') def lowerCAmelCase__ ( self) -> Any: pass @unittest.skip(reason='MaskFormer does not use token embeddings') def lowerCAmelCase__ ( self) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase__ ( self) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase__ ( self) -> Union[str, Any]: pass def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCamelCase) UpperCamelCase__ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase) @slow def lowerCAmelCase__ ( self) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ : Union[str, Any] = MaskFormerModel.from_pretrained(UpperCamelCase) self.assertIsNotNone(UpperCamelCase) def lowerCAmelCase__ ( self) -> Optional[int]: UpperCamelCase__ : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCamelCase__ : Optional[int] = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCamelCase), 'mask_labels': torch.randn((2, 10, *size) , device=UpperCamelCase), 'class_labels': torch.zeros(2 , 10 , device=UpperCamelCase).long(), } UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCamelCase) UpperCamelCase__ : List[str] = model(**UpperCamelCase) self.assertTrue(outputs.loss is not None) def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: UpperCamelCase__ , UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(UpperCamelCase).to(UpperCamelCase) UpperCamelCase__ : List[Any] = model(**UpperCamelCase , output_attentions=UpperCamelCase) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase__ ( self) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : Optional[Any] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() UpperCamelCase__ : List[str] = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase).loss loss.backward() def lowerCAmelCase__ ( self) -> Optional[int]: # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : Any = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : List[Any] = True UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() UpperCamelCase__ : str = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase) UpperCamelCase__ : str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) UpperCAmelCase__ : Any = 1E-4 def _lowercase ( ) -> List[str]: UpperCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self) -> Optional[Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def lowerCAmelCase__ ( self) -> Dict: UpperCamelCase__ : str = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Union[str, Any] = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : int = model(**UpperCamelCase) UpperCamelCase__ : List[Any] = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) UpperCamelCase__ : Optional[int] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) UpperCamelCase__ : Optional[Any] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Optional[Any] = prepare_img() UpperCamelCase__ : Dict = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCamelCase) # masks_queries_logits UpperCamelCase__ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCamelCase__ : Tuple = torch.tensor(UpperCamelCase).to(UpperCamelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) # class_queries_logits UpperCamelCase__ : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCamelCase__ : Optional[Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase__ : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Tuple = prepare_img() UpperCamelCase__ : Tuple = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : List[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCamelCase) # masks_queries_logits UpperCamelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Optional[Any] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCamelCase__ : int = torch.tensor(UpperCamelCase).to(UpperCamelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) # class_queries_logits UpperCamelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCamelCase__ : Optional[Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Tuple: UpperCamelCase__ : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Any = image_processor( [np.zeros((3, 8_00, 13_33)), np.zeros((3, 8_00, 13_33))] , segmentation_maps=[np.zeros((3_84, 3_84)).astype(np.floataa), np.zeros((3_84, 3_84)).astype(np.floataa)] , return_tensors='pt' , ) UpperCamelCase__ : Dict = inputs['pixel_values'].to(UpperCamelCase) UpperCamelCase__ : Optional[int] = [el.to(UpperCamelCase) for el in inputs['mask_labels']] UpperCamelCase__ : Optional[int] = [el.to(UpperCamelCase) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**UpperCamelCase) self.assertTrue(outputs.loss is not None)
410
1
from __future__ import annotations class A__ : def __init__( self : Optional[int] , _a : int ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =order # a_{0} ... a_{k} _SCREAMING_SNAKE_CASE =[1.0] + [0.0] * order # b_{0} ... b_{k} _SCREAMING_SNAKE_CASE =[1.0] + [0.0] * order # x[n-1] ... x[n-k] _SCREAMING_SNAKE_CASE =[0.0] * self.order # y[n-1] ... y[n-k] _SCREAMING_SNAKE_CASE =[0.0] * self.order def __UpperCamelCase ( self : Optional[Any] , _a : list[float] , _a : list[float] ) -> None: """simple docstring""" if len(_a ) < self.order: _SCREAMING_SNAKE_CASE =[1.0, *a_coeffs] if len(_a ) != self.order + 1: _SCREAMING_SNAKE_CASE =( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(_a )}" ) raise ValueError(_a ) if len(_a ) != self.order + 1: _SCREAMING_SNAKE_CASE =( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(_a )}" ) raise ValueError(_a ) _SCREAMING_SNAKE_CASE =a_coeffs _SCREAMING_SNAKE_CASE =b_coeffs def __UpperCamelCase ( self : Union[str, Any] , _a : float ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _SCREAMING_SNAKE_CASE =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _SCREAMING_SNAKE_CASE =self.input_history[:-1] _SCREAMING_SNAKE_CASE =self.output_history[:-1] _SCREAMING_SNAKE_CASE =sample _SCREAMING_SNAKE_CASE =result return result
191
snake_case_ : dict[tuple[int, int, int], int] = {} def lowerCamelCase( a__ ,a__ ,a__): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _SCREAMING_SNAKE_CASE =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _SCREAMING_SNAKE_CASE =_calculate(days - 1 ,a__ ,late + 1) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _SCREAMING_SNAKE_CASE =_calculate(days - 1 ,absent + 1 ,0) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _SCREAMING_SNAKE_CASE =_calculate(days - 1 ,a__ ,0) _SCREAMING_SNAKE_CASE =state_late + state_absent + state_ontime _SCREAMING_SNAKE_CASE =prizestrings return prizestrings def lowerCamelCase( a__ = 30): return _calculate(a__ ,absent=0 ,late=0) if __name__ == "__main__": print(solution())
191
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Tuple , **UpperCamelCase : Optional[int] ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowercase : str = deprecated_arg[3:] setattr(self , UpperCamelCase , not kwargs.pop(UpperCamelCase ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) _lowercase : List[Any] = kwargs.pop('''torchscript''' , self.torchscript ) _lowercase : Tuple = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) _lowercase : Dict = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**UpperCamelCase ) UpperCAmelCase_ = field(default=A_ , metadata={'''help''': '''Trace the models using torchscript'''} ) UpperCAmelCase_ = field(default=A_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) UpperCAmelCase_ = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: _lowercase : Optional[Any] = torch.device('''cpu''' ) _lowercase : int = 0 elif is_torch_tpu_available(): _lowercase : Union[str, Any] = xm.xla_device() _lowercase : List[Any] = 0 else: _lowercase : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _lowercase : Tuple = torch.cuda.device_count() return device, n_gpu @property def lowerCAmelCase_ ( self : Any ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def lowerCAmelCase_ ( self : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return self.n_gpu > 0
322
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
322
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : int = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
244
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowercase__ : def __init__( self : Union[str, Any] , snake_case__ : Optional[int] , ): lowerCamelCase_ : Optional[int] =parent lowerCamelCase_ : str =13 lowerCamelCase_ : str =7 lowerCamelCase_ : str =30 lowerCamelCase_ : List[str] =self.seq_length + self.mem_len lowerCamelCase_ : Optional[int] =15 lowerCamelCase_ : Union[str, Any] =True lowerCamelCase_ : int =True lowerCamelCase_ : Union[str, Any] =99 lowerCamelCase_ : Optional[int] =[10, 50, 80] lowerCamelCase_ : Tuple =32 lowerCamelCase_ : Optional[int] =32 lowerCamelCase_ : Optional[int] =4 lowerCamelCase_ : List[Any] =8 lowerCamelCase_ : Optional[Any] =128 lowerCamelCase_ : Optional[int] =2 lowerCamelCase_ : Dict =2 lowerCamelCase_ : Union[str, Any] =None lowerCamelCase_ : Optional[int] =1 lowerCamelCase_ : Any =0 lowerCamelCase_ : Optional[int] =3 lowerCamelCase_ : List[str] =self.vocab_size - 1 lowerCamelCase_ : Optional[Any] =0.01 def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : List[Any] =None if self.use_labels: lowerCamelCase_ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Tuple =TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCAmelCase__ ( self : Optional[Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCAmelCase__ ( self : str , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =TFTransfoXLModel(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : str =model(snake_case__ ).to_tuple() lowerCamelCase_ : int ={"input_ids": input_ids_a, "mems": mems_a} lowerCamelCase_ , lowerCamelCase_ : Tuple =model(snake_case__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : int , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowerCamelCase_ : Optional[int] =TFTransfoXLLMHeadModel(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] =model(snake_case__ ).to_tuple() lowerCamelCase_ : int ={"input_ids": input_ids_a, "labels": lm_labels} lowerCamelCase_ , lowerCamelCase_ : str =model(snake_case__ ).to_tuple() lowerCamelCase_ , lowerCamelCase_ : List[Any] =model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase_ : Union[str, Any] ={"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} lowerCamelCase_ , lowerCamelCase_ : Optional[int] =model(snake_case__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): lowerCamelCase_ : Tuple =TFTransfoXLForSequenceClassification(snake_case__ ) lowerCamelCase_ : List[str] =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Optional[Any] =self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) : List[Any] =config_and_inputs lowerCamelCase_ : int ={"input_ids": input_ids_a} return config, inputs_dict @require_tf class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Optional[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCAmelCase :Union[str, Any] = () if is_tf_available() else () _UpperCAmelCase :List[str] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :int = False _UpperCAmelCase :Any = False def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =TFTransfoXLModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , d_embed=37 ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): self.model_tester.set_seed() lowerCamelCase_ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): self.model_tester.set_seed() lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ : int =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Dict =[TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(snake_case__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase_ : Optional[Any] =model.get_output_embeddings() assert isinstance(snake_case__ , tf.keras.layers.Layer ) lowerCamelCase_ : Any =model.get_bias() assert name is None else: lowerCamelCase_ : List[Any] =model.get_output_embeddings() assert x is None lowerCamelCase_ : int =model.get_bias() assert name is None def UpperCAmelCase__ ( self : str ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCAmelCase__ ( self : Optional[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Dict =TFTransfoXLModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCAmelCase__ ( self : Optional[int] ): pass @require_tf class lowercase__ ( unittest.TestCase ): @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Optional[Any] =TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off lowerCamelCase_ : str =tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase_ : int =[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , max_length=200 , do_sample=snake_case__ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ )
244
1
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : int = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Union[str, Any] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Tuple = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
438
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> str: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) for i in range(length - 1 ): UpperCAmelCase__ : Any = i for k in range(i + 1 , snake_case ): if collection[k] < collection[least]: UpperCAmelCase__ : Union[str, Any] = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": _lowerCAmelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Optional[int] = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
438
1
from __future__ import annotations from random import choice def __UpperCAmelCase ( __a : Optional[int] ) -> Optional[Any]: """simple docstring""" return choice(__UpperCamelCase ) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : int ) -> int: """simple docstring""" _a : Tuple = random_pivot(__UpperCamelCase ) # partition based on pivot # linear time _a : Dict = [e for e in lst if e < pivot] _a : Union[str, Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCamelCase ) < k - 1: return kth_number(__UpperCamelCase ,k - len(__UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
708
from __future__ import annotations from functools import lru_cache from math import ceil a__ = 100 a__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) a__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __UpperCAmelCase ( __a : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _a : set[int] = set() _a : int _a : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __UpperCAmelCase ( __a : int = 5_000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 ,__a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
578
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __lowerCAmelCase ( snake_case__ ): """simple docstring""" A__ : Union[str, Any] = 'data2vec-audio' def __init__( self : Union[str, Any] , _snake_case : str=32 , _snake_case : Any=7_68 , _snake_case : List[Any]=12 , _snake_case : List[str]=12 , _snake_case : int=30_72 , _snake_case : Dict="gelu" , _snake_case : Dict=0.1 , _snake_case : str=0.1 , _snake_case : Dict=0.1 , _snake_case : Dict=0.0 , _snake_case : Tuple=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : str=0.02 , _snake_case : Dict=1E-5 , _snake_case : List[Any]="gelu" , _snake_case : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _snake_case : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , _snake_case : List[Any]=(10, 3, 3, 3, 3, 2, 2) , _snake_case : Optional[int]=False , _snake_case : Optional[Any]=16 , _snake_case : Tuple=19 , _snake_case : str=5 , _snake_case : Optional[int]=0.05 , _snake_case : Optional[Any]=10 , _snake_case : Any=2 , _snake_case : Dict=0.0 , _snake_case : int=10 , _snake_case : Tuple=0 , _snake_case : Dict="sum" , _snake_case : str=False , _snake_case : Optional[Any]=False , _snake_case : Optional[Any]=2_56 , _snake_case : Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , _snake_case : Any=(5, 3, 3, 1, 1) , _snake_case : Tuple=(1, 2, 3, 1, 1) , _snake_case : Optional[int]=5_12 , _snake_case : Optional[Any]=0 , _snake_case : List[str]=1 , _snake_case : Optional[Any]=2 , _snake_case : str=False , _snake_case : Optional[Any]=3 , _snake_case : Any=2 , _snake_case : Union[str, Any]=3 , _snake_case : Optional[int]=None , **_snake_case : Optional[Any] , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) A__ = hidden_size A__ = feat_extract_activation A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = conv_pos_kernel_size A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size A__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # adapter A__ = add_adapter A__ = adapter_kernel_size A__ = adapter_stride A__ = num_adapter_layers A__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = list(SCREAMING_SNAKE_CASE_ ) A__ = xvector_output_dim @property def _a ( self : Union[str, Any] ): """simple docstring""" return math.prod(self.conv_stride )
9
def lowerCAmelCase_ (lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase__ = len(lowercase__ ) + 1 lowerCAmelCase__ = len(lowercase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase__ = [[0 for i in range(lowercase__ )] for j in range(lowercase__ )] # since string of zero length match pattern of zero length lowerCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowercase__ ): lowerCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowercase__ ): lowerCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowercase__ ): for j in range(1 , lowercase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase__ = dp[i - 1][j] else: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCAmelCase : Union[str, Any] = "aab" _UpperCAmelCase : Dict = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
668
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCamelCase (yaml.SafeLoader ): """simple docstring""" def __A ( self : str , __magic_name__ : str ) -> str: SCREAMING_SNAKE_CASE_ = [self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_ = [tuple(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else key for key in keys] SCREAMING_SNAKE_CASE_ = Counter(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def __A ( self : int , __magic_name__ : int , __magic_name__ : List[str]=False ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = super().construct_mapping(__magic_name__ , deep=__magic_name__ ) self._check_no_duplicates_on_constructed_node(__magic_name__ ) return mapping def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_ = full_content[1:].index("---" ) + 1 SCREAMING_SNAKE_CASE_ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__UpperCamelCase ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __A ( cls : Dict , __magic_name__ : Path ) -> "DatasetMetadata": with open(__magic_name__ , encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__magic_name__ ) else: return cls() def __A ( self : str , __magic_name__ : Path ) -> List[str]: if path.exists(): with open(__magic_name__ , encoding="utf-8" ) as readme_file: SCREAMING_SNAKE_CASE_ = readme_file.read() else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self._to_readme(__magic_name__ ) with open(__magic_name__ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(__magic_name__ ) def __A ( self : Any , __magic_name__ : Optional[str] = None ) -> str: if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _split_yaml_from_readme(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "---\n" + self.to_yaml_string() + "---\n" + content else: SCREAMING_SNAKE_CASE_ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def __A ( cls : List[Any] , __magic_name__ : str ) -> "DatasetMetadata": SCREAMING_SNAKE_CASE_ = yaml.load(__magic_name__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__magic_name__ ) def __A ( self : Optional[Any] ) -> str: return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__magic_name__ , allow_unicode=__magic_name__ , encoding="utf-8" , ).decode("utf-8" ) A : List[Any] = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser A : Optional[Any] = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") A : Union[str, Any] = ap.parse_args() A : Union[str, Any] = Path(args.readme_filepath) A : List[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
356
0
from collections.abc import Callable def lowercase ( __A : Callable[[float], float] , __A : float , __A : float ) -> float: '''simple docstring''' snake_case : float = a snake_case : float = b if function(__A ) == 0: # one of the a or b is a root for the function return a elif function(__A ) == 0: return b elif ( function(__A ) * function(__A ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__A ) == 0: return mid elif function(__A ) * function(__A ) < 0: snake_case : List[str] = mid else: snake_case : int = mid snake_case : int = start + (end - start) / 2.0 return mid def lowercase ( __A : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
36
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : List[str] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : int = '''decision_transformer''' __lowerCamelCase : Optional[Any] = ['''past_key_values'''] __lowerCamelCase : Tuple = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,SCREAMING_SNAKE_CASE_=17 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=128 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=1024 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="relu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=1E-5 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Any = state_dim snake_case : Optional[Any] = act_dim snake_case : Union[str, Any] = hidden_size snake_case : Any = max_ep_len snake_case : int = action_tanh snake_case : Any = vocab_size snake_case : Any = n_positions snake_case : List[str] = n_layer snake_case : int = n_head snake_case : Optional[int] = n_inner snake_case : List[Any] = activation_function snake_case : Tuple = resid_pdrop snake_case : Optional[Any] = embd_pdrop snake_case : Dict = attn_pdrop snake_case : List[str] = layer_norm_epsilon snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = scale_attn_weights snake_case : str = use_cache snake_case : int = scale_attn_by_inverse_layer_idx snake_case : Tuple = reorder_and_upcast_attn snake_case : Tuple = bos_token_id snake_case : List[str] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
36
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : List[Any] = args.pruning_method lowerCAmelCase : int = args.threshold lowerCAmelCase : Optional[Any] = args.model_name_or_path.rstrip("""/""" ) lowerCAmelCase : str = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) lowerCAmelCase : Dict = torch.load(os.path.join(lowercase_ ,"""pytorch_model.bin""" ) ) lowerCAmelCase : Tuple = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase : List[Any] = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase : str = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: lowerCAmelCase : List[str] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowerCAmelCase : List[Any] = MagnitudeBinarizer.apply(inputs=lowercase_ ,threshold=lowercase_ ) lowerCAmelCase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase : Tuple = name[:-6] lowerCAmelCase : Union[str, Any] = model[F"""{prefix_}mask_scores"""] lowerCAmelCase : List[str] = TopKBinarizer.apply(lowercase_ ,lowercase_ ) lowerCAmelCase : Optional[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase : List[str] = name[:-6] lowerCAmelCase : Union[str, Any] = model[F"""{prefix_}mask_scores"""] lowerCAmelCase : Tuple = ThresholdBinarizer.apply(lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase : str = name[:-6] lowerCAmelCase : List[Any] = model[F"""{prefix_}mask_scores"""] lowerCAmelCase : Optional[int] = -0.1, 1.1 lowerCAmelCase : Dict = torch.sigmoid(lowercase_ ) lowerCAmelCase : str = s * (r - l) + l lowerCAmelCase : Any = s_bar.clamp(min=0.0 ,max=1.0 ) lowerCAmelCase : Optional[int] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: lowerCAmelCase : int = os.path.join( os.path.dirname(lowercase_ ) ,F"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ ,lowercase_ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ ,os.path.join(lowercase_ ,"""pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) lowerCAmelCase : List[str] =parser.parse_args() main(args)
707
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Optional[Any] = 2 @add_end_docstrings(UpperCamelCase_ ) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__SCREAMING_SNAKE_CASE , **self._forward_params ) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->Dict: lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) lowerCAmelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) lowerCAmelCase = handle_long_generation preprocess_params.update(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->int: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->int: return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="" , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->str: lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs['''max_new_tokens'''] else: lowerCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) lowerCAmelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = model_inputs['''input_ids'''] lowerCAmelCase = model_inputs.get('''attention_mask''' , __SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: lowerCAmelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(__SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase = tf.reshape(__SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , __SCREAMING_SNAKE_CASE=True ) ->Any: lowerCAmelCase = model_outputs['''generated_sequence'''][0] lowerCAmelCase = model_outputs['''input_ids'''] lowerCAmelCase = model_outputs['''prompt_text'''] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {'''generated_text''': all_text} records.append(__SCREAMING_SNAKE_CASE ) return records
312
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = SMALL_MODEL_IDENTIFIER lowerCAmelCase = '''pt''' lowerCAmelCase = '''tf''' def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__SCREAMING_SNAKE_CASE ) model_tf.save_pretrained(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_tf ) # Both in environment -> use PyTorch lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ), patch( '''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__SCREAMING_SNAKE_CASE , self.framework_pt ) # Both not in environment -> raise error lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = MagicMock(return_value=__SCREAMING_SNAKE_CASE ) with patch('''transformers.onnx.features.is_tf_available''' , __SCREAMING_SNAKE_CASE ), patch( '''transformers.onnx.features.is_torch_available''' , __SCREAMING_SNAKE_CASE ): with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
312
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __magic_name__ =logging.get_logger(__name__) __magic_name__ ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ ={ '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __magic_name__ ={ '''allenai/led-base-16384''': 16384, } class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : str =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any =LEDTokenizer SCREAMING_SNAKE_CASE_ : Dict =["input_ids", "attention_mask"] def __init__(self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) ) UpperCamelCase__ = add_prefix_space UpperCamelCase__ = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase__ = '''post_processor''' UpperCamelCase__ = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ = tuple(state['''sep'''] ) if "cls" in state: UpperCamelCase__ = tuple(state['''cls'''] ) UpperCamelCase__ = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase__ = add_prefix_space UpperCamelCase__ = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase__ = trim_offsets UpperCamelCase__ = True if changes_to_apply: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) ) UpperCamelCase__ = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _a (self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _a (self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase__ = value def _a (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: '''simple docstring''' UpperCamelCase__ = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: '''simple docstring''' UpperCamelCase__ = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' UpperCamelCase__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Tuple: '''simple docstring''' UpperCamelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> dict: '''simple docstring''' UpperCamelCase__ = super()._pad( encoded_inputs=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding_strategy=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase__ = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase__ = len(encoded_inputs['''global_attention_mask'''] ) != len(SCREAMING_SNAKE_CASE_ ) if needs_to_be_padded: UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase__ = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase__ = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
469
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __UpperCamelCase ( A , A ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase__ = flax_key_tuple[:-1] + ('''weight''',) UpperCamelCase__ = torch.permute(A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A ): # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ('''weight''',) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __UpperCamelCase ( A , A , A ): if "metadata" in layer: UpperCamelCase__ = layer.split('''metadata''' ) UpperCamelCase__ = ''''''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: UpperCamelCase__ = layer.split('''kvstore''' ) UpperCamelCase__ = ''''''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: UpperCamelCase__ = layer.split('''/''' ) UpperCamelCase__ = '''/'''.join(split_layer[:-1] ) UpperCamelCase__ = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase__ = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: UpperCamelCase__ = '''file''' else: UpperCamelCase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __UpperCamelCase ( A , A ): UpperCamelCase__ = rename_keys(A ) UpperCamelCase__ = {} for k, v in current_block.items(): UpperCamelCase__ = v UpperCamelCase__ = new_current_block torch.save(A , A ) def __UpperCamelCase ( A , A , A , A , A = WEIGHTS_NAME ): UpperCamelCase__ = convert_file_size_to_int(A ) UpperCamelCase__ = [] UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = 0 os.makedirs(A , exist_ok=A ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: UpperCamelCase__ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] UpperCamelCase__ = flatten_dict(A , sep='''/''' ) UpperCamelCase__ = {} for layer in checkpoint_info.keys(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_key_and_tensorstore_dict( A , A , A ) if curr_real_layer_name in all_layers: UpperCamelCase__ = content else: UpperCamelCase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase__ = torch.tensor(A ) UpperCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase__ , UpperCamelCase__ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , A ) UpperCamelCase__ = '''/'''.join(A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase__ = os.path.join( A , weights_name.replace('''.bin''' , f"-{len(A )+1:05d}-of-???.bin" ) ) rename_and_save_block(A , A ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = raw_weights.to(getattr(A , A ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase__ = os.path.join(A , weights_name.replace('''.bin''' , f"-{len(A )+1:05d}-of-???.bin" ) ) rename_and_save_block(A , A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase__ = {} UpperCamelCase__ = {} for idx, shard in enumerate(A ): UpperCamelCase__ = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(A ):05d}.bin" ) # len(sharded_state_dicts):05d} UpperCamelCase__ = os.path.join(A , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(A , os.path.join(A , A ) ) UpperCamelCase__ = shard for key in shard: UpperCamelCase__ = shard_file # Add the metadata UpperCamelCase__ = {'''total_size''': total_size} UpperCamelCase__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(A , A ) , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) return metadata, index if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __magic_name__ =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __UpperCamelCase ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase__ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) UpperCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) UpperCamelCase__ = TaTokenizer.from_pretrained('''t5-small''' ) UpperCamelCase__ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' UpperCamelCase__ = tokenizer(A , return_tensors='''pt''' ).input_ids UpperCamelCase__ = model.generate(A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
469
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCamelCase : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : List[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : List[str] = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __UpperCamelCase : str = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[Any] = VOCAB_FILES_NAMES __snake_case :List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[int] = PRETRAINED_INIT_CONFIGURATION __snake_case :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Any = ElectraTokenizer def __init__( self : Any , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : Dict="[PAD]" , _lowerCAmelCase : Union[str, Any]="[CLS]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCAmelCase ) __lowercase = do_lower_case def _a ( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any=None ) -> int: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
80
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __UpperCamelCase ( _lowerCAmelCase ): # to overwrite at feature extractactor specific tests __snake_case :Optional[int] = None __snake_case :Dict = None @property def _a ( self : str ) -> List[str]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """feature_size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """sampling_rate""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """padding_value""" ) ) def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _a ( self : str , _lowerCAmelCase : List[Any]=False ) -> int: """simple docstring""" def _inputs_have_equal_length(_lowerCAmelCase : int ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = self.feat_extract_tester.seq_length_diff __lowercase = self.feat_extract_tester.max_seq_length + pad_diff __lowercase = self.feat_extract_tester.min_seq_length __lowercase = self.feat_extract_tester.batch_size __lowercase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowercase = feat_extract.pad(_lowerCAmelCase , padding=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) __lowercase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""max_length""" )[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowercase = feat_extract.pad(_lowerCAmelCase , pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , pad_to_multiple_of=10 ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = input_a[input_name] self.assertTrue(all(len(_lowerCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowerCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __lowercase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _a ( self : Tuple , _lowerCAmelCase : str=False ) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(_lowerCAmelCase : Tuple ): __lowercase = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase : Any , _lowerCAmelCase : str ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1e-3 ): return False return True __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to smallest with np __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_lowerCAmelCase , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to middle __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) __lowercase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""longest""" , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""longest""" , truncation=_lowerCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding="""max_length""" , truncation=_lowerCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowercase = 12 __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) __lowercase = input_a[input_name] __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , ) __lowercase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowercase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __lowercase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" self._check_padding(numpify=_lowerCAmelCase ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" self._check_padding(numpify=_lowerCAmelCase ) def _a ( self : int ) -> Tuple: """simple docstring""" self._check_truncation(numpify=_lowerCAmelCase ) def _a ( self : str ) -> str: """simple docstring""" self._check_truncation(numpify=_lowerCAmelCase ) @require_torch def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.pad(_lowerCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**_lowerCAmelCase ) __lowercase = self.feat_extract_tester.prepare_inputs_for_common() __lowercase = [len(_lowerCAmelCase ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(_lowerCAmelCase ) __lowercase = feat_extract.pad( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
80
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = FlaxAutoencoderKL @property def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = 4 lowerCAmelCase = 3 lowerCAmelCase = (32, 32) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.uniform(A_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __snake_case ( self ) -> str: lowerCAmelCase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase = self.dummy_input return init_dict, inputs_dict
344
'''simple docstring''' class __snake_case: '''simple docstring''' def __init__( self ) -> None: lowerCAmelCase = {} # Mapping from char to TrieNode lowerCAmelCase = False def __snake_case ( self , A_ ) -> None: for word in words: self.insert(A_ ) def __snake_case ( self , A_ ) -> None: lowerCAmelCase = self for char in word: if char not in curr.nodes: lowerCAmelCase = TrieNode() lowerCAmelCase = curr.nodes[char] lowerCAmelCase = True def __snake_case ( self , A_ ) -> bool: lowerCAmelCase = self for char in word: if char not in curr.nodes: return False lowerCAmelCase = curr.nodes[char] return curr.is_leaf def __snake_case ( self , A_ ) -> None: def _delete(A_ , A_ , A_ ) -> bool: if index == len(A_ ): # If word does not exist if not curr.is_leaf: return False lowerCAmelCase = False return len(curr.nodes ) == 0 lowerCAmelCase = word[index] lowerCAmelCase = curr.nodes.get(A_ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCAmelCase = _delete(A_ , A_ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A_ , 0 ) def _snake_case ( _SCREAMING_SNAKE_CASE : TrieNode , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" if node.is_leaf: print(_SCREAMING_SNAKE_CASE , end=""" """ ) for key, value in node.nodes.items(): print_words(_SCREAMING_SNAKE_CASE , word + key ) def _snake_case ( ) -> bool: """simple docstring""" lowerCAmelCase = """banana bananas bandana band apple all beast""".split() lowerCAmelCase = TrieNode() root.insert_many(_SCREAMING_SNAKE_CASE ) # print_words(root, "") assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool ) -> None: """simple docstring""" print(str(_SCREAMING_SNAKE_CASE ) , """works!""" if passes else """doesn't work :(""" ) def _snake_case ( ) -> None: """simple docstring""" assert test_trie() def _snake_case ( ) -> None: """simple docstring""" print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
344
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' return str(lowerCAmelCase__ ) == str(lowerCAmelCase__ )[::-1] def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' return int(lowerCAmelCase__ ) + int(str(lowerCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0_0 ) -> int: '''simple docstring''' lowercase = [] for num in range(1 , lowerCAmelCase__ ): lowercase = 0 lowercase = num while iterations < 5_0: lowercase = sum_reverse(lowerCAmelCase__ ) iterations += 1 if is_palindrome(lowerCAmelCase__ ): break else: lychrel_nums.append(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
359
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase : int =pd.read_csv("""sample_data.csv""", header=None) __lowerCAmelCase : Optional[Any] =df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase : Optional[int] =df.iloc[:, 1:2] __lowerCAmelCase : List[str] =actual_data.values.reshape(len_data, 1) __lowerCAmelCase : int =MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase : List[Any] =1_0 __lowerCAmelCase : int =5 __lowerCAmelCase : str =2_0 __lowerCAmelCase : Union[str, Any] =len_data - periods * look_back __lowerCAmelCase : Dict =actual_data[:division] __lowerCAmelCase : List[str] =actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase : List[str] =[], [] __lowerCAmelCase , __lowerCAmelCase : Optional[int] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase : int =np.array(train_x) __lowerCAmelCase : List[str] =np.array(test_x) __lowerCAmelCase : Dict =np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase : str =np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase : Optional[Any] =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") __lowerCAmelCase : Optional[int] =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase : Dict =model.predict(x_test)
359
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __lowercase ( self :Any ): __lowerCamelCase : Optional[Any] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''num_attention_heads''' ) ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Optional[Any] , __lowercase :Optional[int] , __lowercase :int=13 , __lowercase :Optional[Any]=64 , __lowercase :List[Any]=3 , __lowercase :Any=3 , __lowercase :Tuple=2 , __lowercase :Any=1 , __lowercase :Optional[Any]=16 , __lowercase :Any=[128, 256, 384] , __lowercase :Any=[4, 6, 8] , __lowercase :Optional[Any]=[2, 3, 4] , __lowercase :Dict=[16, 16, 16] , __lowercase :int=0 , __lowercase :Tuple=[2, 2, 2] , __lowercase :Optional[Any]=[2, 2, 2] , __lowercase :Union[str, Any]=0.02 , __lowercase :List[Any]=True , __lowercase :Optional[Any]=True , __lowercase :List[str]=2 , ): __lowerCamelCase : int =parent __lowerCamelCase : Any =batch_size __lowerCamelCase : str =image_size __lowerCamelCase : Any =num_channels __lowerCamelCase : str =kernel_size __lowerCamelCase : Union[str, Any] =stride __lowerCamelCase : Any =padding __lowerCamelCase : List[Any] =hidden_sizes __lowerCamelCase : Any =num_attention_heads __lowerCamelCase : str =depths __lowerCamelCase : int =key_dim __lowerCamelCase : Optional[Any] =drop_path_rate __lowerCamelCase : Any =patch_size __lowerCamelCase : int =attention_ratio __lowerCamelCase : List[str] =mlp_ratio __lowerCamelCase : Any =initializer_range __lowerCamelCase : Tuple =[ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowerCamelCase : Union[str, Any] =is_training __lowerCamelCase : Any =use_labels __lowerCamelCase : Dict =num_labels __lowerCamelCase : str =initializer_range def __lowercase ( self :str ): __lowerCamelCase : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : int =None if self.use_labels: __lowerCamelCase : Union[str, Any] =ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : str =self.get_config() return config, pixel_values, labels def __lowercase ( self :Optional[int] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowercase ( self :Tuple , __lowercase :str , __lowercase :str , __lowercase :Any ): __lowerCamelCase : List[str] =LevitModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : int =model(__lowercase ) __lowerCamelCase : Optional[Any] =(self.image_size, self.image_size) __lowerCamelCase , __lowerCamelCase : int =image_size[0], image_size[1] for _ in range(4 ): __lowerCamelCase : Optional[int] =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowerCamelCase : Union[str, Any] =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowercase ( self :Dict , __lowercase :Tuple , __lowercase :List[str] , __lowercase :int ): __lowerCamelCase : int =self.num_labels __lowerCamelCase : int =LevitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCamelCase : str =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self :int ): __lowerCamelCase : Optional[Any] =self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] =config_and_inputs __lowerCamelCase : List[Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : List[Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __snake_case : Union[str, Any] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case : Any = False __snake_case : str = False __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : Dict = False def __lowercase ( self :List[str] ): __lowerCamelCase : str =LevitModelTester(self ) __lowerCamelCase : Dict =ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __lowercase ( self :str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self :Dict ): return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def __lowercase ( self :Dict ): pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def __lowercase ( self :List[Any] ): pass @unittest.skip(reason='''Levit does not output attentions''' ) def __lowercase ( self :Optional[Any] ): pass def __lowercase ( self :int ): __lowerCamelCase , __lowerCamelCase : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] =model_class(__lowercase ) __lowerCamelCase : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[Any] =[*signature.parameters.keys()] __lowerCamelCase : Dict =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __lowercase ( self :List[str] ): def check_hidden_states_output(__lowercase :Dict , __lowercase :List[str] , __lowercase :Any ): __lowerCamelCase : Optional[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __lowerCamelCase : List[str] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCamelCase : Optional[int] =outputs.hidden_states __lowerCamelCase : Union[str, Any] =len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowercase ) , __lowercase ) __lowerCamelCase : Optional[int] =(self.model_tester.image_size, self.model_tester.image_size) __lowerCamelCase , __lowerCamelCase : List[str] =image_size[0], image_size[1] for _ in range(4 ): __lowerCamelCase : Union[str, Any] =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowerCamelCase : List[Any] =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowerCamelCase , __lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self :List[str] ): pass def __lowercase ( self :Union[str, Any] , __lowercase :List[str] , __lowercase :Optional[Any] , __lowercase :List[Any]=False ): __lowerCamelCase : Tuple =super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self :int ): __lowerCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowercase ( self :str ): __lowerCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def __lowercase ( self :int ): if not self.model_tester.is_training: return __lowerCamelCase , __lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowerCamelCase : str =model_class(__lowercase ) model.to(__lowercase ) model.train() __lowerCamelCase : Any =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : List[Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :str ): __lowerCamelCase , __lowerCamelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowerCamelCase : Any =model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() __lowerCamelCase : Optional[int] =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __lowerCamelCase : Union[str, Any] =model(**__lowercase ).loss loss.backward() def __lowercase ( self :str ): __lowerCamelCase , __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] =[ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): __lowerCamelCase : Union[str, Any] =problem_type['''title'''] __lowerCamelCase : List[str] =problem_type['''num_labels'''] __lowerCamelCase : Optional[Any] =model_class(__lowercase ) model.to(__lowercase ) model.train() __lowerCamelCase : Optional[int] =self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if problem_type["num_labels"] > 1: __lowerCamelCase : str =inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowerCamelCase : int =inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowercase ) as warning_list: __lowerCamelCase : str =model(**__lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowercase ( self :List[str] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[str] =LevitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self :str ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self :int ): __lowerCamelCase : Optional[int] =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) __lowerCamelCase : Any =self.default_image_processor __lowerCamelCase : Optional[int] =prepare_img() __lowerCamelCase : List[str] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] =model(**__lowercase ) # verify the logits __lowerCamelCase : int =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __lowerCamelCase : str =torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
363
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : Union[str, Any] = LDMTextToImagePipeline __snake_case : Optional[Any] = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } __snake_case : str = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } __snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Optional[Any] = False def __lowercase ( self :List[str] ): torch.manual_seed(0 ) __lowerCamelCase : str =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase : str =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] =AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Any =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Optional[int] =CLIPTextModel(__lowercase ) __lowerCamelCase : Dict =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase : Optional[int] ={ '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowercase ( self :int , __lowercase :Optional[int] , __lowercase :Optional[Any]=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCamelCase : Any =torch.manual_seed(__lowercase ) else: __lowerCamelCase : str =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCamelCase : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :List[str] ): __lowerCamelCase : List[str] ='''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : str =self.get_dummy_components() __lowerCamelCase : Optional[int] =LDMTextToImagePipeline(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : str =self.get_dummy_inputs(__lowercase ) __lowerCamelCase : List[Any] =pipe(**__lowercase ).images __lowerCamelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __lowerCamelCase : Optional[Any] =np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self :int , __lowercase :Any , __lowercase :Optional[int]=torch.floataa , __lowercase :Dict=0 ): __lowerCamelCase : List[str] =torch.manual_seed(__lowercase ) __lowerCamelCase : List[str] =np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase : List[str] =torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCamelCase : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :Tuple ): __lowerCamelCase : int =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : Tuple =self.get_inputs(__lowercase ) __lowerCamelCase : Optional[Any] =pipe(**__lowercase ).images __lowerCamelCase : Union[str, Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __lowerCamelCase : Union[str, Any] =np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __lowerCamelCase : Dict =np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self :Dict , __lowercase :Optional[Any] , __lowercase :int=torch.floataa , __lowercase :Dict=0 ): __lowerCamelCase : Any =torch.manual_seed(__lowercase ) __lowerCamelCase : Dict =np.random.RandomState(__lowercase ).standard_normal((1, 4, 32, 32) ) __lowerCamelCase : str =torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) __lowerCamelCase : Dict ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self :Tuple ): __lowerCamelCase : Optional[int] =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCamelCase : List[Any] =self.get_inputs(__lowercase ) __lowerCamelCase : Optional[int] =pipe(**__lowercase ).images[0] __lowerCamelCase : Optional[int] =load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) __lowerCamelCase : Dict =np.abs(expected_image - image ).max() assert max_diff < 1e-3
363
1
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = 1, 1 for _ in range(number_of_steps - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
533
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" for attribute in key.split(""".""" ): _SCREAMING_SNAKE_CASE : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _SCREAMING_SNAKE_CASE : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _SCREAMING_SNAKE_CASE : int = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE : Union[str, Any] = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "running_mean": _SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "running_var": _SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "num_batches_tracked": _SCREAMING_SNAKE_CASE : Any = value elif weight_type == "inv_freq": _SCREAMING_SNAKE_CASE : List[str] = value else: _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) _SCREAMING_SNAKE_CASE : str = True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE : List[Any] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _SCREAMING_SNAKE_CASE : List[str] = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] _SCREAMING_SNAKE_CASE : Optional[Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "pos_bias_u" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = None elif "pos_bias_v" in name: _SCREAMING_SNAKE_CASE : Optional[int] = None elif "weight_g" in name: _SCREAMING_SNAKE_CASE : int = """weight_g""" elif "weight_v" in name: _SCREAMING_SNAKE_CASE : Any = """weight_v""" elif "bias" in name: _SCREAMING_SNAKE_CASE : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _SCREAMING_SNAKE_CASE : int = """weight""" elif "running_mean" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = """running_mean""" elif "inv_freq" in name: _SCREAMING_SNAKE_CASE : int = """inv_freq""" elif "running_var" in name: _SCREAMING_SNAKE_CASE : int = """running_var""" elif "num_batches_tracked" in name: _SCREAMING_SNAKE_CASE : Tuple = """num_batches_tracked""" else: _SCREAMING_SNAKE_CASE : Dict = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = full_name.split("""conv_layers.""" )[-1] _SCREAMING_SNAKE_CASE : Tuple = name.split(""".""" ) _SCREAMING_SNAKE_CASE : Any = int(items[0] ) _SCREAMING_SNAKE_CASE : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _SCREAMING_SNAKE_CASE : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True ): """simple docstring""" if config_path is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , hidden_act="""swish""" ) else: _SCREAMING_SNAKE_CASE : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _SCREAMING_SNAKE_CASE : List[str] = """rotary""" if is_finetuned: if dict_path: _SCREAMING_SNAKE_CASE : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _SCREAMING_SNAKE_CASE : Optional[int] = target_dict.pad_index _SCREAMING_SNAKE_CASE : int = target_dict.bos_index _SCREAMING_SNAKE_CASE : Any = target_dict.eos_index _SCREAMING_SNAKE_CASE : List[str] = len(target_dict.symbols ) _SCREAMING_SNAKE_CASE : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Dict = target_dict.indices # fairseq has the <pad> and <s> switched _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : List[Any] = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Tuple = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = True if config.feat_extract_norm == """layer""" else False _SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : str = WavaVecaConformerForCTC(SCREAMING_SNAKE_CASE__ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaConformerForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _SCREAMING_SNAKE_CASE : Tuple = argparse.Namespace(task="""audio_pretraining""" ) _SCREAMING_SNAKE_CASE : List[str] = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[int] = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
533
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : int=3_2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[str]=3_7 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[str]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : str = seq_length lowerCAmelCase : Any = is_training lowerCAmelCase : Tuple = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Any = projection_dim lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = intermediate_size lowerCAmelCase : List[str] = dropout lowerCAmelCase : int = attention_dropout lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = bos_token_id def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : int = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCAmelCase : Optional[int] = input_mask.numpy() lowerCAmelCase : str = input_mask.shape lowerCAmelCase : List[Any] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = TFBlipTextModel(config=UpperCamelCase_ ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , training=UpperCamelCase_ ) lowerCAmelCase : Any = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = BlipTextModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : int ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase__ ( self : List[Any] ): pass @slow def lowerCamelCase__ ( self : Tuple ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFBlipTextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase_ )
712
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : Any = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } snake_case__ : Optional[Any] = '''▁''' class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BigBirdTokenizer __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Dict="[MASK]" , UpperCamelCase_ : Any="[CLS]" , **UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : List[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token lowerCAmelCase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
637
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a_ : str = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def lowerCamelCase__ (_UpperCAmelCase=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class _snake_case ( A__ ): _lowercase : Optional[Any] = None _lowercase : Optional[Any] = None def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = dataset_module_factory(a , cache_dir=a) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=a) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=a , config_name=a , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) SCREAMING_SNAKE_CASE = cached_path(a , cache_dir=a) self.assertTrue(os.path.exists(a)) @pytest.mark.integration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('test_hf_gcp') / 'test_wikipedia_simple' SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase) SCREAMING_SNAKE_CASE = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert "train" in ds assert isinstance(ds['train'] , _UpperCAmelCase) assert next(iter(ds['train']))
73
"""simple docstring""" def lowercase_ ( _lowercase : int ): '''simple docstring''' UpperCAmelCase : List[str] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
595
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __lowerCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(A_ ) , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A_ ) , x.transpose() ) ) __lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Any = np.random.randn(3 , 4 ) __lowerCAmelCase : List[Any] = torch.tensor(A_ ) self.assertTrue(np.allclose(transpose(A_ ) , transpose(A_ ).numpy() ) ) __lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : Optional[Any] = torch.tensor(A_ ) self.assertTrue(np.allclose(transpose(A_ , axes=(1, 2, 0) ) , transpose(A_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) __lowerCAmelCase : Tuple = tf.constant(A_ ) self.assertTrue(np.allclose(transpose(A_ ) , transpose(A_ ).numpy() ) ) __lowerCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : Optional[int] = tf.constant(A_ ) self.assertTrue(np.allclose(transpose(A_ , axes=(1, 2, 0) ) , transpose(A_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) __lowerCAmelCase : Optional[Any] = jnp.array(A_ ) self.assertTrue(np.allclose(transpose(A_ ) , np.asarray(transpose(A_ ) ) ) ) __lowerCAmelCase : Any = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : Tuple = jnp.array(A_ ) self.assertTrue(np.allclose(transpose(A_ , axes=(1, 2, 0) ) , np.asarray(transpose(A_ , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A_ , (4, 3) ) , np.reshape(A_ , (4, 3) ) ) ) __lowerCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A_ , (12, 5) ) , np.reshape(A_ , (12, 5) ) ) ) @require_torch def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) __lowerCAmelCase : str = torch.tensor(A_ ) self.assertTrue(np.allclose(reshape(A_ , (4, 3) ) , reshape(A_ , (4, 3) ).numpy() ) ) __lowerCAmelCase : str = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : str = torch.tensor(A_ ) self.assertTrue(np.allclose(reshape(A_ , (12, 5) ) , reshape(A_ , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) __lowerCAmelCase : int = tf.constant(A_ ) self.assertTrue(np.allclose(reshape(A_ , (4, 3) ) , reshape(A_ , (4, 3) ).numpy() ) ) __lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : Optional[Any] = tf.constant(A_ ) self.assertTrue(np.allclose(reshape(A_ , (12, 5) ) , reshape(A_ , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 ) __lowerCAmelCase : Any = jnp.array(A_ ) self.assertTrue(np.allclose(reshape(A_ , (4, 3) ) , np.asarray(reshape(A_ , (4, 3) ) ) ) ) __lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase : List[str] = jnp.array(A_ ) self.assertTrue(np.allclose(reshape(A_ , (12, 5) ) , np.asarray(reshape(A_ , (12, 5) ) ) ) ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A_ ) , np.squeeze(A_ ) ) ) __lowerCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A_ , axis=2 ) , np.squeeze(A_ , axis=2 ) ) ) @require_torch def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase : Optional[int] = torch.tensor(A_ ) self.assertTrue(np.allclose(squeeze(A_ ) , squeeze(A_ ).numpy() ) ) __lowerCAmelCase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase : int = torch.tensor(A_ ) self.assertTrue(np.allclose(squeeze(A_ , axis=2 ) , squeeze(A_ , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase : str = tf.constant(A_ ) self.assertTrue(np.allclose(squeeze(A_ ) , squeeze(A_ ).numpy() ) ) __lowerCAmelCase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase : Tuple = tf.constant(A_ ) self.assertTrue(np.allclose(squeeze(A_ , axis=2 ) , squeeze(A_ , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase : str = jnp.array(A_ ) self.assertTrue(np.allclose(squeeze(A_ ) , np.asarray(squeeze(A_ ) ) ) ) __lowerCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase : List[str] = jnp.array(A_ ) self.assertTrue(np.allclose(squeeze(A_ , axis=2 ) , np.asarray(squeeze(A_ , axis=2 ) ) ) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A_ , axis=1 ) , np.expand_dims(A_ , axis=1 ) ) ) @require_torch def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = np.random.randn(3 , 4 ) __lowerCAmelCase : Optional[int] = torch.tensor(A_ ) self.assertTrue(np.allclose(expand_dims(A_ , axis=1 ) , expand_dims(A_ , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) __lowerCAmelCase : int = tf.constant(A_ ) self.assertTrue(np.allclose(expand_dims(A_ , axis=1 ) , expand_dims(A_ , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) __lowerCAmelCase : Optional[int] = jnp.array(A_ ) self.assertTrue(np.allclose(expand_dims(A_ , axis=1 ) , np.asarray(expand_dims(A_ , axis=1 ) ) ) )
583
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __magic_name__ : '''simple docstring''' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[int]=13 , _a:Any=64 , _a:Union[str, Any]=2 , _a:List[Any]=3 , _a:Optional[Any]="swish" , _a:Any=3 , _a:str=32 , _a:Optional[int]=0.1 , _a:Optional[int]=0.02 , _a:Optional[Any]=True , _a:Optional[Any]=True , _a:List[str]=10 , _a:List[str]=None , _a:str=0.25 , _a:Tuple=0.0 , _a:int=0.0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = make_divisible(5_12 * width_multiplier , divisor=8 ) snake_case__ = hidden_act snake_case__ = conv_kernel_size snake_case__ = output_stride snake_case__ = classifier_dropout_prob snake_case__ = use_labels snake_case__ = is_training snake_case__ = num_labels snake_case__ = initializer_range snake_case__ = scope snake_case__ = width_multiplier snake_case__ = ffn_dropout snake_case__ = attn_dropout def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Dict , _a:List[Any] , _a:str , _a:Optional[int] ): snake_case__ = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:str , _a:List[str] , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[str] , _a:List[str] , _a:str , _a:List[str] ): snake_case__ = self.num_labels snake_case__ = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Optional[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Optional[Any] = False __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = MobileViTVaModelTester(self ) snake_case__ = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:int ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Any ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self:str ): pass def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): def check_hidden_states_output(_a:Tuple , _a:str , _a:Any ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.hidden_states snake_case__ = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = model.to(_a ) snake_case__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = outputs.logits # verify the logits snake_case__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) snake_case__ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = model.to(_a ) snake_case__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = outputs.logits.detach().cpu() snake_case__ = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) snake_case__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) snake_case__ = image_processor.post_process_semantic_segmentation(outputs=_a ) snake_case__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
33
from collections import deque class __snake_case : def __init__( self : Union[str, Any] , A_ : str , A_ : int , A_ : int): lowerCAmelCase_ : str = process_name # process name lowerCAmelCase_ : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase_ : str = arrival_time lowerCAmelCase_ : List[Any] = burst_time # remaining burst time lowerCAmelCase_ : int = 0 # total time of the process wait in ready queue lowerCAmelCase_ : Dict = 0 # time from arrival time to completion time class __snake_case : def __init__( self : Any , A_ : int , A_ : list[int] , A_ : deque[Process] , A_ : int , ): # total number of mlfq's queues lowerCAmelCase_ : Union[str, Any] = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase_ : str = time_slices # unfinished process is in this ready_queue lowerCAmelCase_ : Dict = queue # current time lowerCAmelCase_ : Dict = current_time # finished process is in this sequence queue lowerCAmelCase_ : deque[Process] = deque() def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : int = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def UpperCAmelCase__ ( self : int , A_ : list[Process]): lowerCAmelCase_ : Optional[Any] = [] for i in range(len(A_)): waiting_times.append(queue[i].waiting_time) return waiting_times def UpperCAmelCase__ ( self : List[str] , A_ : list[Process]): lowerCAmelCase_ : Any = [] for i in range(len(A_)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def UpperCAmelCase__ ( self : List[str] , A_ : list[Process]): lowerCAmelCase_ : str = [] for i in range(len(A_)): completion_times.append(queue[i].stop_time) return completion_times def UpperCAmelCase__ ( self : Dict , A_ : deque[Process]): return [q.burst_time for q in queue] def UpperCAmelCase__ ( self : str , A_ : Process): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase__ ( self : Optional[int] , A_ : deque[Process]): lowerCAmelCase_ : deque[Process] = deque() # sequence deque of finished process while len(A_) != 0: lowerCAmelCase_ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(A_) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase_ : Optional[int] = 0 # set the process's turnaround time because it is finished lowerCAmelCase_ : str = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase_ : Tuple = self.current_time # add the process to queue that has finished queue finished.append(A_) self.finish_queue.extend(A_) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase__ ( self : Dict , A_ : deque[Process] , A_ : int): lowerCAmelCase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(A_)): lowerCAmelCase_ : str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(A_) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase_ : Any = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(A_) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase_ : Any = 0 # set the finish time lowerCAmelCase_ : Optional[Any] = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase_ : Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(A_) self.finish_queue.extend(A_) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase__ ( self : Tuple): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.round_robin( self.ready_queue , self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest A__ : Any = Process('''P1''', 0, 53) A__ : Tuple = Process('''P2''', 0, 17) A__ : List[Any] = Process('''P3''', 0, 68) A__ : Dict = Process('''P4''', 0, 24) A__ : str = 3 A__ : Dict = [17, 25] A__ : Any = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A__ : Optional[int] = Process('''P1''', 0, 53) A__ : str = Process('''P2''', 0, 17) A__ : Optional[int] = Process('''P3''', 0, 68) A__ : Union[str, Any] = Process('''P4''', 0, 24) A__ : Tuple = 3 A__ : Dict = [17, 25] A__ : int = deque([Pa, Pa, Pa, Pa]) A__ : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) A__ : Optional[int] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
171
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """deberta-v2""" def __init__( self , a__=12_81_00 , a__=15_36 , a__=24 , a__=24 , a__=61_44 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=0 , a__=0.02 , a__=1E-7 , a__=False , a__=-1 , a__=0 , a__=True , a__=None , a__=0 , a__="gelu" , **a__ , ): super().__init__(**a__ ) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = relative_attention _UpperCAmelCase = max_relative_positions _UpperCAmelCase = pad_token_id _UpperCAmelCase = position_biased_input # Backwards compatibility if type(a__ ) == str: _UpperCAmelCase = [x.strip() for x in pos_att_type.lower().split('|' )] _UpperCAmelCase = pos_att_type _UpperCAmelCase = vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = kwargs.get('pooler_hidden_size' , a__ ) _UpperCAmelCase = pooler_dropout _UpperCAmelCase = pooler_hidden_act class lowerCAmelCase ( snake_case ): @property def __A ( self ): if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def __A ( self ): return 12 def __A ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , a__ = None , ): _UpperCAmelCase = super().generate_dummy_inputs(preprocessor=a__ , framework=a__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
494
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE ),len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ),b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
494
1
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> str: __magic_name__: str = nn.functional.normalize(__UpperCAmelCase ) __magic_name__: Optional[Any] = nn.functional.normalize(__UpperCAmelCase ) return torch.mm(__UpperCAmelCase , normalized_text_embeds.t() ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = CLIPConfig UpperCAmelCase__ = ["CLIPEncoderLayer"] def __init__( self : str , __snake_case : CLIPConfig ) -> Tuple: super().__init__(__snake_case ) __magic_name__: Union[str, Any] = CLIPVisionModel(config.vision_config ) __magic_name__: Optional[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__snake_case ) __magic_name__: List[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=__snake_case ) __magic_name__: Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__snake_case ) __magic_name__: Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=__snake_case ) __magic_name__: List[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__snake_case ) @torch.no_grad() def lowerCamelCase__ ( self : Tuple , __snake_case : int , __snake_case : str ) -> Optional[int]: __magic_name__: Optional[int] = self.vision_model(__snake_case )[1] # pooled_output __magic_name__: Tuple = self.visual_projection(__snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__: Tuple = cosine_distance(__snake_case , self.special_care_embeds ).cpu().float().numpy() __magic_name__: Dict = cosine_distance(__snake_case , self.concept_embeds ).cpu().float().numpy() __magic_name__: Optional[int] = [] __magic_name__: Tuple = image_embeds.shape[0] for i in range(__snake_case ): __magic_name__: Optional[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __magic_name__: List[str] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __magic_name__: str = special_cos_dist[i][concept_idx] __magic_name__: List[str] = self.special_care_embeds_weights[concept_idx].item() __magic_name__: str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __magic_name__: Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __magic_name__: List[str] = cos_dist[i][concept_idx] __magic_name__: List[str] = self.concept_embeds_weights[concept_idx].item() __magic_name__: int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__snake_case ) result.append(__snake_case ) __magic_name__: int = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowerCamelCase__ ( self : Tuple , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor ) -> Optional[Any]: __magic_name__: Tuple = self.vision_model(__snake_case )[1] # pooled_output __magic_name__: List[Any] = self.visual_projection(__snake_case ) __magic_name__: Dict = cosine_distance(__snake_case , self.special_care_embeds ) __magic_name__: Optional[int] = cosine_distance(__snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __magic_name__: int = 0.0 __magic_name__: Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __magic_name__: Optional[Any] = torch.any(special_scores > 0 , dim=1 ) __magic_name__: int = special_care * 0.01 __magic_name__: List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __magic_name__: Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __magic_name__: List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
96
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
287
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "gpt_neo" snake_case__ = ["past_key_values"] snake_case__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=50_257 , SCREAMING_SNAKE_CASE__ : List[Any]=2_048 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_048 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=24 , SCREAMING_SNAKE_CASE__ : List[str]=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=256 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=1e-5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[int]=50_256 , SCREAMING_SNAKE_CASE__ : Any=50_256 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> str: lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_layers lowerCAmelCase__ = num_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = window_size lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_dropout lowerCAmelCase__ = embed_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = attention_types lowerCAmelCase__ = self.expand_attention_types_params(SCREAMING_SNAKE_CASE__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: lowerCAmelCase__ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): """simple docstring""" import torch lowerCAmelCase__ = input.size() lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = shape[dimension] lowerCAmelCase__ = torch.arange(0 , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = torch.div(sizedim - size , lowerCAmelCase_ , rounding_mode="floor" ) + 1 lowerCAmelCase__ = torch.arange(lowerCAmelCase_ ) + low_indices[:min_length][:, None] lowerCAmelCase__ = [slice(lowerCAmelCase_ )] * rank lowerCAmelCase__ = indices lowerCAmelCase__ = input[s] lowerCAmelCase__ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): """simple docstring""" import torch lowerCAmelCase__ = torch.arange(1 , lowerCAmelCase_ ) lowerCAmelCase__ = torch.remainder(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = remainders == 0 lowerCAmelCase__ = candidates[divisor_indices] lowerCAmelCase__ = torch.max(lowerCAmelCase_ ) return largest_divisor, torch.div(lowerCAmelCase_ , lowerCAmelCase_ , rounding_mode="floor" ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction="inputs" ) lowerCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def a ( self : str ) -> int: return self._config.num_heads def a ( self : str , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowerCAmelCase__ = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase__ = ordered_inputs["attention_mask"].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def a ( self : str ) -> int: return 13
711
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=True ): """simple docstring""" model.train() lowerCAmelCase__ = model(lowerCAmelCase_ ) lowerCAmelCase__ = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=False ): """simple docstring""" set_seed(42 ) lowerCAmelCase__ = RegressionModel() lowerCAmelCase__ = deepcopy(lowerCAmelCase_ ) lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: lowerCAmelCase__ = AdamW(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) lowerCAmelCase__ = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) # Use a single batch lowerCAmelCase__ , lowerCAmelCase__ = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _A ( lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[int]=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCAmelCase__ = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def _A ( lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Dict=False ): """simple docstring""" lowerCAmelCase__ = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase__ , lowerCAmelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowerCAmelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = RegressionDataset(length=80 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ = RegressionDataset(length=96 ) lowerCAmelCase__ = DataLoader(lowerCAmelCase_ , batch_size=16 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _A ( ): """simple docstring""" lowerCAmelCase__ = Accelerator() lowerCAmelCase__ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : str ): """simple docstring""" main() if __name__ == "__main__": main()
125
0
from math import sqrt def _lowerCamelCase ( snake_case ): _lowerCAmelCase = 0 for i in range(1 , int(sqrt(snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case ): total += i + n // i elif i == sqrt(snake_case ): total += i return total - n def _lowerCamelCase ( snake_case = 10_000 ): _lowerCAmelCase = sum( i for i in range(1 , snake_case ) if sum_of_divisors(sum_of_divisors(snake_case ) ) == i and sum_of_divisors(snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
192
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowercase: str = '''sshleifer/bart-tiny-random''' _lowercase: Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' @require_torch class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return AutoConfig.from_pretrained(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with self.assertRaises(lowercase__ ): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__ )
192
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case : List[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ['MobileViTFeatureExtractor'] __snake_case : Any = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case : Union[str, Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __snake_case : Tuple = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __snake_case : Optional[int] = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict ) -> Dict: return float((preds == labels).mean() ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[str], _UpperCamelCase : Tuple="binary" ) -> int: A_ = simple_accuracy(_UpperCamelCase, _UpperCamelCase ) A_ = float(fa_score(y_true=_UpperCamelCase, y_pred=_UpperCamelCase, average=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: A_ = {} for id_pred, label in zip(_UpperCamelCase, _UpperCamelCase ): A_ = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' A_ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A_ = [(pred, label)] A_ ,A_ = [], [] for question, preds_labels in question_map.items(): A_ ,A_ = zip(*_UpperCamelCase ) A_ = fa_score(y_true=_UpperCamelCase, y_pred=_UpperCamelCase, average='''macro''' ) fas.append(_UpperCamelCase ) A_ = int(sum(pred == label for pred, label in preds_labels ) == len(_UpperCamelCase ) ) ems.append(_UpperCamelCase ) A_ = float(sum(_UpperCamelCase ) / len(_UpperCamelCase ) ) A_ = sum(_UpperCamelCase ) / len(_UpperCamelCase ) A_ = float(fa_score(y_true=_UpperCamelCase, y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> str: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __A ( self ) -> Tuple: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg='''macro''' ) elif self.config_name == "record": A_ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] A_ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
174
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str="pt" ): SCREAMING_SNAKE_CASE = {"add_prefix_space": True} if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not line.startswith(" " ) else {} SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=UpperCAmelCase__ , padding="max_length" if pad_to_max_length else None , truncation=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple=None , ): SCREAMING_SNAKE_CASE = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowercase ( a ): def __init__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]="train" , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : str="" , ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = Path(_UpperCamelCase ).joinpath(type_path + ".source" ) SCREAMING_SNAKE_CASE = Path(_UpperCamelCase ).joinpath(type_path + ".target" ) SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE = max_source_length SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = prefix if n_obs is not None: SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : List[str] ) -> Optional[int]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Union[str, Any] , _UpperCamelCase : int ) -> Dict[str, torch.Tensor]: '''simple docstring''' SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip("\n" ) SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer SCREAMING_SNAKE_CASE = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , "right" ) SCREAMING_SNAKE_CASE = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , "right" ) SCREAMING_SNAKE_CASE = source_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE = target_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case( _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def __snake_case( self : Union[str, Any] , _UpperCamelCase : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.stack([x["input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["attention_mask"] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["decoder_input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = trim_batch(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch _lowerCamelCase : List[str] = getLogger(__name__) def __lowerCamelCase (UpperCAmelCase__ : List[List] ): return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = get_git_info() save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , "git_log.json" ) ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=4 , **UpperCAmelCase__ : int ): with open(UpperCAmelCase__ , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ , **UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Tuple ): with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = { "repo_id": str(UpperCAmelCase__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __lowerCamelCase (UpperCAmelCase__ : Callable , UpperCAmelCase__ : Iterable ): return list(map(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] ): with open(UpperCAmelCase__ , "wb" ) as f: return pickle.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): def remove_articles(UpperCAmelCase__ : int ): return re.sub(r"\b(a|an|the)\b" , " " , UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ : List[Any] ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = normalize_answer(UpperCAmelCase__ ).split() SCREAMING_SNAKE_CASE = normalize_answer(UpperCAmelCase__ ).split() SCREAMING_SNAKE_CASE = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ): return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ): assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(UpperCAmelCase__ , UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__ , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): return model_prefix.startswith("rag" ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE = "dropout_rate" for p in extra_params: if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) continue SCREAMING_SNAKE_CASE = p if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) return hparams, config
403
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCamelCase ) @slow def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def __snake_case( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.resolver.write_model_card("opus-mt-he-en" , dry_run=_UpperCamelCase ) assert mmeta["long_pair"] == "heb-eng"
403
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __A ( _lowercase ): '''simple docstring''' lowerCAmelCase : str = '''gptsan-japanese''' lowerCAmelCase : Dict = [ '''past_key_values''', ] lowerCAmelCase : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,_snake_case : Any=36_000 ,_snake_case : Dict=1_280 ,_snake_case : Any=1_024 ,_snake_case : Optional[int]=8_192 ,_snake_case : int=4_096 ,_snake_case : Any=128 ,_snake_case : Union[str, Any]=10 ,_snake_case : str=0 ,_snake_case : Union[str, Any]=16 ,_snake_case : str=16 ,_snake_case : str=128 ,_snake_case : Any=0.0 ,_snake_case : Tuple=1e-5 ,_snake_case : int=False ,_snake_case : Optional[int]=0.0 ,_snake_case : int="float32" ,_snake_case : List[Any]=False ,_snake_case : Union[str, Any]=False ,_snake_case : Optional[Any]=False ,_snake_case : str=0.002 ,_snake_case : Optional[int]=False ,_snake_case : List[str]=True ,_snake_case : Optional[int]=35_998 ,_snake_case : Dict=35_995 ,_snake_case : str=35_999 ,**_snake_case : List[Any] ,) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : Union[str, Any] = d_model lowercase__ : str = d_ff lowercase__ : Tuple = d_ext lowercase__ : List[str] = d_spout lowercase__ : Dict = num_switch_layers lowercase__ : Any = num_ext_layers lowercase__ : Union[str, Any] = num_switch_layers + num_ext_layers lowercase__ : List[str] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : List[str] = expert_capacity lowercase__ : List[Any] = dropout_rate lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = router_bias lowercase__ : Any = router_jitter_noise lowercase__ : Tuple = router_dtype lowercase__ : Optional[Any] = router_ignore_padding_tokens lowercase__ : Optional[int] = output_hidden_states lowercase__ : Any = output_attentions lowercase__ : int = initializer_factor lowercase__ : Union[str, Any] = output_router_logits lowercase__ : Tuple = use_cache super().__init__( separator_token_id=A_ ,pad_token_id=A_ ,eos_token_id=A_ ,**A_ ,)
700
"""simple docstring""" import re def __UpperCAmelCase ( __lowerCamelCase ) -> bool: lowercase__ : Optional[Any] = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": lowerCAmelCase_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
122
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {} class A_ ( _a ): '''simple docstring''' _UpperCamelCase : int = """llama""" _UpperCamelCase : Tuple = ["""past_key_values"""] def __init__( self , snake_case=3_2000 , snake_case=4096 , snake_case=1_1008 , snake_case=32 , snake_case=32 , snake_case=None , snake_case="silu" , snake_case=2048 , snake_case=0.02 , snake_case=1E-6 , snake_case=True , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=1 , snake_case=False , snake_case=None , **snake_case , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowercase = num_attention_heads lowercase = num_key_value_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = pretraining_tp lowercase = use_cache lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ , ) def SCREAMING_SNAKE_CASE__ ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) lowercase = self.rope_scaling.get('type' , snake_case_ ) lowercase = self.rope_scaling.get('factor' , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
84
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = """ResNetConfig""" # Base docstring UpperCamelCase_ = """microsoft/resnet-50""" UpperCamelCase_ = [1, 20_48, 7, 7] # Image classification docstring UpperCamelCase_ = """microsoft/resnet-50""" UpperCamelCase_ = """tiger cat""" UpperCamelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ , snake_case_ = 3 , snake_case_ = 1 , snake_case_ = "relu" ): super().__init__() _lowerCAmelCase : List[str] = nn.Convad( snake_case_ , snake_case_ , kernel_size=snake_case_ , stride=snake_case_ , padding=kernel_size // 2 , bias=snake_case_ ) _lowerCAmelCase : Tuple = nn.BatchNormad(snake_case_ ) _lowerCAmelCase : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.convolution(snake_case_ ) _lowerCAmelCase : int = self.normalization(snake_case_ ) _lowerCAmelCase : str = self.activation(snake_case_ ) return hidden_state class a_ (nn.Module ): def __init__( self , snake_case_ ): super().__init__() _lowerCAmelCase : str = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _lowerCAmelCase : Any = config.num_channels def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) _lowerCAmelCase : int = self.embedder(snake_case_ ) _lowerCAmelCase : Dict = self.pooler(snake_case_ ) return embedding class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ , snake_case_ = 2 ): super().__init__() _lowerCAmelCase : List[Any] = nn.Convad(snake_case_ , snake_case_ , kernel_size=1 , stride=snake_case_ , bias=snake_case_ ) _lowerCAmelCase : Union[str, Any] = nn.BatchNormad(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Dict = self.convolution(snake_case_ ) _lowerCAmelCase : Any = self.normalization(snake_case_ ) return hidden_state class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ , snake_case_ = 1 , snake_case_ = "relu" ): super().__init__() _lowerCAmelCase : Dict = in_channels != out_channels or stride != 1 _lowerCAmelCase : List[str] = ( ResNetShortCut(snake_case_ , snake_case_ , stride=snake_case_ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : List[str] = nn.Sequential( ResNetConvLayer(snake_case_ , snake_case_ , stride=snake_case_ ) , ResNetConvLayer(snake_case_ , snake_case_ , activation=snake_case_ ) , ) _lowerCAmelCase : Tuple = ACTaFN[activation] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[int] = hidden_state _lowerCAmelCase : Union[str, Any] = self.layer(snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.shortcut(snake_case_ ) hidden_state += residual _lowerCAmelCase : str = self.activation(snake_case_ ) return hidden_state class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ , snake_case_ = 1 , snake_case_ = "relu" , snake_case_ = 4 ): super().__init__() _lowerCAmelCase : Tuple = in_channels != out_channels or stride != 1 _lowerCAmelCase : int = out_channels // reduction _lowerCAmelCase : Any = ( ResNetShortCut(snake_case_ , snake_case_ , stride=snake_case_ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase : Dict = nn.Sequential( ResNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 ) , ResNetConvLayer(snake_case_ , snake_case_ , stride=snake_case_ ) , ResNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 , activation=snake_case_ ) , ) _lowerCAmelCase : Optional[Any] = ACTaFN[activation] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Dict = hidden_state _lowerCAmelCase : Optional[Any] = self.layer(snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.shortcut(snake_case_ ) hidden_state += residual _lowerCAmelCase : Any = self.activation(snake_case_ ) return hidden_state class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 2 , snake_case_ = 2 , ): super().__init__() _lowerCAmelCase : Optional[Any] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer _lowerCAmelCase : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(snake_case_ , snake_case_ , stride=snake_case_ , activation=config.hidden_act ) , *[layer(snake_case_ , snake_case_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = input for layer in self.layers: _lowerCAmelCase : List[Any] = layer(snake_case_ ) return hidden_state class a_ (nn.Module ): def __init__( self , snake_case_ ): super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( snake_case_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(snake_case_ , config.depths[1:] ): self.stages.append(ResNetStage(snake_case_ , snake_case_ , snake_case_ , depth=snake_case_ ) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = True ): _lowerCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : Any = hidden_states + (hidden_state,) _lowerCAmelCase : Dict = stage_module(snake_case_ ) if output_hidden_states: _lowerCAmelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=snake_case_ , hidden_states=snake_case_ , ) class a_ (_a ): __lowerCAmelCase : str = ResNetConfig __lowerCAmelCase : Dict = """resnet""" __lowerCAmelCase : List[str] = """pixel_values""" __lowerCAmelCase : Any = True def __UpperCamelCase ( self , snake_case_ ): if isinstance(snake_case_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(snake_case_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __UpperCamelCase ( self , snake_case_ , snake_case_=False ): if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase : Union[str, Any] = value UpperCamelCase_ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase_ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , _a , ) class a_ (_a ): def __init__( self , snake_case_ ): super().__init__(snake_case_ ) _lowerCAmelCase : Any = config _lowerCAmelCase : List[Any] = ResNetEmbeddings(snake_case_ ) _lowerCAmelCase : List[Any] = ResNetEncoder(snake_case_ ) _lowerCAmelCase : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None ): _lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Union[str, Any] = self.embedder(snake_case_ ) _lowerCAmelCase : Tuple = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) _lowerCAmelCase : int = encoder_outputs[0] _lowerCAmelCase : int = self.pooler(snake_case_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _a , ) class a_ (_a ): def __init__( self , snake_case_ ): super().__init__(snake_case_ ) _lowerCAmelCase : Union[str, Any] = config.num_labels _lowerCAmelCase : Any = ResNetModel(snake_case_ ) # classification head _lowerCAmelCase : List[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): _lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Tuple = self.resnet(snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) _lowerCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : int = self.classifier(snake_case_ ) _lowerCAmelCase : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : Tuple = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : Any = """single_label_classification""" else: _lowerCAmelCase : Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": _lowerCAmelCase : Optional[int] = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase : Union[str, Any] = loss_fct(snake_case_ , snake_case_ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : int = CrossEntropyLoss() _lowerCAmelCase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : List[Any] = BCEWithLogitsLoss() _lowerCAmelCase : List[Any] = loss_fct(snake_case_ , snake_case_ ) if not return_dict: _lowerCAmelCase : List[str] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , _a , ) class a_ (_a , _a ): def __init__( self , snake_case_ ): super().__init__(snake_case_ ) super()._init_backbone(snake_case_ ) _lowerCAmelCase : List[Any] = [config.embedding_size] + config.hidden_sizes _lowerCAmelCase : List[Any] = ResNetEmbeddings(snake_case_ ) _lowerCAmelCase : str = ResNetEncoder(snake_case_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @replace_return_docstrings(output_type=snake_case_ , config_class=_CONFIG_FOR_DOC ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None ): _lowerCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[int] = self.embedder(snake_case_ ) _lowerCAmelCase : List[Any] = self.encoder(snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) _lowerCAmelCase : Any = outputs.hidden_states _lowerCAmelCase : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _lowerCAmelCase : Any = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=snake_case_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=snake_case_ , )
384
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = '''AutoTokenizer''' _snake_case = ['''tokenizer'''] _snake_case = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , a_ , a_=None ) -> List[Any]: super().__init__(a_ ) lowercase : List[str] = speaker_embeddings @classmethod def a__ ( cls , a_ , a_="speaker_embeddings_path.json" , **a_ ) -> Optional[Any]: if speaker_embeddings_dict_path is not None: lowercase : Any = get_file_from_repo( a_ , a_ , subfolder=kwargs.pop("subfolder" , a_ ) , cache_dir=kwargs.pop("cache_dir" , a_ ) , force_download=kwargs.pop("force_download" , a_ ) , proxies=kwargs.pop("proxies" , a_ ) , resume_download=kwargs.pop("resume_download" , a_ ) , local_files_only=kwargs.pop("local_files_only" , a_ ) , use_auth_token=kwargs.pop("use_auth_token" , a_ ) , revision=kwargs.pop("revision" , a_ ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(a_ , a_ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowercase : Optional[int] = None else: with open(a_ ) as speaker_embeddings_json: lowercase : List[Any] = json.load(a_ ) else: lowercase : Optional[int] = None lowercase : Tuple = AutoTokenizer.from_pretrained(a_ , **a_ ) return cls(tokenizer=a_ , speaker_embeddings=a_ ) def a__ ( self , a_ , a_="speaker_embeddings_path.json" , a_="speaker_embeddings" , a_ = False , **a_ , ) -> int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(a_ , a_ , "v2" ) , exist_ok=a_ ) lowercase : List[str] = {} lowercase : str = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase : int = self._load_voice_preset(a_ ) lowercase : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , a_ , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=a_ , ) lowercase : List[Any] = os.path.join(a_ , F'''{prompt_key}_{key}.npy''' ) lowercase : Union[str, Any] = tmp_dict with open(os.path.join(a_ , a_ ) , "w" ) as fp: json.dump(a_ , a_ ) super().save_pretrained(a_ , a_ , **a_ ) def a__ ( self , a_ = None , **a_ ) -> List[str]: lowercase : Union[str, Any] = self.speaker_embeddings[voice_preset] lowercase : List[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowercase : Dict = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , a_ ) , cache_dir=kwargs.pop("cache_dir" , a_ ) , force_download=kwargs.pop("force_download" , a_ ) , proxies=kwargs.pop("proxies" , a_ ) , resume_download=kwargs.pop("resume_download" , a_ ) , local_files_only=kwargs.pop("local_files_only" , a_ ) , use_auth_token=kwargs.pop("use_auth_token" , a_ ) , revision=kwargs.pop("revision" , a_ ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowercase : List[Any] = np.load(a_ ) return voice_preset_dict def a__ ( self , a_ = None ) -> Any: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , a_=None , a_=None , a_="pt" , a_=2_5_6 , a_=False , a_=True , a_=False , **a_ , ) -> Tuple: if voice_preset is not None and not isinstance(a_ , a_ ): if ( isinstance(a_ , a_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase : Optional[int] = self._load_voice_preset(a_ ) else: if isinstance(a_ , a_ ) and not voice_preset.endswith(".npz" ): lowercase : Any = voice_preset + ".npz" lowercase : List[str] = np.load(a_ ) if voice_preset is not None: self._validate_voice_preset_dict(a_ , **a_ ) lowercase : Any = BatchFeature(data=a_ , tensor_type=a_ ) lowercase : Tuple = self.tokenizer( a_ , return_tensors=a_ , padding="max_length" , max_length=a_ , return_attention_mask=a_ , return_token_type_ids=a_ , add_special_tokens=a_ , **a_ , ) if voice_preset is not None: lowercase : List[str] = voice_preset return encoded_text
425
'''simple docstring''' import qiskit def _A ( A ,A ) -> qiskit.result.counts.Counts: lowercase : Tuple = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register lowercase : List[Any] = qiskit.QuantumCircuit(A ,A ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] ,[0, 1] ) # Execute the circuit on the qasm simulator lowercase : Optional[int] = qiskit.execute(A ,A ,shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
425
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): snake_case_ = set() # Replace all the whitespace in our sentence snake_case_ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == 26 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): snake_case_ = [False] * 26 for char in input_str: if char.islower(): snake_case_ = True elif char.isupper(): snake_case_ = True return all(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __SCREAMING_SNAKE_CASE (): from timeit import timeit snake_case_ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
39
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = "git_vision_model" def __init__( self , A_=768 , A_=3072 , A_=12 , A_=12 , A_=3 , A_=224 , A_=16 , A_="quick_gelu" , A_=1e-5 , A_=0.0 , A_=0.0_2 , **A_ , ) -> Dict: super().__init__(**A_ ) lowerCAmelCase = hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = image_size lowerCAmelCase = initializer_range lowerCAmelCase = attention_dropout lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act @classmethod def __snake_case ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) lowerCAmelCase, lowerCAmelCase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = "git" def __init__( self , A_=None , A_=3_0522 , A_=768 , A_=6 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=0.0_2 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , A_=False , A_=101 , A_=102 , A_=None , **A_ , ) -> Tuple: super().__init__(bos_token_id=A_ , eos_token_id=A_ , pad_token_id=A_ , **A_ ) if vision_config is None: lowerCAmelCase = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) lowerCAmelCase = GitVisionConfig(**A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = tie_word_embeddings lowerCAmelCase = num_image_with_embedding lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id def __snake_case ( self ) -> List[Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.vision_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
433
0
from collections import defaultdict def A__ ( lowerCamelCase ) -> int: UpperCamelCase_: List[str] = 1 UpperCamelCase_: Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(lowerCamelCase ) if ret % 2 == 0: cuts.append(lowerCamelCase ) return ret def A__ ( ) -> Optional[int]: dfs(1 ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = 10, 9 lowerCamelCase_ : List[Any] = defaultdict(list) lowerCamelCase_ : dict[int, bool] = {} lowerCamelCase_ : list[int] = [] lowerCamelCase_ : str = 0 lowerCamelCase_ : Union[str, Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
707
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCamelCase_: str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCamelCase_: Dict = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
670
0
"""simple docstring""" import os lowerCAmelCase__ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while index < len(__a ) - 1: SCREAMING_SNAKE_CASE_ = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = num // 1_000 numerals += m_count * "M" num %= 1_000 SCREAMING_SNAKE_CASE_ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 SCREAMING_SNAKE_CASE_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCamelCase ( __a = "/p089_roman.txt" ): SCREAMING_SNAKE_CASE_ = 0 with open(os.path.dirname(__a ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE_ = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE_ = line.strip() SCREAMING_SNAKE_CASE_ = parse_roman_numerals(__a ) SCREAMING_SNAKE_CASE_ = generate_roman_numerals(__a ) savings += len(__a ) - len(__a ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
626
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowerCamelCase ( __a, __a=False ): try: SCREAMING_SNAKE_CASE_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE_ = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE_ = strtobool(__a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value lowerCAmelCase__ = parse_flag_from_env('RUN_SLOW', default=False) lowerCAmelCase__ = parse_flag_from_env('RUN_REMOTE', default=False) lowerCAmelCase__ = parse_flag_from_env('RUN_LOCAL', default=True) lowerCAmelCase__ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCAmelCase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCAmelCase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCAmelCase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCAmelCase__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCAmelCase__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCAmelCase__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCAmelCase__ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowerCamelCase ( __a ): try: import faiss # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires faiss''' )(__a ) return test_case def _lowerCamelCase ( __a ): try: import regex # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires regex''' )(__a ) return test_case def _lowerCamelCase ( __a ): try: import elasticsearch # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires elasticsearch''' )(__a ) return test_case def _lowerCamelCase ( __a ): try: import sqlalchemy # noqa except ImportError: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires sqlalchemy''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not config.TORCH_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires PyTorch''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not config.TF_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires TensorFlow''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not config.JAX_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires JAX''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not config.PIL_AVAILABLE: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires Pillow''' )(__a ) return test_case def _lowerCamelCase ( __a ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__a ) else: return test_case def _lowerCamelCase ( __a ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__a ) else: return test_case def _lowerCamelCase ( __a ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__a ) else: return test_case def _lowerCamelCase ( __a ): def _require_spacy_model(__a ): try: import spacy # noqa F401 spacy.load(__a ) except ImportError: return unittest.skip('''test requires spacy''' )(__a ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__a ) )(__a ) else: return test_case return _require_spacy_model def _lowerCamelCase ( __a ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__a ) else: return test_case def _lowerCamelCase ( __a ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__a ) else: return test_case def _lowerCamelCase ( __a ): if not _run_slow_tests or _run_slow_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is slow''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not _run_local_tests or _run_local_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is local''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not _run_packaged_tests or _run_packaged_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test is packaged''' )(__a ) return test_case def _lowerCamelCase ( __a ): if not _run_remote_tests or _run_remote_tests == 0: SCREAMING_SNAKE_CASE_ = unittest.skip('''test requires remote''' )(__a ) return test_case def _lowerCamelCase ( *__a ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__a ) and name.startswith('''test''' ): for decorator in decorators: SCREAMING_SNAKE_CASE_ = decorator(__a ) setattr(cls, __a, __a ) return cls return decorate class snake_case ( __lowercase ): pass class snake_case ( __lowercase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 @contextmanager def _lowerCamelCase ( __a=OfflineSimulationMode.CONNECTION_FAILS, __a=1E-16 ): SCREAMING_SNAKE_CASE_ = requests.Session().request def timeout_request(__a, __a, __a, **__a ): # Change the url to an invalid url so that the connection hangs SCREAMING_SNAKE_CASE_ = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) SCREAMING_SNAKE_CASE_ = timeout try: return online_request(__a, __a, **__a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier SCREAMING_SNAKE_CASE_ = url SCREAMING_SNAKE_CASE_ = e.args[0] SCREAMING_SNAKE_CASE_ = (max_retry_error.args[0].replace('''10.255.255.1''', F'OfflineMock[{url}]' ),) SCREAMING_SNAKE_CASE_ = (max_retry_error,) raise def raise_connection_error(__a, __a, **__a ): raise requests.ConnectionError('''Offline mode is enabled.''', request=__a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''', __a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''', __a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''', __a ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _lowerCamelCase ( *__a, **__a ): SCREAMING_SNAKE_CASE_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__a, **__a ) as tmp_dir: try: os.chdir(__a ) yield finally: os.chdir(__a ) @contextmanager def _lowerCamelCase ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowerCamelCase ( ): import gc gc.collect() SCREAMING_SNAKE_CASE_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowerCamelCase ( __a, __a ): return deepcopy(__a ).integers(0, 100, 10 ).tolist() == deepcopy(__a ).integers(0, 100, 10 ).tolist() def _lowerCamelCase ( __a ): import decorator from requests.exceptions import HTTPError def _wrapper(__a, *__a, **__a ): try: return func(*__a, **__a ) except HTTPError as err: if str(__a ).startswith('''500''' ) or str(__a ).startswith('''502''' ): pytest.xfail(str(__a ) ) raise err return decorator.decorator(_wrapper, __a ) class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = returncode SCREAMING_SNAKE_CASE_ = stdout SCREAMING_SNAKE_CASE_ = stderr async def _lowerCamelCase ( __a, __a ): while True: SCREAMING_SNAKE_CASE_ = await stream.readline() if line: callback(__a ) else: break async def _lowerCamelCase ( __a, __a=None, __a=None, __a=None, __a=False, __a=False ): if echo: print('''\nRunning: ''', ''' '''.join(__a ) ) SCREAMING_SNAKE_CASE_ = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=__a, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=__a, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def tee(__a, __a, __a, __a="" ): SCREAMING_SNAKE_CASE_ = line.decode('''utf-8''' ).rstrip() sink.append(__a ) if not quiet: print(__a, __a, file=__a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda __a : tee(__a, __a, sys.stdout, label='''stdout:''' ) ), _read_stream(p.stderr, lambda __a : tee(__a, __a, sys.stderr, label='''stderr:''' ) ), ], timeout=__a, ) return _RunOutput(await p.wait(), __a, __a ) def _lowerCamelCase ( __a, __a=None, __a=None, __a=180, __a=False, __a=True ): SCREAMING_SNAKE_CASE_ = asyncio.get_event_loop() SCREAMING_SNAKE_CASE_ = loop.run_until_complete( _stream_subprocess(__a, env=__a, stdin=__a, timeout=__a, quiet=__a, echo=__a ) ) SCREAMING_SNAKE_CASE_ = ''' '''.join(__a ) if result.returncode > 0: SCREAMING_SNAKE_CASE_ = '''\n'''.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = os.environ.get('''PYTEST_XDIST_WORKER''', '''gw0''' ) SCREAMING_SNAKE_CASE_ = re.sub(r'''^gw''', '''''', __a, 0, re.M ) return int(__a ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = 29_500 SCREAMING_SNAKE_CASE_ = pytest_xdist_worker_id() return port + uniq_delta
626
1
"""simple docstring""" class _A : """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : int): a : str = n a : List[str] = [None] * self.n a : Optional[int] = 0 # index of the first element a : Tuple = 0 a : Union[str, Any] = 0 def __len__( self : List[Any]): return self.size def __snake_case ( self : int): return self.size == 0 def __snake_case ( self : Tuple): return False if self.is_empty() else self.array[self.front] def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Tuple): if self.size >= self.n: raise Exception("QUEUE IS FULL") a : int = data a : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def __snake_case ( self : List[str]): if self.size == 0: raise Exception("UNDERFLOW") a : str = self.array[self.front] a : Optional[Any] = None a : str = (self.front + 1) % self.n self.size -= 1 return temp
706
"""simple docstring""" def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : Tuple = 0 for i in range(1 , 1_001 ): total += i**i return str(A_ )[-10:] if __name__ == "__main__": print(solution())
135
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : Optional[Any] = random.Random() def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None ): if rng is None: __UpperCAmelCase : int = global_rng __UpperCAmelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __lowercase : List[Any] , __lowercase : Dict=7 , __lowercase : Tuple=400 , __lowercase : Optional[int]=2000 , __lowercase : List[Any]=1 , __lowercase : List[str]=0.0 , __lowercase : str=16000 , __lowercase : Tuple=True , __lowercase : List[str]=True , ) -> Dict: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Union[str, Any] = min_seq_length __UpperCAmelCase : Any = max_seq_length __UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : List[Any] = feature_size __UpperCAmelCase : Optional[Any] = padding_value __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : Optional[Any] = return_attention_mask __UpperCAmelCase : int = do_normalize def UpperCAmelCase ( self : Optional[int] ) -> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self : Optional[int] , __lowercase : int=False , __lowercase : str=False ) -> int: def _flatten(__lowercase : Optional[Any] ): return list(itertools.chain(*__lowercase ) ) if equal_length: __UpperCAmelCase : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __UpperCAmelCase : List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase : str = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Tuple = WavaVecaFeatureExtractor def UpperCAmelCase ( self : List[Any] ) -> List[str]: __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase ( self : Optional[int] , __lowercase : Any ) -> List[str]: self.assertTrue(np.all(np.mean(__lowercase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase ( self : Dict ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase : Optional[Any] = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test not batched input __UpperCAmelCase : int = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values __UpperCAmelCase : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test batched __UpperCAmelCase : int = feat_extract(__lowercase , return_tensors="""np""" ).input_values __UpperCAmelCase : Optional[int] = feat_extract(__lowercase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCAmelCase : List[Any] = np.asarray(__lowercase ) __UpperCAmelCase : int = feat_extract(__lowercase , return_tensors="""np""" ).input_values __UpperCAmelCase : Optional[Any] = feat_extract(__lowercase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] __UpperCAmelCase : Any = [None, 1600, None] for max_length, padding in zip(__lowercase , __lowercase ): __UpperCAmelCase : Optional[Any] = feat_extract(__lowercase , padding=__lowercase , max_length=__lowercase , return_tensors="""np""" ) __UpperCAmelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase ( self : str ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Optional[int] = range(800 , 1400 , 200 ) __UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] __UpperCAmelCase : Union[str, Any] = ["""longest""", """max_length""", """do_not_pad"""] __UpperCAmelCase : Dict = [None, 1600, None] for max_length, padding in zip(__lowercase , __lowercase ): __UpperCAmelCase : List[str] = feat_extract(__lowercase , max_length=__lowercase , padding=__lowercase ) __UpperCAmelCase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase ( self : str ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase : Dict = feat_extract( __lowercase , truncation=__lowercase , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) __UpperCAmelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: __UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase : Union[str, Any] = feat_extract( __lowercase , truncation=__lowercase , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) __UpperCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase : Optional[Any] = feat_extract( __lowercase , truncation=__lowercase , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) __UpperCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCAmelCase ( self : str ) -> int: import torch __UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase : Optional[Any] = np.random.rand(100 ).astype(np.floataa ) __UpperCAmelCase : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __UpperCAmelCase : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase ( self : Tuple ) -> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __UpperCAmelCase : int = WavaVecaConfig.from_pretrained(__lowercase ) __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__lowercase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
63
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class __a ( __lowerCamelCase ): """simple docstring""" def __init__( self : int ,*_UpperCamelCase : Any ,**_UpperCamelCase : int ) -> None: '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
151
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCamelCase_ : List[str] = logging.get_logger(__name__) UpperCamelCase_ : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ : Any = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } UpperCamelCase_ : Any = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } UpperCamelCase_ : List[str] = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = BertTokenizer def __init__( self : Optional[Any] ,a__ : Tuple=None ,a__ : int=None ,a__ : Any=True ,a__ : int="[UNK]" ,a__ : List[str]="[SEP]" ,a__ : str="[PAD]" ,a__ : Optional[Any]="[CLS]" ,a__ : Any="[MASK]" ,a__ : Optional[Any]=True ,a__ : Any=None ,**a__ : List[Any] ,): super().__init__( a__ ,tokenizer_file=a__ ,do_lower_case=a__ ,unk_token=a__ ,sep_token=a__ ,pad_token=a__ ,cls_token=a__ ,mask_token=a__ ,tokenize_chinese_chars=a__ ,strip_accents=a__ ,**a__ ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,a__ ) != do_lower_case or normalizer_state.get("strip_accents" ,a__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,a__ ) != tokenize_chinese_chars ): a__ = getattr(a__ ,normalizer_state.pop("type" ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**a__ ) a__ = do_lower_case def lowerCAmelCase_ ( self : Tuple ,a__ : Optional[Any] ,a__ : Tuple=None ): a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : Any ,a__ : List[int] ,a__ : Optional[List[int]] = None ): a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Dict ,a__ : str ,a__ : Optional[str] = None ): a__ = self._tokenizer.model.save(a__ ,name=a__ ) return tuple(a__ )
394
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase_ : str = """scheduler_config.json""" class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 1 UpperCamelCase__ = 2 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 5 @dataclass class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = 42 class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = SCHEDULER_CONFIG_NAME UpperCamelCase__ = ['''dtype'''] UpperCamelCase__ = [] UpperCamelCase__ = True @classmethod def lowerCAmelCase_ ( cls : Optional[Any] ,a__ : Dict[str, Any] = None ,a__ : Optional[str] = None ,a__ : Union[str, Any]=False ,**a__ : Tuple ,): a__ , a__ = cls.load_config( pretrained_model_name_or_path=a__ ,subfolder=a__ ,return_unused_kwargs=a__ ,**a__ ,) a__ , a__ = cls.from_config(a__ ,return_unused_kwargs=a__ ,**a__ ) if hasattr(a__ ,"create_state" ) and getattr(a__ ,"has_state" ,a__ ): a__ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase_ ( self : Any ,a__ : Union[str, os.PathLike] ,a__ : bool = False ,**a__ : Optional[int] ): self.save_config(save_directory=a__ ,push_to_hub=a__ ,**a__ ) @property def lowerCAmelCase_ ( self : List[str] ): return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls : str ): a__ = list(set([cls.__name__] + cls._compatibles ) ) a__ = importlib.import_module(__name__.split("." )[0] ) a__ = [ getattr(a__ ,a__ ) for c in compatible_classes_str if hasattr(a__ ,a__ ) ] return compatible_classes def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" assert len(_lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowercase ) - x.ndim) ) , _lowercase ) def _lowerCAmelCase (_lowercase , _lowercase=0.999 , _lowercase=jnp.floataa ): """simple docstring""" def alpha_bar(_lowercase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 a__ = [] for i in range(_lowercase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_lowercase ) / alpha_bar(_lowercase ) , _lowercase ) ) return jnp.array(_lowercase , dtype=_lowercase ) @flax.struct.dataclass class lowerCamelCase__ : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 @classmethod def lowerCAmelCase_ ( cls : Tuple ,a__ : List[Any] ): a__ = scheduler.config if config.trained_betas is not None: a__ = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a__ = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) a__ = 1.0 - betas a__ = jnp.cumprod(a__ ,axis=0 ) return cls( alphas=a__ ,betas=a__ ,alphas_cumprod=a__ ,) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = state.alphas_cumprod a__ = alphas_cumprod[timesteps] ** 0.5 a__ = sqrt_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) a__ = (1 - alphas_cumprod[timesteps]) ** 0.5 a__ = sqrt_one_minus_alpha_prod.flatten() a__ = broadcast_to_shape_from_left(_lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" a__ , a__ = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase ) a__ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
394
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''PerceiverFeatureExtractor'''] __A = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
646
"""simple docstring""" from manim import * class _snake_case ( a__ ): def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) __lowerCamelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowerCamelCase : str = [mem.copy() for i in range(6 )] __lowerCamelCase : str = [mem.copy() for i in range(6 )] __lowerCamelCase : Union[str, Any] = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __lowerCamelCase : List[str] = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __lowerCamelCase : Dict = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __lowerCamelCase : str = Text("CPU" , font_size=24 ) __lowerCamelCase : List[Any] = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) __lowerCamelCase : Tuple = [mem.copy() for i in range(1 )] __lowerCamelCase : List[str] = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __lowerCamelCase : Optional[Any] = Text("GPU" , font_size=24 ) __lowerCamelCase : Any = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.align_to(UpperCAmelCase , UpperCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase ) __lowerCamelCase : List[Any] = [mem.copy() for i in range(6 )] __lowerCamelCase : Optional[int] = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __lowerCamelCase : List[str] = Text("Model" , font_size=24 ) __lowerCamelCase : Tuple = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) , ) __lowerCamelCase : int = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) __lowerCamelCase : Dict = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCamelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=2.5 ) , Write(UpperCAmelCase ) , Write(UpperCAmelCase ) ) self.add(UpperCAmelCase ) __lowerCamelCase : Any = [] __lowerCamelCase : int = [] __lowerCamelCase : Optional[Any] = [] for i, rect in enumerate(UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.7 ) cpu_target.move_to(UpperCAmelCase ) cpu_target.generate_target() __lowerCamelCase : Optional[Any] = 0.4_6 / 4 __lowerCamelCase : Dict = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCAmelCase , buff=0.0 ) cpu_targs.append(UpperCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase ) ) second_animations.append(MoveToTarget(UpperCAmelCase , run_time=1.5 ) ) self.play(*UpperCAmelCase ) self.play(*UpperCAmelCase ) self.wait()
646
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A = logging.get_logger(__name__) A = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : List[str] = """codegen""" lowerCAmelCase_ : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , snake_case : Dict=50_400 , snake_case : Dict=2_048 , snake_case : str=2_048 , snake_case : int=4_096 , snake_case : Union[str, Any]=28 , snake_case : Optional[Any]=16 , snake_case : str=64 , snake_case : Tuple=None , snake_case : Any="gelu_new" , snake_case : Optional[Any]=0.0 , snake_case : Optional[Any]=0.0 , snake_case : Any=0.0 , snake_case : Any=1E-5 , snake_case : Dict=0.02 , snake_case : List[Any]=True , snake_case : Optional[Any]=50_256 , snake_case : List[Any]=50_256 , snake_case : Dict=False , **snake_case : int , ) -> List[Any]: '''simple docstring''' A = vocab_size A = n_ctx A = n_positions A = n_embd A = n_layer A = n_head A = n_inner A = rotary_dim A = activation_function A = resid_pdrop A = embd_pdrop A = attn_pdrop A = layer_norm_epsilon A = initializer_range A = use_cache A = bos_token_id A = eos_token_id super().__init__( bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case ) class UpperCAmelCase__ ( UpperCamelCase ): def __init__( self : Tuple , snake_case : PretrainedConfig , snake_case : str = "default" , snake_case : List[PatchingSpec] = None , snake_case : bool = False , ) -> Tuple: '''simple docstring''' super().__init__(snake_case , task=snake_case , patching_specs=snake_case , use_past=snake_case ) if not getattr(self._config , 'pad_token_id' , snake_case ): # TODO: how to do that better? A = 0 @property def A_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) A = {0: 'batch', 1: 'past_sequence + sequence'} else: A = {0: 'batch', 1: 'sequence'} return common_inputs @property def A_ ( self : List[Any] ) -> int: '''simple docstring''' return self._config.n_layer @property def A_ ( self : int ) -> int: '''simple docstring''' return self._config.n_head def A_ ( self : Optional[int] , snake_case : PreTrainedTokenizer , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' A = super(snake_case , self ).generate_dummy_inputs( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) # We need to order the input in the way they appears in the forward() A = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] A = common_inputs['attention_mask'] if self.use_past: A = ordered_inputs['attention_mask'].dtype A = torch.cat( [ordered_inputs['attention_mask'], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) return ordered_inputs @property def A_ ( self : Any ) -> int: '''simple docstring''' return 13
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
109
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) snake_case_ : Dict = precision snake_case_ : str = ceil(precision / 1_4 ) snake_case_ : Optional[int] = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() snake_case_ : str = 1 snake_case_ : List[Any] = 1_3_5_9_1_4_0_9 snake_case_ : List[str] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): snake_case_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : List[str] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
58
from __future__ import annotations from math import pow, sqrt def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
563
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import random def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[str] = a[left_index] lowerCamelCase_ : List[str] = left_index + 1 for j in range(left_index + 1 , __UpperCAmelCase ): if a[j] < pivot: lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = a[i], a[j] i += 1 lowerCamelCase_ , lowerCamelCase_ : Tuple = a[i - 1], a[left_index] return i - 1 def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if left < right: lowerCamelCase_ : int = random.randint(__UpperCAmelCase , right - 1 ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase_ : List[str] = partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) quick_sort_random( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __UpperCAmelCase , pivot_index + 1 , __UpperCAmelCase ) # recursive quicksort to the right of the pivot point def __snake_case (): """simple docstring""" lowerCamelCase_ : Optional[int] = input('''Enter numbers separated by a comma:\n''' ).strip() lowerCamelCase_ : Optional[Any] = [int(__UpperCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) ) print(__UpperCAmelCase ) if __name__ == "__main__": main()
418
0
"""simple docstring""" from torch import nn def UpperCAmelCase ( _lowercase : int ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
552
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = {} state_dict.pop("pixel_mean" , snake_case__) state_dict.pop("pixel_std" , snake_case__) lowerCAmelCase_ : List[Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase_ : Dict = key.replace(snake_case__ , snake_case__) if re.match(snake_case__ , snake_case__): lowerCAmelCase_ : Any = int(re.match(snake_case__ , snake_case__).group(2)) if layer_nb == 0: lowerCAmelCase_ : List[Any] = key.replace("layers.0" , "proj_in") elif layer_nb == 1: lowerCAmelCase_ : List[Any] = key.replace("layers.1" , "layers.0") elif layer_nb == 2: lowerCAmelCase_ : int = key.replace("layers.2" , "proj_out") lowerCAmelCase_ : int = value lowerCAmelCase_ : Optional[int] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="ybelkada/segment-anything"): lowerCAmelCase_ : Optional[int] = hf_hub_download(snake_case__ , F'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: lowerCAmelCase_ : Optional[Any] = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase_ : Optional[int] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase_ : Union[str, Any] = SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: lowerCAmelCase_ : Optional[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase_ : Tuple = SamConfig( vision_config=snake_case__ , ) lowerCAmelCase_ : Optional[Any] = torch.load(snake_case__ , map_location="cpu") lowerCAmelCase_ : Union[str, Any] = replace_keys(snake_case__) lowerCAmelCase_ : List[Any] = SamImageProcessor() lowerCAmelCase_ : Any = SamProcessor(image_processor=snake_case__) lowerCAmelCase_ : Any = SamModel(snake_case__) hf_model.load_state_dict(snake_case__) lowerCAmelCase_ : Dict = hf_model.to("cuda") lowerCAmelCase_ : List[str] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCAmelCase_ : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__).raw).convert("RGB") lowerCAmelCase_ : Optional[int] = [[[4_00, 6_50]]] lowerCAmelCase_ : int = [[1]] lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase_ : Any = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase_ : Tuple = ((75, 2_75, 17_25, 8_50),) lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , input_boxes=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : List[Any] = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase_ : int = [[[4_00, 6_50], [8_00, 6_50]]] lowerCAmelCase_ : Optional[Any] = [[1, 1]] lowerCAmelCase_ : List[Any] = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Tuple = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowercase = argparse.ArgumentParser() _lowercase = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _lowercase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
659
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case__ ) , '''Tatoeba directory does not exist.''' ) class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict =tempfile.mkdtemp() return TatoebaConverter(save_dir=__SCREAMING_SNAKE_CASE) @slow def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" self.resolver.convert_models(["heb-eng"]) @slow def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple =self.resolver.write_model_card("opus-mt-he-en" , dry_run=__SCREAMING_SNAKE_CASE) assert mmeta["long_pair"] == "heb-eng"
720
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__( snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case__ = LEDTokenizer snake_case__ = LEDTokenizerFast snake_case__ = True def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" super().setUp() UpperCamelCase__ : Any =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) UpperCamelCase__ : Optional[int] =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Optional[int] ={"unk_token": "<unk>"} UpperCamelCase__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) UpperCamelCase__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(__SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return LEDTokenizer.from_pretrained("allenai/led-base-16384") @cached_property def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained("allenai/led-base-16384") @require_torch def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ : Optional[int] =[0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Any =tokenizer(__SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE) , padding=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) UpperCamelCase__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @require_torch def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : int =tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIn("input_ids" , __SCREAMING_SNAKE_CASE) self.assertIn("attention_mask" , __SCREAMING_SNAKE_CASE) self.assertNotIn("labels" , __SCREAMING_SNAKE_CASE) self.assertNotIn("decoder_attention_mask" , __SCREAMING_SNAKE_CASE) @require_torch def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] =[ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Tuple =tokenizer(text_target=__SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt") self.assertEqual(32 , targets["input_ids"].shape[1]) @require_torch def UpperCAmelCase ( self) -> int: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Optional[int] =tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="pt") self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(batch.input_ids.shape , (2, 51_22)) @require_torch def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] =["A long paragraph for summarization."] UpperCamelCase__ : Any =[ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : str =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="pt") UpperCamelCase__ : str =tokenizer(text_target=__SCREAMING_SNAKE_CASE , return_tensors="pt") UpperCamelCase__ : int =inputs["input_ids"] UpperCamelCase__ : Tuple =targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCAmelCase ( self) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ : Any =["Summary of the text.", "Another summary."] UpperCamelCase__ : List[str] =[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase__ : str =tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =[[0] * len(__SCREAMING_SNAKE_CASE) for x in encoded_output["input_ids"]] UpperCamelCase__ : Any =tokenizer.pad(__SCREAMING_SNAKE_CASE) self.assertSequenceEqual(outputs["global_attention_mask"] , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): UpperCamelCase__ : Dict =self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] ="A, <mask> AllenNLP sentence." UpperCamelCase__ : List[Any] =tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) self.assertEqual(sum(tokens_r["token_type_ids"]) , sum(tokens_p["token_type_ids"])) self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]) , sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]) , ) UpperCamelCase__ : List[str] =tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) UpperCamelCase__ : str =tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"])
582
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCamelCase = [144, 192, 240] UpperCamelCase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCamelCase = [96, 120, 144] UpperCamelCase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCamelCase = [64, 80, 96] UpperCamelCase = [16, 16, 24, 48, 64, 80, 320] UpperCamelCase = 0.05 UpperCamelCase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): UpperCamelCase = 512 UpperCamelCase = 16 UpperCamelCase = 21 UpperCamelCase = """pascal-voc-id2label.json""" else: UpperCamelCase = 1000 UpperCamelCase = """imagenet-1k-id2label.json""" UpperCamelCase = """huggingface/label-files""" UpperCamelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( __UpperCamelCase , __UpperCamelCase=False )-> Dict: for i in range(1 , 6 ): if F"layer_{i}." in name: UpperCamelCase = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: UpperCamelCase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: UpperCamelCase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: UpperCamelCase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: UpperCamelCase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: UpperCamelCase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: UpperCamelCase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: UpperCamelCase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: UpperCamelCase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: UpperCamelCase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: UpperCamelCase = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: UpperCamelCase = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: UpperCamelCase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: UpperCamelCase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: UpperCamelCase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: UpperCamelCase = name.replace(F".global_rep.{i}.weight" , """.layernorm.weight""" ) if F".global_rep.{i}.bias" in name: UpperCamelCase = name.replace(F".global_rep.{i}.bias" , """.layernorm.bias""" ) if ".global_rep." in name: UpperCamelCase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: UpperCamelCase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: UpperCamelCase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: UpperCamelCase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: UpperCamelCase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: UpperCamelCase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: UpperCamelCase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: UpperCamelCase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: UpperCamelCase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: UpperCamelCase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: UpperCamelCase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: UpperCamelCase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): UpperCamelCase = """mobilevit.""" + name return name def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False )-> Union[str, Any]: if base_model: UpperCamelCase = """""" else: UpperCamelCase = """mobilevit.""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(__UpperCamelCase ) if key[:8] == "encoder.": UpperCamelCase = key[8:] if "qkv" in key: UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[0][6:] ) - 1 UpperCamelCase = int(key_split[3] ) UpperCamelCase = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) UpperCamelCase = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCamelCase = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def lowercase__ ( )-> int: UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False )-> List[Any]: UpperCamelCase = get_mobilevit_config(__UpperCamelCase ) # load original state_dict UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): UpperCamelCase = MobileViTForSemanticSegmentation(__UpperCamelCase ).eval() else: UpperCamelCase = MobileViTForImageClassification(__UpperCamelCase ).eval() UpperCamelCase = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCamelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCamelCase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCamelCase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCamelCase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCamelCase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": UpperCamelCase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": UpperCamelCase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: UpperCamelCase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) UpperCamelCase = model_mapping[mobilevit_name] image_processor.push_to_hub(__UpperCamelCase , organization="""apple""" ) model.push_to_hub(__UpperCamelCase , organization="""apple""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
301
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel SCREAMING_SNAKE_CASE__ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: return torch.atana(__UpperCamelCase , __UpperCamelCase ) / math.pi * 2 def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__UpperCamelCase , __UpperCamelCase ) class a_ ( lowerCamelCase ): pass class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4 ) UpperCamelCase = deepcopy(self.diffusion ) UpperCamelCase = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE ) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = MODELS_MAP[model_name]["""url"""] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" SCREAMING_SNAKE_CASE__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } SCREAMING_SNAKE_CASE__ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } SCREAMING_SNAKE_CASE__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } SCREAMING_SNAKE_CASE__ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } SCREAMING_SNAKE_CASE__ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } SCREAMING_SNAKE_CASE__ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowercase__ ( __UpperCamelCase )-> List[str]: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(__UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): return name.replace(__UpperCamelCase , __UpperCamelCase ) elif name.startswith(__UpperCamelCase ): return [name.replace(__UpperCamelCase , __UpperCamelCase ) for v in value] raise ValueError(F"Attn error with {name}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=13 )-> int: UpperCamelCase = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) UpperCamelCase = 0 if string.startswith("""net.3.""" ): depth += 1 UpperCamelCase = string[6:] elif string.startswith("""net.""" ): UpperCamelCase = string[4:] while string.startswith("""main.7.""" ): depth += 1 UpperCamelCase = string[7:] if string.startswith("""main.""" ): UpperCamelCase = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase = string[:2] UpperCamelCase = string[2:] else: UpperCamelCase = string[0] UpperCamelCase = string[1:] if depth == max_depth: UpperCamelCase = MID_NUM_TO_LAYER[layer_num] UpperCamelCase = """mid_block""" elif depth > 0 and int(__UpperCamelCase ) < 7: UpperCamelCase = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase = F"down_blocks.{depth}" elif depth > 0 and int(__UpperCamelCase ) > 7: UpperCamelCase = UP_NUM_TO_LAYER[layer_num] UpperCamelCase = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: UpperCamelCase = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase = F"up_blocks.{max_depth - 1}" if int(__UpperCamelCase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) UpperCamelCase = string_left[1:] if "resnets" in new_layer: UpperCamelCase = convert_resconv_naming(__UpperCamelCase ) elif "attentions" in new_layer: UpperCamelCase = convert_attn_naming(__UpperCamelCase ) UpperCamelCase = new_string_left if not isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase = prefix + """.""" + new_layer + """.""" + string_left else: UpperCamelCase = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase = rename(__UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase = transform_conv_attns(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: UpperCamelCase = v return new_state_dict def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: if len(__UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase = v[:, :, 0] else: # bias UpperCamelCase = v else: # qkv matrices UpperCamelCase = v.shape[0] UpperCamelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" UpperCamelCase = download(__UpperCamelCase ) UpperCamelCase = MODELS_MAP[model_name]["""sample_rate"""] UpperCamelCase = MODELS_MAP[model_name]["""sample_size"""] UpperCamelCase = Object() UpperCamelCase = sample_size UpperCamelCase = sample_rate UpperCamelCase = 0 UpperCamelCase = UNetaDModel(sample_size=__UpperCamelCase , sample_rate=__UpperCamelCase ) UpperCamelCase = diffusers_model.state_dict() UpperCamelCase = DiffusionUncond(__UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__UpperCamelCase )["""state_dict"""] ) UpperCamelCase = orig_model.diffusion_ema.eval() UpperCamelCase = orig_model.state_dict() UpperCamelCase = rename_orig_weights(__UpperCamelCase ) UpperCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__UpperCamelCase ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith("""kernel""" ) for k in list(__UpperCamelCase ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": UpperCamelCase = value.squeeze() UpperCamelCase = value diffusers_model.load_state_dict(__UpperCamelCase ) UpperCamelCase = 100 UpperCamelCase = 33 UpperCamelCase = IPNDMScheduler(num_train_timesteps=__UpperCamelCase ) UpperCamelCase = torch.manual_seed(__UpperCamelCase ) UpperCamelCase = torch.randn([1, 2, config.sample_size] , generator=__UpperCamelCase ).to(__UpperCamelCase ) UpperCamelCase = torch.linspace(1 , 0 , steps + 1 , device=__UpperCamelCase )[:-1] UpperCamelCase = get_crash_schedule(__UpperCamelCase ) UpperCamelCase = DanceDiffusionPipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) UpperCamelCase = torch.manual_seed(33 ) UpperCamelCase = pipe(num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase ).audios UpperCamelCase = sampling.iplms_sample(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {} ) UpperCamelCase = generated.clamp(-1 , 1 ) UpperCamelCase = (generated - audio).abs().sum() UpperCamelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , __UpperCamelCase ) print("""Diff max""" , __UpperCamelCase ) assert diff_max < 1E-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
301
1
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""torch""", """torchsde"""] def __init__( self :int , *lowerCamelCase :List[Any] , **lowerCamelCase :Optional[Any] ) -> List[str]: requires_backends(self , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowerCamelCase :int , **lowerCamelCase :Union[str, Any] ) -> List[Any]: requires_backends(cls , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :str , **lowerCamelCase :str ) -> List[str]: requires_backends(cls , ["torch", "torchsde"] )
364
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : def __init__( self :List[Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :Any=3 , lowerCamelCase :List[str]=32 , lowerCamelCase :List[str]=3 , lowerCamelCase :List[str]=10 , lowerCamelCase :List[Any]=[10, 20, 30, 40] , lowerCamelCase :Optional[Any]=[1, 1, 2, 1] , lowerCamelCase :List[str]=True , lowerCamelCase :List[Any]=True , lowerCamelCase :str="relu" , lowerCamelCase :Optional[Any]=3 , lowerCamelCase :List[str]=None , ) -> Union[str, Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embeddings_size UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = depths UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = len(lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> List[str]: UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self :str , lowerCamelCase :Dict , lowerCamelCase :Optional[int] , lowerCamelCase :Union[str, Any] ) -> Dict: UpperCAmelCase__ = RegNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :Tuple , lowerCamelCase :List[str] ) -> Union[str, Any]: UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = RegNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCAmelCase_ = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase_ ( self :int ) -> Dict: UpperCAmelCase__ = RegNetModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self :Any ) -> List[str]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase_ ( self :Tuple ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self :List[str] ) -> Tuple: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> List[Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] ) -> int: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: def check_hidden_states_output(lowerCamelCase :Optional[int] , lowerCamelCase :int , lowerCamelCase :Optional[int] ): UpperCAmelCase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase__ = layer_type UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Tuple ) -> Tuple: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = RegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self :Any ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**lowerCamelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) UpperCAmelCase__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
364
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class snake_case_ ( __UpperCamelCase ): """simple docstring""" snake_case__ = """luke""" def __init__(self: Optional[Any] , __UpperCAmelCase: List[str]=50267 , __UpperCAmelCase: int=500000 , __UpperCAmelCase: Optional[Any]=768 , __UpperCAmelCase: Union[str, Any]=256 , __UpperCAmelCase: Optional[Any]=12 , __UpperCAmelCase: Any=12 , __UpperCAmelCase: Optional[Any]=3072 , __UpperCAmelCase: Optional[int]="gelu" , __UpperCAmelCase: int=0.1 , __UpperCAmelCase: List[str]=0.1 , __UpperCAmelCase: Optional[int]=512 , __UpperCAmelCase: Any=2 , __UpperCAmelCase: Union[str, Any]=0.02 , __UpperCAmelCase: Union[str, Any]=1E-12 , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: List[Any]=None , __UpperCAmelCase: List[Any]=1 , __UpperCAmelCase: List[Any]=0 , __UpperCAmelCase: int=2 , **__UpperCAmelCase: Dict , ) -> str: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __a : Tuple = vocab_size __a : List[Any] = entity_vocab_size __a : Dict = hidden_size __a : Optional[int] = entity_emb_size __a : List[str] = num_hidden_layers __a : Dict = num_attention_heads __a : Tuple = hidden_act __a : Optional[Any] = intermediate_size __a : Any = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : Any = max_position_embeddings __a : List[str] = type_vocab_size __a : Any = initializer_range __a : Optional[Any] = layer_norm_eps __a : Union[str, Any] = use_entity_aware_attention __a : List[str] = classifier_dropout
351
from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase__ = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' UpperCAmelCase__ = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' UpperCAmelCase__ = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def a_ (__A , __A , __A , __A , __A = None , __A = False , ) -> Dict: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __a : str = new_id # turn into Numpy arrays __a : Union[str, Any] = np.array(__A ) __a : Any = np.array(__A ) if reduce_labels: __a : Dict = 255 __a : Union[str, Any] = label - 1 __a : int = 255 __a : Optional[Any] = label != ignore_index __a : int = np.not_equal(__A , __A ) __a : str = pred_label[mask] __a : List[str] = np.array(__A )[mask] __a : Optional[int] = pred_label[pred_label == label] __a : Dict = np.histogram(__A , bins=__A , range=(0, num_labels - 1) )[0] __a : Union[str, Any] = np.histogram(__A , bins=__A , range=(0, num_labels - 1) )[0] __a : List[Any] = np.histogram(__A , bins=__A , range=(0, num_labels - 1) )[0] __a : Optional[int] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def a_ (__A , __A , __A , __A , __A = None , __A = False , ) -> Dict: """simple docstring""" __a : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) __a : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) __a : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __a : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__A , __A ): __a , __a , __a , __a : Dict = intersect_and_union( __A , __A , __A , __A , __A , __A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def a_ (__A , __A , __A , __A , __A = None , __A = None , __A = False , ) -> Optional[int]: """simple docstring""" __a , __a , __a , __a : Optional[int] = total_intersect_and_union( __A , __A , __A , __A , __A , __A ) # compute metrics __a : Any = {} __a : str = total_area_intersect.sum() / total_area_label.sum() __a : List[Any] = total_area_intersect / total_area_union __a : Union[str, Any] = total_area_intersect / total_area_label __a : Optional[int] = np.nanmean(__A ) __a : str = np.nanmean(__A ) __a : List[str] = all_acc __a : Dict = iou __a : Union[str, Any] = acc if nan_to_num is not None: __a : Tuple = {metric: np.nan_to_num(__A , nan=__A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ (self: List[str] ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: int , __UpperCAmelCase: bool , __UpperCAmelCase: Optional[int] = None , __UpperCAmelCase: Optional[Dict[int, int]] = None , __UpperCAmelCase: bool = False , ) -> List[str]: '''simple docstring''' __a : str = mean_iou( results=__UpperCAmelCase , gt_seg_maps=__UpperCAmelCase , num_labels=__UpperCAmelCase , ignore_index=__UpperCAmelCase , nan_to_num=__UpperCAmelCase , label_map=__UpperCAmelCase , reduce_labels=__UpperCAmelCase , ) return iou_result
351
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
717
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __snake_case , ) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = RobertaConfig lowerCamelCase_ : Dict = 'roberta' def __init__( self , lowerCamelCase ) -> List[str]: super().__init__(lowerCamelCase ) snake_case_ = RobertaEmbeddings(lowerCamelCase ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __snake_case , ) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[Any] = RobertaConfig lowerCamelCase_ : int = 'roberta' def __init__( self , lowerCamelCase ) -> Dict: super().__init__(lowerCamelCase ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeRobertaModel(lowerCamelCase ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ) -> List[str]: snake_case_ = self.num_layers try: snake_case_ = self.roberta( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) snake_case_ = outputs[1] snake_case_ = self.dropout(lowerCamelCase ) snake_case_ = self.classifier(lowerCamelCase ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(lowerCamelCase ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
161
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert""" SCREAMING_SNAKE_CASE = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") SCREAMING_SNAKE_CASE = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCamelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) with open(os.path.join(UpperCAmelCase_ , "refs" , "main" ) ) as f: UpperCamelCase = f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # File is cached at the same place the second time. UpperCamelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Using a specific revision to test the full commit hash. UpperCamelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="9b8c223" ) self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Optional[int]: """simple docstring""" with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier" ): UpperCamelCase = cached_file("tiny-random-bert" , UpperCAmelCase_ ) with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier" ): UpperCamelCase = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="aaaa" ) with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named" ): UpperCamelCase = cached_file(UpperCAmelCase_ , "conf" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> List[str]: """simple docstring""" with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named" ): UpperCamelCase = cached_file(UpperCAmelCase_ , "conf" ) with open(os.path.join(UpperCAmelCase_ , "refs" , "main" ) ) as f: UpperCamelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , ".no_exist" , UpperCAmelCase_ , "conf" ) ) ) UpperCamelCase = cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) UpperCamelCase = cached_file(UpperCAmelCase_ , "conf" , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: UpperCamelCase = cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Any )-> Optional[int]: """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCAmelCase_ , revision="ahaha" ) UpperCamelCase = get_file_from_repo("bert-base-cased" , UpperCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCamelCase = json.loads(open(UpperCAmelCase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = Path(UpperCAmelCase_ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , "a.txt" ) , str(UpperCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , "b.txt" ) )
554
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) # TODO Update this A = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : str = "esm" def __init__( self : str ,UpperCamelCase : Tuple=None ,UpperCamelCase : Union[str, Any]=None ,UpperCamelCase : str=None ,UpperCamelCase : str=768 ,UpperCamelCase : List[str]=12 ,UpperCamelCase : Dict=12 ,UpperCamelCase : Any=3072 ,UpperCamelCase : List[str]=0.1 ,UpperCamelCase : int=0.1 ,UpperCamelCase : int=1026 ,UpperCamelCase : int=0.0_2 ,UpperCamelCase : Optional[Any]=1e-12 ,UpperCamelCase : str="absolute" ,UpperCamelCase : Tuple=True ,UpperCamelCase : int=None ,UpperCamelCase : Union[str, Any]=False ,UpperCamelCase : Tuple=False ,UpperCamelCase : Optional[int]=None ,UpperCamelCase : Any=None ,**UpperCamelCase : Dict ,) -> str: super().__init__(pad_token_id=UpperCamelCase ,mask_token_id=UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : List[str] = initializer_range _lowercase : Any = layer_norm_eps _lowercase : Optional[int] = position_embedding_type _lowercase : int = use_cache _lowercase : Dict = emb_layer_norm_before _lowercase : Optional[int] = token_dropout _lowercase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _lowercase : str = EsmFoldConfig() elif isinstance(UpperCamelCase ,UpperCamelCase ): _lowercase : Tuple = EsmFoldConfig(**UpperCamelCase ) _lowercase : str = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _lowercase : Optional[int] = get_default_vocab_list() else: _lowercase : Optional[Any] = vocab_list else: _lowercase : Any = None _lowercase : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,UpperCamelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _lowerCamelCase ( self : str ) -> Tuple: _lowercase : List[str] = super().to_dict() if isinstance(self.esmfold_config ,UpperCamelCase ): _lowercase : Union[str, Any] = self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : str = None lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 128 lowerCAmelCase__ : "TrunkConfig" = None def _lowerCamelCase ( self : List[Any] ) -> str: if self.trunk is None: _lowercase : Optional[Any] = TrunkConfig() elif isinstance(self.trunk ,UpperCamelCase ): _lowercase : List[str] = TrunkConfig(**self.trunk ) def _lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: _lowercase : Any = asdict(self ) _lowercase : Tuple = self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : int = 48 lowerCAmelCase__ : int = 1_024 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 4 lowerCAmelCase__ : Optional[int] = 128 lowerCAmelCase__ : "StructureModuleConfig" = None def _lowerCamelCase ( self : Dict ) -> Optional[Any]: if self.structure_module is None: _lowercase : Any = StructureModuleConfig() elif isinstance(self.structure_module ,UpperCamelCase ): _lowercase : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _lowercase : Any = self.sequence_state_dim // self.sequence_head_width _lowercase : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowerCamelCase ( self : List[Any] ) -> str: _lowercase : int = asdict(self ) _lowercase : Any = self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCAmelCase__ : int = 384 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 16 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 12 lowerCAmelCase__ : int = 4 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : float = 0.1 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : int = 1 lowerCAmelCase__ : int = 2 lowerCAmelCase__ : int = 7 lowerCAmelCase__ : int = 10 lowerCAmelCase__ : float = 1e-8 lowerCAmelCase__ : float = 1e5 def _lowerCamelCase ( self : List[str] ) -> Union[str, Any]: return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
125
0
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a__ : str = ["""flax""", """transformers"""] def __init__( self , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(self , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase_ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = ["""flax""", """transformers"""] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase_ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a__ : str = ["""flax""", """transformers"""] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase_ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a__ : int = ["""flax""", """transformers"""] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''])
452
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __lowercase = datasets.utils.logging.get_logger(__name__) class lowerCamelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' a__ : bool = None a__ : bool = None class lowerCamelCase_ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' a__ : List[Any] = datasets.Audio() a__ : int = """audio""" a__ : str = AudioFolderConfig a__ : List[str] # definition at the bottom of the script a__ : int = AudioClassification(audio_column="""audio""" , label_column="""label""" ) __lowercase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] __lowercase = AUDIO_EXTENSIONS
452
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def __SCREAMING_SNAKE_CASE ( self : str , __a : List[str] ) -> List[Any]: # configuration for running training on smdistributed Model Parallel _UpperCamelCase : List[str] = { "enabled": True, "processes_per_host": 8, } _UpperCamelCase : int = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } _UpperCamelCase : Any = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} _UpperCamelCase : List[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase__ , py_version="py36" , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[str] ) -> Tuple: TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] ) -> Union[str, Any]: # create estimator _UpperCamelCase : Optional[Any] = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe _UpperCamelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _UpperCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCamelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
624
"""simple docstring""" import numpy as np from transformers import Pipeline def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.max(lowerCAmelCase_ , axis=-1 , keepdims=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase_ ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple , **UpperCAmelCase__ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE = {} if "second_text" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["second_text"] return preprocess_kwargs, {}, {} def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=None ) -> str: return self.tokenizer(UpperCAmelCase__ , text_pair=UpperCAmelCase__ , return_tensors=self.framework ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: return self.model(**UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = model_outputs.logits[0].numpy() __SCREAMING_SNAKE_CASE = softmax(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.model.config.idalabel[best_class] __SCREAMING_SNAKE_CASE = probabilities[best_class].item() __SCREAMING_SNAKE_CASE = logits.tolist() return {"label": label, "score": score, "logits": logits}
682
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _a = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 ) -> Any: if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=0 ) -> int: A_ : Union[str, Any] = [] for old_item in old_list: A_ : Tuple = old_item.replace("in_layers.0" , "norm1" ) A_ : str = new_item.replace("in_layers.2" , "conv1" ) A_ : List[str] = new_item.replace("out_layers.0" , "norm2" ) A_ : Optional[int] = new_item.replace("out_layers.3" , "conv2" ) A_ : Union[str, Any] = new_item.replace("emb_layers.1" , "time_emb_proj" ) A_ : Tuple = new_item.replace("skip_connection" , "conv_shortcut" ) A_ : Any = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str]=0 ) -> Tuple: A_ : Any = [] for old_item in old_list: A_ : int = old_item A_ : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) A_ : Any = new_item.replace("norm.bias" , "group_norm.bias" ) A_ : Any = new_item.replace("proj_out.weight" , "proj_attn.weight" ) A_ : List[str] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) A_ : List[Any] = shave_segments(_lowerCAmelCase , n_shave_prefix_segments=_lowerCAmelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None ) -> Optional[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Any = old_checkpoint[path] A_ : Tuple = old_tensor.shape[0] // 3 A_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : Optional[Any] = old_tensor.shape[0] // config["num_head_channels"] // 3 A_ : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Optional[int] = old_tensor.split(channels // num_heads , dim=1 ) A_ : Tuple = query.reshape(_lowerCAmelCase ) A_ : List[Any] = key.reshape(_lowerCAmelCase ) A_ : Union[str, Any] = value.reshape(_lowerCAmelCase ) for path in paths: A_ : Any = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : List[str] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) A_ : int = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) A_ : Tuple = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : Tuple = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Tuple = old_checkpoint[path["old"]][:, :, 0] else: A_ : str = old_checkpoint[path["old"]] def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[int]: A_ : Any = {} A_ : Union[str, Any] = checkpoint["time_embed.0.weight"] A_ : List[Any] = checkpoint["time_embed.0.bias"] A_ : Any = checkpoint["time_embed.2.weight"] A_ : Optional[Any] = checkpoint["time_embed.2.bias"] A_ : List[str] = checkpoint["input_blocks.0.0.weight"] A_ : Union[str, Any] = checkpoint["input_blocks.0.0.bias"] A_ : str = checkpoint["out.0.weight"] A_ : Optional[int] = checkpoint["out.0.bias"] A_ : Optional[int] = checkpoint["out.2.weight"] A_ : Optional[int] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only A_ : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) A_ : Union[str, Any] = { layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the middle blocks only A_ : Union[str, Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) A_ : Tuple = { layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the output blocks only A_ : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) A_ : Optional[Any] = { layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] for layer_id in range(_lowerCAmelCase ) } for i in range(1 , _lowerCAmelCase ): A_ : Union[str, Any] = (i - 1) // (config["num_res_blocks"] + 1) A_ : Optional[int] = (i - 1) % (config["num_res_blocks"] + 1) A_ : str = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] A_ : List[Any] = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in checkpoint: A_ : Tuple = checkpoint[ f"input_blocks.{i}.0.op.weight" ] A_ : List[Any] = checkpoint[ f"input_blocks.{i}.0.op.bias" ] continue A_ : List[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : Any = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path, resnet_op] , config=_lowerCAmelCase ) if len(_lowerCAmelCase ): A_ : Tuple = renew_attention_paths(_lowerCAmelCase ) A_ : List[str] = { "old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"input_blocks.{i}.1.qkv.bias": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"input_blocks.{i}.1.qkv.weight": { "key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase , ) A_ : List[Any] = middle_blocks[0] A_ : Tuple = middle_blocks[1] A_ : Dict = middle_blocks[2] A_ : str = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Tuple = renew_resnet_paths(_lowerCAmelCase ) assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) A_ : Any = renew_attention_paths(_lowerCAmelCase ) A_ : Optional[int] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , attention_paths_to_split=_lowerCAmelCase , config=_lowerCAmelCase ) for i in range(_lowerCAmelCase ): A_ : Optional[int] = i // (config["num_res_blocks"] + 1) A_ : Optional[Any] = i % (config["num_res_blocks"] + 1) A_ : Optional[Any] = [shave_segments(_lowerCAmelCase , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : str = layer.split("." )[0], shave_segments(_lowerCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowerCAmelCase ) else: A_ : List[str] = [layer_name] if len(_lowerCAmelCase ) > 1: A_ : Dict = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] A_ : List[Any] = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] A_ : Optional[Any] = renew_resnet_paths(_lowerCAmelCase ) A_ : Any = renew_resnet_paths(_lowerCAmelCase ) A_ : Optional[Any] = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : int = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) A_ : Union[str, Any] = checkpoint[ f"output_blocks.{i}.{index}.conv.weight" ] A_ : int = checkpoint[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(_lowerCAmelCase ) == 2: A_ : Union[str, Any] = [] if len(_lowerCAmelCase ): A_ : Dict = renew_attention_paths(_lowerCAmelCase ) A_ : Union[str, Any] = { "old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { f"output_blocks.{i}.1.qkv.bias": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"output_blocks.{i}.1.qkv.weight": { "key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", "query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", "value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=_lowerCAmelCase , ) else: A_ : Optional[int] = renew_resnet_paths(_lowerCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : List[Any] = ".".join(["output_blocks", str(_lowerCAmelCase ), path["old"]] ) A_ : Optional[Any] = ".".join(["up_blocks", str(_lowerCAmelCase ), "resnets", str(_lowerCAmelCase ), path["new"]] ) A_ : Optional[int] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCAmelCase : str = json.loads(f.read()) _lowerCAmelCase : Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCAmelCase : Optional[Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCAmelCase : List[str] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : List[str] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _lowerCAmelCase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
454
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowerCAmelCase : Optional[Any] = True from torch.cuda.amp import autocast _lowerCAmelCase : Dict = logging.getLogger(__name__) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) __UpperCamelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) __UpperCamelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) __UpperCamelCase = field( default=0.99_9995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __snake_case ( _lowerCAmelCase : ModelArguments , _lowerCAmelCase : TrainingArguments ) -> str: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) A_ : Optional[int] = logging.WARNING if model_args.verbose_logging: A_ : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A_ : int = logging.INFO logger.setLevel(_lowerCAmelCase ) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCamelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __UpperCamelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __UpperCamelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __UpperCamelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __UpperCamelCase = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = "longest" __UpperCamelCase = None __UpperCamelCase = None def __call__( self :Optional[Any] , snake_case :List[Dict[str, Union[List[int], torch.Tensor]]] ): '''simple docstring''' A_ : Optional[Any] = self.feature_extractor.pad( snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) A_ : int = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) A_ : List[str] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A_ : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) A_ : Union[str, Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A_ : str = 1 A_ : Union[str, Any] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A_ : Optional[int] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case , min_masks=2 , ) return batch class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :int , *snake_case :Any , snake_case :Any=1 , snake_case :Dict=0 , snake_case :Dict=1.0 , **snake_case :Any ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) A_ : Union[str, Any] = 0 A_ : Dict = max_gumbel_temp A_ : Optional[int] = min_gumbel_temp A_ : List[Any] = gumbel_temp_decay def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :nn.Module , snake_case :Dict[str, Union[torch.Tensor, Any]] ): '''simple docstring''' model.train() A_ : List[str] = self._prepare_inputs(snake_case ) if self.use_amp: with autocast(): A_ : List[str] = self.compute_loss(snake_case , snake_case ) else: A_ : str = self.compute_loss(snake_case , snake_case ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A_ : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A_ : Optional[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: A_ : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case ).backward() elif self.use_apex: with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __snake_case ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A_ , A_ , A_ : Dict = parser.parse_args_into_dataclasses() configure_logger(_lowerCAmelCase , _lowerCAmelCase ) # Downloading and loading a dataset from the hub. A_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A_ : Tuple = DatasetDict() A_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) A_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A_ : Any = DatasetDict() A_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) A_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCAmelCase ) def prepare_dataset(_lowerCAmelCase : str ): # check that all files have the correct sampling rate A_ , A_ : Tuple = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A_ : List[Any] = datasets.map( _lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long A_ : str = vectorized_datasets.filter( lambda _lowerCAmelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCAmelCase : List[str] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A_ : Any = vectorized_datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A_ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) A_ : int = WavaVecaForPreTraining(_lowerCAmelCase ) A_ : str = DataCollatorForWavaVecaPretraining(model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) A_ : List[Any] = WavaVecaPreTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
454
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( a_ : Optional[int]=32 , a_ : Any=10 , a_ : Dict=1_00 , a_ : int=10_26 , a_ : List[str]=True , a_ : Dict="data/tokenized_stories_train_wikitext103.jbl" , a_ : int="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set lowerCamelCase , lowerCamelCase :Any = generate_datasets( a_ , a_ , number=a_ , min_len=10_26 , trim=a_) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase :Tuple = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') # load pretrained model lowerCamelCase :List[str] = load_gpta('''gpt2''').to(a_) print('''computing perplexity on objective set''') lowerCamelCase :Tuple = compute_perplexity(a_ , a_ , a_).item() print('''perplexity on objective set:''' , a_) # collect igf pairs and save to file demo.jbl collect_objective_set(a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( a_ : Optional[Any] , a_ : List[Any]=15 , a_ : List[Any]=1_28 , a_ : Optional[Any]=1_00 , a_ : Tuple="igf_model.pt" , ): set_seed(42) # Load pre-trained model lowerCamelCase :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''') # Initialize secondary learner to use embedding weights of model lowerCamelCase :List[Any] = SecondaryLearner(a_) # Train secondary learner lowerCamelCase :Tuple = train_secondary_learner( a_ , a_ , max_epochs=a_ , batch_size=a_ , eval_freq=1_00 , igf_model_path=a_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( a_ : Union[str, Any] , a_ : int , a_ : Optional[Any] , a_ : List[Any]=32 , a_ : Tuple=10_00 , a_ : List[Any]=16 , a_ : List[str]=1.0 , a_ : Tuple=recopy_gpta , a_ : Tuple=None , a_ : List[Any]=10 , a_ : str="gpt2_finetuned.pt" , ): lowerCamelCase :int = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') lowerCamelCase :Any = RandomSampler(a_) lowerCamelCase :Any = DataLoader(a_ , sampler=a_) lowerCamelCase :Optional[Any] = max_steps // (len(a_)) + 1 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = torch.zeros((1, context_len) , dtype=torch.long , device=a_) lowerCamelCase , lowerCamelCase , lowerCamelCase :List[str] = recopy_model(a_ , a_ , a_) model.train() if secondary_learner is not None: secondary_learner.to(a_) secondary_learner.eval() lowerCamelCase :Optional[int] = [] lowerCamelCase :Any = 0 lowerCamelCase :Optional[Any] = [] lowerCamelCase :Union[str, Any] = [] # Compute the performance of the transformer model at the beginning lowerCamelCase :Optional[Any] = compute_perplexity(a_ , a_ , a_) test_perps.append(a_) print('''Test perplexity, step''' , a_ , ''':''' , a_) for epoch in range(int(a_)): for step, example in enumerate(a_): torch.cuda.empty_cache() lowerCamelCase :List[str] = random.randint(0 , example.size(2) - context_len - 1) lowerCamelCase :Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase :Optional[Any] = model(a_ , labels=a_) lowerCamelCase :Optional[Any] = True if secondary_learner is not None: lowerCamelCase :Optional[Any] = secondary_learner.forward( torch.tensor(a_ , dtype=torch.long , device=a_).unsqueeze(0))[0].item() observed_qs.append(float(a_)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase :str = -1 if predicted_q < threshold: lowerCamelCase :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) lowerCamelCase :int = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase :Optional[int] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase :int = compute_perplexity(a_ , a_ , a_) test_perps.append(a_) print('''Test perplexity, step''' , a_ , ''':''' , a_) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a_) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''') # Required parameters parser.add_argument( '''--data_dir''' , default=a_ , type=a_ , required=a_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a_ , default=a_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a_ , default=a_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a_ , type=a_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a_ , default=a_ , help='''A seed for reproducible training.''') parser.add_argument( '''--context_len''' , default=32 , type=a_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=a_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=a_ , help='''secondary model evaluation is triggered at eval_freq''') parser.add_argument('''--max_steps''' , default=10_00 , type=a_ , help='''To calculate training epochs''') parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=a_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a_ , help='''batch size of training data of language model(gpt2) ''') parser.add_argument( '''--eval_interval''' , default=10 , type=a_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=a_ , help='''The number of examples split to be used as objective_set/test_data''') parser.add_argument( '''--min_len''' , default=10_26 , type=a_ , help='''The minimum length of the article to be used as objective set''') parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a_ , help='''number of epochs to train secondary learner''') parser.add_argument('''--trim''' , default=a_ , type=a_ , help='''truncate the example if it exceeds context length''') parser.add_argument( '''--threshold''' , default=1.0 , type=a_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a_ , help='''finetuned_model_name''') parser.add_argument( '''--recopy_model''' , default=a_ , type=a_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=a_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowerCamelCase :str = joblib.load('''data/IGF_values.jbl''') # Train secondary learner lowerCamelCase :Tuple = training_secondary_learner( a_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowerCamelCase :Union[str, Any] = GPTaLMHeadModel.from_pretrained('''gpt2''') set_seed(42) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase , lowerCamelCase :int = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=a_) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a_ , a_ , a_ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=a_ , secondary_learner=a_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase__ = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCamelCase__ = parser.parse_args() if args.check_lib: lowerCamelCase__ = importlib.import_module("""transformers""") lowerCamelCase__ = Path(transformers_module.__file__).parent else: lowerCamelCase__ = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
225
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[Any] , __lowercase : Any , __lowercase : Union[str, Any]=7 , __lowercase : List[str]=3 , __lowercase : List[Any]=18 , __lowercase : str=30 , __lowercase : Optional[Any]=400 , __lowercase : Dict=True , __lowercase : int=None , __lowercase : Tuple=True , __lowercase : Optional[Any]=None , __lowercase : List[str]=True , __lowercase : List[Any]=[0.5, 0.5, 0.5] , __lowercase : Any=[0.5, 0.5, 0.5] , ): '''simple docstring''' __a = size if size is not None else {"""shortest_edge""": 18} __a = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = do_normalize __a = image_mean __a = image_std def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , """image_mean""" ) ) self.assertTrue(hasattr(__lowercase , """image_std""" ) ) self.assertTrue(hasattr(__lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowercase , """do_resize""" ) ) self.assertTrue(hasattr(__lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowercase , """size""" ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
225
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""donut-swin""" __UpperCAmelCase : Union[str, Any] ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __a=2_24 , __a=4 , __a=3 , __a=96 , __a=[2, 2, 6, 2] , __a=[3, 6, 12, 24] , __a=7 , __a=4.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.0_2 , __a=1e-5 , **__a , ): super().__init__(**_lowerCAmelCase ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(_lowerCAmelCase ) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
709
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 384 __lowerCAmelCase = 7 if "tiny" in model_name: __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 6, 2) __lowerCAmelCase = (3, 6, 12, 24) elif "small" in model_name: __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (3, 6, 12, 24) elif "base" in model_name: __lowerCAmelCase = 128 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (4, 8, 16, 32) __lowerCAmelCase = 12 __lowerCAmelCase = 512 elif "large" in model_name: __lowerCAmelCase = 192 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (6, 12, 24, 48) __lowerCAmelCase = 12 __lowerCAmelCase = 768 # set label information __lowerCAmelCase = 150 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "ade20k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = SwinConfig( embed_dim=_UpperCamelCase , depths=_UpperCamelCase , num_heads=_UpperCamelCase , window_size=_UpperCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) __lowerCAmelCase = UperNetConfig( backbone_config=_UpperCamelCase , auxiliary_in_channels=_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase , ) return config def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dct.pop(_UpperCamelCase ) __lowerCAmelCase = val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) __lowerCAmelCase = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = x.shape __lowerCAmelCase = x.reshape(_UpperCamelCase , 4 , in_channel // 4 ) __lowerCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) return x def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = x.shape __lowerCAmelCase = x.reshape(_UpperCamelCase , in_channel // 4 , 4 ) __lowerCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) return x def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = x.shape[0] __lowerCAmelCase = x.reshape(4 , in_channel // 4 ) __lowerCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_UpperCamelCase ) return x def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = x.shape[0] __lowerCAmelCase = x.reshape(in_channel // 4 , 4 ) __lowerCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_UpperCamelCase ) return x def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } __lowerCAmelCase = model_name_to_url[model_name] __lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" , file_name=_UpperCamelCase )[ "state_dict" ] for name, param in state_dict.items(): print(_UpperCamelCase , param.shape ) __lowerCAmelCase = get_upernet_config(_UpperCamelCase ) __lowerCAmelCase = UperNetForSemanticSegmentation(_UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(_UpperCamelCase ) if "bn" in key: __lowerCAmelCase = key.replace("bn" , "batch_norm" ) __lowerCAmelCase = val # rename keys __lowerCAmelCase = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCAmelCase = reverse_correct_unfold_reduction_order(_UpperCamelCase ) if "norm" in key: __lowerCAmelCase = reverse_correct_unfold_norm_order(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify on image __lowerCAmelCase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("RGB" ) __lowerCAmelCase = SegformerImageProcessor() __lowerCAmelCase = processor(_UpperCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": __lowerCAmelCase = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": __lowerCAmelCase = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": __lowerCAmelCase = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : List[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
282
0
"""simple docstring""" __A = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :List[Any] = logging.get_logger(__name__) _lowerCAmelCase :Tuple = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[Any] = "fnet" def __init__( self , lowercase__=32_000 , lowercase__=768 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=512 , lowercase__=4 , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=False , lowercase__=512 , lowercase__=3 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE : str = tpu_short_seq_length
251
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class a__( snake_case__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> Any: super().__init__( features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case__ =Generator( cache_dir=_UpperCAmelCase , features=_UpperCAmelCase , generator=_UpperCAmelCase , gen_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowercase ( self ) -> str: # Build iterable dataset if self.streaming: snake_case__ =self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: snake_case__ =None snake_case__ =None snake_case__ =None snake_case__ =None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) snake_case__ =self.builder.as_dataset( split='train' , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
581
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a ( ) -> str: snake_case__ , snake_case__ =9, 14 # noqa: F841 snake_case__ =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case__ =defaultdict(UpperCamelCase_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case__ =mst(UpperCamelCase_ ) snake_case__ =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case__ =tuple(answer[:2] ) snake_case__ =tuple(edge[::-1] ) assert edge in result or reverse in result
581
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A ( _a ,unittest.TestCase ): lowercase_ = XLMProphetNetTokenizer lowercase_ = False lowercase_ = True def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _a = '''[PAD]''' _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowerCAmelCase_ ) , 10_12 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _a = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _a = '''Hello World!''' _a = [3_53_89, 66_72, 49, 2] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _a = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
22
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCamelCase ( self , lowerCAmelCase_=None ): """simple docstring""" _snake_case = {} if top_k is not None: _snake_case = top_k return {}, {}, postprocess_params def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = load_image(lowerCAmelCase_ ) _snake_case = self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.model(**lowerCAmelCase_ ) return model_outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=5 ): """simple docstring""" if top_k > self.model.config.num_labels: _snake_case = self.model.config.num_labels if self.framework == "pt": _snake_case = model_outputs.logits.softmax(-1 )[0] _snake_case , _snake_case = probs.topk(lowerCAmelCase_ ) elif self.framework == "tf": _snake_case = stable_softmax(model_outputs.logits , axis=-1 )[0] _snake_case = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) _snake_case , _snake_case = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _snake_case = scores.tolist() _snake_case = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase_ , lowerCAmelCase_ )]
495
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class _lowercase : def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None ): # Input as list __magic_name__ = list(poly_a or [0] )[:] __magic_name__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __magic_name__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __magic_name__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __magic_name__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __magic_name__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __magic_name__ = self.__multiply() def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCamelCase_ ) <= 1: return dft[0] # __magic_name__ = self.c_max_length // 2 while next_ncol > 0: __magic_name__ = [[] for i in range(UpperCamelCase_ )] __magic_name__ = self.root**next_ncol # First half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __magic_name__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __magic_name__ = new_dft __magic_name__ = next_ncol // 2 return dft[0] def lowerCAmelCase__ ( self ): __magic_name__ = self.__dft('''A''' ) __magic_name__ = self.__dft('''B''' ) __magic_name__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __magic_name__ = 2 while next_ncol <= self.c_max_length: __magic_name__ = [[] for i in range(UpperCamelCase_ )] __magic_name__ = self.root ** (next_ncol // 2) __magic_name__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __magic_name__ = new_inverse_c next_ncol *= 2 # Unpack __magic_name__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): __magic_name__ = '''A = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __magic_name__ = '''B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __magic_name__ = '''A*B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
190
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = FunnelTokenizer _lowerCamelCase = FunnelTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = '''UNwant\u00E9d,running''' __magic_name__ = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: __magic_name__ = tokenizer('''UNwant\u00E9d,running''' ) __magic_name__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __magic_name__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
190
1
'''simple docstring''' import baseaa def __UpperCamelCase( _A : str ): '''simple docstring''' return baseaa.baaencode(string.encode('''utf-8''' ) ) def __UpperCamelCase( _A : bytes ): '''simple docstring''' return baseaa.baadecode(_A ).decode('''utf-8''' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = 'Hello World!' UpperCamelCase__ : str = baseaa_encode(test) print(encoded) UpperCamelCase__ : int = baseaa_decode(encoded) print(decoded)
614
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__ : str = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : str = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase__ : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) UpperCAmelCase__ : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase__ : int = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) UpperCAmelCase__ : int = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
614
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" return x + 2 class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = """x = 3""" A__ = {} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3} ) A__ = """x = y""" A__ = {"""y""": 5} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 5, """y""": 5} ) def a_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = """y = add_two(x)""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {"""add_two""": add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def a_ ( self : str ) -> Dict: """simple docstring""" A__ = """x = 3""" A__ = {} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3} ) def a_ ( self : List[Any] ) -> List[str]: """simple docstring""" A__ = """test_dict = {'x': x, 'y': add_two(x)}""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {"""add_two""": add_two} , state=__lowerCAmelCase ) self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = """x = 3\ny = 5""" A__ = {} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """y""": 5} ) def a_ ( self : Tuple ) -> List[str]: """simple docstring""" A__ = """text = f'This is x: {x}.'""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """y""": 2} ) A__ = {"""x""": 8} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 8, """y""": 5} ) def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = """test_list = [x, add_two(x)]""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {"""add_two""": add_two} , state=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , [3, 5] ) self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def a_ ( self : int ) -> Optional[int]: """simple docstring""" A__ = """y = x""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """y""": 3} ) def a_ ( self : str ) -> str: """simple docstring""" A__ = """test_list = [x, add_two(x)]\ntest_list[1]""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {"""add_two""": add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) A__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" A__ = {"""x""": 3} A__ = evaluate(__lowerCAmelCase , {"""add_two""": add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a_ ( self : Tuple ) -> Dict: """simple docstring""" A__ = """x = 0\nfor i in range(3):\n x = i""" A__ = {} A__ = evaluate(__lowerCAmelCase , {"""range""": range} , state=__lowerCAmelCase ) assert result == 2 self.assertDictEqual(__lowerCAmelCase , {"""x""": 2, """i""": 2} )
706
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( __a :Dict ) -> List[Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" A__ = create_tensor(__a ) A__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( __a :Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = [state.process_index] A__ = gather_object(__a ) assert len(__a ) == state.num_processes, F'{gathered_obj}, {len(__a )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( __a :Optional[int] ) -> Dict: """simple docstring""" A__ = create_tensor(__a ) A__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( __a :List[str] ) -> Tuple: """simple docstring""" if state.is_main_process: A__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A__ = torch.arange(state.num_processes ).to(state.device ) A__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( __a :Optional[int] ) -> Tuple: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """sum""" ) A__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :str ) -> List[str]: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """mean""" ) A__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :List[Any] ) -> Union[str, Any]: """simple docstring""" main() def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
247
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> set: '''simple docstring''' __UpperCAmelCase : List[str] = set() # edges = list of graph's edges __UpperCAmelCase : Optional[int] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase : Dict = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> set: '''simple docstring''' __UpperCAmelCase : List[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
462
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : UNetaDModel _lowerCAmelCase : ScoreSdeVeScheduler def __init__( self , lowercase__ , lowercase__): super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__) @torch.no_grad() def __call__( self , lowercase__ = 1 , lowercase__ = 2_0_0_0 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , **lowercase__ , ): __UpperCAmelCase : int = self.unet.config.sample_size __UpperCAmelCase : Optional[int] = (batch_size, 3, img_size, img_size) __UpperCAmelCase : int = self.unet __UpperCAmelCase : Tuple = randn_tensor(lowercase__ , generator=lowercase__) * self.scheduler.init_noise_sigma __UpperCAmelCase : List[str] = sample.to(self.device) self.scheduler.set_timesteps(lowercase__) self.scheduler.set_sigmas(lowercase__) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCAmelCase : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): __UpperCAmelCase : int = self.unet(lowercase__ , lowercase__).sample __UpperCAmelCase : str = self.scheduler.step_correct(lowercase__ , lowercase__ , generator=lowercase__).prev_sample # prediction step __UpperCAmelCase : Tuple = model(lowercase__ , lowercase__).sample __UpperCAmelCase : Dict = self.scheduler.step_pred(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean __UpperCAmelCase : List[str] = sample_mean.clamp(0 , 1) __UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCAmelCase : List[Any] = self.numpy_to_pil(lowercase__) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase__)
462
1
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class a__ ( UpperCAmelCase_ ): lowercase_ = """visual_bert""" def __init__( self : Any , UpperCamelCase_ : str=30522 , UpperCamelCase_ : Tuple=768 , UpperCamelCase_ : int=512 , UpperCamelCase_ : int=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[int]=3072 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Tuple=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Optional[int]=1e-12 , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : int=True , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : int=0 , UpperCamelCase_ : Optional[int]=2 , **UpperCamelCase_ : Any , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : List[str] = visual_embedding_dim __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = bypass_transformer __UpperCAmelCase : Tuple = special_visual_initialize
77
"""simple docstring""" def __a ( A , A ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(A ) , A ) return number - int(A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
337
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( A__ ) -> Dict[str, torch.Tensor]: _snake_case : Any = [] _snake_case : Tuple = [] _snake_case : Any = [] for rt in rc.restypes: _snake_case : List[str] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _snake_case : Optional[Any] = {name: i for i, name in enumerate(A__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _snake_case : Optional[Any] = torch.tensor( A__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _snake_case : Any = torch.tensor( A__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _snake_case : Tuple = torch.tensor( A__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) _snake_case : Optional[Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _snake_case : int = restype_atomaa_to_atomaa[protein_aatype] _snake_case : int = restype_atomaa_mask[protein_aatype] _snake_case : Dict = residx_atomaa_mask _snake_case : int = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _snake_case : str = restype_atomaa_to_atomaa[protein_aatype] _snake_case : Dict = residx_atomaa_to_atomaa.long() # create the corresponding mask _snake_case : List[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _snake_case : List[Any] = rc.restype_atoa[restype_letter] _snake_case : Tuple = rc.residue_atoms[restype_name] for atom_name in atom_names: _snake_case : Tuple = rc.atom_order[atom_name] _snake_case : Any = 1 _snake_case : Optional[Any] = restype_atomaa_mask[protein_aatype] _snake_case : List[str] = residx_atomaa_mask return protein def UpperCAmelCase ( A__ ) -> Dict[str, np.ndarray]: _snake_case : Any = tree_map(lambda A__ : torch.tensor(A__ , device=batch["""aatype"""].device ) , A__ , np.ndarray ) _snake_case : Dict = tensor_tree_map(lambda A__ : np.array(A__ ) , make_atomaa_masks(A__ ) ) return out
714
import sys UpperCAmelCase_ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( A__ = N ) -> int: _snake_case : Any = -sys.maxsize - 1 for i in range(len(A__ ) - 12 ): _snake_case : Union[str, Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _snake_case : Dict = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
519
0