code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _a( UpperCamelCase__ : int = 1_0_0_0_0_0_0, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : defaultdict =defaultdict(UpperCamelCase__ ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE__ : Union[str, Any] =max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: SCREAMING_SNAKE_CASE__ : int =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase__, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'''{solution() = }''')
296
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : List[Any] , __lowercase : Optional[NestedDataStructureLike[PathLike]] = None , __lowercase : Optional[NamedSplit] = None , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : Tuple , ) -> Dict: SCREAMING_SNAKE_CASE__ : Any =path_or_paths SCREAMING_SNAKE_CASE__ : Dict =split if split or isinstance(__lowercase , __lowercase ) else '''train''' SCREAMING_SNAKE_CASE__ : Dict =features SCREAMING_SNAKE_CASE__ : Union[str, Any] =cache_dir SCREAMING_SNAKE_CASE__ : Tuple =keep_in_memory SCREAMING_SNAKE_CASE__ : str =streaming SCREAMING_SNAKE_CASE__ : str =num_proc SCREAMING_SNAKE_CASE__ : Tuple =kwargs @abstractmethod def __magic_name__ ( self : List[str] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[int] , __lowercase : Optional[Features] = None , __lowercase : str = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : Optional[int] = None , **__lowercase : List[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ : Any =features SCREAMING_SNAKE_CASE__ : str =cache_dir SCREAMING_SNAKE_CASE__ : Tuple =keep_in_memory SCREAMING_SNAKE_CASE__ : Optional[int] =streaming SCREAMING_SNAKE_CASE__ : List[str] =num_proc SCREAMING_SNAKE_CASE__ : str =kwargs @abstractmethod def __magic_name__ ( self : Any ) -> Union[Dataset, IterableDataset]: pass
296
1
"""simple docstring""" def lowercase__(A = 200 ) ->int: """simple docstring""" lowercase__ : Union[str, Any]= [1, 2, 5, 10, 20, 50, 100, 200] lowercase__ : int= [0] * (pence + 1) lowercase__ : Optional[int]= 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
707
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
85
0
from __future__ import annotations from collections.abc import Generator def snake_case_ ( ) -> Generator[int, None, None]: lowercase__ : dict[int, int] = {} lowercase__ : int = 2 while True: lowercase__ : Tuple = factor_map.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) if factor: lowercase__ : Optional[Any] = factor + prime while x in factor_map: x += factor lowercase__ : Any = factor else: lowercase__ : Optional[Any] = prime yield prime prime += 1 def snake_case_ ( SCREAMING_SNAKE_CASE_ = 1E10 ) -> int: lowercase__ : List[str] = sieve() lowercase__ : Dict = 1 while True: lowercase__ : str = next(lowerCAmelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase__ ) n += 2 if __name__ == "__main__": print(solution())
397
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((a__) , (a__)) : List[Any] = extended_euclid(lowerCAmelCase__ , a % b ) a__ : str = a // b return (y, x - k * y) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = na * na a__ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Optional[Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[int] = (b % n + n) % n return b def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' a__ , a__ : List[Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = na * na a__ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
642
0
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Dict = CodeGenTokenizer A_ : Optional[Any] = CodeGenTokenizerFast A_ : List[str] = True A_ : Dict = {'add_prefix_space': True} A_ : Union[str, Any] = False def __lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __lowerCAmelCase : Any = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCAmelCase : int = {'unk_token': '<unk>'} __lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = 'lower newer' __lowerCAmelCase : Optional[int] = 'lower newer' return input_text, output_text def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase : Optional[Any] = 'lower newer' __lowerCAmelCase : Optional[Any] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowerCAmelCase : int = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = tokens + [tokenizer.unk_token] __lowerCAmelCase : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __lowerCAmelCase : str = self.get_tokenizer() __lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = 'lower newer' # Testing tokenization __lowerCAmelCase : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens __lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing the unknown token __lowerCAmelCase : Tuple = tokens + [rust_tokenizer.unk_token] __lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Union[str, Any] = 'This is a simple input' __lowerCAmelCase : Dict = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : str = ('This is a simple input', 'This is a pair') __lowerCAmelCase : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' , ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __lowerCAmelCase : List[str] = 'This is a simple input' __lowerCAmelCase : Dict = ['This is a simple input looooooooong', 'This is a simple input'] __lowerCAmelCase : str = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __lowerCAmelCase : Dict = tokenizer.pad_token_id __lowerCAmelCase : Dict = tokenizer(_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=30 , return_tensors='np' ) __lowerCAmelCase : Any = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors='np' ) __lowerCAmelCase : int = tokenizer(*_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=60 , return_tensors='np' ) __lowerCAmelCase : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = '$$$' __lowerCAmelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_SCREAMING_SNAKE_CASE , add_bos_token=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = 'This is a simple input' __lowerCAmelCase : Dict = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : Any = tokenizer.bos_token_id __lowerCAmelCase : Union[str, Any] = tokenizer(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCAmelCase : Optional[int] = tokenizer.decode(out_s.input_ids ) __lowerCAmelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __lowerCAmelCase : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __lowerCAmelCase : int = '\nif len_a > len_b: result = a\nelse: result = b' __lowerCAmelCase : int = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __lowerCAmelCase : List[Any] = tokenizer.decode(_SCREAMING_SNAKE_CASE , truncate_before_pattern=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): pass
549
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): if n_term == "": return [] __lowerCAmelCase : list = [] for temp in range(int(_UpperCamelCase ) ): series.append(F"1/{temp + 1}" if series else '1' ) return series if __name__ == "__main__": lowerCamelCase__ = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
549
1
from bisect import bisect from itertools import accumulate def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): lowerCAmelCase__ : int = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase__ : Tuple = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
233
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : List[Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ A__ : Optional[Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ A__ : List[Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _a ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): return float((preds == labels).mean() ) def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple="binary" ): lowerCAmelCase__ : Dict = simple_accuracy(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : List[Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any ): lowerCAmelCase__ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = f'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCAmelCase__ : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Union[str, Any] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average='''macro''' ) fas.append(__UpperCamelCase ) lowerCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) lowerCAmelCase__ : Dict = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = sum(__UpperCamelCase ) / len(__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase_ ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase_ ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ : Union[str, Any] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ : Optional[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
233
1
lowerCAmelCase = 'Input must be a string of 8 numbers plus letter' lowerCAmelCase = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(__A , __A ): lowercase__ = f'Expected string as input, found {type(__A ).__name__}' raise TypeError(__A ) lowercase__ = spanish_id.replace('''-''' , '''''' ).upper() if len(__A ) != 9: raise ValueError(__A ) try: lowercase__ = int(spanish_id_clean[0:8] ) lowercase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__A ) from ex if letter.isdigit(): raise ValueError(__A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
701
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] lowerCAmelCase = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
429
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"image": Image()} ) UpperCAmelCase__ : ClassVar[Features] = Features({"labels": ClassLabel} ) UpperCAmelCase__ : str = "image" UpperCAmelCase__ : str = "labels" def __lowercase ( self , _a ) -> Any: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _a ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _a : Dict = copy.deepcopy(self ) _a : List[Any] = self.label_schema.copy() _a : Any = features[self.label_column] _a : int = label_schema return task_template @property def __lowercase ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
14
def _A ( SCREAMING_SNAKE_CASE__ : int ): if length <= 0 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
658
0
from collections import deque def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Dict = deque() _UpperCAmelCase : Any = [False for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase : List[str] = [-1 for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase : Dict = index_of[:] def strong_connect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = index # the number when this node is seen _UpperCAmelCase : str = index # lowest rank node reachable from here index += 1 stack.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = True for w in g[v]: if index_of[w] == -1: _UpperCAmelCase : int = strong_connect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _UpperCAmelCase : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _UpperCAmelCase : Dict = [] _UpperCAmelCase : Tuple = stack.pop() _UpperCAmelCase : Any = False component.append(_SCREAMING_SNAKE_CASE ) while w != v: _UpperCAmelCase : Any = stack.pop() _UpperCAmelCase : List[Any] = False component.append(_SCREAMING_SNAKE_CASE ) components.append(_SCREAMING_SNAKE_CASE ) return index _UpperCAmelCase : Union[str, Any] = [] for v in range(_SCREAMING_SNAKE_CASE ): if index_of[v] == -1: strong_connect(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return components def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for u, v in edges: g[u].append(_SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": # Test __lowerCamelCase = 7 __lowerCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] __lowerCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] __lowerCamelCase = [(u, v) for u, v in zip(source, target)] __lowerCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
328
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : str = "" else: _UpperCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ViTMSNConfig() _UpperCAmelCase : int = 1_0_0_0 _UpperCAmelCase : str = "datasets/huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) ) _UpperCAmelCase : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = 3_8_4 _UpperCAmelCase : Any = 1_5_3_6 _UpperCAmelCase : Optional[Any] = 6 elif "l16" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_0_2_4 _UpperCAmelCase : Union[str, Any] = 4_0_9_6 _UpperCAmelCase : Any = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : List[Any] = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: _UpperCAmelCase : str = 7 _UpperCAmelCase : List[str] = 1_0_2_4 _UpperCAmelCase : int = 4_0_9_6 _UpperCAmelCase : List[str] = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : Optional[int] = 0.1 _UpperCAmelCase : Any = ViTMSNModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )["target_encoder"] _UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase : Any = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _UpperCAmelCase : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
1
UpperCAmelCase__ : Optional[Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( snake_case__ : dict , snake_case__ : Any , snake_case__ : Any ) -> list[str]: '''simple docstring''' __snake_case = set() # keep track of all the paths to be checked __snake_case = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __snake_case = queue.pop(0 ) # get the last node from the path __snake_case = path[-1] if node not in explored: __snake_case = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __snake_case = list(snake_case__ ) new_path.append(snake_case__ ) queue.append(snake_case__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case__ ) # in case there's no path between the 2 nodes return [] def A ( snake_case__ : dict , snake_case__ : Union[str, Any] , snake_case__ : Any ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __snake_case = [start] __snake_case = set(snake_case__ ) # Keep tab on distances from `start` node. __snake_case = {start: 0, target: -1} while queue: __snake_case = queue.pop(0 ) if node == target: __snake_case = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case__ ) queue.append(snake_case__ ) __snake_case = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
313
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase__ : Any = get_logger(__name__) class __lowercase : __UpperCAmelCase = '''dummy_data''' __UpperCAmelCase = '''datasets''' __UpperCAmelCase = False def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = True , lowercase_ = None , ) -> Any: __snake_case = 0 __snake_case = dataset_name __snake_case = cache_dir __snake_case = use_local_dummy_data __snake_case = config # download_callbacks take a single url as input __snake_case = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __snake_case = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __snake_case = str(lowercase_) # to be downloaded __snake_case = None __snake_case = None @property def _a ( self) -> int: if self._dummy_file is None: __snake_case = self.download_dummy_data() return self._dummy_file @property def _a ( self) -> Dict: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join('dummy' , self.version_name) @property def _a ( self) -> Dict: return os.path.join(self.dummy_data_folder , 'dummy_data.zip') def _a ( self) -> List[Any]: __snake_case = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __snake_case = cached_path( lowercase_ , cache_dir=self.cache_dir , extract_compressed_file=lowercase_ , force_extract=lowercase_) return os.path.join(lowercase_ , self.dummy_file_name) @property def _a ( self) -> Union[str, Any]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def _a ( self) -> int: if self._bucket_url is None: __snake_case = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/')) return self._bucket_url @property def _a ( self) -> List[str]: # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/').split('/')[:-1]) def _a ( self , lowercase_ , *lowercase_) -> Any: if self.load_existing_dummy_data: # dummy data is downloaded and tested __snake_case = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __snake_case = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase_ , lowercase_): return self.create_dummy_data_dict(lowercase_ , lowercase_) elif isinstance(lowercase_ , (list, tuple)): return self.create_dummy_data_list(lowercase_ , lowercase_) else: return self.create_dummy_data_single(lowercase_ , lowercase_) def _a ( self , lowercase_ , *lowercase_) -> Union[str, Any]: return self.download_and_extract(lowercase_) def _a ( self , lowercase_ , lowercase_) -> Tuple: return self.download_and_extract(lowercase_) def _a ( self , lowercase_ , *lowercase_ , **lowercase_) -> List[str]: return path def _a ( self) -> Dict: return {} def _a ( self , lowercase_ , lowercase_) -> List[Any]: __snake_case = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase_ , lowercase_): for single_url in single_urls: download_callback(lowercase_) else: __snake_case = single_urls download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase_ , lowercase_): __snake_case = [os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_).name)) for x in single_urls] else: __snake_case = single_urls __snake_case = os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_).name)) __snake_case = value # make sure that values are unique if all(isinstance(lowercase_ , lowercase_) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique __snake_case = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _a ( self , lowercase_ , lowercase_) -> Dict: __snake_case = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __snake_case = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase_)) for url in data_url) __snake_case = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed') for url in data_url) if data_url and (is_tf_records or is_pubmed_records): __snake_case = [data_url[0]] * len(lowercase_) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(lowercase_ , urllib.parse.quote_plus(single_url.split('/')[-1])) dummy_data_list.append(lowercase_) return dummy_data_list def _a ( self , lowercase_ , lowercase_) -> Optional[Any]: for download_callback in self.download_callbacks: download_callback(lowercase_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(lowercase_ , urllib.parse.quote_plus(data_url.split('/')[-1])) if os.path.exists(lowercase_) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _a ( self) -> List[Any]: pass def _a ( self) -> str: pass def _a ( self , lowercase_) -> List[Any]: def _iter_archive_members(lowercase_): # this preserves the order of the members inside the ZIP archive __snake_case = Path(self.dummy_file).parent __snake_case = path.relative_to(lowercase_) with ZipFile(self.local_path_to_dummy_data) as zip_file: __snake_case = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(lowercase_) __snake_case = Path(lowercase_) __snake_case = _iter_archive_members(lowercase_) if self.use_local_dummy_data else path.rglob('*') for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__')): yield file_path.relative_to(lowercase_).as_posix(), file_path.open('rb') def _a ( self , lowercase_) -> int: if not isinstance(lowercase_ , lowercase_): __snake_case = [paths] for path in paths: if os.path.isfile(lowercase_): if os.path.basename(lowercase_).startswith(('.', '__')): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase_): if os.path.basename(lowercase_).startswith(('.', '__')): continue dirnames.sort() for filename in sorted(lowercase_): if filename.startswith(('.', '__')): continue yield os.path.join(lowercase_ , lowercase_)
313
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def A ( __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: UpperCAmelCase_ = subparsers.add_parser('''env''' ) else: UpperCAmelCase_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=__UpperCAmelCase , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def A ( __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = torch.__version__ UpperCAmelCase_ = torch.cuda.is_available() UpperCAmelCase_ = is_xpu_available() UpperCAmelCase_ = is_npu_available() UpperCAmelCase_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCAmelCase ): UpperCAmelCase_ = load_config_from_file(args.config_file ).to_dict() UpperCAmelCase_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f"{pt_version} ({pt_cuda_available})", '''PyTorch XPU available''': str(__UpperCAmelCase ), '''PyTorch NPU available''': str(__UpperCAmelCase ), '''System RAM''': f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: UpperCAmelCase_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) UpperCAmelCase_ = ( '''\n'''.join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else f"\t{accelerate_config}" ) print(__UpperCAmelCase ) UpperCAmelCase_ = accelerate_config return info def A ( ) -> int: '''simple docstring''' UpperCAmelCase_ = env_command_parser() UpperCAmelCase_ = parser.parse_args() env_command(__UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
561
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Optional[Any] =DiTPipeline UpperCamelCase__ : Optional[int] =CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase__ : int =PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } UpperCamelCase__ : List[Any] =CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ : Dict =False def __a ( self :List[str]) -> Dict: torch.manual_seed(0) UpperCAmelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowercase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowercase , ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __a ( self :Tuple , _lowercase :str , _lowercase :Union[str, Any]=0) -> List[str]: if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = pipe(**_lowercase).images UpperCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3)) UpperCAmelCase_ = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457]) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_lowercase , 1E-3) def __a ( self :int) -> Tuple: self._test_inference_batch_single_identical(relax_max_difference=_lowercase , expected_max_diff=1E-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __a ( self :Dict) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @require_torch_gpu @slow class a_ ( unittest.TestCase ): def __a ( self :Tuple) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''') pipe.to('''cuda''') UpperCAmelCase_ = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] UpperCAmelCase_ = pipe.get_label_ids(_lowercase) UpperCAmelCase_ = pipe(_lowercase , generator=_lowercase , num_inference_steps=40 , output_type='''np''').images for word, image in zip(_lowercase , _lowercase): UpperCAmelCase_ = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy") assert np.abs((expected_image - image).max()) < 1E-2 def __a ( self :str) -> str: UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''') UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to('''cuda''') UpperCAmelCase_ = ['''vase''', '''umbrella'''] UpperCAmelCase_ = pipe.get_label_ids(_lowercase) UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type='''np''').images for word, image in zip(_lowercase , _lowercase): UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' f"/dit/{word}_512.npy") assert np.abs((expected_image - image).max()) < 1E-1
561
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _snake_case : def __init__( self : Optional[int], __lowercase : int, __lowercase : int=13, __lowercase : List[str]=7, __lowercase : List[str]=6, __lowercase : str=17, __lowercase : List[str]=23, __lowercase : Any=11, __lowercase : Optional[int]=True, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = act_dim lowercase__ = state_dim lowercase__ = hidden_size lowercase__ = max_length lowercase__ = is_training def A__ ( self : Union[str, Any] ): lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ = ids_tensor((self.batch_size, self.seq_length), vocab_size=1000 ) lowercase__ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self : Union[str, Any] ): return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def A__ ( self : List[Any], __lowercase : str, __lowercase : Any, __lowercase : Optional[Any], __lowercase : Tuple, __lowercase : Any, __lowercase : List[Any], __lowercase : List[str], ): lowercase__ = DecisionTransformerModel(config=A_ ) model.to(A_ ) model.eval() lowercase__ = model(A_, A_, A_, A_, A_, A_ ) self.parent.assertEqual(result.state_preds.shape, states.shape ) self.parent.assertEqual(result.action_preds.shape, actions.shape ) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self : str ): lowercase__ = self.prepare_config_and_inputs() ( lowercase__ ) = config_and_inputs lowercase__ = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class _snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCamelCase__ : Optional[Any] =(DecisionTransformerModel,) if is_torch_available() else () UpperCamelCase__ : str =() UpperCamelCase__ : Dict ={"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCamelCase__ : List[Any] =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Any =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Dict =False UpperCamelCase__ : str =False UpperCamelCase__ : str =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Optional[int] =False def A__ ( self : List[str] ): lowercase__ = DecisionTransformerModelTester(self ) lowercase__ = ConfigTester(self, config_class=A_, hidden_size=37 ) def A__ ( self : Optional[int] ): self.config_tester.run_common_tests() def A__ ( self : Optional[int] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def A__ ( self : Tuple ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = DecisionTransformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A__ ( self : str ): lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(A_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(A_ )], A_ ) @require_torch class _snake_case ( unittest.TestCase): @slow def A__ ( self : Union[str, Any] ): lowercase__ = 2 # number of steps of autoregressive prediction we will perform lowercase__ = 10 # defined by the RL environment, may be normalized lowercase__ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase__ = model.to(A_ ) lowercase__ = model.config torch.manual_seed(0 ) lowercase__ = torch.randn(1, 1, config.state_dim ).to(device=A_, dtype=torch.floataa ) # env.reset() lowercase__ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=A_ ) lowercase__ = torch.tensor(A_, device=A_, dtype=torch.floataa ).reshape(1, 1, 1 ) lowercase__ = state lowercase__ = torch.zeros(1, 0, config.act_dim, device=A_, dtype=torch.floataa ) lowercase__ = torch.zeros(1, 0, device=A_, dtype=torch.floataa ) lowercase__ = torch.tensor(0, device=A_, dtype=torch.long ).reshape(1, 1 ) for step in range(A_ ): lowercase__ = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=A_ )], dim=1 ) lowercase__ = torch.cat([rewards, torch.zeros(1, 1, device=A_ )], dim=1 ) lowercase__ = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device ) with torch.no_grad(): lowercase__ = model( states=A_, actions=A_, rewards=A_, returns_to_go=A_, timesteps=A_, attention_mask=A_, return_dict=A_, ) self.assertEqual(action_pred.shape, actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1e-4 ) ) lowercase__ = ( # env.step(action) torch.randn(1, 1, config.state_dim ).to(device=A_, dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ = action_pred[0, -1] lowercase__ = torch.cat([states, state], dim=1 ) lowercase__ = returns_to_go[0, -1] - reward lowercase__ = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 ) lowercase__ = torch.cat( [timesteps, torch.ones((1, 1), device=A_, dtype=torch.long ) * (step + 1)], dim=1 )
413
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ): lowerCamelCase_: List[str] = False lowerCamelCase_: Dict = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): lowerCamelCase_: Dict = True elif "IPython" in sys.modules: lowerCamelCase_: Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: lowerCamelCase_: str = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: lowerCamelCase_: Optional[Any] = 8 lowerCamelCase_: List[Any] = PrepareForLaunch(_UpperCAmelCase , distributed_type="""TPU""" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr="""127.0.01""" , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase_: Tuple = PrepareForLaunch(_UpperCAmelCase , distributed_type="""MULTI_GPU""" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_: List[Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): lowerCamelCase_: Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method="""fork""" )
423
0
def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowercase_ = hex_num[0] == """-""" if is_negative: lowercase_ = hex_num[1:] try: lowercase_ = int(UpperCAmelCase__ , 1_6 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowercase_ = """""" while int_num > 0: lowercase_ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
700
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionDiffEditPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __SCREAMING_SNAKE_CASE : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Any = frozenset([] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) lowercase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) lowercase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ = CLIPTextModel(UpperCamelCase__ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=0 ): '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(UpperCamelCase__ ) else: lowercase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowercase_ = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) lowercase_ = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ = self.get_dummy_inputs(UpperCamelCase__ ) lowercase_ = pipe_loaded(**UpperCamelCase__ )[0] lowercase_ = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_mask_inputs(UpperCamelCase__ ) lowercase_ = pipe.generate_mask(**UpperCamelCase__ ) lowercase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ = np.array([0] * 9 ) lowercase_ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowercase_ = DPMSolverMultistepScheduler(**UpperCamelCase__ ) lowercase_ = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) lowercase_ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = self.get_dummy_inversion_inputs(UpperCamelCase__ ) lowercase_ = pipe.invert(**UpperCamelCase__ ).images lowercase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowercase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ = raw_image def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = torch.manual_seed(0 ) lowercase_ = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowercase_ = """a bowl of fruit""" lowercase_ = """a bowl of pears""" lowercase_ = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) lowercase_ = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents lowercase_ = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
650
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=18 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,) -> Dict: UpperCAmelCase_ : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : List[str] = min_resolution UpperCAmelCase_ : Any = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : str = do_normalize def a__ ( self ) -> Optional[int]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def a__ ( self ) -> int: UpperCAmelCase_ : Dict = ImageGPTImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''clusters''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def a__ ( self ) -> int: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : Tuple = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,obj[key] ) ) else: self.assertEqual(obj[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Any = os.path.join(_SCREAMING_SNAKE_CASE ,'''image_processor.json''' ) image_processor_first.to_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_json_file(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.image_processing_class.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def a__ ( self ) -> str: pass def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) UpperCAmelCase_ : Optional[int] = Image.open(dataset[4]['''file'''] ) UpperCAmelCase_ : Any = Image.open(dataset[5]['''file'''] ) UpperCAmelCase_ : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) UpperCAmelCase_ : Any = prepare_images() # test non-batched UpperCAmelCase_ : Tuple = image_processing(images[0] ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1_024) ) UpperCAmelCase_ : str = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,_SCREAMING_SNAKE_CASE ) # test batched UpperCAmelCase_ : List[str] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1_024) ) UpperCAmelCase_ : List[str] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,_SCREAMING_SNAKE_CASE )
30
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = """ResNetConfig""" # Base docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = [1, 2048, 7, 7] # Image classification docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = """tiger cat""" lowerCamelCase__ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 3 , a__ = 1 , a__ = "relu" ) -> Optional[Any]: '''simple docstring''' super().__init__() __snake_case :Dict = nn.Convad( a__ , a__ , kernel_size=a__ , stride=a__ , padding=kernel_size // 2 , bias=a__ ) __snake_case :str = nn.BatchNormad(a__ ) __snake_case :List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :int = self.convolution(a__ ) __snake_case :Any = self.normalization(a__ ) __snake_case :Optional[int] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ ) -> str: '''simple docstring''' super().__init__() __snake_case :Dict = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __snake_case :List[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __snake_case :Tuple = config.num_channels def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __snake_case :Optional[int] = self.embedder(a__ ) __snake_case :int = self.pooler(a__ ) return embedding class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() __snake_case :Optional[Any] = nn.Convad(a__ , a__ , kernel_size=1 , stride=a__ , bias=a__ ) __snake_case :Tuple = nn.BatchNormad(a__ ) def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Any = self.convolution(a__ ) __snake_case :str = self.normalization(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 1 , a__ = "relu" ) -> List[str]: '''simple docstring''' super().__init__() __snake_case :int = in_channels != out_channels or stride != 1 __snake_case :Tuple = ( ResNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) __snake_case :Optional[int] = nn.Sequential( ResNetConvLayer(a__ , a__ , stride=a__ ) , ResNetConvLayer(a__ , a__ , activation=a__ ) , ) __snake_case :Union[str, Any] = ACTaFN[activation] def __lowercase ( self , a__ ) -> Union[str, Any]: '''simple docstring''' __snake_case :int = hidden_state __snake_case :Dict = self.layer(a__ ) __snake_case :Any = self.shortcut(a__ ) hidden_state += residual __snake_case :List[Any] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 1 , a__ = "relu" , a__ = 4 ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case :Optional[int] = in_channels != out_channels or stride != 1 __snake_case :List[Any] = out_channels // reduction __snake_case :List[str] = ( ResNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) __snake_case :int = nn.Sequential( ResNetConvLayer(a__ , a__ , kernel_size=1 ) , ResNetConvLayer(a__ , a__ , stride=a__ ) , ResNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) __snake_case :Dict = ACTaFN[activation] def __lowercase ( self , a__ ) -> Any: '''simple docstring''' __snake_case :List[str] = hidden_state __snake_case :List[Any] = self.layer(a__ ) __snake_case :List[Any] = self.shortcut(a__ ) hidden_state += residual __snake_case :Optional[Any] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ , a__ = 2 , a__ = 2 , ) -> Any: '''simple docstring''' super().__init__() __snake_case :Optional[int] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer __snake_case :Tuple = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(a__ , a__ , stride=a__ , activation=config.hidden_act ) , *[layer(a__ , a__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Union[str, Any] = input for layer in self.layers: __snake_case :str = layer(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ ) -> Union[str, Any]: '''simple docstring''' super().__init__() __snake_case :Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( a__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case :Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a__ , config.depths[1:] ): self.stages.append(ResNetStage(a__ , a__ , a__ , depth=a__ ) ) def __lowercase ( self , a__ , a__ = False , a__ = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' __snake_case :Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case :Optional[int] = hidden_states + (hidden_state,) __snake_case :Tuple = stage_module(a__ ) if output_hidden_states: __snake_case :Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=a__ , hidden_states=a__ , ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : List[Any] = ResNetConfig lowerCamelCase : Optional[Any] = "resnet" lowerCamelCase : str = "pixel_values" lowerCamelCase : Optional[int] = True def __lowercase ( self , a__ ) -> Dict: '''simple docstring''' if isinstance(a__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowercase ( self , a__ , a__=False ) -> Optional[int]: '''simple docstring''' if isinstance(a__ , a__ ): __snake_case :Union[str, Any] = value lowerCamelCase__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , lowercase_ , ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__ ) -> Tuple: '''simple docstring''' super().__init__(a__ ) __snake_case :int = config __snake_case :Any = ResNetEmbeddings(a__ ) __snake_case :Dict = ResNetEncoder(a__ ) __snake_case :Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self , a__ , a__ = None , a__ = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __snake_case :List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case :List[str] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :int = self.embedder(a__ ) __snake_case :Any = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Any = encoder_outputs[0] __snake_case :int = self.pooler(a__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ , pooler_output=a__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowercase_ , ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__ ) -> List[Any]: '''simple docstring''' super().__init__(a__ ) __snake_case :Union[str, Any] = config.num_labels __snake_case :Optional[int] = ResNetModel(a__ ) # classification head __snake_case :List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self , a__ = None , a__ = None , a__ = None , a__ = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' __snake_case :Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :Tuple = self.resnet(a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Optional[Any] = outputs.pooler_output if return_dict else outputs[1] __snake_case :Optional[Any] = self.classifier(a__ ) __snake_case :Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case :List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case :List[Any] = """single_label_classification""" else: __snake_case :Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": __snake_case :Any = MSELoss() if self.num_labels == 1: __snake_case :Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case :Any = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": __snake_case :int = CrossEntropyLoss() __snake_case :List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case :List[str] = BCEWithLogitsLoss() __snake_case :int = loss_fct(a__ , a__ ) if not return_dict: __snake_case :int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , lowercase_ , ) class snake_case__ ( lowercase_ , lowercase_): '''simple docstring''' def __init__( self , a__ ) -> int: '''simple docstring''' super().__init__(a__ ) super()._init_backbone(a__ ) __snake_case :Optional[int] = [config.embedding_size] + config.hidden_sizes __snake_case :str = ResNetEmbeddings(a__ ) __snake_case :Any = ResNetEncoder(a__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self , a__ , a__ = None , a__ = None ) -> BackboneOutput: '''simple docstring''' __snake_case :int = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case :List[str] = self.embedder(a__ ) __snake_case :List[Any] = self.encoder(a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Optional[int] = outputs.hidden_states __snake_case :Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __snake_case :Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=a__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=a__ , )
455
0
'''simple docstring''' import math import qiskit def snake_case__ ( a = 1 , a = 1 , a = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(a , a ) or isinstance(a , a ) or isinstance(a , a ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(a ) != input_a) or (math.floor(a ) != input_a) or (math.floor(a ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers snake_case__ = qiskit.QuantumRegister(4 , """qr""" ) snake_case__ = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries snake_case__ = [input_a, input_a, carry_in] snake_case__ = qiskit.QuantumCircuit(a , a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a ) # measure the last two qbits snake_case__ = qiskit.Aer.get_backend("""aer_simulator""" ) snake_case__ = qiskit.execute(a , a , shots=1000 ) return job.result().get_counts(a ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
702
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : str = """informer""" UpperCAmelCase_ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "student_t" , __UpperCamelCase : str = "nll" , __UpperCamelCase : int = 1 , __UpperCamelCase : List[int] = None , __UpperCamelCase : Optional[Union[str, bool]] = "mean" , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : int = 6_4 , __UpperCamelCase : int = 3_2 , __UpperCamelCase : int = 3_2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 2 , __UpperCamelCase : bool = True , __UpperCamelCase : str = "gelu" , __UpperCamelCase : float = 0.05 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : int = 1_0_0 , __UpperCamelCase : float = 0.02 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : str = "prob" , __UpperCamelCase : int = 5 , __UpperCamelCase : bool = True , **__UpperCamelCase : Any , ): '''simple docstring''' snake_case__ = prediction_length snake_case__ = context_length or prediction_length snake_case__ = distribution_output snake_case__ = loss snake_case__ = input_size snake_case__ = num_time_features snake_case__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case__ = scaling snake_case__ = num_dynamic_real_features snake_case__ = num_static_real_features snake_case__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ = cardinality else: snake_case__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case__ = embedding_dimension else: snake_case__ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case__ = num_parallel_samples # Transformer architecture configuration snake_case__ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case__ = d_model snake_case__ = encoder_attention_heads snake_case__ = decoder_attention_heads snake_case__ = encoder_ffn_dim snake_case__ = decoder_ffn_dim snake_case__ = encoder_layers snake_case__ = decoder_layers snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = encoder_layerdrop snake_case__ = decoder_layerdrop snake_case__ = activation_function snake_case__ = init_std snake_case__ = use_cache # Informer snake_case__ = attention_type snake_case__ = sampling_factor snake_case__ = distil super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCAmelCase( self : str ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
566
0
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase__ ) lowerCamelCase_ = proj_size lowerCamelCase_ = CLIPVisionModel(UpperCamelCase__ ) lowerCamelCase_ = PaintByExampleMapper(UpperCamelCase__ ) lowerCamelCase_ = nn.LayerNorm(config.hidden_size ) lowerCamelCase_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowerCamelCase_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.model(pixel_values=UpperCamelCase__ ) lowerCamelCase_ = clip_output.pooler_output lowerCamelCase_ = self.mapper(latent_states[:, None] ) lowerCamelCase_ = self.final_layer_norm(UpperCamelCase__ ) lowerCamelCase_ = self.proj_out(UpperCamelCase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ ) -> str: '''simple docstring''' super().__init__() lowerCamelCase_ = (config.num_hidden_layers + 1) // 5 lowerCamelCase_ = config.hidden_size lowerCamelCase_ = 1 lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , activation_fn='''gelu''' , attention_bias=UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ] ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' for block in self.blocks: lowerCamelCase_ = block(UpperCamelCase__ ) return hidden_states
142
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[str] = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Union[str, Any] = "mctct" def __init__( self , UpperCamelCase__=8_065 , UpperCamelCase__=1_536 , UpperCamelCase__=36 , UpperCamelCase__=6_144 , UpperCamelCase__=4 , UpperCamelCase__=384 , UpperCamelCase__=920 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.3 , UpperCamelCase__="relu" , UpperCamelCase__=0.02 , UpperCamelCase__=0.3 , UpperCamelCase__=0.3 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0.3 , UpperCamelCase__=1 , UpperCamelCase__=(7,) , UpperCamelCase__=(3,) , UpperCamelCase__=80 , UpperCamelCase__=1 , UpperCamelCase__=None , UpperCamelCase__="sum" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = layerdrop lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id lowerCamelCase_ = conv_glu_dim lowerCamelCase_ = conv_dropout lowerCamelCase_ = num_conv_layers lowerCamelCase_ = input_feat_per_channel lowerCamelCase_ = input_channels lowerCamelCase_ = conv_channels lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCamelCase_ = list(UpperCamelCase__ ) lowerCamelCase_ = list(UpperCamelCase__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
142
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer a__ = """bart""" a__ = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> Optional[int]: if LOAD_DENSE_INDEX: _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) _snake_case : Optional[Any] = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) _snake_case : Dict = qar_model.eval() else: _snake_case , _snake_case : str = (None, None) if MODEL_TYPE == "bart": _snake_case : Tuple = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) _snake_case : int = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) _snake_case : Optional[Any] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) _snake_case : int = sas_model.eval() else: _snake_case , _snake_case : Tuple = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> List[Any]: if LOAD_DENSE_INDEX: _snake_case : List[str] = faiss.StandardGpuResources() _snake_case : Any = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] _snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) _snake_case : List[str] = faiss.IndexFlatIP(128 ) _snake_case : Dict = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE__ ) # TODO fix for larger GPU else: _snake_case , _snake_case : str = (None, None) _snake_case : List[Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> List[Any]: _snake_case : Any = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) _snake_case : str = elia["""train_eli5"""] _snake_case : Tuple = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) _snake_case : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE__ ) return (elia_train, eli5_train_q_index) a__, a__, a__ = load_indexes() a__, a__, a__, a__ = load_models() a__, a__ = load_train_data() def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=10 ) -> Optional[int]: _snake_case : str = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Optional[int] = eli5_train_q_index.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = [elia_train[int(SCREAMING_SNAKE_CASE__ )] for i in I[0]] return nn_examples def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple="wiki40b" , SCREAMING_SNAKE_CASE__ : List[Any]="dense" , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 ) -> Any: if source == "none": _snake_case , _snake_case : List[Any] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": _snake_case , _snake_case : Any = query_qa_dense_index( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _snake_case , _snake_case : Union[str, Any] = query_es_index( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index_name="""english_wiki40b_snippets_100w""" , n_results=SCREAMING_SNAKE_CASE__ , ) _snake_case : Any = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] _snake_case : List[str] = """question: {} context: {}""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE__ : None), } ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : List[str]=256 , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Dict=0.9_5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.8 ) -> str: with torch.no_grad(): _snake_case : List[str] = qa_sas_generate( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , temp=SCREAMING_SNAKE_CASE__ , top_p=SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ , max_input_length=1_024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar a__ = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" a__ = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia a__ = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) a__ = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] a__ = st.sidebar.checkbox("""Demo options""") if demo_options: a__ = st.sidebar.selectbox( """""", action_list, index=3, ) a__ = action_list.index(action_st) a__ = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) a__ = show_type == """Show full text of passages""" else: a__ = 3 a__ = True a__ = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: a__ = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) a__ = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) a__ = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: a__ = """wiki40b""" a__ = """dense""" a__ = """beam""" a__ = 2 a__ = 64 a__ = 2_56 a__ = None a__ = None a__ = st.sidebar.checkbox("""Generation options""") if generate_options: a__ = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) a__ = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) a__ = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) a__ = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": a__ = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: a__ = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) a__ = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) a__ = None # start main text a__ = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] a__ = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": a__ = st.text_input("""Enter your question here:""", """""") else: a__ = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": a__, a__ = make_support(question, source=wiki_source, method="""dense""", n_results=10) a__, a__ = make_support(question, source=wiki_source, method="""sparse""", n_results=10) a__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] a__ = support_list[:10] a__ = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: a__, a__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: a__, a__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): a__ = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) a__ = res[1].strip() if sec_titles == "": a__ = """[{}]({})""".format(res[0], wiki_url) else: a__ = sec_titles.split(""" & """) a__ = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: a__ = find_nearest_training(question) a__ = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) a__ = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) a__ = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
198
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: _snake_case : Any = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: _snake_case : Union[str, Any] = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: _snake_case : Tuple = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: _snake_case : Optional[Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: _snake_case : Union[str, Any] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: _snake_case : Any = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: _snake_case : int = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: _snake_case : Union[str, Any] = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: _snake_case : Any = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: _snake_case : Dict = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: _snake_case : Union[str, Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: _snake_case : Dict = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: _snake_case : str = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: _snake_case : int = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: _snake_case : Union[str, Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _snake_case : Optional[Any] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _snake_case : Union[str, Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _snake_case : Tuple = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: _snake_case : Any = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: _snake_case : str = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: _snake_case : List[Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: _snake_case : Optional[int] = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: _snake_case : List[Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: _snake_case : Tuple = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: for key in orig_state_dict.copy().keys(): _snake_case : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case : Any = key.split(""".""" ) _snake_case , _snake_case : List[Any] = int(key_split[2] ), int(key_split[4] ) _snake_case : List[Any] = config.vision_config.hidden_size if "weight" in key: _snake_case : List[Any] = val[:dim, :] _snake_case : Union[str, Any] = val[dim : dim * 2, :] _snake_case : int = val[-dim:, :] else: _snake_case : Union[str, Any] = val[:dim] _snake_case : str = val[dim : dim * 2] _snake_case : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case : int = key.split(""".""" ) _snake_case : Optional[int] = int(key_split[3] ) _snake_case : Union[str, Any] = config.text_config.hidden_size if "weight" in key: _snake_case : int = val[:dim, :] _snake_case : Tuple = val[ dim : dim * 2, : ] _snake_case : int = val[-dim:, :] else: _snake_case : Tuple = val[:dim] _snake_case : Tuple = val[dim : dim * 2] _snake_case : str = val[-dim:] else: _snake_case : Tuple = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _snake_case : Any = val.squeeze_() else: _snake_case : Optional[int] = val return orig_state_dict def lowercase ( ) -> List[str]: _snake_case : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> Optional[Any]: _snake_case : Any = GroupViTConfig() _snake_case : List[Any] = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() _snake_case : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] _snake_case : Tuple = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result _snake_case : List[Any] = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) _snake_case : List[Any] = prepare_img() _snake_case : int = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) with torch.no_grad(): _snake_case : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": _snake_case : Union[str, Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _snake_case : Union[str, Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Successfully saved processor and model to""" , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) a__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
198
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
252
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __snake_case : Dict = logging.get_logger(__name__) @add_end_docstrings(a ) class A ( a ): def __init__( self , *snake_case_ , **snake_case_ ) -> int: super().__init__(*snake_case_ , **snake_case_ ) requires_backends(self , "decord" ) self.check_model_type(snake_case_ ) def __lowerCAmelCase ( self , snake_case_=None , snake_case_=None , snake_case_=None ) -> Optional[Any]: _a = {} if frame_sampling_rate is not None: _a = frame_sampling_rate if num_frames is not None: _a = num_frames _a = {} if top_k is not None: _a = top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case_ , **snake_case_ ) -> int: return super().__call__(snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None , snake_case_=1 ) -> List[str]: if num_frames is None: _a = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): _a = BytesIO(requests.get(snake_case_ ).content ) _a = VideoReader(snake_case_ ) videoreader.seek(0 ) _a = 0 _a = num_frames * frame_sampling_rate - 1 _a = np.linspace(snake_case_ , snake_case_ , num=snake_case_ , dtype=np.intaa ) _a = videoreader.get_batch(snake_case_ ).asnumpy() _a = list(snake_case_ ) _a = self.image_processor(snake_case_ , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = self.model(**snake_case_ ) return model_outputs def __lowerCAmelCase ( self , snake_case_ , snake_case_=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: _a = self.model.config.num_labels if self.framework == "pt": _a = model_outputs.logits.softmax(-1 )[0] _a , _a = probs.topk(snake_case_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _a = scores.tolist() _a = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
131
0
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : list[list[int]] ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCAmelCase_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCAmelCase_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
445
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : List[Any] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""OwlViTFeatureExtractor"""] a_ : Any = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
445
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A (__lowerCamelCase :str , __lowerCamelCase :Any , __lowerCamelCase :str=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' _lowerCAmelCase = nn.Parameter(__lowerCamelCase ) def A (__lowerCamelCase :Dict , __lowerCamelCase :Optional[int] , __lowerCamelCase :Tuple ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str] , __lowerCamelCase :str ): # set torch weights for 1-to-1 comparison _lowerCAmelCase = np.asarray(weights[0] ) _lowerCAmelCase = np.asarray(weights[1] ) _lowerCAmelCase = np.asarray(weights[2] ) _lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict , __lowerCamelCase :Any ): # layernorm 1 _lowerCAmelCase = weights[0][0][0] _lowerCAmelCase = np.asarray(layer_norm_a[0] ) _lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # lsh weights + output _lowerCAmelCase = weights[0][1] if len(__lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) else: set_layer_weights_in_torch_local(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) # intermediate weighs _lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCamelCase ) == 4: _lowerCAmelCase = intermediate_weights[2] # layernorm 2 _lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # intermediate dense _lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) # intermediate out _lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) _lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict ): # reformer model _lowerCAmelCase = torch_model.reformer # word embeds _lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCamelCase ) , ) if isinstance(weights[3] , __lowerCamelCase ): _lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' _lowerCAmelCase = nn.Parameter(torch.tensor(__lowerCamelCase ) ) _lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # output layer norm _lowerCAmelCase = np.asarray(weights[7][0] ) _lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # output embeddings _lowerCAmelCase = np.asarray(weights[9][0] ) _lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def A (__lowerCamelCase :List[str] , __lowerCamelCase :List[Any] , __lowerCamelCase :Tuple ): # Initialise PyTorch model _lowerCAmelCase = ReformerConfig.from_json_file(__lowerCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = ReformerModelWithLMHead(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as f: _lowerCAmelCase = pickle.load(__lowerCamelCase )["""weights"""] set_model_weights_in_torch(__lowerCamelCase , __lowerCamelCase , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
5
'''simple docstring''' A_ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset([]) A_ = frozenset(["image"]) A_ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image"]) A_ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "negative_prompt"]) A_ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) A_ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) A_ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["image", "mask_image"]) A_ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) A_ = frozenset(["example_image", "image", "mask_image"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["class_labels"]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset(["batch_size"]) A_ = frozenset([]) A_ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) A_ = frozenset(["prompt", "negative_prompt"]) A_ = frozenset(["input_tokens"]) A_ = frozenset(["input_tokens"])
143
0
import random from .binary_exp_mod import bin_exp_mod def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1_000 ) -> Any: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case : List[str] = n - 1 _snake_case : Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case : Dict = 0 while count < prec: _snake_case : int = random.randint(2 , n - 1 ) _snake_case : str = bin_exp_mod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if b != 1: _snake_case : Optional[int] = True for _ in range(SCREAMING_SNAKE_CASE__ ): if b == n - 1: _snake_case : List[Any] = False break _snake_case : Union[str, Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a__ = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
700
from math import ceil, sqrt def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000_000 ) -> int: _snake_case : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _snake_case : int = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _snake_case : Any = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
198
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig A_ = logging.get_logger(__name__) # General docstring A_ = """ResNetConfig""" # Base docstring A_ = """microsoft/resnet-50""" A_ = [1, 2048, 7, 7] # Image classification docstring A_ = """microsoft/resnet-50""" A_ = """tiger cat""" A_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() lowerCamelCase_ = nn.Convad( UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=kernel_size // 2 , bias=UpperCAmelCase ) lowerCamelCase_ = nn.BatchNormad(UpperCAmelCase ) lowerCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.convolution(UpperCAmelCase ) lowerCamelCase_ = self.normalization(UpperCAmelCase ) lowerCamelCase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() lowerCamelCase_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowerCamelCase_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowerCamelCase_ = config.num_channels def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCamelCase_ = self.embedder(UpperCAmelCase ) lowerCamelCase_ = self.pooler(UpperCAmelCase ) return embedding class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 ): super().__init__() lowerCamelCase_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , stride=UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase_ = nn.BatchNormad(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = self.convolution(UpperCAmelCase ) lowerCamelCase_ = self.normalization(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" ): super().__init__() lowerCamelCase_ = in_channels != out_channels or stride != 1 lowerCamelCase_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , activation=UpperCAmelCase ) , ) lowerCamelCase_ = ACTaFN[activation] def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = hidden_state lowerCamelCase_ = self.layer(UpperCAmelCase ) lowerCamelCase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowerCamelCase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , UpperCAmelCase = 4 ): super().__init__() lowerCamelCase_ = in_channels != out_channels or stride != 1 lowerCamelCase_ = out_channels // reduction lowerCamelCase_ = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase_ = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase ) , ) lowerCamelCase_ = ACTaFN[activation] def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = hidden_state lowerCamelCase_ = self.layer(UpperCAmelCase ) lowerCamelCase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowerCamelCase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , ): super().__init__() lowerCamelCase_ = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowerCamelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , activation=config.hidden_act ) , *[layer(UpperCAmelCase , UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = input for layer in self.layers: lowerCamelCase_ = layer(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() lowerCamelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase ) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ): lowerCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase_ = hidden_states + (hidden_state,) lowerCamelCase_ = stage_module(UpperCAmelCase ) if output_hidden_states: lowerCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = ResNetConfig a__: Tuple = 'resnet' a__: List[Any] = 'pixel_values' a__: Union[str, Any] = True def UpperCAmelCase__ ( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = value A_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , lowerCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) lowerCamelCase_ = config lowerCamelCase_ = ResNetEmbeddings(UpperCAmelCase ) lowerCamelCase_ = ResNetEncoder(UpperCAmelCase ) lowerCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.embedder(UpperCAmelCase ) lowerCamelCase_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCamelCase_ = encoder_outputs[0] lowerCamelCase_ = self.pooler(UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) lowerCamelCase_ = config.num_labels lowerCamelCase_ = ResNetModel(UpperCAmelCase ) # classification head lowerCamelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = self.resnet(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCamelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase_ = self.classifier(UpperCAmelCase ) lowerCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase_ = '''single_label_classification''' else: lowerCamelCase_ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCamelCase_ = MSELoss() if self.num_labels == 1: lowerCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase_ = CrossEntropyLoss() lowerCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase_ = BCEWithLogitsLoss() lowerCamelCase_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: lowerCamelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , lowerCAmelCase , ) class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) super()._init_backbone(UpperCAmelCase ) lowerCamelCase_ = [config.embedding_size] + config.hidden_sizes lowerCamelCase_ = ResNetEmbeddings(UpperCAmelCase ) lowerCamelCase_ = ResNetEncoder(UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = self.embedder(UpperCAmelCase ) lowerCamelCase_ = self.encoder(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCamelCase_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase , )
29
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" import operator as op def snake_case__ ( _lowerCamelCase ) ->Optional[int]: """simple docstring""" __lowercase : Optional[Any] = [] __lowercase : Any = lambda _lowerCamelCase, _lowerCamelCase : int(x / y ) # noqa: E731 integer division operation __lowercase : str = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ), "Action".center(12 ), "Stack", sep=" | " ) print("-" * (30 + len(_lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ), ("push(" + x + ")").ljust(12 ), ",".join(_lowercase ), sep=" | " ) else: __lowercase : Optional[int] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + b + ")").ljust(12 ), ",".join(_lowercase ), sep=" | " ) __lowercase : Tuple = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + a + ")").ljust(12 ), ",".join(_lowercase ), sep=" | " ) stack.append( str(opr[x](int(_lowercase ), int(_lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("push(" + a + x + b + ")").ljust(12 ), ",".join(_lowercase ), sep=" | ", ) return int(stack[0] ) if __name__ == "__main__": __A : List[str] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
704
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(_lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
281
0
'''simple docstring''' import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( ): from torch.utils.cpp_extension import load _A = Path(__snake_case ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' _A = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , __snake_case , with_cuda=__snake_case , extra_include_paths=[str(__snake_case )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
107
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCAmelCase_ = random.Random() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict=1.0 , __UpperCAmelCase: str=None , __UpperCAmelCase: Tuple=None ) -> int: if rng is None: UpperCamelCase__ : List[Any] = global_rng UpperCamelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=400, __magic_name__=2000, __magic_name__=2048, __magic_name__=128, __magic_name__=1, __magic_name__=512, __magic_name__=30, __magic_name__=44100, ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : Dict = min_seq_length UpperCamelCase__ : Dict = max_seq_length UpperCamelCase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : Optional[int] = spectrogram_length UpperCamelCase__ : Union[str, Any] = feature_size UpperCamelCase__ : int = num_audio_channels UpperCamelCase__ : List[Any] = hop_length UpperCamelCase__ : Union[str, Any] = chunk_length UpperCamelCase__ : Any = sampling_rate def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase__ ( self, __magic_name__=False, __magic_name__=False ) -> Tuple: """simple docstring""" def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: UpperCamelCase__ : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ : Tuple = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : str = TvltFeatureExtractor def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = TvltFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__magic_name__, '''spectrogram_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''feature_size''' ) ) self.assertTrue(hasattr(__magic_name__, '''num_audio_channels''' ) ) self.assertTrue(hasattr(__magic_name__, '''hop_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''chunk_length''' ) ) self.assertTrue(hasattr(__magic_name__, '''sampling_rate''' ) ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : str = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) UpperCamelCase__ : List[str] = feat_extract_first.to_dict() UpperCamelCase__ : Union[str, Any] = feat_extract_second.to_dict() UpperCamelCase__ : str = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertEqual(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Tuple = os.path.join(__magic_name__, '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) UpperCamelCase__ : List[Any] = self.feature_extraction_class.from_json_file(__magic_name__ ) UpperCamelCase__ : List[Any] = feat_extract_first.to_dict() UpperCamelCase__ : Tuple = feat_extract_second.to_dict() UpperCamelCase__ : Any = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : Union[str, Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__magic_name__, __magic_name__ ) ) self.assertEqual(__magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" # Initialize feature_extractor UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ : int = feature_extractor(np_speech_inputs[0], return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCamelCase__ : Union[str, Any] = feature_extractor(__magic_name__, return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCamelCase__ : Optional[int] = feature_extractor( __magic_name__, return_tensors='''np''', sampling_rate=44100, mask_audio=__magic_name__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ : Tuple = np.asarray(__magic_name__ ) UpperCamelCase__ : int = feature_extractor(__magic_name__, return_tensors='''np''', sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech UpperCamelCase__ : Optional[int] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = self._load_datasamples(1 ) UpperCamelCase__ : Any = TvltFeatureExtractor() UpperCamelCase__ : Tuple = feature_extractor(__magic_name__, return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape, (1, 1, 192, 128) ) UpperCamelCase__ : Any = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], __magic_name__, atol=1E-4 ) )
253
0
'''simple docstring''' import math def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCAmelCase__ : List[Any] = range(3 , int(math.sqrt(_A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=1 , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = factor * value lowerCAmelCase__ : int = value while not is_prime(_A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_A ) return value
719
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Any = FunnelTokenizer A_ : Dict = FunnelTokenizerFast A_ : Dict = True A_ : Tuple = True def _A ( self : List[Any] ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Dict = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : Union[str, Any] , **a__ : str ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : Optional[int] , **a__ : str ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : Tuple , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = "UNwant\u00E9d,running" lowerCAmelCase__ : Union[str, Any] = "unwanted, running" return input_text, output_text def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [7, 4, 5, 10, 8, 9] ) def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: lowerCAmelCase__ : Tuple = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ : str = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ : Optional[int] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
568
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): @register_to_config def __init__( self , lowercase = 768 , ) -> str: super().__init__() lowerCamelCase_ = nn.Parameter(torch.zeros(1 , lowercase ) ) lowerCamelCase_ = nn.Parameter(torch.ones(1 , lowercase ) ) def SCREAMING_SNAKE_CASE_( self , lowercase = None , lowercase = None , ) -> Optional[int]: lowerCamelCase_ = nn.Parameter(self.mean.to(lowercase ).to(lowercase ) ) lowerCamelCase_ = nn.Parameter(self.std.to(lowercase ).to(lowercase ) ) return self def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = (embeds * self.std) + self.mean return embeds
463
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A ={ '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
463
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """AutoImageProcessor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self , lowercase , lowercase ): super().__init__(lowercase , lowercase ) _lowerCamelCase : str = self.image_processor def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCamelCase : int = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: _lowerCamelCase : List[Any] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: _lowerCamelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def A_ ( self ): return ["input_ids", "attention_mask", "pixel_values"]
492
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase = 101 ): _lowerCamelCase : Optional[int] = length def __len__( self ): return self.length def __getitem__( self , lowercase ): return i class lowerCAmelCase__ : '''simple docstring''' def __call__( self , lowercase ): return {"input_ids": torch.tensor(lowercase ), "labels": torch.tensor(lowercase )} class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCamelCase : int = nn.Linear(120 , 80 ) def A_ ( self , lowercase , lowercase=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_neuroncore def A_ ( self ): _lowerCamelCase : Optional[Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : int = self.get_auto_remove_tmp_dir() _lowerCamelCase : str = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Tuple = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_multi_gpu def A_ ( self ): _lowerCamelCase : Union[str, Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCamelCase : Any = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Any = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase__ = HfArgumentParser((TrainingArguments,)) lowercase__ = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase__ = DummyDataset(dataset_length) def _snake_case ( lowercase__ ): _lowerCamelCase : int = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowercase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = 2 lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = None
492
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
547
from math import isqrt, loga def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' _UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , a__ , a__ ): _UpperCamelCase = False return [i for i in range(2 , a__ ) if is_prime[i]] def lowerCAmelCase__ ( a__ = 800_800 , a__ = 800_800 ) ->int: '''simple docstring''' _UpperCamelCase = degree * loga(a__ ) _UpperCamelCase = int(a__ ) _UpperCamelCase = calculate_prime_numbers(a__ ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = len(a__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
547
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str]=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int]=0 ): __a : Optional[int] = [] for old_item in old_list: __a : List[str] = old_item.replace('in_layers.0' , 'norm1' ) __a : Optional[Any] = new_item.replace('in_layers.2' , 'conv1' ) __a : Union[str, Any] = new_item.replace('out_layers.0' , 'norm2' ) __a : str = new_item.replace('out_layers.3' , 'conv2' ) __a : Optional[int] = new_item.replace('emb_layers.1' , 'time_emb_proj' ) __a : Optional[int] = new_item.replace('skip_connection' , 'conv_shortcut' ) __a : Optional[Any] = shave_segments(lowerCamelCase_ , n_shave_prefix_segments=lowerCamelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str=0 ): __a : Tuple = [] for old_item in old_list: __a : int = old_item __a : Union[str, Any] = new_item.replace('norm.weight' , 'group_norm.weight' ) __a : Dict = new_item.replace('norm.bias' , 'group_norm.bias' ) __a : Tuple = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) __a : Tuple = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) __a : List[Any] = shave_segments(lowerCamelCase_ , n_shave_prefix_segments=lowerCamelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Tuple=None ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __a : Optional[int] = old_checkpoint[path] __a : Optional[Any] = old_tensor.shape[0] // 3 __a : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __a : Union[str, Any] = old_tensor.shape[0] // config['num_head_channels'] // 3 __a : Optional[int] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __a , __a , __a : Dict = old_tensor.split(channels // num_heads , dim=1 ) __a : str = query.reshape(lowerCamelCase_ ) __a : Tuple = key.reshape(lowerCamelCase_ ) __a : str = value.reshape(lowerCamelCase_ ) for path in paths: __a : Dict = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __a : Optional[int] = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) __a : List[str] = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) __a : Optional[int] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: __a : str = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __a : Dict = old_checkpoint[path['old']][:, :, 0] else: __a : Tuple = old_checkpoint[path['old']] def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): __a : List[str] = {} __a : List[str] = checkpoint['time_embed.0.weight'] __a : int = checkpoint['time_embed.0.bias'] __a : Union[str, Any] = checkpoint['time_embed.2.weight'] __a : Any = checkpoint['time_embed.2.bias'] __a : List[str] = checkpoint['input_blocks.0.0.weight'] __a : Tuple = checkpoint['input_blocks.0.0.bias'] __a : Dict = checkpoint['out.0.weight'] __a : Any = checkpoint['out.0.bias'] __a : str = checkpoint['out.2.weight'] __a : Tuple = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only __a : List[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) __a : List[str] = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(lowerCamelCase_ ) } # Retrieves the keys for the middle blocks only __a : Tuple = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) __a : str = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(lowerCamelCase_ ) } # Retrieves the keys for the output blocks only __a : Any = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) __a : Tuple = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(lowerCamelCase_ ) } for i in range(1 , lowerCamelCase_ ): __a : List[str] = (i - 1) // (config['num_res_blocks'] + 1) __a : Dict = (i - 1) % (config['num_res_blocks'] + 1) __a : List[Any] = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] __a : Optional[Any] = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: __a : List[str] = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] __a : Optional[Any] = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue __a : Optional[int] = renew_resnet_paths(lowerCamelCase_ ) __a : int = {'old': f'''input_blocks.{i}.0''', 'new': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} __a : str = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path, resnet_op] , config=lowerCamelCase_ ) if len(lowerCamelCase_ ): __a : Union[str, Any] = renew_attention_paths(lowerCamelCase_ ) __a : List[str] = { 'old': f'''input_blocks.{i}.1''', 'new': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } __a : Union[str, Any] = { f'''input_blocks.{i}.1.qkv.bias''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCamelCase_ , config=lowerCamelCase_ , ) __a : Optional[int] = middle_blocks[0] __a : Union[str, Any] = middle_blocks[1] __a : int = middle_blocks[2] __a : Dict = renew_resnet_paths(lowerCamelCase_ ) assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , config=lowerCamelCase_ ) __a : List[Any] = renew_resnet_paths(lowerCamelCase_ ) assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , config=lowerCamelCase_ ) __a : Optional[int] = renew_attention_paths(lowerCamelCase_ ) __a : str = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , attention_paths_to_split=lowerCamelCase_ , config=lowerCamelCase_ ) for i in range(lowerCamelCase_ ): __a : Optional[int] = i // (config['num_res_blocks'] + 1) __a : Union[str, Any] = i % (config['num_res_blocks'] + 1) __a : int = [shave_segments(lowerCamelCase_ , 2 ) for name in output_blocks[i]] __a : int = {} for layer in output_block_layers: __a , __a : Optional[int] = layer.split('.' )[0], shave_segments(lowerCamelCase_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCamelCase_ ) else: __a : Any = [layer_name] if len(lowerCamelCase_ ) > 1: __a : List[Any] = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] __a : Dict = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] __a : Union[str, Any] = renew_resnet_paths(lowerCamelCase_ ) __a : List[Any] = renew_resnet_paths(lowerCamelCase_ ) __a : List[Any] = {'old': f'''output_blocks.{i}.0''', 'new': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __a : Optional[int] = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) __a : List[Any] = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] __a : Optional[Any] = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(lowerCamelCase_ ) == 2: __a : Tuple = [] if len(lowerCamelCase_ ): __a : int = renew_attention_paths(lowerCamelCase_ ) __a : Dict = { 'old': f'''output_blocks.{i}.1''', 'new': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } __a : Tuple = { f'''output_blocks.{i}.1.qkv.bias''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=lowerCamelCase_ , ) else: __a : List[Any] = renew_resnet_paths(lowerCamelCase_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __a : Optional[int] = '.'.join(['output_blocks', str(lowerCamelCase_ ), path['old']] ) __a : Tuple = '.'.join(['up_blocks', str(lowerCamelCase_ ), 'resnets', str(lowerCamelCase_ ), path['new']] ) __a : Tuple = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read()) SCREAMING_SNAKE_CASE__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) SCREAMING_SNAKE_CASE__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) SCREAMING_SNAKE_CASE__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
577
import torch from transformers import AutoModel class _UpperCamelCase( torch.nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(SCREAMING_SNAKE_CASE__ , self ).__init__() __a : List[str] = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = torch.nn.CosineSimilarity(3 , 1e-08 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' return self.bert(**SCREAMING_SNAKE_CASE__ ).last_hidden_state def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 ): '''simple docstring''' return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a : Optional[int] = W_supports['sizes'].tolist() __a : Dict = W_supports['start_token_id'].item() __a : Tuple = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE__ ) __a : Tuple = self.BERT(**SCREAMING_SNAKE_CASE__ ) __a : Dict = None __a : str = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Any = W_supports['input_ids'] == end_token_id for i, size in enumerate(SCREAMING_SNAKE_CASE__ ): if i == 0: __a : str = 0 else: __a : str = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Dict = S[s : s + size][end_token_masks[s : s + size]] __a : Optional[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : List[Any] = torch.vstack((p_starts, p_start) ) __a : Optional[Any] = torch.vstack((p_ends, p_end) ) else: __a : str = p_start __a : List[Any] = p_end return p_starts, p_ends
577
1
from __future__ import annotations import requests def __snake_case ( lowerCAmelCase_ ) -> dict: SCREAMING_SNAKE_CASE__ = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase_ ).json() def __snake_case ( lowerCAmelCase_ = 1_0 ) -> list[dict]: SCREAMING_SNAKE_CASE__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' SCREAMING_SNAKE_CASE__ = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def __snake_case ( lowerCAmelCase_ = 1_0 ) -> str: SCREAMING_SNAKE_CASE__ = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
100
def __snake_case ( ) -> int: return 1 def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ = 2_0_0 ) -> int: return two_pound(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
100
1
def A ( lowercase__ : str ) -> str: UpperCamelCase__ :Union[str, Any] = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A ( lowercase__ : str ) -> dict[str, str]: UpperCamelCase__ :List[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase__ :Any = remove_duplicates(key.upper() ) UpperCamelCase__ :Tuple = len(lowercase__ ) # First fill cipher with key characters UpperCamelCase__ :Union[str, Any] = {alphabet[i]: char for i, char in enumerate(lowercase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase__ ) , 26 ): UpperCamelCase__ :Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase__ :Any = alphabet[i - offset] UpperCamelCase__ :List[str] = char return cipher_alphabet def A ( lowercase__ : str , lowercase__ : dict[str, str] ) -> str: return "".join(cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def A ( lowercase__ : str , lowercase__ : dict[str, str] ) -> str: UpperCamelCase__ :Dict = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase__ , lowercase__ ) for ch in message.upper() ) def A ( ) -> None: UpperCamelCase__ :List[Any] = input("""Enter message to encode or decode: """ ).strip() UpperCamelCase__ :List[str] = input("""Enter keyword: """ ).strip() UpperCamelCase__ :Any = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: UpperCamelCase__ :List[str] = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) UpperCamelCase__ :Tuple = create_cipher_map(lowercase__ ) print(func(lowercase__ , lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
383
import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__( self :List[str] ): UpperCamelCase__ :List[str] = (0, 0) UpperCamelCase__ :Dict = None UpperCamelCase__ :List[str] = 0 UpperCamelCase__ :Any = 0 UpperCamelCase__ :Optional[int] = 0 def __eq__( self :Optional[int] , lowerCamelCase__ :Dict ): return self.position == cell.position def __a ( self :str ): print(self.position ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Tuple , lowerCamelCase__ :List[Any]=(5, 5) ): UpperCamelCase__ :Optional[int] = np.zeros(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = world_size[0] UpperCamelCase__ :Optional[Any] = world_size[1] def __a ( self :Optional[int] ): print(self.w ) def __a ( self :Dict , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Tuple = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCamelCase__ :List[str] = cell.position[0] UpperCamelCase__ :List[Any] = cell.position[1] UpperCamelCase__ :Tuple = [] for n in neughbour_cord: UpperCamelCase__ :int = current_x + n[0] UpperCamelCase__ :List[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCamelCase__ :List[Any] = Cell() UpperCamelCase__ :Optional[int] = (x, y) UpperCamelCase__ :str = cell neighbours.append(lowerCamelCase__ ) return neighbours def A ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Tuple = [] UpperCamelCase__ :int = [] _open.append(lowercase__ ) while _open: UpperCamelCase__ :int = np.argmin([n.f for n in _open] ) UpperCamelCase__ :str = _open[min_f] _closed.append(_open.pop(lowercase__ ) ) if current == goal: break for n in world.get_neigbours(lowercase__ ): for c in _closed: if c == n: continue UpperCamelCase__ :Optional[int] = current.g + 1 UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = n.position UpperCamelCase__ , UpperCamelCase__ :int = goal.position UpperCamelCase__ :List[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCamelCase__ :Union[str, Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase__ ) UpperCamelCase__ :Optional[int] = [] while current.parent is not None: path.append(current.position ) UpperCamelCase__ :Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase = Gridworld() # Start position and goal UpperCamelCase = Cell() UpperCamelCase = (0, 0) UpperCamelCase = Cell() UpperCamelCase = (4, 4) print(f'''path from {start.position} to {goal.position}''') UpperCamelCase = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase = 1 print(world.w)
383
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Tuple = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'blip_text_model' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str=3_0_5_2_4 , SCREAMING_SNAKE_CASE : str=7_6_8 , SCREAMING_SNAKE_CASE : Dict=7_6_8 , SCREAMING_SNAKE_CASE : Union[str, Any]=3_0_7_2 , SCREAMING_SNAKE_CASE : Dict=7_6_8 , SCREAMING_SNAKE_CASE : List[Any]=1_2 , SCREAMING_SNAKE_CASE : Optional[int]=8 , SCREAMING_SNAKE_CASE : str=5_1_2 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : int=1E-12 , SCREAMING_SNAKE_CASE : List[str]=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : Dict=0.0_2 , SCREAMING_SNAKE_CASE : Any=3_0_5_2_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : Optional[int]=1_0_2 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : List[str]=True , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , sep_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = encoder_hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = projection_dim lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = max_position_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act lowerCAmelCase = initializer_range lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = is_decoder lowerCAmelCase = use_cache @classmethod def __A ( cls : List[Any] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'blip_vision_model' def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str=7_6_8 , SCREAMING_SNAKE_CASE : Union[str, Any]=3_0_7_2 , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : Optional[int]=1_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE : List[Any]=3_8_4 , SCREAMING_SNAKE_CASE : List[Any]=1_6 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : int=1E-5 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE : List[str]=1E-10 , **SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = projection_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = patch_size lowerCAmelCase = image_size lowerCAmelCase = initializer_range lowerCAmelCase = attention_dropout lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : int ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'blip' lowerCAmelCase = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : List[Any]=5_1_2 , SCREAMING_SNAKE_CASE : int=2.6_5_9_2 , SCREAMING_SNAKE_CASE : List[Any]=2_5_6 , **SCREAMING_SNAKE_CASE : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if text_config is None: lowerCAmelCase = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: lowerCAmelCase = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) lowerCAmelCase = BlipTextConfig(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = BlipVisionConfig(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.vision_config.hidden_size lowerCAmelCase = projection_dim lowerCAmelCase = logit_scale_init_value lowerCAmelCase = 1.0 lowerCAmelCase = 0.0_2 lowerCAmelCase = image_text_hidden_size @classmethod def __A ( cls : List[Any] , SCREAMING_SNAKE_CASE : BlipTextConfig , SCREAMING_SNAKE_CASE : BlipVisionConfig , **SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def __A ( self : List[str] ) -> Any: """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.text_config.to_dict() lowerCAmelCase = self.vision_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
649
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
def a__ ( A_ ): '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(A_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
76
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[Any] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor a__ : int = logging.get_logger(__name__) class __snake_case ( __magic_name__ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
368
1
'''simple docstring''' import math import sys def __lowercase (_lowercase ) -> str: """simple docstring""" __lowerCamelCase : Optional[Any] = """""" try: with open(_lowercase, """rb""" ) as binary_file: __lowerCamelCase : str = binary_file.read() for dat in data: __lowerCamelCase : Dict = f"{dat:08b}" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __lowercase (_lowercase ) -> str: """simple docstring""" __lowerCamelCase : str = {"""0""": """0""", """1""": """1"""} __lowerCamelCase : Optional[int] = """""", """""" __lowerCamelCase : Optional[Any] = len(_lowercase ) for i in range(len(_lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase : Union[str, Any] = lexicon[curr_string] result += last_match_id __lowerCamelCase : List[Any] = last_match_id + """0""" if math.loga(_lowercase ).is_integer(): __lowerCamelCase : List[Any] = {} for curr_key in list(_lowercase ): __lowerCamelCase : Tuple = lexicon.pop(_lowercase ) __lowerCamelCase : int = new_lex __lowerCamelCase : int = last_match_id + """1""" index += 1 __lowerCamelCase : int = """""" return result def __lowercase (_lowercase, _lowercase ) -> None: """simple docstring""" __lowerCamelCase : Union[str, Any] = 8 try: with open(_lowercase, """wb""" ) as opened_file: __lowerCamelCase : Dict = [ to_write[i : i + byte_length] for i in range(0, len(_lowercase ), _lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase, 2 ).to_bytes(1, byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __lowercase (_lowercase ) -> str: """simple docstring""" __lowerCamelCase : Dict = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCamelCase : Union[str, Any] = data_bits[counter:] __lowerCamelCase : Any = data_bits[counter + 1 :] return data_bits def __lowercase (_lowercase, _lowercase ) -> None: """simple docstring""" __lowerCamelCase : List[str] = read_file_binary(_lowercase ) __lowerCamelCase : str = remove_prefix(_lowercase ) __lowerCamelCase : Union[str, Any] = decompress_data(_lowercase ) write_file_binary(_lowercase, _lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
718
'''simple docstring''' import math def __lowercase () -> None: """simple docstring""" __lowerCamelCase : Optional[int] = input("""Enter message: """ ) __lowerCamelCase : Optional[Any] = int(input(f"Enter key [2-{len(_lowercase ) - 1}]: " ) ) __lowerCamelCase : Dict = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCamelCase : Any = encrypt_message(_lowercase, _lowercase ) elif mode.lower().startswith("""d""" ): __lowerCamelCase : int = decrypt_message(_lowercase, _lowercase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def __lowercase (_lowercase, _lowercase ) -> str: """simple docstring""" __lowerCamelCase : int = [""""""] * key for col in range(_lowercase ): __lowerCamelCase : Optional[Any] = col while pointer < len(_lowercase ): cipher_text[col] += message[pointer] pointer += key return "".join(_lowercase ) def __lowercase (_lowercase, _lowercase ) -> str: """simple docstring""" __lowerCamelCase : List[str] = math.ceil(len(_lowercase ) / key ) __lowerCamelCase : List[str] = key __lowerCamelCase : Tuple = (num_cols * num_rows) - len(_lowercase ) __lowerCamelCase : List[str] = [""""""] * num_cols __lowerCamelCase : List[str] = 0 __lowerCamelCase : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __lowerCamelCase : int = 0 row += 1 return "".join(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
483
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' A = DebertaTokenizer A = True A = DebertaTokenizerFast def lowerCamelCase__ ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] UpperCamelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ = {"unk_token": "[UNK]"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase_ ) ) def lowerCamelCase__ ( self :int , **lowerCamelCase_ :Tuple ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :Dict ) -> List[str]: """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowerCamelCase__ ( self :List[Any] ) -> Dict: """simple docstring""" UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCamelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase__ ( self :Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tokenizer("Hello" , "World" ) UpperCamelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , lowerCamelCase_ ) @slow def lowerCamelCase__ ( self :Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.encode( "sequence builders" , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase__ ( self :Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase__ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCamelCase__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] UpperCamelCase__ = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ ) UpperCamelCase__ = [tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) for seq in encoding["input_ids"]] # fmt: off UpperCamelCase__ = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , lowerCamelCase_ ) for expected, decoded in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
516
"""simple docstring""" from heapq import heappop, heappush import numpy as np def snake_case__ ( _snake_case : np.ndarray , _snake_case : tuple[int, int] , _snake_case : tuple[int, int] , _snake_case : bool , ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = grid.shape UpperCamelCase__ = [-1, 1, 0, 0] UpperCamelCase__ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase__ , UpperCamelCase__ = [(0, source)], set() UpperCamelCase__ = np.full((rows, cols) , np.inf ) UpperCamelCase__ = 0 UpperCamelCase__ = np.empty((rows, cols) , dtype=_snake_case ) UpperCamelCase__ = None while queue: ((UpperCamelCase__) , (UpperCamelCase__)) = heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase__ = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase__ , UpperCamelCase__ = predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): UpperCamelCase__ , UpperCamelCase__ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase__ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) UpperCamelCase__ = dist + 1 UpperCamelCase__ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
516
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = CanineTokenizer __SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() UpperCamelCase : List[str] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCamelCase ) -> CanineTokenizer: '''simple docstring''' UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) UpperCamelCase : List[str] = 10_24 return tokenizer @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : Tuple = self.canine_tokenizer UpperCamelCase : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCamelCase : int = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on UpperCamelCase : Optional[Any] = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) UpperCamelCase : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[Any] = self.canine_tokenizer UpperCamelCase : Any = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCamelCase : str = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , lowerCamelCase ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertIn("token_type_ids" , lowerCamelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : str = self.canine_tokenizer UpperCamelCase : List[str] = [ "What's the weater?", "It's about 25 degrees.", ] UpperCamelCase : List[str] = tokenizer( text_target=lowerCamelCase , max_length=32 , padding="max_length" , truncation=lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : Tuple = tempfile.mkdtemp() UpperCamelCase : Optional[Any] = " He is very happy, UNwant\u00E9d,running" UpperCamelCase : Tuple = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) UpperCamelCase : str = tokenizer.__class__.from_pretrained(lowerCamelCase ) UpperCamelCase : Optional[int] = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) shutil.rmtree(lowerCamelCase ) UpperCamelCase : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : Dict = " He is very happy, UNwant\u00E9d,running" UpperCamelCase : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCamelCase : Tuple = chr(0xE0_07 ) additional_special_tokens.append(lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCamelCase : Tuple = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) UpperCamelCase : Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase ) UpperCamelCase : str = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertIn(lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase : Optional[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase , UpperCamelCase : Tuple = self.get_clean_sequence(lowerCamelCase ) # a special token for Canine can be defined as follows: UpperCamelCase : Optional[Any] = 0xE0_05 UpperCamelCase : List[Any] = chr(lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCamelCase : Tuple = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , 1 ) UpperCamelCase : Optional[int] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCamelCase ) UpperCamelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) UpperCamelCase : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) UpperCamelCase : List[Any] = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , input_encoded + special_token_id ) UpperCamelCase : Optional[int] = tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Dict = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase : Any = chr(0xE0_05 ) UpperCamelCase : Optional[Any] = chr(0xE0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCamelCase : Tuple = tokenizer.tokenize(lowerCamelCase ) UpperCamelCase : Union[str, Any] = tokenizer.tokenize(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , lowerCamelCase ) self.assertEqual(token_a[0] , lowerCamelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : str = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: UpperCamelCase : Optional[Any] = 0xE0_06 UpperCamelCase : List[Any] = chr(lowerCamelCase ) UpperCamelCase : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCamelCase ) tokenizer.from_pretrained(lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCamelCase : Optional[Any] = json.load(lowerCamelCase ) with open(os.path.join(lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCamelCase : Any = json.load(lowerCamelCase ) # a special token for Canine can be defined as follows: UpperCamelCase : Any = 0xE0_06 UpperCamelCase : Any = chr(lowerCamelCase ) UpperCamelCase : Tuple = [new_token_a] UpperCamelCase : Optional[int] = [new_token_a] with open(os.path.join(lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) with open(os.path.join(lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase : str = tokenizer_class.from_pretrained(lowerCamelCase , extra_ids=0 ) self.assertIn(lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCamelCase : Optional[int] = 0xE0_07 UpperCamelCase : Optional[Any] = chr(lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase : str = [AddedToken(lowerCamelCase , lstrip=lowerCamelCase )] UpperCamelCase : Any = tokenizer_class.from_pretrained( lowerCamelCase , additional_special_tokens=lowerCamelCase , extra_ids=0 ) self.assertIn(lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Dict = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase : int = "hello world" if self.space_between_special_tokens: UpperCamelCase : Any = "[CLS] hello world [SEP]" else: UpperCamelCase : Any = input UpperCamelCase : Any = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) UpperCamelCase : Union[str, Any] = tokenizer.decode(lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCamelCase , [output, output.lower()] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCamelCase : int = "a" UpperCamelCase : str = ord(lowerCamelCase ) for attr in attributes_list: setattr(lowerCamelCase , attr + "_id" , lowerCamelCase ) self.assertEqual(getattr(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(getattr(lowerCamelCase , attr + "_id" ) , lowerCamelCase ) setattr(lowerCamelCase , attr + "_id" , lowerCamelCase ) self.assertEqual(getattr(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) self.assertEqual(getattr(lowerCamelCase , attr + "_id" ) , lowerCamelCase ) setattr(lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(lowerCamelCase , "additional_special_tokens_ids" ) , [] ) UpperCamelCase : Optional[int] = 0xE0_06 UpperCamelCase : Tuple = chr(lowerCamelCase ) setattr(lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' pass
435
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase_ = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCAmelCase_ = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCAmelCase_ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCAmelCase_ = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCAmelCase_ = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase_ = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCAmelCase_ = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def A__ ( ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[str] = randrange(len(A)), randrange(len(A)) UpperCamelCase : Tuple = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def A__ ( A : int = 1_00): '''simple docstring''' return (generate_random_hand() for _ in range(A)) @pytest.mark.parametrize("hand, expected" , A) def A__ ( A : List[Any] , A : Union[str, Any]): '''simple docstring''' assert PokerHand(A)._is_flush() == expected @pytest.mark.parametrize("hand, expected" , A) def A__ ( A : Any , A : Any): '''simple docstring''' assert PokerHand(A)._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , A) def A__ ( A : Optional[Any] , A : Any , A : Optional[int]): '''simple docstring''' UpperCamelCase : Dict = PokerHand(A) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , A) def A__ ( A : str , A : Any): '''simple docstring''' assert PokerHand(A)._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , A) def A__ ( A : str , A : Optional[int]): '''simple docstring''' assert PokerHand(A)._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , A) def A__ ( A : List[str] , A : Optional[int] , A : Dict): '''simple docstring''' assert PokerHand(A).compare_with(PokerHand(A)) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands()) def A__ ( A : List[str] , A : Optional[int] , A : str): '''simple docstring''' assert PokerHand(A).compare_with(PokerHand(A)) == expected def A__ ( ): '''simple docstring''' UpperCamelCase : Optional[int] = [PokerHand(A) for hand in SORTED_HANDS] UpperCamelCase : Union[str, Any] = poker_hands.copy() shuffle(A) UpperCamelCase : List[Any] = chain(sorted(A)) for index, hand in enumerate(A): assert hand == poker_hands[index] def A__ ( ): '''simple docstring''' UpperCamelCase : List[Any] = [PokerHand("2D AC 3H 4H 5S"), PokerHand("2S 3H 4H 5S 6C")] pokerhands.sort(reverse=A) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def A__ ( ): '''simple docstring''' UpperCamelCase : List[Any] = PokerHand("2C 4S AS 3D 5C") UpperCamelCase : Optional[Any] = True UpperCamelCase : int = [5, 4, 3, 2, 14] for _ in range(10): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def A__ ( ): '''simple docstring''' UpperCamelCase : List[str] = 0 UpperCamelCase : List[str] = os.path.abspath(os.path.dirname(A)) UpperCamelCase : str = os.path.join(A , "poker_hands.txt") with open(A) as file_hand: for line in file_hand: UpperCamelCase : Any = line[:14].strip() UpperCamelCase : List[str] = line[15:].strip() UpperCamelCase , UpperCamelCase : Any = PokerHand(A), PokerHand(A) UpperCamelCase : Union[str, Any] = player.compare_with(A) if output == "Win": answer += 1 assert answer == 3_76
435
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , a=0.01 , a=10_00 ) -> Any: snake_case_ = p_stop snake_case_ = max_length def __iter__( self ) -> str: snake_case_ = 0 snake_case_ = False while not stop and count < self.max_length: yield count count += 1 snake_case_ = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , a , a , a=False , a=True ) -> Optional[Any]: snake_case_ = [ BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 ) ] snake_case_ = [list(lowerCAmelCase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase_ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase_ ) for e in expected] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> int: snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> int: snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase_ ) snake_case_ = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = [[], []] self.check_batch_sampler_shards(lowerCAmelCase_ , lowerCAmelCase_ , split_batches=lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> str: snake_case_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] snake_case_ = [BatchSamplerShard(lowerCAmelCase_ , 2 , lowerCAmelCase_ , even_batches=lowerCAmelCase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _UpperCamelCase ( self , a , a , a , a=False , a=2 , a=False ) -> Tuple: random.seed(lowerCAmelCase_ ) snake_case_ = list(lowerCAmelCase_ ) snake_case_ = [ IterableDatasetShard( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ , num_processes=lowerCAmelCase_ , process_index=lowerCAmelCase_ , split_batches=lowerCAmelCase_ , ) for i in range(lowerCAmelCase_ ) ] snake_case_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase_ ) iterable_dataset_lists.append(list(lowerCAmelCase_ ) ) snake_case_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) self.assertTrue(len(lowerCAmelCase_ ) % shard_batch_size == 0 ) snake_case_ = [] for idx in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): reference += reference self.assertListEqual(lowerCAmelCase_ , reference[: len(lowerCAmelCase_ )] ) def _UpperCamelCase ( self ) -> Any: snake_case_ = 42 snake_case_ = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) # Edge case with a very small dataset snake_case_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) self.check_iterable_dataset_shards(lowerCAmelCase_ , lowerCAmelCase_ , batch_size=4 , drop_last=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) def _UpperCamelCase ( self ) -> Tuple: snake_case_ = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase_ ) snake_case_ = SkipBatchSampler(lowerCAmelCase_ , 2 ) self.assertListEqual(list(lowerCAmelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> Any: snake_case_ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = DataLoader(list(range(16 ) ) , batch_size=4 ) snake_case_ = skip_first_batches(lowerCAmelCase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _UpperCamelCase ( self ) -> str: Accelerator() snake_case_ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
198
'''simple docstring''' from itertools import product def _snake_case ( A_ : int , A_ : int ): """simple docstring""" a_ : List[str] = sides_number a_ : Tuple = max_face_number * dice_number a_ : Optional[Any] = [0] * (max_total + 1) a_ : Any = 1 a_ : Optional[Any] = range(A_ , max_face_number + 1 ) for dice_numbers in product(A_ , repeat=A_ ): a_ : Union[str, Any] = sum(A_ ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ): """simple docstring""" a_ : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) a_ : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) a_ : Optional[Any] = 0 a_ : List[Any] = 9 a_ : Optional[int] = 4 * 9 a_ : List[Any] = 6 for peter_total in range(A_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a_ : str = (4**9) * (6**6) a_ : Any = peter_wins_count / total_games_number a_ : List[Any] = round(A_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
577
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase : int = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def __lowerCAmelCase ( lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = list(s_dict.keys() ) for key in keys: __lowerCAmelCase = r".*/layers_(\d+)" __lowerCAmelCase = key if re.match(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = re.sub(r"layers_(\d+)" , r"block/\1/layer" , lowerCamelCase ) __lowerCAmelCase = r"(encoder|decoder)\/" if re.match(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = re.match(lowerCamelCase , lowerCamelCase ).groups() if groups[0] == "encoder": __lowerCAmelCase = re.sub(r"/mlp/" , r"/1/mlp/" , lowerCamelCase ) __lowerCAmelCase = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , lowerCamelCase ) elif groups[0] == "decoder": __lowerCAmelCase = re.sub(r"/mlp/" , r"/2/mlp/" , lowerCamelCase ) __lowerCAmelCase = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , lowerCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __lowerCAmelCase = new_key.replace(lowerCamelCase , lowerCamelCase ) print(f'''{key} -> {new_key}''' ) __lowerCAmelCase = s_dict.pop(lowerCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCAmelCase = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __lowerCAmelCase = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __lowerCAmelCase = s_dict[key].shape[0] __lowerCAmelCase = s_dict[key] for idx in range(lowerCamelCase ): __lowerCAmelCase = expert_weihts[idx] print(f'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(lowerCamelCase ) return s_dict lowerCAmelCase : Any = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' import regex as re with open(lowerCamelCase , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = re.findall(r"(.*) = ([0-9.]*)" , lowerCamelCase ) __lowerCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __lowerCAmelCase = float(lowerCamelCase ) if "." in value else int(lowerCamelCase ) __lowerCAmelCase = re.findall(r"(.*activations) = \(\'(.*)\',\)" , lowerCamelCase )[0] __lowerCAmelCase = str(activation[1] ) __lowerCAmelCase = num_experts __lowerCAmelCase = SwitchTransformersConfig(**lowerCamelCase ) return config def __lowerCAmelCase ( lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : List[str]=None , lowerCamelCase : Tuple="./" , lowerCamelCase : Tuple=8 ): '''simple docstring''' print(f'''Loading flax weights from : {flax_checkpoint_path}''' ) __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCamelCase ) if gin_file is not None: __lowerCAmelCase = convert_gin_to_config(lowerCamelCase , lowerCamelCase ) else: __lowerCAmelCase = SwitchTransformersConfig.from_pretrained(lowerCamelCase ) __lowerCAmelCase = SwitchTransformersForConditionalGeneration(lowerCamelCase ) __lowerCAmelCase = flax_params["target"] __lowerCAmelCase = flatten_dict(lowerCamelCase , sep="/" ) __lowerCAmelCase = rename_keys(lowerCamelCase ) __lowerCAmelCase = unflatten_dict(lowerCamelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCamelCase , lowerCamelCase ) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCAmelCase : Optional[int] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
39
'''simple docstring''' import os import sys import unittest lowerCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class UpperCAmelCase__ ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> str: __lowerCAmelCase = get_test_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = get_test_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = {"BertModelTest": "BertModelTester"} __lowerCAmelCase = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = get_model_to_test_mapping(UpperCamelCase ) __lowerCAmelCase = get_model_to_test_mapping(UpperCamelCase ) __lowerCAmelCase = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __lowerCAmelCase = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) def UpperCAmelCase_ ( self ) -> str: __lowerCAmelCase = get_model_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = get_model_to_tester_mapping(UpperCamelCase ) __lowerCAmelCase = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __lowerCAmelCase = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(get_test_info.to_json(UpperCamelCase ) , UpperCamelCase )
39
1
from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCamelCase : Optional[Any] = 6_3_7_8_1_3_7.0 __UpperCamelCase : Tuple = 6_3_5_6_7_5_2.3_1_4_2_4_5 __UpperCamelCase : Any = 6378137 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = (AXIS_A - AXIS_B) / AXIS_A __lowercase = atan((1 - flattening) * tan(radians(lowerCamelCase ) ) ) __lowercase = atan((1 - flattening) * tan(radians(lowerCamelCase ) ) ) __lowercase = radians(lowerCamelCase ) __lowercase = radians(lowerCamelCase ) # Equation __lowercase = sin((phi_a - phi_a) / 2 ) __lowercase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __lowercase = sqrt(sin_sq_phi + (cos(lowerCamelCase ) * cos(lowerCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
80
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def lowercase_ ( *A_ , **A_ ) -> Optional[int]: """simple docstring""" pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase ): @require_torch def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Optional[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _lowercase: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowercase: str = image_classifier(A_ , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A_ ) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) _lowercase: Any = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], ] , ) @require_tf def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Union[str, Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _lowercase: List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowercase: Union[str, Any] = image_classifier(A_ , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(A_ ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) _lowercase: List[str] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, {'''score''': 0.3_33, '''label''': ANY(A_ )}, ], ] , ) @slow @require_torch def lowercase_ ( self ) -> Any: """simple docstring""" _lowercase: Tuple = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _lowercase: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowercase: Optional[Any] = image_classifier(A_ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(A_ ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) _lowercase: Optional[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Tuple = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _lowercase: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowercase: Optional[int] = image_classifier(A_ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(A_ ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) _lowercase: Optional[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
353
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase ( A ): '''simple docstring''' _A : Tuple = ['''pixel_values'''] def __init__( self : str , _a : bool = True , _a : Dict[str, int] = None , _a : PILImageResampling = PILImageResampling.BICUBIC , _a : bool = True , _a : Dict[str, int] = None , _a : bool = True , _a : Union[int, float] = 1 / 255 , _a : bool = True , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , _a : bool = True , **_a : Union[str, Any] , ): super().__init__(**_a ) UpperCamelCase__ = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase__ = get_size_dict(_a , default_to_square=_a ) UpperCamelCase__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase__ = do_convert_rgb def A_ ( self : Tuple , _a : np.ndarray , _a : Dict[str, int] , _a : PILImageResampling = PILImageResampling.BICUBIC , _a : Optional[Union[str, ChannelDimension]] = None , **_a : int , ): UpperCamelCase__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def A_ ( self : Optional[int] , _a : np.ndarray , _a : Dict[str, int] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Tuple , ): UpperCamelCase__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def A_ ( self : int , _a : np.ndarray , _a : Union[int, float] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Dict , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def A_ ( self : Tuple , _a : np.ndarray , _a : Union[float, List[float]] , _a : Union[float, List[float]] , _a : Optional[Union[str, ChannelDimension]] = None , **_a : Union[str, Any] , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def A_ ( self : List[str] , _a : ImageInput , _a : bool = None , _a : Dict[str, int] = None , _a : PILImageResampling = None , _a : bool = None , _a : int = None , _a : bool = None , _a : float = None , _a : bool = None , _a : Optional[Union[float, List[float]]] = None , _a : Optional[Union[float, List[float]]] = None , _a : bool = None , _a : Optional[Union[str, TensorType]] = None , _a : Optional[ChannelDimension] = ChannelDimension.FIRST , **_a : str , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase__ = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(_a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(_a , _a ) for image in images] UpperCamelCase__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
591
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCamelCase_ ( UpperCamelCase__ : Optional[int]=None ): '''simple docstring''' if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('''tpu-config''', description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('''Accelerate tpu-config command''', description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( '''Config Arguments''', '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''', type=UpperCamelCase__, default=UpperCamelCase__, help='''Path to the config file to use for accelerate.''', ) config_args.add_argument( '''--tpu_name''', default=UpperCamelCase__, help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''', ) config_args.add_argument( '''--tpu_zone''', default=UpperCamelCase__, help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''', ) UpperCamelCase__ = parser.add_argument_group('''TPU Arguments''', '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''', action='''store_true''', help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''', ) pod_args.add_argument( '''--command_file''', default=UpperCamelCase__, help='''The path to the file containing the commands to run on the pod on startup.''', ) pod_args.add_argument( '''--command''', action='''append''', nargs='''+''', help='''A command to run on the pod. Can be passed multiple times.''', ) pod_args.add_argument( '''--install_accelerate''', action='''store_true''', help='''Whether to install accelerate on the pod. Defaults to False.''', ) pod_args.add_argument( '''--accelerate_version''', default='''latest''', help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''', ) pod_args.add_argument( '''--debug''', action='''store_true''', help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCamelCase__ ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCamelCase__ = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ), UpperCamelCase__ ): UpperCamelCase__ = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file, '''r''' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], UpperCamelCase__ ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command UpperCamelCase__ = '''; '''.join(UpperCamelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {" ".join(UpperCamelCase__ )}""" ) return subprocess.run(UpperCamelCase__ ) print('''Successfully setup pod.''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(UpperCamelCase__ )
591
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 100 , ) -> float: """simple docstring""" __UpperCAmelCase : Optional[int] = x_start __UpperCAmelCase : List[str] = fnc(UpperCamelCase ) __UpperCAmelCase : Tuple = 0.0 for _ in range(UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCAmelCase : int = (x_end - x_start) / steps + xa __UpperCAmelCase : Tuple = fnc(UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCAmelCase : List[Any] = xa __UpperCAmelCase : Dict = fxa return area if __name__ == "__main__": def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
77
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] )-> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self : Optional[Any] )-> int: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A ( self : str )-> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A ( self : str )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) __UpperCamelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A ( self : Tuple )-> List[str]: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=A_ , unet=self.dummy_unet , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ , steps=4 , return_dict=A_ ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(raw_audio=A_ , generator=A_ , start_step=5 , steps=10 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A_ , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 10) ) __UpperCamelCase = pipe(generator=A_ , encoding=A_ ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str )-> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] )-> Union[str, Any]: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
505
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( a__ ,a__=False): _SCREAMING_SNAKE_CASE =[] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "deit" from all keys that start with "deit" _SCREAMING_SNAKE_CASE =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''') else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ]) return rename_keys def SCREAMING_SNAKE_CASE__( a__ ,a__ ,a__=False): for i in range(config.num_hidden_layers): if base_model: _SCREAMING_SNAKE_CASE ='''''' else: _SCREAMING_SNAKE_CASE ='''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.weight") _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE =in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE =in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__( a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =dct.pop(a__) _SCREAMING_SNAKE_CASE =val def SCREAMING_SNAKE_CASE__( ): _SCREAMING_SNAKE_CASE ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(a__ ,stream=a__).raw) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__( a__ ,a__): _SCREAMING_SNAKE_CASE =DeiTConfig() # all deit models have fine-tuned heads _SCREAMING_SNAKE_CASE =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _SCREAMING_SNAKE_CASE =1000 _SCREAMING_SNAKE_CASE ='''huggingface/label-files''' _SCREAMING_SNAKE_CASE ='''imagenet-1k-id2label.json''' _SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(a__ ,a__ ,repo_type='''dataset''') ,'''r''')) _SCREAMING_SNAKE_CASE ={int(a__): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =idalabel _SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =int(deit_name[-6:-4]) _SCREAMING_SNAKE_CASE =int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith('''tiny'''): _SCREAMING_SNAKE_CASE =192 _SCREAMING_SNAKE_CASE =768 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =3 elif deit_name[9:].startswith('''small'''): _SCREAMING_SNAKE_CASE =384 _SCREAMING_SNAKE_CASE =1536 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =6 if deit_name[9:].startswith('''base'''): pass elif deit_name[4:].startswith('''large'''): _SCREAMING_SNAKE_CASE =1024 _SCREAMING_SNAKE_CASE =4096 _SCREAMING_SNAKE_CASE =24 _SCREAMING_SNAKE_CASE =16 # load original model from timm _SCREAMING_SNAKE_CASE =timm.create_model(a__ ,pretrained=a__) timm_model.eval() # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE =timm_model.state_dict() _SCREAMING_SNAKE_CASE =create_rename_keys(a__ ,a__) for src, dest in rename_keys: rename_key(a__ ,a__ ,a__) read_in_q_k_v(a__ ,a__ ,a__) # load HuggingFace model _SCREAMING_SNAKE_CASE =DeiTForImageClassificationWithTeacher(a__).eval() model.load_state_dict(a__) # Check outputs on an image, prepared by DeiTImageProcessor _SCREAMING_SNAKE_CASE =int( (256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _SCREAMING_SNAKE_CASE =DeiTImageProcessor(size=a__ ,crop_size=config.image_size) _SCREAMING_SNAKE_CASE =image_processor(images=prepare_img() ,return_tensors='''pt''') _SCREAMING_SNAKE_CASE =encoding['''pixel_values'''] _SCREAMING_SNAKE_CASE =model(a__) _SCREAMING_SNAKE_CASE =timm_model(a__) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ ,outputs.logits ,atol=1e-3) Path(a__).mkdir(exist_ok=a__) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a__) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(a__) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case_ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
721
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( UpperCamelCase__ ): UpperCAmelCase = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCAmelCase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCAmelCase = "document_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = VisionEncoderDecoderModel UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self : Any , *_a : int , **_a : Dict ) -> int: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_a , **_a ) def __UpperCamelCase ( self : Optional[Any] , _a : "Image" , _a : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _SCREAMING_SNAKE_CASE =task_prompt.replace('''{user_input}''' , _a ) _SCREAMING_SNAKE_CASE =self.pre_processor.tokenizer( _a , add_special_tokens=_a , return_tensors='''pt''' ).input_ids _SCREAMING_SNAKE_CASE =self.pre_processor(_a , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCamelCase ( self : List[Any] , _a : Optional[Any] ) -> int: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_a , ).sequences def __UpperCamelCase ( self : Any , _a : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.pre_processor.batch_decode(_a )[0] _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _SCREAMING_SNAKE_CASE =re.sub(R'''<.*?>''' , '''''' , _a , count=1 ).strip() # remove first task start token _SCREAMING_SNAKE_CASE =self.pre_processor.tokenajson(_a ) return sequence["answer"]
191
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) def UpperCAmelCase ( snake_case : Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase:List[str] = tf.shape(snake_case ) if tensor.shape == tf.TensorShape(snake_case ): return dynamic _lowerCAmelCase:Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case )] def UpperCAmelCase ( snake_case : tf.Tensor , snake_case : Optional[int] = None , snake_case : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=snake_case , name=snake_case ) def UpperCAmelCase ( snake_case : Any , snake_case : Any , snake_case : Optional[Any] , snake_case : List[str]=1e-5 , snake_case : Any=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case , snake_case ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized _lowerCAmelCase , _lowerCAmelCase:Union[str, Any] = tf.nn.moments(snake_case , axes=[axis] , keepdims=snake_case ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase:Optional[int] = [1] * inputs.shape.rank _lowerCAmelCase:List[str] = shape_list(snake_case )[axis] _lowerCAmelCase:str = tf.reshape(snake_case , snake_case ) _lowerCAmelCase:List[Any] = tf.reshape(snake_case , snake_case ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase:Union[str, Any] = tf.nn.batch_normalization( snake_case , snake_case , snake_case , offset=snake_case , scale=snake_case , variance_epsilon=snake_case , ) return outputs def UpperCAmelCase ( snake_case : Dict , snake_case : str=0 , snake_case : List[Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase:Optional[int] = tf.shape(snake_case ) _lowerCAmelCase:int = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase:Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case , snake_case ) def UpperCAmelCase ( snake_case : tf.Tensor ): if not isinstance(snake_case , tf.Tensor ): _lowerCAmelCase:str = tf.convert_to_tensor(snake_case ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase:Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase:int = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase:str = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase ( snake_case : tf.Tensor , snake_case : int , snake_case : str = "input_ids" ): tf.debugging.assert_less( snake_case , tf.cast(snake_case , dtype=tensor.dtype ) , message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def UpperCAmelCase ( snake_case : Dict , snake_case : Tuple , snake_case : Tuple ): _lowerCAmelCase:Any = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase:Union[str, Any] = [x for x in data if len(snake_case ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) _lowerCAmelCase:Optional[Any] = np.asarray(snake_case ) _lowerCAmelCase:Any = 1 _lowerCAmelCase:Any = np.array_split(snake_case , snake_case ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase:int = np.array_split(snake_case , snake_case ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case ): _lowerCAmelCase:Optional[Any] = chunk_data else: _lowerCAmelCase:Optional[int] = data def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Dict ): if name in group.attrs: _lowerCAmelCase:List[Any] = [n.decode('''utf8''' ) if hasattr(snake_case , '''decode''' ) else n for n in group.attrs[name]] else: _lowerCAmelCase:List[str] = [] _lowerCAmelCase:Any = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase ( snake_case : int ): def _expand_single_ad_tensor(snake_case : Tuple ): if isinstance(snake_case , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case )
227
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase ( snake_case : str ): _lowerCAmelCase:Optional[Any] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' _lowerCAmelCase:Any = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(snake_case ).content if __name__ == "__main__": UpperCamelCase__ = input('''Enter Video/IGTV url: ''').strip() UpperCamelCase__ = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
227
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") __lowercase = {"""target_lang""": """fi""", """source_lang""": """en"""} __lowercase = """>>zh<<""" __lowercase = """Helsinki-NLP/""" if is_torch_available(): __lowercase = """pt""" elif is_tf_available(): __lowercase = """tf""" else: __lowercase = """jax""" @require_sentencepiece class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : List[Any] = MarianTokenizer _lowercase : Optional[Any] = False _lowercase : int = True def UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" super().setUp() A_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] A_ = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) A_ = Path(self.tmpdirname ) save_json(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) A_ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : str , **lowerCamelCase__ : Optional[int] ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Optional[int] ) -> str: """simple docstring""" return ( "This is a test", "This is a test", ) def UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" A_ = '''</s>''' A_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowerCamelCase__ ) , 9 ) def UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" A_ = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) A_ = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) A_ = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(lowerCamelCase__ , batch.input_ids[0] ) A_ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCamelCase__ ) A_ = [x.name for x in Path(lowerCamelCase__ ).glob('''*''' )] self.assertIn('''source.spm''' , lowerCamelCase__ ) MarianTokenizer.from_pretrained(lowerCamelCase__ ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" A_ = self.get_tokenizer() A_ = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" A_ = self.get_tokenizer() A_ = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" A_ = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" A_ = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) A_ = '''Tämä on testi''' A_ = '''This is a test''' A_ = [7_6, 7, 2_0_4_7, 2] A_ = [6_9, 1_2, 1_1, 9_4_0, 2] A_ = tokenizer(lowerCamelCase__ ).input_ids self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) A_ = tokenizer(text_target=lowerCamelCase__ ).input_ids self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) A_ = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
563
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __lowercase = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ __lowercase = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ __lowercase = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return float((preds == labels).mean() ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) A_ = float(spearmanr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
563
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _snake_case : __A : torch.Tensor # [batch_size x 3] __A : torch.Tensor # [batch_size x 3] __A : torch.Tensor # [batch_size x 3] __A : torch.Tensor # [batch_size x 3] __A : int __A : int __A : float __A : float __A : Tuple[int] def UpperCamelCase__ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase__ ( self ): return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def UpperCamelCase__ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = torch.arange(self.height * self.width ) UpperCAmelCase_ : Tuple = torch.stack( [ pixel_indices % self.width, torch.div(_snake_case ,self.width ,rounding_mode="trunc" ), ] ,axis=1 ,) return coords @property def UpperCamelCase__ ( self ): UpperCAmelCase_ , *UpperCAmelCase_ : Optional[int] = self.shape UpperCAmelCase_ : Dict = int(np.prod(_snake_case ) ) UpperCAmelCase_ : Optional[int] = self.get_image_coords() UpperCAmelCase_ : List[Any] = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Dict = self.get_camera_rays(_snake_case ) UpperCAmelCase_ : int = rays.view(_snake_case ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_snake_case ,-1 ,2 ) UpperCAmelCase_ : Optional[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : str = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : str = fracs.view(_snake_case ,-1 ,2 ) UpperCAmelCase_ : Optional[Any] = ( self.z.view(_snake_case ,1 ,3 ) + self.x.view(_snake_case ,1 ,3 ) * fracs[:, :, :1] + self.y.view(_snake_case ,1 ,3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : List[Any] = directions / directions.norm(dim=-1 ,keepdim=_snake_case ) UpperCAmelCase_ : str = torch.stack( [ torch.broadcast_to(self.origin.view(_snake_case ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(_snake_case ,*_snake_case ,2 ,3 ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=_snake_case ,height=_snake_case ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> DifferentiableProjectiveCamera: """simple docstring""" UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Union[str, Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase_ : Tuple = np.array([np.sin(_SCREAMING_SNAKE_CASE ), np.cos(_SCREAMING_SNAKE_CASE ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[Any] = -z * 4 UpperCAmelCase_ : List[str] = np.array([np.cos(_SCREAMING_SNAKE_CASE ), -np.sin(_SCREAMING_SNAKE_CASE ), 0.0] ) UpperCAmelCase_ : Dict = np.cross(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) origins.append(_SCREAMING_SNAKE_CASE ) xs.append(_SCREAMING_SNAKE_CASE ) ys.append(_SCREAMING_SNAKE_CASE ) zs.append(_SCREAMING_SNAKE_CASE ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_SCREAMING_SNAKE_CASE , axis=0 ) ).float() , width=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_SCREAMING_SNAKE_CASE )) , )
71
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {"""vocab_file""": """spiece.model"""} A = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } A = {"""bert_for_seq_generation""": 512} class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = [] lowercase_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="<::::>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Dict = vocab_file __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase_) @property def a_ ( self : List[str]): """simple docstring""" return self.sp_model.get_piece_size() def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = self.__dict__.copy() __UpperCAmelCase : List[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self : Any , UpperCamelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase_) def a_ ( self : Tuple , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : int = self.sp_model.IdToPiece(UpperCamelCase_) return token def a_ ( self : Dict , UpperCamelCase_ : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_) + token __UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase_) out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def a_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_ , "wb") as fi: __UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,)
77
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : UNetaDModel __lowerCamelCase : ScoreSdeVeScheduler def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 2_000 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.unet.config.sample_size SCREAMING_SNAKE_CASE_ : Any = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE_ : List[Any] = self.unet SCREAMING_SNAKE_CASE_ : Optional[Any] = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) self.scheduler.set_sigmas(__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample SCREAMING_SNAKE_CASE_ : int = self.scheduler.step_correct(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # prediction step SCREAMING_SNAKE_CASE_ : List[Any] = model(__lowerCAmelCase , __lowerCAmelCase ).sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler.step_pred(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE_ : str = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : Any = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCAmelCase )
311
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = 'ml.p3.2xlarge' __lowerCamelCase : Optional[int] = 'accelerate_sagemaker_execution_role' __lowerCamelCase : int = 'hf-sm' __lowerCamelCase : Any = 'us-east-1' __lowerCamelCase : Tuple = 1 __lowerCamelCase : str = 'accelerate-sagemaker-1' __lowerCamelCase : Optional[Any] = '1.6' __lowerCamelCase : Tuple = '4.4' __lowerCamelCase : List[str] = 'train.py' __lowerCamelCase : Optional[int] = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] __lowerCamelCase : str = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class snake_case_ ( unittest.TestCase ): def __A ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE_ : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , __lowerCAmelCase ) assert isinstance(converted_args['do_train'] , __lowerCAmelCase ) assert isinstance(converted_args['epochs'] , __lowerCAmelCase ) assert isinstance(converted_args['learning_rate'] , __lowerCAmelCase ) assert isinstance(converted_args['max_steps'] , __lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
311
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ = 50_000_000 ): __lowerCamelCase : Dict = set() __lowerCamelCase : Union[str, Any] = int((limit - 24) ** (1 / 2) ) __lowerCamelCase : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: __lowerCamelCase : Tuple = primea * primea for primea in primes: __lowerCamelCase : Tuple = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __lowerCamelCase : List[Any] = primea * primea * primea * primea __lowerCamelCase : int = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F"""{solution() = }""")
669
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
669
1
'''simple docstring''' from typing import Any class __lowerCAmelCase: def __init__( self : int , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = data SCREAMING_SNAKE_CASE_ :int = None class __lowerCAmelCase: def __init__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = None def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = self.head while temp is not None: print(temp.data , end=' ' ) SCREAMING_SNAKE_CASE_ :Optional[int] = temp.next print() def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = Node(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = self.head SCREAMING_SNAKE_CASE_ :Optional[int] = new_node def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE_ :str = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE_ :Union[str, Any] = node_a.next SCREAMING_SNAKE_CASE_ :Optional[int] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE_ :Any = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
233
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Tuple = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE_ :int = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Tuple = str(SCREAMING_SNAKE_CASE ) dataset_info.write_to_directory(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = DatasetInfo.from_directory(SCREAMING_SNAKE_CASE ) assert dataset_info == reloaded assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'dataset_info.json' ) ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) SCREAMING_SNAKE_CASE_ :Dict = dataset_info._to_yaml_dict() assert sorted(SCREAMING_SNAKE_CASE ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) SCREAMING_SNAKE_CASE_ :int = yaml.safe_dump(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = yaml.safe_load(SCREAMING_SNAKE_CASE ) assert dataset_info_yaml_dict == reloaded def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :List[Any] = DatasetInfo() SCREAMING_SNAKE_CASE_ :Optional[int] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :str = str(SCREAMING_SNAKE_CASE ) dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[str] = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE_ :List[Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE_ :Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'README.md' ) )
233
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase = val def lowerCamelCase_(lowerCamelCase_ ) -> List[Any]: UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase = value else: UpperCAmelCase = value return new_state_dict def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_=False ) -> List[str]: UpperCAmelCase = "" if is_panoptic: UpperCAmelCase = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:256, :] UpperCAmelCase = in_proj_bias[:256] UpperCAmelCase = in_proj_weight[256:512, :] UpperCAmelCase = in_proj_bias[256:512] UpperCAmelCase = in_proj_weight[-256:, :] UpperCAmelCase = in_proj_bias[-256:] def lowerCamelCase_() -> int: UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: UpperCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase = "resnet101" if "dc5" in model_name: UpperCAmelCase = True UpperCAmelCase = "panoptic" in model_name if is_panoptic: UpperCAmelCase = 250 else: UpperCAmelCase = 91 UpperCAmelCase = "huggingface/label-files" UpperCAmelCase = "coco-detection-id2label.json" UpperCAmelCase = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase = ConditionalDetrImageProcessor(format=lowerCamelCase_ ) # prepare image UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCamelCase_ , return_tensors="pt" ) UpperCAmelCase = encoding["pixel_values"] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub UpperCAmelCase = torch.hub.load("DeppMeng/ConditionalDETR" , lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() UpperCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase = "conditional_detr." + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase = rename_backbone_keys(lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) UpperCAmelCase = val # finally, create HuggingFace model and load state dict UpperCAmelCase = ConditionalDetrForSegmentation(lowerCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() model.push_to_hub(repo_id=lowerCamelCase_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase = conditional_detr(lowerCamelCase_ ) UpperCAmelCase = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCamelCase : Dict = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
323
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __magic_name__ ( A__ ): lowercase : Union[str, Any] ='''mra''' def __init__( self : Tuple , UpperCamelCase__ : Any=5_02_65 , UpperCamelCase__ : int=7_68 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Tuple=30_72 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : str=5_12 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : List[Any]=1e-5 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : str=4 , UpperCamelCase__ : Tuple="full" , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=2 , **UpperCamelCase__ : int , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = block_per_row UpperCAmelCase = approx_mode UpperCAmelCase = initial_prior_first_n_blocks UpperCAmelCase = initial_prior_diagonal_n_blocks
323
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Optional[int] = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : List[str] = "beit" def __init__( self , __magic_name__=8_1_9_2 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=3_0_7_2 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=2_2_4 , __magic_name__=1_6 , __magic_name__=3 , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=False , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=True , __magic_name__=[3, 5, 7, 1_1] , __magic_name__=[1, 2, 3, 6] , __magic_name__=True , __magic_name__=0.4 , __magic_name__=2_5_6 , __magic_name__=1 , __magic_name__=False , __magic_name__=2_5_5 , **__magic_name__ , ): """simple docstring""" super().__init__(**__magic_name__ ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_mask_token _lowerCAmelCase = use_absolute_position_embeddings _lowerCAmelCase = use_relative_position_bias _lowerCAmelCase = use_shared_relative_position_bias _lowerCAmelCase = layer_scale_init_value _lowerCAmelCase = drop_path_rate _lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase = out_indices _lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase = use_auxiliary_head _lowerCAmelCase = auxiliary_loss_weight _lowerCAmelCase = auxiliary_channels _lowerCAmelCase = auxiliary_num_convs _lowerCAmelCase = auxiliary_concat_input _lowerCAmelCase = semantic_loss_ignore_index class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Union[str, Any] = version.parse("1.11" ) @property def _lowerCamelCase ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCamelCase ( self ): """simple docstring""" return 1e-4
309
"""simple docstring""" import argparse from collections import defaultdict import yaml a__ : List[str] = """docs/source/en/_toctree.yml""" def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = defaultdict(__lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__lowerCamelCase, key=lambda __lowerCamelCase : s["title"].lower() ) def A__ ( __lowerCamelCase=False ): """simple docstring""" with open(__lowerCamelCase, encoding='utf-8' ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCAmelCase = api_doc[model_idx]['sections'] _lowerCAmelCase = [(idx, section) for idx, section in enumerate(__lowerCamelCase ) if 'sections' in section] _lowerCAmelCase = False for idx, modality_doc in modalities_docs: _lowerCAmelCase = modality_doc['sections'] _lowerCAmelCase = clean_model_doc_toc(__lowerCamelCase ) if old_modality_doc != new_modality_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_modality_doc if diff: if overwrite: _lowerCAmelCase = model_doc _lowerCAmelCase = api_doc with open(__lowerCamelCase, 'w', encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCamelCase, allow_unicode=__lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a__ : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
309
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=3_0 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=2 , ) -> List[Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 2 def _a ( self) -> Tuple: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = self.get_config() return config, pixel_values, labels def _a ( self) -> Any: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = DeiTModel(config=_lowercase) model.to(_lowercase) model.eval() __snake_case = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = DeiTForMaskedImageModeling(config=_lowercase) model.to(_lowercase) model.eval() __snake_case = model(_lowercase) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __snake_case = 1 __snake_case = DeiTForMaskedImageModeling(_lowercase) model.to(_lowercase) model.eval() __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case = model(_lowercase) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = self.type_sequence_label_size __snake_case = DeiTForImageClassification(_lowercase) model.to(_lowercase) model.eval() __snake_case = model(_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case = 1 __snake_case = DeiTForImageClassification(_lowercase) model.to(_lowercase) model.eval() __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case = model(_lowercase , labels=_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _a ( self) -> int: __snake_case = self.prepare_config_and_inputs() ( __snake_case ) = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): __UpperCAmelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> int: __snake_case = DeiTModelTester(self) __snake_case = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=3_7) def _a ( self) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def _a ( self) -> Optional[Any]: pass def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear)) def _a ( self) -> Dict: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(_lowercase) __snake_case = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase) def _a ( self) -> str: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase) def _a ( self) -> int: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase) def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> int: __snake_case = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self) -> List[Any]: if not self.model_tester.is_training: return __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowercase) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __snake_case = model_class(_lowercase) model.to(_lowercase) model.train() __snake_case = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) __snake_case = model(**_lowercase).loss loss.backward() def _a ( self) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case = False __snake_case = True for model_class in self.all_model_classes: if model_class in get_values(_lowercase) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __snake_case = model_class(_lowercase) model.gradient_checkpointing_enable() model.to(_lowercase) model.train() __snake_case = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) __snake_case = model(**_lowercase).loss loss.backward() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowercase), *get_values(_lowercase), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}"): __snake_case = problem_type["title"] __snake_case = problem_type["num_labels"] __snake_case = model_class(_lowercase) model.to(_lowercase) model.train() __snake_case = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) if problem_type["num_labels"] > 1: __snake_case = inputs["labels"].unsqueeze(1).repeat(1 , problem_type['num_labels']) __snake_case = inputs["labels"].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowercase) as warning_list: __snake_case = model(**_lowercase).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}") loss.backward() @slow def _a ( self) -> Any: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = DeiTModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> Any: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> int: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def _a ( self) -> int: __snake_case = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( _lowercase) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=_lowercase , return_tensors='pt').to(_lowercase) # forward pass with torch.no_grad(): __snake_case = model(**_lowercase) # verify the logits __snake_case = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , _lowercase) __snake_case = torch.tensor([-1.0266, 0.1912, -1.2861]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def _a ( self) -> List[Any]: __snake_case = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto') __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=_lowercase , return_tensors='pt') __snake_case = inputs.pixel_values.to(_lowercase) # forward pass to make sure inference works in fp16 with torch.no_grad(): __snake_case = model(_lowercase)
313
"""simple docstring""" from random import randint, random def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int , lowerCamelCase_: int , lowerCamelCase_: int , lowerCamelCase_: bool = False , lowerCamelCase_: bool = False , lowerCamelCase_: int = 5 , ): """simple docstring""" snake_case : str = [[-1] * number_of_cells] # Create a highway without any car snake_case : str = 0 snake_case : Any = max(lowerCamelCase_ , 0 ) while i < number_of_cells: snake_case : Optional[int] = ( randint(0 , lowerCamelCase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: list , lowerCamelCase_: int ): """simple docstring""" snake_case : Any = 0 snake_case : int = highway_now[car_index + 1 :] for cell in range(len(lowerCamelCase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCamelCase_ , -1 ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: list , lowerCamelCase_: float , lowerCamelCase_: int ): """simple docstring""" snake_case : List[str] = len(lowerCamelCase_ ) # Beforce calculations, the highway is empty snake_case : Dict = [-1] * number_of_cells for car_index in range(lowerCamelCase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed snake_case : Tuple = min(highway_now[car_index] + 1 , lowerCamelCase_ ) # Number of empty cell before the next car snake_case : int = get_distance(lowerCamelCase_ , lowerCamelCase_ ) - 1 # We can't have the car causing an accident snake_case : str = min(next_highway[car_index] , lowerCamelCase_ ) if random() < probability: # Randomly, a driver will slow down snake_case : Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: list , lowerCamelCase_: int , lowerCamelCase_: float , lowerCamelCase_: int ): """simple docstring""" snake_case : Optional[Any] = len(highway[0] ) for i in range(lowerCamelCase_ ): snake_case : Union[str, Any] = update(highway[i] , lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[int] = [-1] * number_of_cells for car_index in range(lowerCamelCase_ ): snake_case : List[Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) snake_case : Optional[Any] = (car_index + speed) % number_of_cells # Commit the change of position snake_case : Tuple = speed highway.append(lowerCamelCase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
449
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = None _a = BloomTokenizerFast _a = BloomTokenizerFast _a = True _a = False _a = '''tokenizer_file''' _a = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def SCREAMING_SNAKE_CASE ( self: Tuple ): super().setUp() lowercase :List[str] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self: List[str] , **_lowerCAmelCase: Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :List[str] = self.get_rust_tokenizer() lowercase :Optional[int] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase :Dict = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase :int = tokenizer.batch_encode_plus(_lowerCAmelCase )["input_ids"] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Tuple = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: int=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase :Dict = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase :Any = "This is a simple input" lowercase :Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] lowercase :Tuple = ("This is a simple input", "This is a pair") lowercase :List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowercase :Dict = None # Hotfixing padding = None self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Dict = self.get_rust_tokenizer() lowercase :int = load_dataset("xnli" , "all_languages" , split="test" , streaming=_lowerCAmelCase ) lowercase :Tuple = next(iter(_lowerCAmelCase ) )["premise"] # pick up one data lowercase :Optional[Any] = list(sample_data.values() ) lowercase :Optional[int] = list(map(tokenizer.encode , _lowerCAmelCase ) ) lowercase :List[str] = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for x in output_tokens] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
702
_UpperCAmelCase : Union[str, Any] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
453
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = "▁" SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE : Optional[int] = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class snake_case ( lowercase_ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] def __init__( self, _lowercase, _lowercase="<pad>", _lowercase="</s>", _lowercase="<unk>", _lowercase="<mask_2>", _lowercase="<mask_1>", _lowercase=None, _lowercase=103, _lowercase = None, **_lowercase, ) -> None: SCREAMING_SNAKE_CASE_ = offset if additional_special_tokens is not None: if not isinstance(_lowercase, _lowercase ): raise TypeError( f"""additional_special_tokens should be of type {type(_lowercase )}, but is""" f""" {type(_lowercase )}""" ) SCREAMING_SNAKE_CASE_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(_lowercase ), self.offset - 1 ) ] if len(set(_lowercase ) ) != len(_lowercase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE_ = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2, self.offset )] SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowercase, unk_token=_lowercase, mask_token=_lowercase, pad_token=_lowercase, mask_token_sent=_lowercase, offset=_lowercase, additional_special_tokens=_lowercase, sp_model_kwargs=self.sp_model_kwargs, **_lowercase, ) SCREAMING_SNAKE_CASE_ = mask_token_sent SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} @property def a__ ( self ) -> int: return len(self.sp_model ) + self.offset def a__ ( self ) -> Dict[str, int]: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self, _lowercase ) -> Tuple: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self, _lowercase ) -> List[str]: return self.sp_model.encode(_lowercase, out_type=_lowercase ) def a__ ( self, _lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE_ = self.sp_model.piece_to_id(_lowercase ) return sp_id + self.offset def a__ ( self, _lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE_ = self.sp_model.IdToPiece(index - self.offset ) return token def a__ ( self, _lowercase ) -> int: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token SCREAMING_SNAKE_CASE_ = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def a__ ( self, _lowercase=False ) -> Dict: return 1 def a__ ( self, _lowercase ) -> List[Any]: SCREAMING_SNAKE_CASE_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self, _lowercase, _lowercase = None, _lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_lowercase ) elif token_ids_a is None: return self._special_token_mask(_lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self, _lowercase, _lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self, _lowercase, _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowercase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase, 'wb' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
294
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE : int = get_tests_dir("fixtures") SCREAMING_SNAKE_CASE : str = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SCREAMING_SNAKE_CASE : str = get_tests_dir("fixtures/dummy-config.json") class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> str: SCREAMING_SNAKE_CASE_ = 0 def a__ ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_lowercase, _lowercase ) def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase, _lowercase ) def a__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase ).to_dict() config_dict.pop('feature_extractor_type' ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowercase, _lowercase ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase, _lowercase ) def a__ ( self ) -> Any: with self.assertRaisesRegex( _lowercase, 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained('bert-base' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _lowercase, R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase, revision='aaaaaa' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _lowercase, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase, trust_remote_code=_lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) def a__ ( self ) -> int: try: AutoConfig.register('custom', _lowercase ) AutoFeatureExtractor.register(_lowercase, _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoFeatureExtractor.register(_lowercase, _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase, _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> str: class snake_case ( lowercase_ ): """simple docstring""" _a = True try: AutoConfig.register('custom', _lowercase ) AutoFeatureExtractor.register(_lowercase, _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_lowercase, 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
294
1
"""simple docstring""" import gc import threading import time import psutil import torch class a : def __init__( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =psutil.Process() SCREAMING_SNAKE_CASE_: Tuple =False def lowerCamelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =-1 while True: SCREAMING_SNAKE_CASE_: Optional[int] =max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =True SCREAMING_SNAKE_CASE_: int =threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE_: Optional[Any] =True self.thread.start() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase = PeakCPUMemory() def __magic_name__ ( ): # Time SCREAMING_SNAKE_CASE_: Optional[int] ={"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_: List[Any] =psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_: List[Any] =torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def __magic_name__ ( lowercase ): # Time SCREAMING_SNAKE_CASE_: Union[str, Any] ={"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_: Any =(psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 SCREAMING_SNAKE_CASE_: Dict =(cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_: Dict =(torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 SCREAMING_SNAKE_CASE_: Optional[int] =(torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def __magic_name__ ( lowercase , lowercase ): print(f'''{description}:''' ) print(f'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB''' ) SCREAMING_SNAKE_CASE_: int =measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
36
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Tuple ): '''simple docstring''' snake_case_ = TapasConfig.from_json_file(snake_case ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=snake_case ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.664694 snake_case_ = 0.207951 snake_case_ = 0.121194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.0352513 snake_case_ = TapasForQuestionAnswering(config=snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.903421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.763141 snake_case_ = TapasForQuestionAnswering(config=snake_case ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=snake_case ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=snake_case ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=snake_case ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(snake_case , snake_case , snake_case ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + "vocab.txt" , model_max_length=5_1_2 ) tokenizer.save_pretrained(snake_case ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
400
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a ( unittest.TestCase ): def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : List[Any]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=99 , lowerCAmelCase : str=32 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : str=512 , lowerCAmelCase : Any=16 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Dict=4 , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =parent SCREAMING_SNAKE_CASE_: Dict =batch_size SCREAMING_SNAKE_CASE_: str =seq_length SCREAMING_SNAKE_CASE_: int =is_training SCREAMING_SNAKE_CASE_: Dict =use_attention_mask SCREAMING_SNAKE_CASE_: List[str] =use_token_type_ids SCREAMING_SNAKE_CASE_: Union[str, Any] =use_labels SCREAMING_SNAKE_CASE_: Any =vocab_size SCREAMING_SNAKE_CASE_: Tuple =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Dict =num_attention_heads SCREAMING_SNAKE_CASE_: str =intermediate_size SCREAMING_SNAKE_CASE_: int =hidden_act SCREAMING_SNAKE_CASE_: Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =max_position_embeddings SCREAMING_SNAKE_CASE_: str =type_vocab_size SCREAMING_SNAKE_CASE_: str =type_sequence_label_size SCREAMING_SNAKE_CASE_: str =initializer_range SCREAMING_SNAKE_CASE_: str =num_choices def lowerCamelCase__ ( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_: Any =None if self.use_attention_mask: SCREAMING_SNAKE_CASE_: str =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_: Tuple =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase , ) return config, input_ids, attention_mask def lowerCamelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =FlaxDistilBertModelTester(self ) @slow def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_: str =model_class_name.from_pretrained("""distilbert-base-uncased""" ) SCREAMING_SNAKE_CASE_: List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase ) @require_flax class a ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) SCREAMING_SNAKE_CASE_: Tuple =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE_: Any =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: Union[str, Any] =(1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 ) )
409
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ : List[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def A_( A , A , A=8 ): UpperCAmelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : List[Any] , __lowercase : UNetaDConditionModel , __lowercase : DDPMScheduler , __lowercase : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=__lowercase , scheduler=__lowercase , movq=__lowercase , ) UpperCAmelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : str , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : int , __lowercase : Optional[int] , __lowercase : Dict ): '''simple docstring''' if latents is None: UpperCAmelCase_ = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ = latents.to(__lowercase ) UpperCAmelCase_ = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowercase : int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowercase : int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ = cpu_offload_with_hook(__lowercase , __lowercase , prev_module_hook=__lowercase ) # We'll offload the last model manually. UpperCAmelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowercase ) def __call__( self : Union[str, Any] , __lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowercase : int = 5_12 , __lowercase : int = 5_12 , __lowercase : int = 1_00 , __lowercase : float = 4.0 , __lowercase : int = 1 , __lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[str] = "pil" , __lowercase : bool = True , ): '''simple docstring''' UpperCAmelCase_ = self._execution_device UpperCAmelCase_ = guidance_scale > 1.0 if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ = torch.cat(__lowercase , dim=0 ) UpperCAmelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ = torch.cat(__lowercase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ = image_embeds.repeat_interleave(__lowercase , dim=0 ) UpperCAmelCase_ = negative_image_embeds.repeat_interleave(__lowercase , dim=0 ) UpperCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowercase ) self.scheduler.set_timesteps(__lowercase , device=__lowercase ) UpperCAmelCase_ = self.scheduler.timesteps UpperCAmelCase_ = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ = downscale_height_and_width(__lowercase , __lowercase , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowercase , __lowercase , __lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ = {"""image_embeds""": image_embeds} UpperCAmelCase_ = self.unet( sample=__lowercase , timestep=__lowercase , encoder_hidden_states=__lowercase , added_cond_kwargs=__lowercase , return_dict=__lowercase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ = variance_pred.chunk(2 ) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step( __lowercase , __lowercase , __lowercase , generator=__lowercase , )[0] # post-processing UpperCAmelCase_ = self.movq.decode(__lowercase , force_not_quantize=__lowercase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ = image * 0.5 + 0.5 UpperCAmelCase_ = image.clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
486
from math import factorial UpperCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A_( A ): if not isinstance(A , A ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A ) ) def A_( A = 60 , A = 1000000 ): if not isinstance(A , A ) or not isinstance(A , A ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length UpperCAmelCase_ = 0 # the cached sizes of the previous chains UpperCAmelCase_ = {} for start_chain_element in range(1 , A ): # The temporary set will contain the elements of the chain UpperCAmelCase_ = set() UpperCAmelCase_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A ) chain_set_length += 1 UpperCAmelCase_ = digit_factorial_sum(A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution()}")
486
1
"""simple docstring""" from string import ascii_uppercase A: str = {char: i for i, char in enumerate(ascii_uppercase)} A: Any = dict(enumerate(ascii_uppercase)) def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Optional[int] = len(UpperCamelCase ) UpperCAmelCase : List[str] = 0 while True: if x == i: UpperCAmelCase : Dict = 0 if len(UpperCamelCase ) == len(UpperCamelCase ): break key += key[i] i += 1 return key def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Tuple = """""" UpperCAmelCase : Tuple = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCAmelCase : Any = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : str = """""" UpperCAmelCase : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCAmelCase : List[str] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _snake_case ( ): UpperCAmelCase : Tuple = """THE GERMAN ATTACK""" UpperCAmelCase : Optional[Any] = """SECRET""" UpperCAmelCase : Any = generate_key(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : Optional[int] = cipher_text(UpperCamelCase , UpperCamelCase ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(UpperCamelCase , UpperCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
160
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Optional[int] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = 'nllb-moe' __lowerCAmelCase : List[Any] = ['past_key_values'] __lowerCAmelCase : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=128112 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : str = d_model UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : int = encoder_layers UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : Dict = activation_function UpperCAmelCase : int = init_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : str = use_cache UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Optional[Any] = router_z_loss_coef UpperCAmelCase : List[str] = router_aux_loss_coef UpperCAmelCase : str = decoder_sparse_step UpperCAmelCase : str = encoder_sparse_step UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : Optional[int] = expert_capacity UpperCAmelCase : List[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) UpperCAmelCase : int = router_dtype UpperCAmelCase : Optional[int] = router_ignore_padding_tokens UpperCAmelCase : Tuple = batch_prioritized_routing UpperCAmelCase : Any = second_expert_policy UpperCAmelCase : List[str] = normalize_router_prob_before_dropping UpperCAmelCase : str = moe_eval_capacity_token_fraction UpperCAmelCase : Union[str, Any] = moe_token_dropout UpperCAmelCase : Any = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
160
1
'''simple docstring''' from __future__ import annotations def _A ( A ) -> bool: if len(A ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) lowercase : Optional[int] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def _A ( A ) -> bool: return str(A ) == str(A )[::-1] def _A ( A ) -> int: return int(A ) + int(str(A )[::-1] ) def _A ( A = 1_0_0_0_0 ) -> int: lowercase : List[Any] = [] for num in range(1 ,A ): lowercase : str = 0 lowercase : Optional[Any] = num while iterations < 5_0: lowercase : Optional[Any] = sum_reverse(A ) iterations += 1 if is_palindrome(A ): break else: lychrel_nums.append(A ) return len(A ) if __name__ == "__main__": print(F'''{solution() = }''')
425
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _snake_case = 300 # TEMPERATURE (unit = K) def _A ( snake_case , snake_case , snake_case , ) -> float: if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
245
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=2 , _UpperCamelCase=8 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=16 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=36 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[int] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : List[str] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : str = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : int = intermediate_size _lowercase : str = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : str = type_sequence_label_size _lowercase : List[str] = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Optional[int] = scope def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Dict = None _lowercase : int = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.get_config() _lowercase : Any = 300 return config def _lowerCamelCase ( self ): """simple docstring""" ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = self.prepare_config_and_inputs() _lowercase : List[str] = True _lowercase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _lowercase : Tuple = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _lowercase : Optional[int] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" _lowercase : Any = True _lowercase : Dict = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : str = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) _lowercase : Tuple = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) _lowercase : Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Tuple = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : List[str] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = self.num_labels _lowercase : List[Any] = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : str = self.num_choices _lowercase : Dict = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[Any] = () def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = MraModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Any = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[Any] = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason="MRA does not output attentions" ) def _lowerCamelCase ( self ): """simple docstring""" return @require_torch class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _lowercase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Dict = model(_UpperCamelCase )[0] _lowercase : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : int = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _lowercase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Optional[Any] = model(_UpperCamelCase )[0] _lowercase : Tuple = 50265 _lowercase : Dict = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : List[Any] = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _lowercase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Union[str, Any] = model(_UpperCamelCase )[0] _lowercase : List[str] = 50265 _lowercase : Dict = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : Union[str, Any] = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
245
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Dict ) -> Tuple: __snake_case = UniSpeechSatForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ ) __snake_case = downstream_dict['''projector.weight'''] __snake_case = downstream_dict['''projector.bias'''] __snake_case = downstream_dict['''model.post_net.linear.weight'''] __snake_case = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : int , snake_case_ : Dict ) -> Union[str, Any]: __snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ ) __snake_case = downstream_dict['''model.linear.weight'''] __snake_case = downstream_dict['''model.linear.bias'''] return model def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : int ) -> Optional[int]: __snake_case = UniSpeechSatForXVector.from_pretrained(snake_case_ , config=snake_case_ ) __snake_case = downstream_dict['''connector.weight'''] __snake_case = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __snake_case = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __snake_case = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : str , snake_case_ : List[str] ) -> Union[str, Any]: __snake_case = torch.load(snake_case_ , map_location='''cpu''' ) __snake_case = checkpoint['''Downstream'''] __snake_case = UniSpeechSatConfig.from_pretrained(snake_case_ ) __snake_case = WavaVecaFeatureExtractor.from_pretrained( snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ ) __snake_case = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __snake_case = convert_classification(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __snake_case = convert_diarization(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith('''ForXVector''' ): __snake_case = convert_xvector(snake_case_ , snake_case_ , snake_case_ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __snake_case = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') snake_case_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
388
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Any ) -> Optional[Any]: __snake_case = checkpoint __snake_case = {} __snake_case = vae_state_dict['''encoder.conv_in.weight'''] __snake_case = vae_state_dict['''encoder.conv_in.bias'''] __snake_case = vae_state_dict['''encoder.conv_out.weight'''] __snake_case = vae_state_dict['''encoder.conv_out.bias'''] __snake_case = vae_state_dict['''encoder.norm_out.weight'''] __snake_case = vae_state_dict['''encoder.norm_out.bias'''] __snake_case = vae_state_dict['''decoder.conv_in.weight'''] __snake_case = vae_state_dict['''decoder.conv_in.bias'''] __snake_case = vae_state_dict['''decoder.conv_out.weight'''] __snake_case = vae_state_dict['''decoder.conv_out.bias'''] __snake_case = vae_state_dict['''decoder.norm_out.weight'''] __snake_case = vae_state_dict['''decoder.norm_out.bias'''] __snake_case = vae_state_dict['''quant_conv.weight'''] __snake_case = vae_state_dict['''quant_conv.bias'''] __snake_case = vae_state_dict['''post_quant_conv.weight'''] __snake_case = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __snake_case = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __snake_case = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only __snake_case = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __snake_case = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): __snake_case = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: __snake_case = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) __snake_case = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) __snake_case = renew_vae_resnet_paths(snake_case_ ) __snake_case = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) __snake_case = [key for key in vae_state_dict if '''encoder.mid.block''' in key] __snake_case = 2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] __snake_case = renew_vae_resnet_paths(snake_case_ ) __snake_case = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) __snake_case = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] __snake_case = renew_vae_attention_paths(snake_case_ ) __snake_case = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): __snake_case = num_up_blocks - 1 - i __snake_case = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: __snake_case = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] __snake_case = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] __snake_case = renew_vae_resnet_paths(snake_case_ ) __snake_case = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) __snake_case = [key for key in vae_state_dict if '''decoder.mid.block''' in key] __snake_case = 2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] __snake_case = renew_vae_resnet_paths(snake_case_ ) __snake_case = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) __snake_case = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] __snake_case = renew_vae_attention_paths(snake_case_ ) __snake_case = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str , ) -> int: # Only support V1 __snake_case = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __snake_case = io.BytesIO(r.content ) __snake_case = OmegaConf.load(snake_case_ ) __snake_case = 512 __snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __snake_case = {} with safe_open(snake_case_ , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __snake_case = f.get_tensor(snake_case_ ) else: __snake_case = torch.load(snake_case_ , map_location=snake_case_ )['''state_dict'''] # Convert the VAE model. __snake_case = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) __snake_case = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) __snake_case = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') snake_case_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
388
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase__ : str = logging.get_logger(__name__) lowercase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase__ : Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' for attribute in key.split("." ): snake_case_ = getattr(_A , _A ) if weight_type is not None: snake_case_ = getattr(_A , _A ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ = None for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , ) snake_case_ = True elif name.split("." )[0] == "proj": snake_case_ = fairseq_model.proj snake_case_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_A )[0].split("." )[-2] snake_case_ = mapped_key.replace("*" , _A ) if "weight_g" in name: snake_case_ = "weight_g" elif "weight_v" in name: snake_case_ = "weight_v" elif "bias" in name: snake_case_ = "bias" elif "weight" in name: snake_case_ = "weight" else: snake_case_ = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ = full_name.split("conv_layers." )[-1] snake_case_ = name.split("." ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(_A , _A , bias=_A ) snake_case_ = emb.weight.data return lin_layer def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A , "r" , encoding="utf-8" ) as f: snake_case_ = f.readlines() snake_case_ = [line.split(" " )[0] for line in lines] snake_case_ = len(_A ) snake_case_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = WavaVecaConfig.from_pretrained(_A ) snake_case_ = SpeechaTextaConfig.from_pretrained( _A , vocab_size=_A , decoder_layers=_A , do_stable_layer_norm=_A ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case_ = model[0].eval() # set weights for wav2vec2 encoder snake_case_ = WavaVecaModel(_A ) snake_case_ = recursively_load_weights_wavaveca(model.encoder , _A ) snake_case_ = SpeechaTextaForCausalLM(_A ) snake_case_ , snake_case_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_A ) # set output linear layer unexpected_keys.remove("embed_out" ) snake_case_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case_ = SpeechEncoderDecoderModel(encoder=_A , decoder=_A ) snake_case_ = False # add projection layer snake_case_ = nn.Parameter(projection_layer.weight ) snake_case_ = nn.Parameter(projection_layer.bias ) snake_case_ = create_vocab_dict(_A ) with open(os.path.join(_A , "vocab.json" ) , "w" ) as fp: json.dump(_A , _A ) snake_case_ = SpeechaTextaTokenizer(os.path.join(_A , "vocab.json" ) ) tokenizer.save_pretrained(_A ) snake_case_ = hf_wavavec.config.to_dict() snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer.eos_token_id snake_case_ = "speech_to_text_2" snake_case_ = "wav2vec2" snake_case_ = SpeechEncoderDecoderConfig.from_dict(_A ) hf_wavavec.save_pretrained(_A ) feature_extractor.save_pretrained(_A ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowercase__ : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
721
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __lowercase : Optional[Any] , __lowercase : Optional[int]=13 , __lowercase : str=7 , __lowercase : str=True , __lowercase : Optional[int]=True , __lowercase : Optional[int]=False , __lowercase : str=True , __lowercase : Optional[int]=99 , __lowercase : List[str]=32 , __lowercase : Tuple=5 , __lowercase : int=4 , __lowercase : Union[str, Any]=37 , __lowercase : Union[str, Any]="gelu" , __lowercase : Dict=0.1 , __lowercase : int=0.1 , __lowercase : Optional[Any]=5_12 , __lowercase : Any=16 , __lowercase : int=2 , __lowercase : Dict=0.02 , __lowercase : List[str]=3 , __lowercase : int=4 , __lowercase : str=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Any ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def snake_case__ ( self : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict , __lowercase : Any , __lowercase : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = LlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase ) snake_case_ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Tuple , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , __lowercase : str , __lowercase : List[Any] , __lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = True snake_case_ = LlamaModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) snake_case_ = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Tuple , __lowercase : str , __lowercase : Dict , __lowercase : int , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , ): """simple docstring""" snake_case_ = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : str , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Tuple , ): """simple docstring""" snake_case_ = True snake_case_ = True snake_case_ = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )["hidden_states"][0] snake_case_ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )["hidden_states"][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ = (LlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : int ): """simple docstring""" snake_case_ = LlamaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "single_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(__lowercase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def snake_case__ ( self : Any , __lowercase : Tuple ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10] , config.vocab_size ) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = LlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() snake_case_ = original_model(__lowercase ).last_hidden_state snake_case_ = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = {"type": scaling_type, "factor": 10.0} snake_case_ = LlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() snake_case_ = scaled_model(__lowercase ).last_hidden_state snake_case_ = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) snake_case_ = model(torch.tensor(__lowercase ) ) snake_case_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowercase , atol=1E-2 , rtol=1E-2 ) # fmt: off snake_case_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowercase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def snake_case__ ( self : str ): """simple docstring""" snake_case_ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" snake_case_ = "Simply put, the theory of relativity states that " snake_case_ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) snake_case_ = tokenizer.encode(__lowercase , return_tensors="pt" ) snake_case_ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__lowercase ) # greedy generation outputs snake_case_ = model.generate(__lowercase , max_new_tokens=64 , top_p=__lowercase , temperature=1 , do_sample=__lowercase ) snake_case_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase )
139
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("""T""") UpperCamelCase_ = TypeVar("""U""") class __SCREAMING_SNAKE_CASE ( Generic[T, U] ): def __init__( self : List[str] , UpperCAmelCase__ : T | None , UpperCAmelCase__ : U | None ): '''simple docstring''' lowercase : List[str] =key lowercase : Optional[Any] =val lowercase : DoubleLinkedListNode[T, U] | None =None lowercase : DoubleLinkedListNode[T, U] | None =None def __repr__( self : Any ): '''simple docstring''' return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class __SCREAMING_SNAKE_CASE ( Generic[T, U] ): def __init__( self : int ): '''simple docstring''' lowercase : DoubleLinkedListNode[T, U] =DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : DoubleLinkedListNode[T, U] =DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase , lowercase : Any =self.rear, self.head def __repr__( self : Union[str, Any] ): '''simple docstring''' lowercase : Any =['''DoubleLinkedList'''] lowercase : Union[str, Any] =self.head while node.next is not None: rep.append(str(UpperCAmelCase__ ) ) lowercase : Any =node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCAmelCase__ ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : DoubleLinkedListNode[T, U] ): '''simple docstring''' lowercase : Optional[int] =self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase : Dict =node lowercase : str =previous lowercase : Optional[Any] =node lowercase : Optional[int] =self.rear def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None lowercase : Any =node.next lowercase : Optional[int] =node.prev lowercase : Any =None lowercase : int =None return node class __SCREAMING_SNAKE_CASE ( Generic[T, U] ): lowerCamelCase_ = {} def __init__( self : List[Any] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : DoubleLinkedList[T, U] =DoubleLinkedList() lowercase : Union[str, Any] =capacity lowercase : int =0 lowercase : List[Any] =0 lowercase : Optional[Any] =0 lowercase : dict[T, DoubleLinkedListNode[T, U]] ={} def __repr__( self : List[str] ): '''simple docstring''' return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : Dict , UpperCAmelCase__ : T ): '''simple docstring''' return key in self.cache def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : T ): '''simple docstring''' # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase : DoubleLinkedListNode[T, U] =self.cache[key] lowercase : int =self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCAmelCase__ ) return node.val self.miss += 1 return None def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : T , UpperCAmelCase__ : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase : Dict =self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCAmelCase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase : Dict =DoubleLinkedListNode(UpperCAmelCase__ , UpperCAmelCase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase : Union[str, Any] =self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase : Any =value self.list.add(UpperCAmelCase__ ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , UpperCAmelCase__ : int = 128 ): '''simple docstring''' def cache_decorator_inner(UpperCAmelCase__ : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCAmelCase__ : T ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase : Dict =LRUCache(UpperCAmelCase__ ) lowercase : Tuple =cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase : Union[str, Any] =func(*UpperCAmelCase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCAmelCase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCAmelCase__ , '''cache_info''' , UpperCAmelCase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
92
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: lowerCamelCase : Any = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCamelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["module"] # Load the entity vocab file lowerCamelCase : Tuple = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] lowerCamelCase : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCamelCase : Dict = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase : Union[str, Any] = AddedToken("<ent>" , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = AddedToken("<ent2>" , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , "tokenizer_config.json" ) , "r" ) as f: lowerCamelCase : Optional[Any] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = "MLukeTokenizer" with open(os.path.join(SCREAMING_SNAKE_CASE_ , "tokenizer_config.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] lowerCamelCase : int = tokenizer.convert_tokens_to_ids(["#"] )[0] lowerCamelCase : Tuple = state_dict["embeddings.word_embeddings.weight"] lowerCamelCase : int = word_emb[ent_init_index].unsqueeze(0 ) lowerCamelCase : Dict = word_emb[enta_init_index].unsqueeze(0 ) lowerCamelCase : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCamelCase : Union[str, Any] = state_dict[bias_name] lowerCamelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCamelCase : List[str] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase : Tuple = f"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase : int = state_dict[prefix + matrix_name] lowerCamelCase : List[Any] = state_dict[prefix + matrix_name] lowerCamelCase : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase : int = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCamelCase : List[Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCamelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCamelCase : Any = state_dict["entity_predictions.bias"] lowerCamelCase : Tuple = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) lowerCamelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCamelCase : Tuple = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): lowerCamelCase : Optional[Any] = state_dict[key] else: lowerCamelCase : Dict = state_dict[key] lowerCamelCase , lowerCamelCase : List[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCamelCase : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task="entity_classification" ) lowerCamelCase : int = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." lowerCamelCase : Any = (0, 9) lowerCamelCase : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors="pt" ) lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase : Any = torch.Size((1, 33, 768) ) lowerCamelCase : Any = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase : Optional[Any] = torch.Size((1, 1, 768) ) lowerCamelCase : Optional[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction lowerCamelCase : Dict = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = "Tokyo is the capital of <mask>." lowerCamelCase : Dict = (24, 30) lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors="pt" ) lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = encoding["input_ids"][0].tolist() lowerCamelCase : List[str] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) lowerCamelCase : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = outputs.entity_logits[0][0].argmax().item() lowerCamelCase : List[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Any = ["[MASK]", "[PAD]", "[UNK]"] lowerCamelCase : Union[str, Any] = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] lowerCamelCase : Union[str, Any] = {} for entry in data: lowerCamelCase : Optional[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCamelCase : Any = entity_id break lowerCamelCase : Optional[Any] = f"""{language}:{entity_name}""" lowerCamelCase : str = entity_id return new_mapping if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
340
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
706
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number | (1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number & ~(1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number ^ (1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return ((number >> position) & 1) == 1 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
314
0
from __future__ import annotations _lowerCamelCase = 10 def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ): SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = max(UpperCamelCase__ ) while placement <= max_digit: # declare and initialize empty buckets SCREAMING_SNAKE_CASE__ = [[] for _ in range(UpperCamelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: SCREAMING_SNAKE_CASE__ = int((i / placement) % RADIX ) buckets[tmp].append(UpperCamelCase__ ) # put each buckets' contents into list_of_ints SCREAMING_SNAKE_CASE__ = 0 for b in range(UpperCamelCase__ ): for i in buckets[b]: SCREAMING_SNAKE_CASE__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
6
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Tuple = False lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[Any] = 'ybelkada/fonts' def SCREAMING_SNAKE_CASE__ ( ) -> str: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ """Pix2StructImageProcessor. Please upgrade torch.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Union[str, Any]: requires_backends(lowercase ,["""torch"""] ) _check_torch_version() snake_case : List[str] = image_tensor.unsqueeze(0 ) snake_case : Tuple = torch.nn.functional.unfold(lowercase ,(patch_height, patch_width) ,stride=(patch_height, patch_width) ) snake_case : Optional[int] = patches.reshape(image_tensor.size(0 ) ,image_tensor.size(1 ) ,lowercase ,lowercase ,-1 ) snake_case : List[str] = patches.permute(0 ,4 ,2 ,3 ,1 ).reshape( image_tensor.size(2 ) // patch_height ,image_tensor.size(3 ) // patch_width ,image_tensor.size(1 ) * patch_height * patch_width ,) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 36 ,lowercase = "black" ,lowercase = "white" ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = None ,lowercase = None ,) -> Image.Image: requires_backends(lowercase ,"""vision""" ) # Add new lines so that each line is no more than 80 characters. snake_case : List[str] = textwrap.TextWrapper(width=80 ) snake_case : List[Any] = wrapper.wrap(text=lowercase ) snake_case : int = """\n""".join(lowercase ) if font_bytes is not None and font_path is None: snake_case : int = io.BytesIO(lowercase ) elif font_path is not None: snake_case : str = font_path else: snake_case : int = hf_hub_download(lowercase ,"""Arial.TTF""" ) snake_case : Optional[int] = ImageFont.truetype(lowercase ,encoding="""UTF-8""" ,size=lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case : Tuple = ImageDraw.Draw(Image.new("""RGB""" ,(1, 1) ,lowercase ) ) snake_case , snake_case , snake_case , snake_case : Any = temp_draw.textbbox((0, 0) ,lowercase ,lowercase ) # Create the actual image with a bit of padding around the text. snake_case : Optional[int] = text_width + left_padding + right_padding snake_case : List[Any] = text_height + top_padding + bottom_padding snake_case : List[str] = Image.new("""RGB""" ,(image_width, image_height) ,lowercase ) snake_case : List[str] = ImageDraw.Draw(lowercase ) draw.text(xy=(left_padding, top_padding) ,text=lowercase ,fill=lowercase ,font=lowercase ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,"""vision""" ) # Convert to PIL image if necessary snake_case : Union[str, Any] = to_pil_image(lowercase ) snake_case : str = render_text(lowercase ,**lowercase ) snake_case : Any = max(header_image.width ,image.width ) snake_case : str = int(image.height * (new_width / image.width) ) snake_case : Union[str, Any] = int(header_image.height * (new_width / header_image.width) ) snake_case : List[str] = Image.new("""RGB""" ,(new_width, new_height + new_header_height) ,"""white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) ,(0, 0) ) new_image.paste(image.resize((new_width, new_height) ) ,(0, new_header_height) ) # Convert back to the original framework if necessary snake_case : Any = to_numpy_array(lowercase ) if infer_channel_dimension_format(lowercase ) == ChannelDimension.LAST: snake_case : str = to_channel_dimension_format(lowercase ,ChannelDimension.LAST ) return new_image class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flattened_patches"""] def __init__( self , A = True , A = True , A = None , A = 2_0_4_8 , A = False , **A , ) -> None: super().__init__(**A ) snake_case : int = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} snake_case : Optional[Any] = do_normalize snake_case : List[Any] = do_convert_rgb snake_case : str = max_patches snake_case : List[Any] = is_vqa def UpperCAmelCase ( self , A , A , A , **A ) -> np.ndarray: requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch snake_case : Tuple = to_channel_dimension_format(A , ChannelDimension.FIRST ) snake_case : Optional[int] = torch.from_numpy(A ) snake_case , snake_case : int = patch_size["""height"""], patch_size["""width"""] snake_case , snake_case : Tuple = get_image_size(A ) # maximize scale s.t. snake_case : str = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) snake_case : Dict = max(min(math.floor(scale * image_height / patch_height ) , A ) , 1 ) snake_case : int = max(min(math.floor(scale * image_width / patch_width ) , A ) , 1 ) snake_case : Dict = max(num_feasible_rows * patch_height , 1 ) snake_case : Union[str, Any] = max(num_feasible_cols * patch_width , 1 ) snake_case : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=A , antialias=A , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case : Optional[Any] = torch_extract_patches(A , A , A ) snake_case : List[Any] = patches.shape snake_case : List[str] = patches_shape[1] snake_case : int = patches_shape[2] snake_case : Tuple = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case : Tuple = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] snake_case : Dict = torch.arange(A ).reshape([rows, 1] ).repeat(1 , A ).reshape([rows * columns, 1] ) snake_case : Union[str, Any] = torch.arange(A ).reshape([1, columns] ).repeat(A , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case : Dict = row_ids.to(torch.floataa ) snake_case : Dict = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case : Any = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case : Tuple = torch.nn.functional.pad(A , [0, 0, 0, max_patches - (rows * columns)] ).float() snake_case : Optional[int] = to_numpy_array(A ) return result def UpperCAmelCase ( self , A , A = None , **A ) -> np.ndarray: if image.dtype == np.uinta: snake_case : Any = image.astype(np.floataa ) # take mean across the whole `image` snake_case : Optional[int] = np.mean(A ) snake_case : Dict = np.std(A ) snake_case : Optional[Any] = max(A , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(A , mean=A , std=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> ImageInput: snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : Union[str, Any] = patch_size if patch_size is not None else self.patch_size snake_case : Optional[int] = max_patches if max_patches is not None else self.max_patches snake_case : Any = self.is_vqa if kwargs.get("""data_format""" , A ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : Dict = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. snake_case : List[Any] = [to_numpy_array(A ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) snake_case : str = kwargs.pop("""font_bytes""" , A ) snake_case : Union[str, Any] = kwargs.pop("""font_path""" , A ) if isinstance(A , A ): snake_case : List[str] = [header_text] * len(A ) snake_case : int = [ render_header(A , header_text[i] , font_bytes=A , font_path=A ) for i, image in enumerate(A ) ] if do_normalize: snake_case : int = [self.normalize(image=A ) for image in images] # convert to torch tensor and permute snake_case : Dict = [ self.extract_flattened_patches(image=A , max_patches=A , patch_size=A ) for image in images ] # create attention mask in numpy snake_case : List[str] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] snake_case : Tuple = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=A ) return encoded_outputs
587
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : str = random.Random() def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Optional[Any]: if rng is None: UpperCAmelCase : List[str] = global_rng UpperCAmelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : str = min_seq_length UpperCAmelCase : Optional[int] = max_seq_length UpperCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : List[Any] = feature_size UpperCAmelCase : List[str] = padding_value UpperCAmelCase : Any = sampling_rate UpperCAmelCase : List[Any] = return_attention_mask UpperCAmelCase : Union[str, Any] = do_normalize def _lowercase( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase( self , A=False , A=False ) -> Optional[Any]: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: UpperCAmelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : Optional[int] = [np.asarray(A ) for x in speech_inputs] return speech_inputs class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = WavaVecaFeatureExtractor def _lowercase( self ) -> List[str]: UpperCAmelCase : str = WavaVecaFeatureExtractionTester(self ) def _lowercase( self , A ) -> int: self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def _lowercase( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : str = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched UpperCAmelCase : Optional[int] = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[Any] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Optional[int] = np.asarray(A ) UpperCAmelCase : int = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[str] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : List[Any] = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : Dict = feat_extract(A , padding=A , max_length=A , return_tensors="""np""" ) UpperCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = range(800 , 1400 , 200 ) UpperCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : Dict = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : List[Any] = feat_extract(A , max_length=A , padding=A ) UpperCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Dict = feat_extract( A , truncation=A , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) UpperCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Union[str, Any] = feat_extract( A , truncation=A , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : List[str] = feat_extract( A , truncation=A , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowercase( self ) -> Tuple: import torch UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Tuple = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase( self ) -> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCAmelCase : Optional[Any] = WavaVecaConfig.from_pretrained(A ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
713
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowercase__( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] )-> Optional[int]: """simple docstring""" _UpperCamelCase = TaConfig.from_json_file(_UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) _UpperCamelCase = TaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case_ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
138
'''simple docstring''' from __future__ import annotations import math def lowercase__( _UpperCamelCase : list , _UpperCamelCase : list )-> list: """simple docstring""" if len(_UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(_UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) _UpperCamelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowercase__( _UpperCamelCase : list , _UpperCamelCase : list )-> Any: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCamelCase ) ) ] def lowercase__( _UpperCamelCase : list , _UpperCamelCase : list )-> Dict: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCamelCase ) ) ] def lowercase__( _UpperCamelCase : list )-> tuple[list, list, list, list]: """simple docstring""" if len(_UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) _UpperCamelCase = len(_UpperCamelCase ) _UpperCamelCase = matrix_length // 2 _UpperCamelCase = [[a[i][j] for j in range(_UpperCamelCase , _UpperCamelCase )] for i in range(_UpperCamelCase )] _UpperCamelCase = [ [a[i][j] for j in range(_UpperCamelCase , _UpperCamelCase )] for i in range(_UpperCamelCase , _UpperCamelCase ) ] _UpperCamelCase = [[a[i][j] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase )] _UpperCamelCase = [[a[i][j] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase , _UpperCamelCase )] return top_left, top_right, bot_left, bot_right def lowercase__( _UpperCamelCase : list )-> tuple[int, int]: """simple docstring""" return len(_UpperCamelCase ), len(matrix[0] ) def lowercase__( _UpperCamelCase : list )-> None: """simple docstring""" print("\n".join(str(_UpperCamelCase ) for line in matrix ) ) def lowercase__( _UpperCamelCase : list , _UpperCamelCase : list )-> list: """simple docstring""" if matrix_dimensions(_UpperCamelCase ) == (2, 2): return default_matrix_multiplication(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = split_matrix(_UpperCamelCase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = split_matrix(_UpperCamelCase ) _UpperCamelCase = actual_strassen(_UpperCamelCase , matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) ) _UpperCamelCase = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) _UpperCamelCase = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) _UpperCamelCase = actual_strassen(_UpperCamelCase , matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) ) _UpperCamelCase = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _UpperCamelCase = actual_strassen(matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _UpperCamelCase = actual_strassen(matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _UpperCamelCase = matrix_addition(matrix_subtraction(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) , _UpperCamelCase ) _UpperCamelCase = matrix_addition(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = matrix_addition(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = matrix_subtraction(matrix_subtraction(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) , _UpperCamelCase ) # construct the new matrix from our 4 quadrants _UpperCamelCase = [] for i in range(len(_UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowercase__( _UpperCamelCase : list , _UpperCamelCase : list )-> list: """simple docstring""" if matrix_dimensions(_UpperCamelCase )[1] != matrix_dimensions(_UpperCamelCase )[0]: _UpperCamelCase = ( "Unable to multiply these matrices, please check the dimensions.\n" f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(_UpperCamelCase ) _UpperCamelCase = matrix_dimensions(_UpperCamelCase ) _UpperCamelCase = matrix_dimensions(_UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _UpperCamelCase = max(*_UpperCamelCase , *_UpperCamelCase ) _UpperCamelCase = int(math.pow(2 , math.ceil(math.loga(_UpperCamelCase ) ) ) ) _UpperCamelCase = matrixa _UpperCamelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _UpperCamelCase = actual_strassen(_UpperCamelCase , _UpperCamelCase ) # Removing the additional zeros for i in range(0 , _UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": snake_case_ : Optional[int] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] snake_case_ : Optional[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
138
1
from bisect import bisect from itertools import accumulate def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: '''simple docstring''' _A= sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : x[0] / x[1] , reverse=lowerCAmelCase_ ) _A, _A= [i[0] for i in r], [i[1] for i in r] _A= list(accumulate(lowerCAmelCase_ ) ) _A= bisect(lowerCAmelCase_ , lowerCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
705
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase_ = '''pt''' elif is_tf_available(): UpperCAmelCase_ = '''tf''' else: UpperCAmelCase_ = '''jax''' class lowerCAmelCase ( _a , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] =ByTaTokenizer _SCREAMING_SNAKE_CASE : Dict =False def a__ ( self ): super().setUp() _A= ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def a__ ( self , **lowerCAmelCase__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _A= [] for i in range(len(lowerCAmelCase__ ) ): try: _A= tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _A= list(filter(lambda lowerCAmelCase__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , lowerCAmelCase__ ) ) _A= list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: _A= toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: _A= toks + toks # toks_str = [t[1] for t in toks] _A= [t[0] for t in toks] # Ensure consistency _A= tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: _A= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: _A= ' ' + output_txt _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def a__ ( self ): _A= self.ta_base_tokenizer _A= tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _A= tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def a__ ( self ): _A= self.ta_base_tokenizer _A= 'Unicode €.' _A= tokenizer(lowerCAmelCase__ ) _A= [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase__ ) # decoding _A= tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , 'Unicode €.</s>' ) _A= tokenizer('e è é ê ë' ) _A= [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase__ ) # decoding _A= tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _A= [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _A= tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": _A= list(batch.input_ids.numpy()[0] ) else: _A= list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A= tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowerCAmelCase__ ) self.assertIn('attention_mask' , lowerCAmelCase__ ) self.assertNotIn('decoder_input_ids' , lowerCAmelCase__ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase__ ) def a__ ( self ): _A= self.ta_base_tokenizer _A= [ 'Summary of the text.', 'Another summary.', ] _A= tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='max_length' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization. </s>'] _A= ['Summary of the text. </s>'] # fmt: off _A= [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _A= [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _A= tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['input_ids'][0] ) self.assertEqual(lowerCAmelCase__ , batch['labels'][0] ) def a__ ( self ): # safety check on max_len default value so we are sure the test works _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _A= tempfile.mkdtemp() _A= ' He is very happy, UNwant\u00E9d,running' _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _A= after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) _A= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _A= tempfile.mkdtemp() _A= ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _A= tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _A= after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def a__ ( self ): _A= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _A= json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _A= json.load(lowerCAmelCase__ ) _A= [f"<extra_id_{i}>" for i in range(125 )] _A= added_tokens_extra_ids + [ 'an_additional_special_token' ] _A= added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCAmelCase__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A= tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A= added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowerCAmelCase__ )] _A= tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def a__ ( self ): _A= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) _A= tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _A= self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _A= ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _A= tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( self ): _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _A= [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _A= 0 _A= tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '_id' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '_id' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '_id' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '_id' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens_ids' ) , [] ) setattr(lowerCAmelCase__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
476
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase_ = None lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase_ = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } lowerCamelCase_ = { "google/rembert": 2_5_6, } lowerCamelCase_ = "▁" class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = RemBertTokenizer def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="[CLS]" ,SCREAMING_SNAKE_CASE__="[SEP]" ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="[SEP]" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__="[CLS]" ,SCREAMING_SNAKE_CASE__="[MASK]" ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase ,tokenizer_file=__lowerCamelCase ,do_lower_case=__lowerCamelCase ,remove_space=__lowerCamelCase ,keep_accents=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,**__lowerCamelCase ,) __SCREAMING_SNAKE_CASE :str = do_lower_case __SCREAMING_SNAKE_CASE :int = remove_space __SCREAMING_SNAKE_CASE :List[str] = keep_accents __SCREAMING_SNAKE_CASE :Optional[Any] = vocab_file __SCREAMING_SNAKE_CASE :Dict = False if not self.vocab_file else True def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [self.sep_token_id] __SCREAMING_SNAKE_CASE :int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = False ) -> int: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Dict: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__lowerCamelCase ) ) return __SCREAMING_SNAKE_CASE :Optional[int] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file ,__lowerCamelCase ) return (out_vocab_file,)
498
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase_ = 1.0_5457_1817e-34 # unit of ℏ : J * s lowerCamelCase_ = 3e8 # unit of c : m * s^-1 def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _SCREAMING_SNAKE_CASE = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: _SCREAMING_SNAKE_CASE = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _SCREAMING_SNAKE_CASE = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
418
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _lowerCamelCase ( ) -> str: """simple docstring""" A__ = os.path.dirname(os.path.realpath(UpperCAmelCase_ ) ) A__ = os.path.join(UpperCAmelCase_, "words.txt" ) A__ = "" with open(UpperCAmelCase_ ) as f: A__ = f.readline() A__ = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] A__ = [ word for word in [sum(ord(UpperCAmelCase_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCAmelCase_ ) if __name__ == "__main__": print(solution())
702
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : str = (DEISMultistepScheduler,) A__ : List[str] = (("num_inference_steps", 2_5),) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def snake_case__ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> Tuple: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(SCREAMING_SNAKE_CASE__ , time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self ) -> List[Any]: pass def snake_case__ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ) -> str: if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def snake_case__ ( self ) -> Tuple: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] A__ = dummy_past_residuals[: scheduler.config.solver_order] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults A__ = DEISMultistepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) A__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) A__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self ) -> List[str]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[int]: self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , algorithm_type="deis" , solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Dict: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) A__ = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def snake_case__ ( self ) -> Optional[int]: self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=0 ) def snake_case__ ( self ) -> int: A__ = self.full_loop() A__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case__ ( self ) -> Union[str, Any]: A__ = self.full_loop(prediction_type="v_prediction" ) A__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def snake_case__ ( self ) -> List[str]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa
562
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase ( unittest.TestCase ): def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = torch.nn.Linear(10 , 10 ) lowerCAmelCase__ : Union[str, Any] = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase__ : Optional[Any] = Accelerator() lowerCAmelCase__ : Dict = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) try: pickle.loads(pickle.dumps(SCREAMING_SNAKE_CASE__ ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
233
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : List[Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ A__ : Optional[Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ A__ : List[Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _a ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): return float((preds == labels).mean() ) def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple="binary" ): lowerCAmelCase__ : Dict = simple_accuracy(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : List[Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any ): lowerCAmelCase__ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = f'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCAmelCase__ : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Union[str, Any] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average='''macro''' ) fas.append(__UpperCamelCase ) lowerCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) lowerCAmelCase__ : Dict = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = sum(__UpperCamelCase ) / len(__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase_ ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase_ ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ : Union[str, Any] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ : Optional[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
233
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
397
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def a ( *_lowercase : List[Any] , **_lowercase : Optional[Any] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : List[str] ): __UpperCAmelCase = ObjectDetectionPipeline(model=_lowercase , image_processor=_lowercase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def a ( self : int , _lowercase : List[Any] , _lowercase : str ): __UpperCAmelCase = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { '''score''': ANY(_lowercase ), '''label''': ANY(_lowercase ), '''box''': {'''xmin''': ANY(_lowercase ), '''ymin''': ANY(_lowercase ), '''xmax''': ANY(_lowercase ), '''ymax''': ANY(_lowercase )}, } , ) import datasets __UpperCAmelCase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __UpperCAmelCase = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __UpperCAmelCase = object_detector(_lowercase , threshold=0.0 ) self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { '''score''': ANY(_lowercase ), '''label''': ANY(_lowercase ), '''box''': {'''xmin''': ANY(_lowercase ), '''ymin''': ANY(_lowercase ), '''xmax''': ANY(_lowercase ), '''ymax''': ANY(_lowercase )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def a ( self : Dict ): pass @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __UpperCAmelCase = AutoModelForObjectDetection.from_pretrained(_lowercase ) __UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_lowercase ) __UpperCAmelCase = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) __UpperCAmelCase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ] , ) __UpperCAmelCase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ], [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ], ] , ) @require_torch @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = '''facebook/detr-resnet-50''' __UpperCAmelCase = AutoModelForObjectDetection.from_pretrained(_lowercase ) __UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_lowercase ) __UpperCAmelCase = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) __UpperCAmelCase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) __UpperCAmelCase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], ] , ) @require_torch @slow def a ( self : Dict ): __UpperCAmelCase = '''facebook/detr-resnet-50''' __UpperCAmelCase = pipeline('''object-detection''' , model=_lowercase ) __UpperCAmelCase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) __UpperCAmelCase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], ] , ) @require_torch @slow def a ( self : Tuple ): __UpperCAmelCase = 0.9_985 __UpperCAmelCase = '''facebook/detr-resnet-50''' __UpperCAmelCase = pipeline('''object-detection''' , model=_lowercase ) __UpperCAmelCase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=_lowercase ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def a ( self : List[str] ): __UpperCAmelCase = '''Narsil/layoutlmv3-finetuned-funsd''' __UpperCAmelCase = 0.9_993 __UpperCAmelCase = pipeline('''object-detection''' , model=_lowercase , threshold=_lowercase ) __UpperCAmelCase = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}}, {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}}, ] , )
397
1
"""simple docstring""" def __a ( a ): # noqa: E741 """simple docstring""" _a = len(a ) _a = 0 _a = [0] * n _a = [False] * n _a = [False] * n def dfs(a, a, a, a ): if parent == root: out_edge_count += 1 _a = True _a = at for to in l[at]: if to == parent: pass elif not visited[to]: _a = dfs(a, a, a, a ) _a = min(low[at], low[to] ) # AP found via bridge if at < low[to]: _a = True # AP found via cycle if at == low[to]: _a = True else: _a = min(low[at], a ) return out_edge_count for i in range(a ): if not visited[i]: _a = 0 _a = dfs(a, a, -1, a ) _a = out_edge_count > 1 for x in range(len(a ) ): if is_art[x] is True: print(a ) # Adjacency list of graph __SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
388
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : """simple docstring""" def __init__( self :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Optional[int]=13 , UpperCamelCase__ :Optional[Any]=7 , UpperCamelCase__ :Dict=True , UpperCamelCase__ :Union[str, Any]=True , UpperCamelCase__ :Any=True , UpperCamelCase__ :Tuple=True , UpperCamelCase__ :Dict=99 , UpperCamelCase__ :Union[str, Any]=32 , UpperCamelCase__ :Dict=2 , UpperCamelCase__ :List[str]=4 , UpperCamelCase__ :Any=37 , UpperCamelCase__ :int="gelu" , UpperCamelCase__ :str=0.1 , UpperCamelCase__ :Union[str, Any]=0.1 , UpperCamelCase__ :Optional[Any]=512 , UpperCamelCase__ :Optional[Any]=16 , UpperCamelCase__ :Optional[Any]=2 , UpperCamelCase__ :Optional[Any]=0.02 , UpperCamelCase__ :List[Any]=False , UpperCamelCase__ :Union[str, Any]=True , UpperCamelCase__ :Optional[int]="None" , UpperCamelCase__ :Any=3 , UpperCamelCase__ :Optional[int]=4 , UpperCamelCase__ :List[str]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :int , UpperCamelCase__ :int , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :int ): _a = TFDebertaVaModel(config=UpperCamelCase__ ) _a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _a = [input_ids, input_mask] _a = model(UpperCamelCase__ ) _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :int , UpperCamelCase__ :str , UpperCamelCase__ :str , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[str] ): _a = TFDebertaVaForMaskedLM(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :str , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :str , UpperCamelCase__ :Dict , UpperCamelCase__ :Tuple , UpperCamelCase__ :Any ): _a = self.num_labels _a = TFDebertaVaForSequenceClassification(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :int , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :int , UpperCamelCase__ :Any , UpperCamelCase__ :int , UpperCamelCase__ :Optional[Any] ): _a = self.num_labels _a = TFDebertaVaForTokenClassification(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Dict , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :Any ): _a = TFDebertaVaForQuestionAnswering(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : str = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = TFDebertaVaModelTester(self ) _a = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class __snake_case ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self :str ): _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _a = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] _a = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 )
388
1
"""simple docstring""" from torch import nn def lowercase__ ( snake_case_ :int ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Tuple = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = "cvt" def __init__( self : List[str] , _lowercase : str=3 , _lowercase : Tuple=[7, 3, 3] , _lowercase : Any=[4, 2, 2] , _lowercase : str=[2, 1, 1] , _lowercase : Union[str, Any]=[64, 1_92, 3_84] , _lowercase : Dict=[1, 3, 6] , _lowercase : List[str]=[1, 2, 10] , _lowercase : Optional[int]=[4.0, 4.0, 4.0] , _lowercase : Dict=[0.0, 0.0, 0.0] , _lowercase : Dict=[0.0, 0.0, 0.0] , _lowercase : Tuple=[0.0, 0.0, 0.1] , _lowercase : Dict=[True, True, True] , _lowercase : Union[str, Any]=[False, False, True] , _lowercase : Dict=["dw_bn", "dw_bn", "dw_bn"] , _lowercase : int=[3, 3, 3] , _lowercase : int=[1, 1, 1] , _lowercase : Optional[Any]=[2, 2, 2] , _lowercase : List[str]=[1, 1, 1] , _lowercase : int=[1, 1, 1] , _lowercase : Union[str, Any]=0.02 , _lowercase : Optional[Any]=1E-12 , **_lowercase : str , ): super().__init__(**_lowercase ) __UpperCAmelCase = num_channels __UpperCAmelCase = patch_sizes __UpperCAmelCase = patch_stride __UpperCAmelCase = patch_padding __UpperCAmelCase = embed_dim __UpperCAmelCase = num_heads __UpperCAmelCase = depth __UpperCAmelCase = mlp_ratio __UpperCAmelCase = attention_drop_rate __UpperCAmelCase = drop_rate __UpperCAmelCase = drop_path_rate __UpperCAmelCase = qkv_bias __UpperCAmelCase = cls_token __UpperCAmelCase = qkv_projection_method __UpperCAmelCase = kernel_qkv __UpperCAmelCase = padding_kv __UpperCAmelCase = stride_kv __UpperCAmelCase = padding_q __UpperCAmelCase = stride_q __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps
397
0
from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( UpperCamelCase__ ): __lowerCamelCase = """SpeechT5FeatureExtractor""" __lowerCamelCase = """SpeechT5Tokenizer""" def __init__( self : List[str] , __a : Dict , __a : Union[str, Any] ): '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , *__a : List[Any] , **__a : int ): '''simple docstring''' lowerCamelCase__: List[str] = kwargs.pop("""audio""" , _UpperCAmelCase ) lowerCamelCase__: Union[str, Any] = kwargs.pop("""text""" , _UpperCAmelCase ) lowerCamelCase__: Any = kwargs.pop("""text_target""" , _UpperCAmelCase ) lowerCamelCase__: List[str] = kwargs.pop("""audio_target""" , _UpperCAmelCase ) lowerCamelCase__: Any = kwargs.pop("""sampling_rate""" , _UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: lowerCamelCase__: Any = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) elif text is not None: lowerCamelCase__: Union[str, Any] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) else: lowerCamelCase__: Any = None if audio_target is not None: lowerCamelCase__: List[str] = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__: Tuple = targets["""input_values"""] elif text_target is not None: lowerCamelCase__: int = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__: List[Any] = targets["""input_ids"""] else: lowerCamelCase__: Optional[int] = None if inputs is None: return targets if targets is not None: lowerCamelCase__: Union[str, Any] = labels lowerCamelCase__: Tuple = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__: List[Any] = decoder_attention_mask return inputs def lowerCamelCase_ ( self : Tuple , *__a : List[Any] , **__a : Optional[int] ): '''simple docstring''' lowerCamelCase__: int = kwargs.pop("""input_values""" , _UpperCAmelCase ) lowerCamelCase__: Any = kwargs.pop("""input_ids""" , _UpperCAmelCase ) lowerCamelCase__: Dict = kwargs.pop("""labels""" , _UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: lowerCamelCase__: List[str] = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif input_ids is not None: lowerCamelCase__: Any = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) else: lowerCamelCase__: Dict = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]): lowerCamelCase__: List[str] = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__: List[Any] = targets["""input_ids"""] else: lowerCamelCase__: Any = self.feature_extractor.feature_size lowerCamelCase__: int = self.feature_extractor.num_mel_bins lowerCamelCase__: Any = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase__: List[Any] = feature_size_hack lowerCamelCase__: Dict = targets["""input_values"""] else: lowerCamelCase__: int = None if inputs is None: return targets if targets is not None: lowerCamelCase__: Optional[int] = labels lowerCamelCase__: List[str] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCamelCase__: Dict = decoder_attention_mask return inputs def lowerCamelCase_ ( self : Optional[int] , *__a : Dict , **__a : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase_ ( self : Tuple , *__a : str , **__a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
306
def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = len(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): for j in range(i + 1 , UpperCAmelCase__ ): if numbers[j] < numbers[i]: a_ , a_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A_ : Optional[Any] =input("""Enter numbers separated by a comma:\n""").strip() A_ : List[str] =[int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
483
0
from math import isqrt def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def _UpperCAmelCase ( UpperCamelCase: str = 1_0**6 ): """simple docstring""" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
701
import math import sys def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = "" try: with open(UpperCamelCase , "rb" ) as binary_file: __lowerCAmelCase = binary_file.read() for dat in data: __lowerCAmelCase = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = {"0": "0", "1": "1"} __lowerCAmelCase , __lowerCAmelCase = "", "" __lowerCAmelCase = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCAmelCase = lexicon[curr_string] result += last_match_id __lowerCAmelCase = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): __lowerCAmelCase = {} for curr_key in list(UpperCamelCase ): __lowerCAmelCase = lexicon.pop(UpperCamelCase ) __lowerCAmelCase = new_lex __lowerCAmelCase = last_match_id + "1" index += 1 __lowerCAmelCase = "" return result def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: __lowerCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCAmelCase = data_bits[counter:] __lowerCAmelCase = data_bits[counter + 1 :] return data_bits def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = read_file_binary(UpperCamelCase ) __lowerCAmelCase = remove_prefix(UpperCamelCase ) __lowerCAmelCase = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
376
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : List[str] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : int = '''decision_transformer''' __lowerCamelCase : Optional[Any] = ['''past_key_values'''] __lowerCamelCase : Tuple = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,SCREAMING_SNAKE_CASE_=17 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=128 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=1024 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="relu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=1E-5 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=50256 ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Any = state_dim snake_case : Optional[Any] = act_dim snake_case : Union[str, Any] = hidden_size snake_case : Any = max_ep_len snake_case : int = action_tanh snake_case : Any = vocab_size snake_case : Any = n_positions snake_case : List[str] = n_layer snake_case : int = n_head snake_case : Optional[int] = n_inner snake_case : List[Any] = activation_function snake_case : Tuple = resid_pdrop snake_case : Optional[Any] = embd_pdrop snake_case : Dict = attn_pdrop snake_case : List[str] = layer_norm_epsilon snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = scale_attn_weights snake_case : str = use_cache snake_case : int = scale_attn_by_inverse_layer_idx snake_case : Tuple = reorder_and_upcast_attn snake_case : Tuple = bos_token_id snake_case : List[str] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
36
from __future__ import annotations def lowercase ( __A : int ) -> list[int]: '''simple docstring''' snake_case : Dict = 2 snake_case : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A ) if n > 1: factors.append(__A ) return factors if __name__ == "__main__": import doctest doctest.testmod()
36
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) __snake_case: int = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def UpperCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) __snake_case: int = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) __snake_case: List[str] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __snake_case: Tuple = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: str = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case: Dict = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __snake_case: Optional[Any] = DDPMScheduler() __snake_case: Any = AudioDiffusionPipeline(vqvae=A , unet=self.dummy_unet , mel=A , scheduler=A ) __snake_case: str = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __snake_case: Optional[int] = torch.Generator(device=A ).manual_seed(42 ) __snake_case: Tuple = pipe(generator=A , steps=4 ) __snake_case: str = output.audios[0] __snake_case: Union[str, Any] = output.images[0] __snake_case: Tuple = torch.Generator(device=A ).manual_seed(42 ) __snake_case: List[str] = pipe(generator=A , steps=4 , return_dict=A ) __snake_case: Tuple = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __snake_case: int = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __snake_case: str = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] __snake_case: Optional[int] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __snake_case: Dict = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __snake_case: List[Any] = DDIMScheduler() __snake_case: Any = self.dummy_vqvae_and_unet __snake_case: str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A , scheduler=A ) __snake_case: Dict = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) np.random.seed(0 ) __snake_case: Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __snake_case: Any = torch.Generator(device=A ).manual_seed(42 ) __snake_case: List[Any] = pipe(raw_audio=A , generator=A , start_step=5 , steps=10 ) __snake_case: List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __snake_case: int = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __snake_case: Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __snake_case: Optional[Any] = self.dummy_unet_condition __snake_case: str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A , mel=A , scheduler=A ) __snake_case: Union[str, Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) np.random.seed(0 ) __snake_case: Tuple = torch.rand((1, 1, 10) ) __snake_case: List[str] = pipe(generator=A , encoding=A ) __snake_case: Union[str, Any] = output.images[0] __snake_case: Any = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __snake_case: Dict = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : str ): __snake_case: Optional[Any] = torch_device __snake_case: int = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __snake_case: Optional[int] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = torch.Generator(device=A ).manual_seed(42 ) __snake_case: Tuple = pipe(generator=A ) __snake_case: str = output.audios[0] __snake_case: int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __snake_case: str = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __snake_case: Tuple = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
155
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCAmelCase : Tuple = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
155
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase( snake_case_ ): """simple docstring""" a : "DiagonalGaussianDistribution" class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : str = True @register_to_config def __init__( self , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = ("DownEncoderBlock2D",) , lowerCamelCase = ("UpDecoderBlock2D",) , lowerCamelCase = (64,) , lowerCamelCase = 1 , lowerCamelCase = "silu" , lowerCamelCase = 4 , lowerCamelCase = 32 , lowerCamelCase = 32 , lowerCamelCase = 0.1_82_15 , ) -> Tuple: """simple docstring""" super().__init__() # pass init params to Encoder lowercase__ : List[Any] = Encoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , down_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , act_fn=lowerCamelCase , norm_num_groups=lowerCamelCase , double_z=lowerCamelCase , ) # pass init params to Decoder lowercase__ : Union[str, Any] = Decoder( in_channels=lowerCamelCase , out_channels=lowerCamelCase , up_block_types=lowerCamelCase , block_out_channels=lowerCamelCase , layers_per_block=lowerCamelCase , norm_num_groups=lowerCamelCase , act_fn=lowerCamelCase , ) lowercase__ : Optional[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowercase__ : Optional[int] = nn.Convad(lowerCamelCase , lowerCamelCase , 1 ) lowercase__ : List[Any] = False lowercase__ : str = False # only relevant if vae tiling is enabled lowercase__ : int = self.config.sample_size lowercase__ : Dict = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowercase__ : Any = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowercase__ : str = 0.25 def __a ( self , lowerCamelCase , lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(lowerCamelCase , (Encoder, Decoder) ): lowercase__ : int = value def __a ( self , lowerCamelCase = True ) -> List[str]: """simple docstring""" lowercase__ : Any = use_tiling def __a ( self ) -> Any: """simple docstring""" self.enable_tiling(lowerCamelCase ) def __a ( self ) -> str: """simple docstring""" lowercase__ : str = True def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Dict = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __a ( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowercase__ : Any = {} def fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): lowercase__ : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return processors def __a ( self , lowerCamelCase ) -> Tuple: """simple docstring""" lowercase__ : List[str] = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if hasattr(lowerCamelCase , "set_processor" ): if not isinstance(lowerCamelCase , lowerCamelCase ): module.set_processor(lowerCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase , lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __a ( self ) -> Union[str, Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase , return_dict=lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: lowercase__ : int = [self.encoder(lowerCamelCase ) for x_slice in x.split(1 )] lowercase__ : Any = torch.cat(lowerCamelCase ) else: lowercase__ : Optional[int] = self.encoder(lowerCamelCase ) lowercase__ : Optional[Any] = self.quant_conv(lowerCamelCase ) lowercase__ : str = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase , return_dict=lowerCamelCase ) lowercase__ : Tuple = self.post_quant_conv(lowerCamelCase ) lowercase__ : List[Any] = self.decoder(lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) @apply_forward_hook def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: lowercase__ : Optional[Any] = [self._decode(lowerCamelCase ).sample for z_slice in z.split(1 )] lowercase__ : Dict = torch.cat(lowerCamelCase ) else: lowercase__ : Dict = self._decode(lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = min(a.shape[2] , b.shape[2] , lowerCamelCase ) for y in range(lowerCamelCase ): lowercase__ : Union[str, Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : str = min(a.shape[3] , b.shape[3] , lowerCamelCase ) for x in range(lowerCamelCase ): lowercase__ : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> AutoencoderKLOutput: """simple docstring""" lowercase__ : List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowercase__ : Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowercase__ : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowercase__ : Optional[int] = [] for i in range(0 , x.shape[2] , lowerCamelCase ): lowercase__ : int = [] for j in range(0 , x.shape[3] , lowerCamelCase ): lowercase__ : Optional[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowercase__ : Any = self.encoder(lowerCamelCase ) lowercase__ : Optional[int] = self.quant_conv(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) lowercase__ : List[str] = [] for i, row in enumerate(lowerCamelCase ): lowercase__ : Optional[int] = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase__ : Dict = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: lowercase__ : Any = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) lowercase__ : Dict = torch.cat(lowerCamelCase , dim=2 ) lowercase__ : List[str] = DiagonalGaussianDistribution(lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" lowercase__ : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowercase__ : List[str] = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowercase__ : Union[str, Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowercase__ : List[Any] = [] for i in range(0 , z.shape[2] , lowerCamelCase ): lowercase__ : Dict = [] for j in range(0 , z.shape[3] , lowerCamelCase ): lowercase__ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowercase__ : int = self.post_quant_conv(lowerCamelCase ) lowercase__ : Optional[Any] = self.decoder(lowerCamelCase ) row.append(lowerCamelCase ) rows.append(lowerCamelCase ) lowercase__ : List[str] = [] for i, row in enumerate(lowerCamelCase ): lowercase__ : str = [] for j, tile in enumerate(lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase__ : Tuple = self.blend_v(rows[i - 1][j] , lowerCamelCase , lowerCamelCase ) if j > 0: lowercase__ : Optional[int] = self.blend_h(row[j - 1] , lowerCamelCase , lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase , dim=3 ) ) lowercase__ : str = torch.cat(lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase ) def __a ( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = True , lowerCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" lowercase__ : Optional[int] = sample lowercase__ : List[Any] = self.encode(lowerCamelCase ).latent_dist if sample_posterior: lowercase__ : Union[str, Any] = posterior.sample(generator=lowerCamelCase ) else: lowercase__ : int = posterior.mode() lowercase__ : Tuple = self.decode(lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase )
397
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCAmelCase ( UpperCAmelCase )-> Optional[Any]: """simple docstring""" lowercase ,lowercase = image.size lowercase ,lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase = image.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) lowercase = np.array(UpperCAmelCase ).astype(np.floataa ) / 255.0 lowercase = image[None].transpose(0, 3, 1, 2 ) lowercase = torch.from_numpy(UpperCAmelCase ) return 2.0 * image - 1.0 class __lowercase ( _A ): def __init__( self : Tuple , __lowerCamelCase : VQModel , __lowerCamelCase : UNetaDModel , __lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Any: '''simple docstring''' super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : Tuple , __lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : Optional[int] = 1_00 , __lowerCamelCase : Optional[float] = 0.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(__lowerCamelCase , PIL.Image.Image ): lowercase = 1 elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase )}' ) if isinstance(__lowerCamelCase , PIL.Image.Image ): lowercase = preprocess(__lowerCamelCase ) lowercase ,lowercase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase = next(self.unet.parameters() ).dtype lowercase = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) lowercase = image.to(device=self.device , dtype=__lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) lowercase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta for t in self.progress_bar(__lowerCamelCase ): # concat latents and low resolution image in the channel dimension. lowercase = torch.cat([latents, image] , dim=1 ) lowercase = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual lowercase = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # decode the image latents with the VQVAE lowercase = self.vqvae.decode(__lowerCamelCase ).sample lowercase = torch.clamp(__lowerCamelCase , -1.0 , 1.0 ) lowercase = image / 2 + 0.5 lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
706
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def __UpperCAmelCase ( UpperCAmelCase )-> Dict: """simple docstring""" lowercase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) A_ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = list(s_dict.keys() ) for key in keys: lowercase = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase = new_key.replace(UpperCAmelCase, UpperCAmelCase ) print(f'{key} -> {new_key}' ) lowercase = s_dict.pop(UpperCAmelCase ) return s_dict def __UpperCAmelCase ( UpperCAmelCase )-> str: """simple docstring""" lowercase ,lowercase = emb.weight.shape lowercase = nn.Linear(UpperCAmelCase, UpperCAmelCase, bias=UpperCAmelCase ) lowercase = emb.weight.data return lin_layer def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> bytes: """simple docstring""" os.makedirs(UpperCAmelCase, exist_ok=UpperCAmelCase ) lowercase = os.path.basename(UpperCAmelCase ) lowercase = url.split('''/''' )[-2] lowercase = os.path.join(UpperCAmelCase, UpperCAmelCase ) if os.path.exists(UpperCAmelCase ) and not os.path.isfile(UpperCAmelCase ): raise RuntimeError(f'{download_target} exists and is not a regular file' ) if os.path.isfile(UpperCAmelCase ): lowercase = open(UpperCAmelCase, '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(UpperCAmelCase ) as source, open(UpperCAmelCase, '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ), ncols=80, unit='''iB''', unit_scale=UpperCAmelCase, unit_divisor=1024 ) as loop: while True: lowercase = source.read(8192 ) if not buffer: break output.write(UpperCAmelCase ) loop.update(len(UpperCAmelCase ) ) lowercase = open(UpperCAmelCase, '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Union[str, Any]: """simple docstring""" if ".pt" not in checkpoint_path: lowercase = _download(_MODELS[checkpoint_path] ) else: lowercase = torch.load(UpperCAmelCase, map_location='''cpu''' ) lowercase = original_checkpoint['''dims'''] lowercase = original_checkpoint['''model_state_dict'''] lowercase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowercase = True lowercase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowercase = WhisperConfig( vocab_size=dimensions['''n_vocab'''], encoder_ffn_dim=UpperCAmelCase, decoder_ffn_dim=UpperCAmelCase, num_mel_bins=dimensions['''n_mels'''], d_model=dimensions['''n_audio_state'''], max_target_positions=dimensions['''n_text_ctx'''], encoder_layers=dimensions['''n_audio_layer'''], encoder_attention_heads=dimensions['''n_audio_head'''], decoder_layers=dimensions['''n_text_layer'''], decoder_attention_heads=dimensions['''n_text_state'''], max_source_positions=dimensions['''n_audio_ctx'''], ) lowercase = WhisperForConditionalGeneration(UpperCAmelCase ) lowercase ,lowercase = model.model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f' but all the following weights are missing {missing}' ) if tie_embeds: lowercase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase = proj_out_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") A_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
479
0
import math class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def _lowerCAmelCase ( self : Dict , __a : Union[str, Any] , __a : Tuple ) ->int: lowerCamelCase_ : str = 0.0 lowerCamelCase_ : Tuple = 0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _lowerCAmelCase ( self : Optional[int] , __a : str , __a : Any , __a : Any , __a : List[Any] ) ->list[list[int | float]]: for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __lowerCamelCase ( ) -> int: # Training Examples ( m, n ) lowerCamelCase_ : str = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase_ : List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase_ : int = SelfOrganizingMap() lowerCamelCase_ : Dict = 3 lowerCamelCase_ : Optional[Any] = 0.5 for _ in range(__SCREAMING_SNAKE_CASE ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): # training sample lowerCamelCase_ : Any = training_samples[j] # Compute the winning vector lowerCamelCase_ : Tuple = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Update the winning vector lowerCamelCase_ : str = self_organizing_map.update(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # classify test sample lowerCamelCase_ : Dict = [0, 0, 0, 1] lowerCamelCase_ : Optional[Any] = self_organizing_map.get_winner(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
278
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase=7 ,__UpperCamelCase=3 ,__UpperCamelCase=18 ,__UpperCamelCase=30 ,__UpperCamelCase=400 ,__UpperCamelCase=True ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> str: '''simple docstring''' lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 20} lowercase_ : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowercase_ : str = parent lowercase_ : str = batch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : List[str] = image_size lowercase_ : Dict = min_resolution lowercase_ : Union[str, Any] = max_resolution lowercase_ : Dict = do_resize lowercase_ : Any = size lowercase_ : str = do_center_crop lowercase_ : Tuple = crop_size def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = MobileNetVaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Tuple = MobileNetVaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase ,'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'size' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'crop_size' ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,Image.Image ) # Test not batched input lowercase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : List[str] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,np.ndarray ) # Test not batched input lowercase_ : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : Optional[int] = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCamelCase ,torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase ,torch.Tensor ) # Test not batched input lowercase_ : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched lowercase_ : Dict = image_processing(__UpperCamelCase ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
425
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Image ): '''simple docstring''' lowercase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Image ): '''simple docstring''' lowercase_ = np.array(__lowerCamelCase ) lowercase_ = npimg.shape return {"hash": hashimage(__lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = MaskGenerationPipeline(model=UpperCAmelCase , image_processor=UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass @slow @require_torch def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) lowercase_ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing lowercase_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8871} ] , ) # fmt: on @require_torch @slow def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = "facebook/sam-vit-huge" lowercase_ = pipeline("mask-generation" , model=UpperCAmelCase ) lowercase_ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowercase_ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053}, ] , )
601
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowercase_ = "weight_g" elif "weight_v" in name: lowercase_ = "weight_v" elif "weight" in name: lowercase_ = "weight" elif "bias" in name: lowercase_ = "bias" else: lowercase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = "gelu" lowercase_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCamelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = "Wav2Vec2FeatureExtractor" lowercase_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: str=True ): '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = convert_config(model[0] , __lowerCamelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == "layer" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCamelCase , "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCamelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase_ = SEWForCTC(__lowerCamelCase ) else: lowercase_ = SEWModel(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
601
1
import functools def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowercase ) >= 3_66: raise ValueError('All days elements should be less than 366' ) lowerCamelCase_ = set(lowercase ) @functools.cache def dynamic_programming(lowercase : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
70
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" __UpperCamelCase : Optional[Any] = SMALL_MODEL_IDENTIFIER __UpperCamelCase : List[str] = """pt""" __UpperCamelCase : List[Any] = """tf""" def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase ) model_tf.save_pretrained(lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = """mock_framework""" # Framework provided - return whatever the user provides __UpperCamelCase : List[Any] = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Any = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __UpperCamelCase : Optional[Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __UpperCamelCase : str = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __UpperCamelCase : Optional[int] = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch __UpperCamelCase : Dict = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Any = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): __UpperCamelCase : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error __UpperCamelCase : Union[str, Any] = MagicMock(return_value=lowerCAmelCase ) __UpperCamelCase : Tuple = MagicMock(return_value=lowerCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase ): with self.assertRaises(lowerCAmelCase ): __UpperCamelCase : str = FeaturesManager.determine_framework(self.test_model )
279
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging snake_case = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] snake_case = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = """ Hello world! cécé herlolip""" snake_case = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dct.pop(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = val def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape SCREAMING_SNAKE_CASE : Dict = nn.Linear(lowercase , lowercase , bias=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase=None ): """simple docstring""" if not os.path.exists(lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load("pytorch/fairseq" , lowercase ).eval() else: SCREAMING_SNAKE_CASE : Dict = load_xsum_checkpoint(lowercase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: SCREAMING_SNAKE_CASE : Optional[int] = checkpoint_path.replace("." , "-" ) SCREAMING_SNAKE_CASE : str = BartConfig.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE : Tuple = bart.encode(lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = BartTokenizer.from_pretrained(lowercase ).encode(lowercase , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(lowercase , lowercase ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": SCREAMING_SNAKE_CASE : Any = bart.state_dict() remove_ignore_keys_(lowercase ) SCREAMING_SNAKE_CASE : int = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification(lowercase ).eval() model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Any = bart.predict("mnli" , lowercase , return_logits=lowercase ) SCREAMING_SNAKE_CASE : Tuple = model(lowercase )[0] # logits else: # no classification heads to worry about SCREAMING_SNAKE_CASE : Dict = bart.model.state_dict() remove_ignore_keys_(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE : Optional[Any] = bart.extract_features(lowercase ) if hf_checkpoint_name == "facebook/bart-large": SCREAMING_SNAKE_CASE : int = BartModel(lowercase ).eval() model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase ).model[0] else: SCREAMING_SNAKE_CASE : Tuple = BartForConditionalGeneration(lowercase ).eval() # an existing summarization ckpt model.model.load_state_dict(lowercase ) if hasattr(lowercase , "lm_head" ): SCREAMING_SNAKE_CASE : Dict = make_linear_from_emb(model.model.shared ) SCREAMING_SNAKE_CASE : Tuple = model.model(lowercase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) snake_case = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
721
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
488
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[Any] = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""bridgetower_vision_model""" def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=288 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase__ ) a : List[Any] = hidden_size a : int = num_hidden_layers a : Optional[Any] = num_channels a : int = patch_size a : Tuple = image_size a : List[Any] = initializer_factor a : Dict = layer_norm_eps a : List[Any] = stop_gradient a : List[Any] = share_layernorm a : Dict = remove_last_layer @classmethod def __a ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": a, a : str = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": a : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""bridgetower_text_model""" def __init__( self , lowerCAmelCase__=5_0265 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=514 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase__ ) a : List[Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Tuple = num_attention_heads a : int = hidden_act a : Optional[Any] = initializer_factor a : str = intermediate_size a : List[str] = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : str = type_vocab_size a : List[Any] = layer_norm_eps a : str = position_embedding_type a : List[Any] = use_cache a : int = pad_token_id a : Union[str, Any] = bos_token_id a : Any = eos_token_id @classmethod def __a ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": a, a : str = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": a : str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] ="""bridgetower""" def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=768 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__="add" , lowerCAmelCase__=12 , lowerCAmelCase__=6 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Any: # TODO: remove this once the Hub files are updated. a : Union[str, Any] = kwargs.pop("text_config_dict" , lowerCAmelCase__ ) a : List[Any] = kwargs.pop("vision_config_dict" , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) a : Optional[int] = share_cross_modal_transformer_layers a : Optional[Any] = hidden_act a : Tuple = hidden_size a : Tuple = initializer_factor a : List[Any] = layer_norm_eps a : Tuple = share_link_tower_layers a : Dict = link_tower_type a : Union[str, Any] = num_attention_heads a : Any = num_hidden_layers a : Dict = tie_word_embeddings a : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: a : Tuple = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: a : str = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) a : Optional[Any] = BridgeTowerTextConfig(**lowerCAmelCase__ ) a : Dict = BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a : Optional[Any] = copy.deepcopy(self.__dict__ ) a : Optional[int] = self.text_config.to_dict() a : Optional[int] = self.vision_config.to_dict() a : int = self.__class__.model_type return output
633
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a : List[Any] = '''\ ''' a : Optional[int] = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a : List[Any] = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __a ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 , lowerCAmelCase__ = True , lowerCAmelCase__=None ) -> Tuple: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": a : Optional[Any] = "cuda" else: a : str = "cuda" if torch.cuda.is_available() else "cpu" a : str = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) a : int = model.to(lowerCAmelCase__ ) a : str = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCAmelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" a : List[Any] = model.config.max_length - 1 else: a : Union[str, Any] = model.config.max_length a : Union[str, Any] = tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors="pt" , return_attention_mask=lowerCAmelCase__ , ).to(lowerCAmelCase__ ) a : str = encodings["input_ids"] a : Optional[int] = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." a : List[Any] = [] a : List[Any] = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ): a : Optional[Any] = min(start_index + batch_size , len(lowerCAmelCase__ ) ) a : Any = encoded_texts[start_index:end_index] a : List[Any] = attn_masks[start_index:end_index] if add_start_token: a : int = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCAmelCase__ ) a : str = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) a : str = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCAmelCase__ ), attn_mask] , dim=1 ) a : Any = encoded_batch with torch.no_grad(): a : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).logits a : List[Any] = out_logits[..., :-1, :].contiguous() a : int = labels[..., 1:].contiguous() a : Union[str, Any] = attn_mask[..., 1:].contiguous() a : Dict = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowerCAmelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase__ )}
633
1
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __snake_case = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __snake_case = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
473
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : Tuple = logging.get_logger(__name__) A : int = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCamelCase( _a ): snake_case_ : str = """blenderbot-small""" snake_case_ : List[Any] = ["""past_key_values"""] snake_case_ : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE : Any=8 , SCREAMING_SNAKE_CASE : int=2_0_4_8 , SCREAMING_SNAKE_CASE : Any=1_6 , SCREAMING_SNAKE_CASE : Tuple=8 , SCREAMING_SNAKE_CASE : List[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE : Optional[int]=1_6 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE : str=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : Any=0.0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Union[str, Any]=0 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Any=2 , **SCREAMING_SNAKE_CASE : Dict , ) -> Optional[int]: '''simple docstring''' __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) class UpperCamelCase( _a ): @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __snake_case = {0: "batch"} __snake_case = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __snake_case = {0: "batch", 1: "decoder_sequence"} __snake_case = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(SCREAMING_SNAKE_CASE ): __snake_case = {0: "batch", 2: "past_sequence + sequence"} __snake_case = {0: "batch", 2: "past_sequence + sequence"} else: __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(SCREAMING_SNAKE_CASE ): __snake_case = {0: "batch", 2: "past_sequence + sequence"} __snake_case = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape __snake_case = common_inputs["decoder_input_ids"].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - min_num_layers __snake_case = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs["attention_mask"].dtype __snake_case = torch.cat( [common_inputs["attention_mask"], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(SCREAMING_SNAKE_CASE ) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) __snake_case = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __snake_case = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": __snake_case = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) else: __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __snake_case = super(SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
473
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Any: '''simple docstring''' lowercase = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } lowercase = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , x.transpose() ) ) lowercase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , transpose(_lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , transpose(_lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _a ( self ) -> Dict: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , transpose(_lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , transpose(_lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _a ( self ) -> Dict: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , np.asarray(transpose(_lowerCAmelCase ) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def _a ( self ) -> int: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , np.reshape(_lowerCAmelCase , (4, 3) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , np.reshape(_lowerCAmelCase , (12, 5) ) ) ) @require_torch def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , reshape(_lowerCAmelCase , (4, 3) ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , reshape(_lowerCAmelCase , (12, 5) ).numpy() ) ) @require_tf def _a ( self ) -> Any: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , reshape(_lowerCAmelCase , (4, 3) ).numpy() ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , reshape(_lowerCAmelCase , (12, 5) ).numpy() ) ) @require_flax def _a ( self ) -> Dict: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , np.asarray(reshape(_lowerCAmelCase , (4, 3) ) ) ) ) lowercase = np.random.randn(3 , 4 , 5 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , np.asarray(reshape(_lowerCAmelCase , (12, 5) ) ) ) ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , np.squeeze(_lowerCAmelCase ) ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , np.squeeze(_lowerCAmelCase , axis=2 ) ) ) @require_torch def _a ( self ) -> List[str]: '''simple docstring''' lowercase = np.random.randn(1 , 3 , 4 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , squeeze(_lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , squeeze(_lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def _a ( self ) -> int: '''simple docstring''' lowercase = np.random.randn(1 , 3 , 4 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , squeeze(_lowerCAmelCase ).numpy() ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , squeeze(_lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = np.random.randn(1 , 3 , 4 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , np.asarray(squeeze(_lowerCAmelCase ) ) ) ) lowercase = np.random.randn(1 , 4 , 1 , 5 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , np.asarray(squeeze(_lowerCAmelCase , axis=2 ) ) ) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , np.expand_dims(_lowerCAmelCase , axis=1 ) ) ) @require_torch def _a ( self ) -> Tuple: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , expand_dims(_lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , expand_dims(_lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def _a ( self ) -> List[str]: '''simple docstring''' lowercase = np.random.randn(3 , 4 ) lowercase = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(_lowerCAmelCase , axis=1 ) ) ) )
588
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : str = logging.getLogger(__name__) class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase=-1 ) -> List[str]: '''simple docstring''' lowercase = label_idx def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = mode.value lowercase = os.path.join(_lowerCAmelCase , F"""{mode}.txt""" ) lowercase = 1 lowercase = [] with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: lowercase = [] lowercase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) guid_index += 1 lowercase = [] lowercase = [] else: lowercase = line.split(""" """ ) words.append(splits[0] ) if len(_lowerCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) return examples def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(_lowerCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(_lowerCAmelCase ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCAmelCase , """r""" ) as f: lowercase = f.read().splitlines() if "O" not in labels: lowercase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCamelCase (_UpperCAmelCase ): def __init__( self ) -> Dict: '''simple docstring''' super().__init__(label_idx=-2 ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCAmelCase , """r""" ) as f: lowercase = f.read().splitlines() if "O" not in labels: lowercase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCamelCase (_UpperCAmelCase ): def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = mode.value lowercase = os.path.join(_lowerCAmelCase , F"""{mode}.txt""" ) lowercase = 1 lowercase = [] with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: for sentence in parse_incr(_lowerCAmelCase ): lowercase = [] lowercase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_lowerCAmelCase , labels=_lowerCAmelCase ) ) guid_index += 1 return examples def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for sentence in parse_incr(_lowerCAmelCase ): lowercase = preds_list[example_id] lowercase = """""" for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(_lowerCAmelCase ) example_id += 1 def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCAmelCase , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
588
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Tuple ) -> Dict: '''simple docstring''' snake_case__ :Optional[int] = FunnelConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) snake_case__ :Tuple = FunnelBaseModel(__snake_case ) if base_model else FunnelModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case__ , snake_case__ = array[indexa], array[indexa] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
33
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __UpperCamelCase: Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = ["audio_values", "audio_mask"] def __init__( self: Any, lowerCamelCase_: int=2048, lowerCamelCase_: str=1, lowerCamelCase_: str=[16, 16], lowerCamelCase_: Union[str, Any]=128, lowerCamelCase_: Tuple=44100, lowerCamelCase_: Union[str, Any]=86, lowerCamelCase_: Optional[Any]=2048, lowerCamelCase_: Dict=0.0, **lowerCamelCase_: str, ): super().__init__( feature_size=lowerCamelCase_, sampling_rate=lowerCamelCase_, padding_value=lowerCamelCase_, **lowerCamelCase_, ) lowercase__ : List[str] = spectrogram_length lowercase__ : Union[str, Any] = num_channels lowercase__ : int = patch_size lowercase__ : Union[str, Any] = feature_size // self.patch_size[1] lowercase__ : Optional[int] = n_fft lowercase__ : int = sampling_rate // hop_length_to_sampling_rate lowercase__ : str = sampling_rate lowercase__ : Union[str, Any] = padding_value lowercase__ : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=lowerCamelCase_, min_frequency=0.0, max_frequency=2_2_0_5_0.0, sampling_rate=lowerCamelCase_, norm='slaney', mel_scale='slaney', ).T def snake_case__( self: Tuple, lowerCamelCase_: np.array ): lowercase__ : Optional[Any] = spectrogram( lowerCamelCase_, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=8_0.0, ) lowercase__ : Optional[Any] = log_spec[:, :-1] lowercase__ : int = log_spec - 2_0.0 lowercase__ : Dict = np.clip(log_spec / 4_0.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self: Dict, lowerCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase_: Optional[Union[str, TensorType]] = None, lowerCamelCase_: Optional[bool] = True, lowerCamelCase_: Optional[int] = None, lowerCamelCase_: bool = False, lowerCamelCase_: bool = False, **lowerCamelCase_: str, ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ : Any = isinstance(lowerCamelCase_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : Optional[Any] = is_batched_numpy or ( isinstance(lowerCamelCase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : int = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_, np.ndarray ): lowercase__ : Optional[int] = np.asarray(lowerCamelCase_, dtype=np.floataa ) elif isinstance(lowerCamelCase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], lowerCamelCase_ ): lowercase__ : str = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ : Dict = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ : int = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ : Any = np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowercase__ : Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ : Tuple = np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowercase__ : Union[str, Any] = audio_features[i] lowercase__ : str = feature # return as BatchFeature if return_attention_mask: lowercase__ : Dict = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ : int = {'audio_values': padded_audio_features} lowercase__ : List[Any] = BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ ) return encoded_inputs
266
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , lowercase__ : str = "▁" , lowercase__ : bool = True , lowercase__ : Union[str, AddedToken] = "<unk>" , lowercase__ : Union[str, AddedToken] = "</s>" , lowercase__ : Union[str, AddedToken] = "<pad>" , ): __lowercase : List[Any] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } __lowercase : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase : Dict = token_dict["token"] __lowercase : Optional[Any] = Tokenizer(Unigram() ) __lowercase : int = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) __lowercase : int = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase__ , add_prefix_space=lowercase__ ), pre_tokenizers.Digits(individual_digits=lowercase__ ), pre_tokenizers.Punctuation(), ] ) __lowercase : str = decoders.Metaspace(replacement=lowercase__ , add_prefix_space=lowercase__ ) __lowercase : Optional[Any] = TemplateProcessing( single=f'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) __lowercase : Optional[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(lowercase__ , lowercase__ ) def snake_case ( self : str , lowercase__ : Union[str, List[str]] , lowercase__ : int = 8_0_0_0 , lowercase__ : bool = True , ): __lowercase : List[Any] = trainers.UnigramTrainer( vocab_size=lowercase__ , special_tokens=self.special_tokens_list , show_progress=lowercase__ , ) if isinstance(lowercase__ , lowercase__ ): __lowercase : Any = [files] self._tokenizer.train(lowercase__ , trainer=lowercase__ ) self.add_unk_id() def snake_case ( self : Any , lowercase__ : Union[Iterator[str], Iterator[Iterator[str]]] , lowercase__ : int = 8_0_0_0 , lowercase__ : bool = True , ): __lowercase : Union[str, Any] = trainers.UnigramTrainer( vocab_size=lowercase__ , special_tokens=self.special_tokens_list , show_progress=lowercase__ , ) self._tokenizer.train_from_iterator(lowercase__ , trainer=lowercase__ ) self.add_unk_id() def snake_case ( self : List[str] ): __lowercase : Any = json.loads(self._tokenizer.to_str() ) __lowercase : Optional[int] = self.special_tokens["unk"]["id"] __lowercase : str = Tokenizer.from_str(json.dumps(lowercase__ ) )
281
"""simple docstring""" import os import sys import unittest __A : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : str ): __lowercase : int = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowercase : int = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowercase : str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase__ , "torch_and_transformers_and_onnx" ) def snake_case ( self : Any ): __lowercase : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowercase__ ) self.assertIn("torch_and_transformers" , lowercase__ ) self.assertIn("flax_and_transformers" , lowercase__ ) self.assertIn("torch_and_transformers_and_onnx" , lowercase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def snake_case ( self : Dict ): __lowercase : Tuple = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowercase__ , "\nCONSTANT = None\n" ) __lowercase : Union[str, Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowercase__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowercase : Tuple = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __lowercase : Dict = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[int] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __lowercase : List[str] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowercase__ )
281
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a : List[Any] = '''CompVis/stable-diffusion-v1-1''' a : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a : Any = '''CompVis/stable-diffusion-v1-3''' a : Optional[int] = '''CompVis/stable-diffusion-v1-4''' class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[int] , a_ : AutoencoderKL , a_ : CLIPTextModel , a_ : CLIPTokenizer , a_ : UNetaDConditionModel , a_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , a_ : StableDiffusionSafetyChecker , a_ : CLIPImageProcessor , a_ : bool = True , ): """simple docstring""" super()._init_() __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline( vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=a_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A ( self : int ): """simple docstring""" return {k: getattr(self , a_ ) for k in self.config.keys() if not k.startswith("_" )} def A ( self : int , a_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def A ( self : str ): """simple docstring""" self.enable_attention_slicing(a_ ) @torch.no_grad() def A ( self : List[str] , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Optional[int] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : int , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Union[str, Any] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : Union[str, Any] , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Dict , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : Any , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Optional[Any] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : int , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Union[str, Any] , ): """simple docstring""" __snake_case = "cuda" if torch.cuda.is_available() else "cpu" self.to(a_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
69
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __lowerCamelCase : Any = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Any ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : int = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Any = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : Dict = value elif weight_type == "bias": snake_case__ : int = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : int ): snake_case__ : List[Any] = [] snake_case__ : List[str] = fairseq_model.state_dict() snake_case__ : Optional[int] = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : str = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : int = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: snake_case__ : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : List[str] = "weight" else: snake_case__ : List[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int ): snake_case__ : Optional[Any] = full_name.split("conv_layers." )[-1] snake_case__ : List[Any] = name.split("." ) snake_case__ : Optional[Any] = int(items[0] ) snake_case__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[str]=None ): # load the pre-trained checkpoints snake_case__ : List[str] = torch.load(snake_case_ ) snake_case__ : Tuple = WavLMConfigOrig(checkpoint["cfg"] ) snake_case__ : Optional[Any] = WavLMOrig(snake_case_ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: snake_case__ : Tuple = WavLMConfig.from_pretrained(snake_case_ ) else: snake_case__ : Union[str, Any] = WavLMConfig() snake_case__ : Optional[Any] = WavLMModel(snake_case_ ) recursively_load_weights(snake_case_ , snake_case_ ) hf_wavlm.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCamelCase : str = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
297
0
'''simple docstring''' import os def __UpperCamelCase ( UpperCAmelCase = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase ) , UpperCAmelCase ) ) as in_file: lowercase__ : str = in_file.read() lowercase__ : int = [[int(UpperCAmelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowercase__ : Tuple = [[0 for cell in row] for row in grid] lowercase__ : Union[str, Any] = len(grid[0] ) lowercase__ : List[str] = [[0 for i in range(UpperCAmelCase )] for j in range(UpperCAmelCase )] lowercase__ : Union[str, Any] = grid[0][0] for i in range(1 , UpperCAmelCase ): lowercase__ : Optional[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase ): lowercase__ : Union[str, Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase ): for j in range(1 , UpperCAmelCase ): lowercase__ : List[str] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
428
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE = frozenset([] ) SCREAMING_SNAKE_CASE = True @property def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = 1 lowercase__ : Tuple = 4 lowercase__ : Dict = (16, 16) lowercase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image def _lowerCAmelCase( self ) -> Optional[int]: torch.manual_seed(0 ) lowercase__ : int = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=__lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=__lowerCAmelCase , only_cross_attention=__lowerCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) lowercase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) lowercase__ : Optional[Any] = EulerDiscreteScheduler(prediction_type='''sample''' ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) lowercase__ : Optional[Any] = CLIPTextModel(__lowerCAmelCase ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : List[Any] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Optional[int]: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Tuple = '''cpu''' lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : Any = pipe(**__lowerCAmelCase ).images lowercase__ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase__ : int = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowercase__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _lowerCAmelCase( self ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _lowerCAmelCase( self ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _lowerCAmelCase( self ) -> int: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _lowerCAmelCase( self ) -> Any: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**__lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : List[str] = 2 lowercase__ : Dict = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ : Union[str, Any] = getattr(__lowerCAmelCase , scheduler_enum.name ) lowercase__ : Optional[int] = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ : Dict = pipe(**__lowerCAmelCase )[0] outputs.append(__lowerCAmelCase ) assert check_same_shape(__lowerCAmelCase ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> int: lowercase__ : str = torch.manual_seed(33 ) lowercase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase__ : str = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase__ : Optional[int] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowercase__ : Any = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , output_type='''latent''' ).images lowercase__ : Optional[int] = upscaler( prompt=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCAmelCase , output_type='''np''' , ).images[0] lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[str] = torch.manual_seed(33 ) lowercase__ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase__ : int = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowercase__ : List[Any] = upscaler( prompt=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCAmelCase , output_type='''np''' , ).images[0] lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
428
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) UpperCAmelCase__ : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler("""sample_euler""" ) UpperCAmelCase__ : Any = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = sd_pipe([prompt] ,generator=snake_case_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) UpperCAmelCase__ : List[Any] = output.images UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase__ : int = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler("""sample_euler""" ) UpperCAmelCase__ : Dict = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = sd_pipe([prompt] ,generator=snake_case_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) UpperCAmelCase__ : Dict = output.images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : List[Any] = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase__ : List[Any] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) UpperCAmelCase__ : Any = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = sd_pipe( [prompt] ,generator=snake_case_ ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type="""np""" ,use_karras_sigmas=snake_case_ ,) UpperCAmelCase__ : Any = output.images UpperCAmelCase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Union[str, Any] = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
65
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) def _a ( __lowerCAmelCase : bool , __lowerCAmelCase : bool ): """simple docstring""" def run_func(__lowerCAmelCase : Optional[int] ): @wraps(__lowerCAmelCase ) def run_in_eager_mode(*__lowerCAmelCase : str , **__lowerCAmelCase : Union[str, Any] ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) @wraps(__lowerCAmelCase ) @tf.function(experimental_compile=__lowerCAmelCase ) def run_in_graph_mode(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Optional[int] ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : int = random.Random() snake_case__ : Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = "TensorFlow" @property def __magic_name__ ( self : List[Any] ): '''simple docstring''' return tf.__version__ def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : Optional[int] = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_inference ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : int = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_train ) def __magic_name__ ( self : List[str] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) snake_case__ : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : Union[str, Any] = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_inference ) def __magic_name__ ( self : str , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) snake_case__ : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : int = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_train ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case__ : str = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : str = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) snake_case__ : Union[str, Any] = getattr(snake_case_ , snake_case_ ) snake_case__ : Tuple = model_cls(snake_case_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case__ : Optional[int] = TF_MODEL_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently snake_case__ : Union[str, Any] = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case__ : int = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(snake_case_ , decoder_input_ids=snake_case_ , training=snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(snake_case_ , training=snake_case_ ) snake_case__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case__ : List[Any] = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : Union[str, Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : Any = __import__('''transformers''' , fromlist=[model_class] ) snake_case__ : Dict = getattr(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = model_cls(snake_case_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case__ : int = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently snake_case__ : Optional[Any] = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case__ : Optional[int] = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): snake_case__ : List[str] = model(snake_case_ , decoder_input_ids=snake_case_ , labels=snake_case_ , training=snake_case_ )[0] snake_case__ : Any = tf.gradients(snake_case_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): snake_case__ : Dict = model(snake_case_ , labels=snake_case_ , training=snake_case_ )[0] snake_case__ : Optional[int] = tf.gradients(snake_case_ , model.trainable_variables ) return gradients snake_case__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __magic_name__ ( self : int , snake_case_ : List[Any] ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(snake_case_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average snake_case__ : Optional[int] = timeit.repeat( snake_case_ , repeat=self.args.repeat , number=1_0 , ) return min(snake_case_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def __magic_name__ ( self : Tuple , snake_case_ : Callable[[], None] ): '''simple docstring''' logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) snake_case__ : int = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) snake_case__ : int = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() snake_case__ : Dict = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) snake_case__ : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(snake_case_ ) snake_case__ : Union[str, Any] = meminfo.used snake_case__ : int = Memory(snake_case_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) snake_case__ : str = None else: snake_case__ : Union[str, Any] = measure_peak_memory_cpu(snake_case_ ) snake_case__ : int = Memory(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else memory_bytes if self.args.trace_memory_line_by_line: snake_case__ : int = stop_memory_tracing(snake_case_ ) if memory is None: snake_case__ : Optional[int] = summary.total else: snake_case__ : str = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
347
0
'''simple docstring''' import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus" ): lowerCAmelCase_ : Optional[Any] =BeautifulSoup(requests.get(__UpperCamelCase ).text , '''html.parser''' ) lowerCAmelCase_ : Optional[int] =soup.findAll('''h1''' ) lowerCAmelCase_ : Optional[int] =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCamelCase , __UpperCamelCase )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
713
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : int =cva.getAffineTransform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cva.warpAffine(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __lowercase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowercase , __lowercase = gray_img.shape # set different points to rotate image __lowercase = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) __lowercase = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) __lowercase = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) __lowercase = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list __lowercase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowercase = plt.figure(1) __lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
305
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ :List[Any] = logging.get_logger(__name__) lowercase__ :str = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] lowercase__ :str = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : int = torch.load(UpperCAmelCase_ , map_location='''cpu''' ) return sd def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=rename_keys_prefix ) ->str: """simple docstring""" __UpperCAmelCase : Union[str, Any] = OrderedDict() __UpperCAmelCase : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase : Optional[Any] = key for name_pair in rename_keys_prefix: __UpperCAmelCase : List[Any] = new_key.replace(name_pair[0] , name_pair[1] ) __UpperCAmelCase : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase : Tuple = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __UpperCAmelCase : Optional[int] = '''pretraining''' if "vcr" in checkpoint_path: __UpperCAmelCase : Union[str, Any] = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : Any = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: __UpperCAmelCase : Optional[Any] = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: __UpperCAmelCase : Any = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __UpperCAmelCase : Tuple = {'''visual_embedding_dim''': 5_12} __UpperCAmelCase : str = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase : Union[str, Any] = {'''visual_embedding_dim''': 20_48} __UpperCAmelCase : List[Any] = '''vqa_advanced''' elif "vqa" in checkpoint_path: __UpperCAmelCase : Any = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} __UpperCAmelCase : Optional[Any] = '''vqa''' elif "nlvr" in checkpoint_path: __UpperCAmelCase : Optional[Any] = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } __UpperCAmelCase : Union[str, Any] = '''nlvr''' __UpperCAmelCase : str = VisualBertConfig(**UpperCAmelCase_ ) # Load State Dict __UpperCAmelCase : int = load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : int = get_new_dict(UpperCAmelCase_ , UpperCAmelCase_ ) if model_type == "pretraining": __UpperCAmelCase : int = VisualBertForPreTraining(UpperCAmelCase_ ) elif model_type == "vqa": __UpperCAmelCase : Dict = VisualBertForQuestionAnswering(UpperCAmelCase_ ) elif model_type == "nlvr": __UpperCAmelCase : Optional[Any] = VisualBertForVisualReasoning(UpperCAmelCase_ ) elif model_type == "multichoice": __UpperCAmelCase : Optional[int] = VisualBertForMultipleChoice(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) # Save Checkpoints Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') lowercase__ :str = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
522
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'SpeechT5FeatureExtractor' _A : List[Any] = 'SpeechT5Tokenizer' def __init__( self : List[str] , __lowercase : List[str] , __lowercase : int ): '''simple docstring''' super().__init__(__lowercase , __lowercase ) def __call__( self : Any , *__lowercase : List[str] , **__lowercase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = kwargs.pop('''audio''' , __lowercase ) __UpperCAmelCase : str = kwargs.pop('''text''' , __lowercase ) __UpperCAmelCase : List[str] = kwargs.pop('''text_target''' , __lowercase ) __UpperCAmelCase : Optional[Any] = kwargs.pop('''audio_target''' , __lowercase ) __UpperCAmelCase : Tuple = kwargs.pop('''sampling_rate''' , __lowercase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __UpperCAmelCase : Union[str, Any] = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) elif text is not None: __UpperCAmelCase : Optional[int] = self.tokenizer(__lowercase , **__lowercase ) else: __UpperCAmelCase : List[Any] = None if audio_target is not None: __UpperCAmelCase : Tuple = self.feature_extractor(audio_target=__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) __UpperCAmelCase : Optional[int] = targets['''input_values'''] elif text_target is not None: __UpperCAmelCase : Optional[Any] = self.tokenizer(__lowercase , **__lowercase ) __UpperCAmelCase : int = targets['''input_ids'''] else: __UpperCAmelCase : List[str] = None if inputs is None: return targets if targets is not None: __UpperCAmelCase : Any = labels __UpperCAmelCase : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __UpperCAmelCase : List[Any] = decoder_attention_mask return inputs def A_ ( self : List[str] , *__lowercase : Dict , **__lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = kwargs.pop('''input_values''' , __lowercase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop('''input_ids''' , __lowercase ) __UpperCAmelCase : str = kwargs.pop('''labels''' , __lowercase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) elif input_ids is not None: __UpperCAmelCase : Any = self.tokenizer.pad(__lowercase , **__lowercase ) else: __UpperCAmelCase : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(__lowercase , __lowercase ) and "input_ids" in labels[0]): __UpperCAmelCase : str = self.tokenizer.pad(__lowercase , **__lowercase ) __UpperCAmelCase : str = targets['''input_ids'''] else: __UpperCAmelCase : Union[str, Any] = self.feature_extractor.feature_size __UpperCAmelCase : str = self.feature_extractor.num_mel_bins __UpperCAmelCase : List[Any] = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) __UpperCAmelCase : Dict = feature_size_hack __UpperCAmelCase : Union[str, Any] = targets['''input_values'''] else: __UpperCAmelCase : Tuple = None if inputs is None: return targets if targets is not None: __UpperCAmelCase : Tuple = labels __UpperCAmelCase : int = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __UpperCAmelCase : Dict = decoder_attention_mask return inputs def A_ ( self : Optional[int] , *__lowercase : Optional[int] , **__lowercase : int ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def A_ ( self : Union[str, Any] , *__lowercase : Dict , **__lowercase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase )
522
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a__ : Optional[Any] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a__ : Union[str, Any] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ a__ : List[Any] = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self : List[Any] ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def _UpperCamelCase ( self : Optional[Any] , a_ : List[Any] , a_ : List[str] , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , ): """simple docstring""" lowerCamelCase__ = len(references[0] ) if any(len(a_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCamelCase__ = [[refs[i] for refs in references] for i in range(a_ )] lowerCamelCase__ = TER( normalized=a_ , no_punct=a_ , asian_support=a_ , case_sensitive=a_ , ) lowerCamelCase__ = sb_ter.corpus_score(a_ , a_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
235
def snake_case (UpperCamelCase : int ): '''simple docstring''' return str(UpperCamelCase ) == str(UpperCamelCase )[::-1] def snake_case (UpperCamelCase : int ): '''simple docstring''' return int(UpperCamelCase ) + int(str(UpperCamelCase )[::-1] ) def snake_case (UpperCamelCase : int = 10000 ): '''simple docstring''' lowerCamelCase__ = [] for num in range(1 , UpperCamelCase ): lowerCamelCase__ = 0 lowerCamelCase__ = num while iterations < 50: lowerCamelCase__ = sum_reverse(UpperCamelCase ) iterations += 1 if is_palindrome(UpperCamelCase ): break else: lychrel_nums.append(UpperCamelCase ) return len(UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
235
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A ={ 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
407
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
611
0
_UpperCamelCase: int ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def _a ( ): """simple docstring""" _lowerCAmelCase = input('Enter message: ' ) _lowerCAmelCase = input('Enter key [alphanumeric]: ' ) _lowerCAmelCase = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): _lowerCAmelCase = 'encrypt' _lowerCAmelCase = encrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif mode.lower().startswith('d' ): _lowerCAmelCase = 'decrypt' _lowerCAmelCase = decrypt_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(f'''\n{mode.title()}ed message:''' ) print(__SCREAMING_SNAKE_CASE ) def _a ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'encrypt' ) def _a ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return translate_message(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'decrypt' ) def _a ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = key.upper() for symbol in message: _lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__SCREAMING_SNAKE_CASE ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 0 else: translated.append(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
585
import requests from bsa import BeautifulSoup def _a ( __SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _lowerCAmelCase = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowerCAmelCase = soup.findAll('h1' ) _lowerCAmelCase = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
585
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path", ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision", [None, "v2"] ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : int = hf_hub_url(repo_id=snake_case__, path=snake_case__, revision=snake_case__ ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}'''
382
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = (DPMSolverSDEScheduler,) lowerCamelCase__: int = 10 def _lowerCamelCase ( self: Any , **__lowerCamelCase: Optional[int] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**__lowerCamelCase ) return config def _lowerCamelCase ( self: List[str] ) -> Dict: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> List[str]: __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : List[str] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : str = self.dummy_model() __UpperCAmelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : List[Any] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : List[Any] = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = model(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : int = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = output.prev_sample __UpperCAmelCase : Dict = torch.sum(torch.abs(__lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1e-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : int = self.get_scheduler_config(prediction_type="v_prediction" ) __UpperCAmelCase : List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : List[str] = self.dummy_model() __UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : Optional[int] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : Optional[int] = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = output.prev_sample __UpperCAmelCase : Dict = torch.sum(torch.abs(__lowerCamelCase ) ) __UpperCAmelCase : Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1e-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1e-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1e-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1e-3 def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config() __UpperCAmelCase : int = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCamelCase ) __UpperCAmelCase : int = self.dummy_model() __UpperCAmelCase : List[Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCAmelCase : int = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = model(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = output.prev_sample __UpperCAmelCase : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1e-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1e-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1e-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1e-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1e-3 def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : List[Any] = self.scheduler_classes[0] __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**__lowerCamelCase , use_karras_sigmas=__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowerCamelCase ) __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : Any = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma __UpperCAmelCase : Dict = sample.to(__lowerCamelCase ) for t in scheduler.timesteps: __UpperCAmelCase : Dict = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = output.prev_sample __UpperCAmelCase : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) __UpperCAmelCase : str = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1e-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1e-2
382
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
720
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = FlaxAutoencoderKL @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = 4 A_ : int = 3 A_ : List[str] = (3_2, 3_2) A_ : Any = jax.random.PRNGKey(0 ) A_ : int = jax.random.uniform(lowercase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } A_ : int = self.dummy_input return init_dict, inputs_dict
70
0